
Spatiotemporal risk of human brucellosis under
intensification of livestock keeping based on
machine learning techniques in Shaanxi, China

Li Shen1† , Chenghao Jiang1†, Fangting Weng1†, Minghao Sun1, Chenxi Zhao2,

Ting Fu2, Cuihong An3,4, Zhongjun Shao2 and Kun Liu2

1School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China; 2Department of
Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment,
School of Public Health, Air Force Medical University, Xi’an, China; 3Department of Plague and Brucellosis, Shaanxi
Center for Disease Control and Prevention, Xi’an, China and 4Department of Microbiology and Immunology, School of
Medicine, Xi’an Jiaotong University, Xi’an, China

Abstract

As one of the most neglected zoonotic diseases, brucellosis has posed a serious threat to public
health worldwide. This study is purposed to apply different machine learning models to improve
the prediction accuracy of human brucellosis (HB) in Shaanxi, China from 2008 to 2020, under
livestock husbandry intensification from a spatiotemporal perspective. We quantitatively evalu-
ated the performance and suitability of ConvLSTM, RF, and LSTM models in epidemic fore-
casting, and investigated the spatial heterogeneity of how different factors drive the occurrence
and transmission of HB in distinct sub-regions by using Kernel Density Analysis and Shapley
Additional Explanations. Our findings demonstrated that ConvLSTM network yielded the best
predictive performance with the lowest average RMSE of 13.875 and MAE values of 18.393. RF
model generated an underestimated outcome while LSTM model had an overestimated one. In
addition, climatic conditions, intensification of livestock keeping and socioeconomic status were
identified as the dominant factors that drive the occurrence of HB in Shaanbei Plateau, Guanz-
hong Plain, and Shaannan Region, respectively. This work provided a comprehensive under-
standing of the potential risk of HB epidemics in Northwest China driven by both anthropogenic
activities and natural environment, which can support further practice in disease control and
prevention.

Introduction

Brucellosis is a widespread bacterial zoonosis caused by genus Brucella, which is characterized by
ongoing environment-to-individual transmission globally [1, 2]. Human can be infected through
direct contact with infected animals, eating contaminated animal products, or inhaling infectious
aerosols [3, 4]. Currently, human brucellosis (HB) cases have been reported in over 170 countries
and regions, with an annual estimate of 500 000 newly emerging cases worldwide [5]. As one of
the most significantly neglected 63 zoonotic diseases, the substantial residual disability and high
relapse rates of HB have caused a heavy socioeconomic burden on public health [6, 7]. In China,
the number of HB cases has experienced an sharp rise over the past two decades, with northern
pasturelands being the primary epidemic region, and then geographically expanding towards the
grasslands, croplands and even coastal areas in Southern China [8]. Therefore, it is imperative to
predict how the potential risk of HB spatiotemporally distributed, driven by a variety of factors in
the context of agriculture transition. This is of great significance to effectively implement control
measures and prevent epidemic transmission.

The impact of global climate change on the dynamics, distribution, and spread of infectious
diseases has gained significant attention [9]. The relationship between meteorological factors and
HBhas been explored and air pressure, wind speed,mean temperature, and relative humiditywere
identified as significant impactors on the prevalence of HB. Those factors might affect the
epidemic transmission by changing the activity of Brucella and the contact between livestock
and humans [10]. Similarly, Yang et al. have also found air temperature, sunshine duration,
precipitation, relative humidity, and evaporation play a role in the transmission of local HB with
an evident lag effect. Particularly in environments with high air temperature, low relative
humidity, and short sunshine duration, the risk of brucellosis infection appears higher [6]. In
addition, based on a spatiotemporal analysis conducted in Inner Mongolia, averaged temperature
andNormalizedDifferencedVegetation Index (NDVI) were discovered to be positively correlated
with the incidence of HB but a negative correlation for precipitation, relative humidity, and
sunshine duration [11]. The aforementioned findings were consistent with the research by
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Ahmadkhani et al. who revealed that the warm months with the
lowest precipitation and the highest temperature were more sus-
ceptible to the spread of HB [12].

Existing studies on epidemics prediction primarily focus on
applying statistical models such as regression models [13–15],
transmission dynamics models [15–17], and time series models
(e.g., Exponential Smoothing Models, ARIMA and its Improved
Models, Bayesian Time Series Models) [6, 18–26]. Those statistical
models have advantages in improving the accuracy of epidemic risk
prediction, identifying its dynamic transmission pattern, and cap-
turing its time serial variation based on a long-term trend. How-
ever, those models demand higher-quality observational data,
comply with rigorous statistical prerequisites, and simplify the
complex transmissions into a similar scenario. This possibly causes
poor stability of the prediction performance and limited adaptabil-
ity in epidemic data of fine-grained time granularity. In addition,
they are not suitable to effectively capture the epidemic dynamic
process, as well as its spatiotemporal interactions with the intricate
anthropogenic and natural environments [1]. Moreover, less atten-
tion was paid to integrating potential factors associated with agri-
culture intensification and livestock development that can increase
the risk of zoonotic diseases. There is a need to reveal the geograph-
ical heterogeneity of how such anthropogenic activities affect the
transmission of epidemic diseases.

In recent years, the machine learning approach has gained
increasing interest within the academic community on epidemic
risk assessment [27, 28]. Particularly, the combination of deep
learning and spatiotemporal analysis exhibits stronger nonlinear
fitting capabilities. This can lead to higher accuracy in mining vast
epidemiological and environmental attribute information, provid-
ing robust support for multi-scale and real-time epidemic moni-
toring. Meanwhile, it can greatly reduce the uncertainty in the early
warning of disease outbreaks [29].

Therefore, the aim of this study was to improve the accuracy of
HB risk prediction based on machine learning approaches with
three specific objectives: (1) to quantitatively examine the spatio-
temporal risk of HB in Northwest China based on ConvLSTM
model; (2) to compare the suitability of different machine learning
models in predicting HB risk; and (3) to investigate whether the
impacts of predominant driving factors on HB transmission varied
within distinct geographic areas, in the context of livestock agri-
culture transition. This study put forward an in-depth understand-
ing of zoonotic risk distribution in intensive livestock industries
and provided valuable insights for formulating effective control
strategies.

Study area and data

Study area

Shaanxi Province in Northern China is one of the most severely
affected regions by highly prevalent brucellosis, due to an average
annual HB incidence of 11.5/100 000. Especially Shaanbei Plateau
and Guanzhong Plain show an aggregated distribution [1, 18]. It is
located in northwest China (105°290–115°150E to 31°420–39°350N),
ranking among the top 10 provinces in China over the past two
decades. It comprises 107 counties and districts under the admin-
istration of 10 prefecture-level cities. With an area of approximately
205 600 km2 and a total population of 39.53 million in 2022 (http://
en.shaanxi.gov.cn/as/), Shaanxi Province has a diverse climate and
distinct landforms, characterized by high terrain in the north and
south and low terrain in the middle. It is geographically stratified

into three contiguous natural sub-regions: Shaanbei Plateau,Guanz-
hong Plain, and Shaannan Region, and HB across those three sub-
regions exhibits seasonal fluctuation characteristics and geographic
heterogeneity (Figure 1).

Reported human brucellosis cases

The diagnosed HB cases in Shaanxi from 2008 to 2020 were
provided by the Center for Disease Control and Prevention of
Shaanxi Province via the National Notifiable Infectious Diseases
Reporting Information System. Each HB case record contained
information regarding, age, sex, occupation, and onset date of
symptoms. The residential addresses were collected, and all study-
related information was analyzed anonymously. The burden of HB
disease in Shaanxi Province can be further demonstrated by an
epidemiological profile (Figure 2). From 2008 to 2020, there were
more males than females with HB in Shaanxi Province, with an
incidence ratio of male to female of 3.36: 1. The dominant occu-
pation was mainly farmers, accounting for 88.4% of the total cases
(Figure 2a). The age group of 50–59 years old had the largest
number of HB cases, accounting for 30.2% of the total HB occur-
rences (Figure 2b).

The administrative region codes were updated based on the
2020 administrative region code issued by the Ministry of Civil
Affairs of the People’s Republic of China (https://www.mca.gov.cn/).
These updated codes were utilized to ascertain the number of cases
in each county and district. Firstly, we carefully examined the
residential addresses of HFMD cases and disease onset time not
during the study period, and excluded those confirmed outlier
cases. Secondly, we converted the text residential address of each
HFMD case into a spatial point located within the corresponding
administrative boundary, and then assigned the attribute informa-
tion to those points. Incomplete addresses were uniformly categor-
ized into the geometric centre of townships. Finally, a total of 13 504
HB cases were obtained, distributed among 107 county-level
administrative regions in 2020.

Driving factors

We collected a variety of data on driving factors that potentially
affect the incidence of HB, including statistical data and remote
sensing products. Statistical data included population size, popula-
tion density, livestock inventory (including pigs, cattle, and sheep),
and meat and dairy production from 2008 to 2020, which were
obtained from the Statistical Yearbook of the Shaanxi Provincial
Bureau of Statistics (http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/). Coun-
ties and districts with no livestock inventory records were assigned
a value of zero. In addition, the above annual data were sampled to
improve the temporal resolution to acquire monthly data for the
current year.

We compiled monthly data on precipitation, potential evapor-
ation, sunshine duration, average temperature (https://data.tpd
c.ac.cn/home), wind speed, and relative humidity (https://cds.cli
mate.copernicus.eu/) from 2008 to 2020 in Shaanxi Province, con-
stituting a climate factor dataset. The time series XY plots of HB
cases and climatic factors are shown in Figure 3.

In addition, to compensate for the absence of year-by-year GDP
data for Shaanxi, nighttime-light remote sensing products (https://
eogdata.mines.edu/products/vnl/) were used as a primary indicator
of the socioeconomic level. Existing studies have proved that there
is a high correlation between night light and GDP [30], and night
light remote sensing products are often used to assess and monitor
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social and economic dynamics [31]. Relative studies also show that
the expansion pattern of built-up areas is highly correlated with
socio-economic factors such as GDP, per capita disposable income,

population growth, industrialization and urbanization process
[32]. Therefore, we used nighttime-light remote sensing products
as one indicator of the socioeconomic level. The impervious surface

Figure 1. Seasonal fluctuation and geographic heterogeneity of HB incidence across three sub-regions of Shaanxi Province, 2008–2020. (a) Scenariomaps based on season-wise and
sub-region-wise information and (b) Monthly number of HB cases for three sub-regions from 2008 to 2020.

Figure 2. The epidemic profile of HB cases in Shaanxi Province, 2008–2020. (a) Distribution of occupation and gender and (b) Percentage of different age groups of HB (0–9, 10–19,
20–29, 30–39, 40–49, 50–59, and > 60).

Epidemiology and Infection 3

https://doi.org/10.1017/S0950268824001018 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824001018


data within the land cover dataset (https://zenodo.org/record/
5816591) were obtained to estimate the built-up area, serving as
another indicator of the socioeconomic level.

Points of interest related to livestock keeping

Points of interest (POI) data of various enterprises engaged in
animal husbandry were gathered from Baidu’s Aiqicha (https://
aiqicha.baidu.com/) according to three rules: (1) having business
records in Shaanxi from 2007 to 2020, (2) possessing detailed
addresses to obtain latitude and longitude information, and
(3) engaging in activities related to raising, trading, or slaughtering
beef cattle, goats, sheep and cow, or selling products derived from
the above animals.

Methods

The geospatial grid partitioning

In this study, the unit of county and district was determined as the
basic spatial scale for analysis. To emphasize the local spatial
relationships brought by the convolutional layer, the study area
was partitioned into a grid of equally sized cells (26 × 44) while
preserving the topological relationships between the counties. The
observation values in the dataset were mapped to a predefined
spatial region delineated by latitude and longitude coordinates.

For each cell, an administrative region code was assigned based
on the following criteria: (1) Cells without any counties or districts
were unallocated a code; (2) Cells containing only one county or

district, which accounted for more than one-third of the cell’s area,
were assigned the corresponding code; and (3) Cells encompassing
multiple counties or districts were assigned the code of the county
or district with the largest area. Finally, cells sharing the same
administrative region code were merged, as illustrated in
Figure 4. The HB case data in merged counties or districts were
divided by the total number of occupied cells, yielding specific
values for each cell. These geospatial grids were then transformed
into raster images and normalized to the range of 0–255, in which
the grey value of each pixel corresponds to a specific numerical
value.

The PCA-based ConvLSTM network

In this study, a principal component analysis (PCA) method is
utilized to address multicollinearity among the feature variables.
The PCA effectively reduced the dimensionality of the sample by
transforming the original variables into a comprehensive set of
independent variables, enabling the extraction of crucial informa-
tion from multidimensional features [33].

TheConvolutional Long Short-TermMemory (ConvLSTM) [34]
is a variant of the Long Short-TermMemory (LSTM)model [35] that
incorporates convolutional operations within the recurrent architec-
ture. This integration enables ConvLSTM to effectively capture both
spatial and temporal dependencies in sequential data, making it
particularly suitable for predicting spatiotemporal patterns.

When dealing with multidimensional data, LSTM struggles to
effectively capture its spatial correlations and features. To remedy
this, the ConvLSTM layer swaps out the matrix multiplication of

Figure 3. Time series XY plots of HB cases and climatic factors. (a) With temperature (0.1°C), (b) with wind speed (0.1 m/s), (c) with precipitation (×103 mm), (d) with sunshine
duration (hour), (e) with potential evaporation (×103 mm), and (f) with relatively humidity.
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LSTM for convolution operations, improving its performance with
multidimensional data. The explicit expression of a unit of
ConvLSTM is given in equations (1))–(5):

it = σ Wxi ∗ Χ t þWhi ∗ Η t�1þWci ∘ Ct�1þbið Þ, (1)

f t = σ Wxf ∗ Χ t þWhf ∗ Η t�1þWci ∘ Ct�1þbf
� �

, (2)

Ct = f t ∘ Ct�1þ it ∘ tanh Wxc ∗ Χ t þWhc ∗ Η t�1þbcð Þ, (3)

ot = σ Wxo ∗ Χ þWho ∗ ht�1þWco ∗ Ct þboð Þ, (4)

ht = ot ∘ tanh Ctð Þ, (5)

where i, f, c, and o to are respectively referred to as the input gate,
forget gate, control unit, and output gate. The weight matrices Wi,
Wf , Wc, and Wo are the weights from the input to output gate. σ is
a logistic sigmoid multiplication function with an output range of
[0,1]; tanh denotes a hyperbolic tangent function with an output
range of [�1,1]. ht represents the output value at time t and ot
denotes the gate control information in the output gate. f t is a
control function that determines which parts of the historical
information should be discarded, that is, the influence of the
information in the previous memory cell ct�1 on the current
memory cell ct . ∘ represents the Hadamard product, and ∗ is a
convolution operator.

We trained the ConvLSTM network using the variables that
have undergone PCA and refer to this approach as the PCA-based
ConvLSTM network. In this study, we utilized SPSS 27.0 software
for conducting principal component analysis and implemented the
models using Python 3.8.

Since data were initially divided into three geographical
regions, the northern Shaanxi Plateau, the central Shaanxi Plain,
and the southern Shaanxi region, we accordingly further derived
both training and testing sets randomly based on time. Specific-
ally, data from the first 11 years was used for model training and
data from the last 2 years for model testing. However, due to the
policy of data accessibility, we are unable to obtain a large dataset
enough to create a separate validation set. Therefore, the cross-
validation was not performed in this study as the relatively small
data set did not support effective cross-validation. Otherwise, the
small number of training samples may affect the stability and
generalization ability of the models. In addition, the current
analysis has undergone rigorous preprocessing and feature engin-
eering, which can provide relatively high accuracy and reliability
of the final results.

In our study, due to the small dataset size (only 156 samples) and
limited adjustable parameters (no more than four per model), we
opted for manual adjustment of certain parameters instead of
automatic optimization. Specifically, for the ConvLSTM model,
we manually adjusted the time step and convolutional kernel size;
for the LSTM model, we manually adjusted the time step; and for

Figure 4. The study area is divided into the geospatial grid and merged. (a) The spatial grid with 26 × 44 cells, (b) the merged cells of Shenmu city, (c) the merged cells of Dingbian
county, and (d) the merged cells of Zhen’an county.
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the random forest model, we tuned parameters including the
number of decision trees and maximum tree depth.

Model performance evaluation metrics

The root mean square error (RMSE) and mean absolute error
(MAE) are used to evaluate the fitting and predictive performance
of the models, which are modelled as:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i= 1

xi� bxið Þ2
vuut , (6)

MAE=
1
N

XN
i= 1

∣xi� bxi∣, (7)

where xi denotes the actual values, bxi is predicted values, i = 1,
2,…, n is the number of samples and xi

�
refers to the mean of actual

values. RMSE and MAE serve as metrics to assess the deviation and
discrepancies between predicted and actual values, with smaller values
indicating higher model fitting and accuracy, respectively.

Shapley additional explanations method

This study employed Shapley Additional Explanations (SHAP) to
measure the correlation between each feature of the sample and its
prediction results [36]. SHAP is a machine learning interpretive
method based on a mathematical model and is a method of inter-
pretation that is based on game theory, using the Shapley value to
evaluate the contribution of each feature to the model output. The
SHAP value obeys the following formula (8):

yi = ybaseþ f xi,1ð Þþþf xi,1ð Þþ…þþf xi,1ð Þ, (8)

where yi represents the predicted value for sample xi, xi,j is the jth
feature of the sample xi, f xi,j

� �
denotes the SHAP value of xi,j, and

ybase is usually the average of the observed values for all samples.
When f xi,j

� �
> 0, it indicates that the feature xi,j plays a positive role

in the prediction of the observed value. On the contrary, the feature
has the opposite effect on the prediction of the observed value.

Results

Predictive performance for Shaanbei Plateau

To visually present the prediction results, the counties and districts
in Shaanxi were divided into three sub-regions including Shaanbei

Plateau, Guanzhong Plain, and Shaannan Region. The prediction
performance of RF and LSTM models was compared to that of
ConvLSTM network (Table 1).

Shaanbei Plateau exhibited the highest concentration of HB
cases in Shaanxi. Figure 5a demonstrated that all of those three
models captured the temporal fluctuations in HB cases of Shaanbei
Plateau from 2019 to 2020. Notably, ConvLSTM (RMSE = 9.764,
MAE = 6.500) outperformed RF (RMSE = 7.635,MAE = 5.875) and
LSTM (RMSE = 9.287, MAE = 6.167). Particularly during the
outbreak month of June 2019, the predicted value of ConvLSTM
was closer to the actual value compared to the other two models.
However, the prediction performance of all those three models
declined in 2020.

Predictive performance for Guanzhong Plain and Shaannan
Region

The predictive performance for Guanzhong Plain was inferior to
that for Shaanbei Plateau due to higher values of RMSE and MAE.
In longitudinal comparison, ConvLSTM (RMSE = 16.719,
MAE = 12.958) still performed the best among those three models
(Figure 5b). Moreover, the performance of LSTM (RMSE = 19.164,
MAE = 14.500) was inferior to that of RF (RMSE = 17.106,
MAE = 14.292). The number of HB cases in the Shaannan region
appeared much lower than in Shaanbei Plateau and Guanzhong
Plain, and all of these three models failed to effectively capture the
temporal variations of the disease prevalence in the Shaannan
region (Figure 5c).

Predictive performance for the whole Shaanxi Province

We aggregated the results of each sub-region to obtain the overall
predictive performance for the entire Shaanxi Province (Figure 5d),
and the cumulative actual and predicted number of HB cases from
April to September 2019 and 2020 were respectively visualized. The
analysis revealed that all those three models were able to predict the
general spatiotemporal changes in the number of HB cases. In
addition, the ConvLSTM outperformed the other two models in
terms of prediction accuracy, as it yielded the lowest average RMSE
of 13.875 (Figure 6).

Assessment of driving factors across three sub-regions

We identified four principal components for each sub-region,
including social economy, animal husbandry, meteorology I, and
meteorology II (Table 2), which passed the KMO (Kaiser-Meyer-
Olkin) and Bartlett’s sphericity tests. The SHAP (Shapley Additive

Table 1. The prediction performance metrics of both training and testing data for three models across different sub-regions

Sub-region Model RMSE (train) MAE (train) RMSE (test) MAE (test)

Shaanbei RF 8.525 5.642 9.764 6.500

LSTM 8.019 6.002 9.287 6.167

ConvLSTM 6.948 5.163 7.635 5.875

Guanzhong RF 15.385 12.154 17.106 14.292

LSTM 17.235 12.072 19.164 14.500

ConvLSTM 13.103 11.327 16.719 12.958

Shaannan RF 1.031 1.003 1.339 1.125

LSTM 1.004 0.738 1.275 0.875

ConvLSTM 0.932 0.740 1.208 0.958
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Explanation) value analysis for three sub-regions is shown in
Figure 7g–i.

In Shaanbei Plateau (Figure 7g), it was found that the most
important factor was PC-III, which included temperature, precipi-
tation, and potential evaporation, closely related to climate change
and exhibiting a significant positive correlation with the number of
HB cases. PC-IV also played a critical role in the changes of the HB
epidemic in Shaanbei Plateau, consisting of sunshine duration,
relative humidity, and wind speed, which promote the spread of
HB. In addition, PC-I, which represented the level of urbanization
and human activities, had a certain inhibitory effect on the spread of
brucellosis in Shaanbei Plateau. Surprisingly, the results of this
study showed that the PC-II representing the livestock industry
did not become a major influencing factor.

In Guanzhong Plain (Figure 7h), PC-I showed a positive cor-
relation with the local HB trend, which was related to animal
husbandry. Moreover, the impact of urbanization level (PC-III)
on HB in the Guanzhong Plain differed significantly from that in
the Shaanbei Plateau, which may have been related to the different
urbanization processes and human activities in those two regions.
Comparatively, meteorological features (PC-II and PC-IV) were
not the main factors causing the change in HB in Guanzhong Plain.
In Shaannan Region (Figure 7i), PC-II, associated with the level of
socioeconomic development, significantly contributed to the dis-
tribution pattern of endemic diseases, while PC-IV, related to
sunshine duration, relative humidity, and wind speed, plays a
secondary role in promoting the same.

Discussion

As an interdisciplinary research, this study attempts to predict the
spatiotemporal risk of potential HB outbreaks in Northwest China,
over a period of 13 years from 2008 to 2020. We also examined the
driving effects of primary impact factors on the prevalence of HB
across three sub-regions, from both anthropogenic and natural

environmental aspects in the context of livestock husbandry
intensification.

Firstly, we evaluated and compared the suitability of different
machine learning models (Random Forest, LSTM, and
ConvLSTM) in predicting the spatiotemporal risk of HB out-
breaks. The analysis revealed that PCA-based ConvLSTM net-
work yielded the best predictive performance owing to the lowest
average RMSE of 13.875 and MAE values of 18.393. In contrast,
compared to the true value RF model generated an underesti-
mated outcome, while LSTM model had an overestimated one,
particularly during the period from November 2019 to March
2020. In general, the ConvLSTMnetwork showed superiority than
Random Forest and LSTM model in predicting HB risk. This is
consistent with the conclusions by previous studies conducted in
Europe [37].

Moreover, we found the spatial heterogeneity of how multiple
factors influence the occurrence of HB across sub-regions. For
Shaanbei Plateau, as a climate-sensitive epidemic [38], the occur-
rence of HB was further proved to have a strong association with
meteorological factors. This is consistent with the findings by Liu
et al. [39], and both studies pointed out that increasing temperature
can facilitate the proliferation and spread of Brucella, especially in
late spring and early summer. Also, strong evaporation can increase
the aridity of soil and assist the pathogen to spread into the air
[40]. Also, climate factors including sunshine duration, relative
humidity, and wind speed factors were all evidently associated with
the potential spatiotemporal risk of HB due to the increasing
transmission rate of pathogens in the open air, which aligns with
the previous study conducted by Yang et al. [6] and Zheng et al.
[41]. This is mainly because Shaanbei Plateau is famous for sheep
and goat farming, and higher temperature can facilitate the hus-
bandry activities of animal husbandry such as delivering, shearing,
breeding, producing dairy and meat products [42]. Thus, the rising
exposure to contaminated animals and their products can cause
growing risk of HB transmission in Shaanbei Plateau.

Figure 5. Monthly forecasted results of the PCA-based ConvLSTM, Random Forest, and LSTM models with the actual number of HB cases, 2019–2020. (a) Shaanbei Plateau,
(b) Guanzhong Plain, (c) Shaannan Region, and (d) Shaanxi Province.
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Guanzhong Plain is an example of an emerging endemic area of
HB, and experienced a more drastic urbanization process with
intensive land use changes, which may affect the seasonal fluctu-
ation and climate conditions. However, climate factors were

identified not to be the key determinants of the transmission of
HB but can still pose a significant impact in Guanzhong Plain.
Higher temperature can cause a positive impact on HB occurrence,
and this can possibly cause susceptible animals infected and

Figure 6. The actual and forecasted distribution of the cumulative number of HB cases in Shaanxi. (a,c) Actual distribution from April to September 2019 and 2020 and (b,d)
forecasted distribution from April to September 2019 and 2020.

Table 2. Principal components of the driving factors in Shaanbei Plateau, Guanzhong Plain, and Shaannan Region, respectively

Sub-region PC Category Factors

Shaanbei Plateau I Social economy BA, PpD, PpC, NL

II Animal husbandry Meat, Dairy, Stock of Pig, Cattle, and Sheep

III Meteorology I Tmp, Pre, PEt

IV Meteorology II SD, RH, WnS

Guanzhong Plain I Animal husbandry Meat, Dairy, Stock of Pig, Cattle, and Sheep

II Social economy BA, PpD, PpC, NL

III Meteorology I Tmp, Pre, PEt

IV Meteorology II SD, RH, WnS

Shaannan Region I Animal husbandry Meat, Dairy, Stock of Pig, Cattle, and Sheep

II Social economy BA, PpD, PpC, NL

III Meteorology I Tmp, Pre, PEt

IV Meteorology II SD, RH, WnS

BA, built area; NL, nighttime-light; PC, principal component; PEt, potential evaporation; PpC, population counts; PpD, population density; Pre, precipitation; RH, relative humidity; SD, sunshine
duration; Tmp, temperature; Wns, wind speed.
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pathogenic bacteria spread under insufficient protection and atten-
tion. This explanation matches with the explanation by Lee et al.
[43]. In Guanzhong Plain, compared to climate factors, animal
husbandry plays the dominant role in driving the emergence and
transmission of HB through frequent livestock (cattle, sheep, and
pigs) transportation and trades, which can be attributed to the
growing demand for dairy and meat products by a large population
in central Shaanxi. Support for this explanation also comes from
previous studies by Yang et al. [6] and Chen et al. [44]. In the
complex process chain of animal husbandry production, livestock,
veterinary medicine, by-products, and other agents may act as the
transmission route of Brucella, especially under intensive agricul-
ture industrialization and feed pollution [45].

For Shaannan Region, characterized by comparatively geo-
graphical disadvantages and socioeconomic underdevelopment,
sporadic HB cases were reported in recent years. It was found that
both climate factors and livestock development were likely to affect
the occurrence and transmission of HB. In Shaannan, the duration
of sunshine, relative humidity, and wind speed were negatively
correlated with the HB epidemic, which may have explained the
lower number of HB cases in this area compared to the other two
regions. It is very interesting that urbanization level in both Shaan-
bei Plateau and Shaannan Region is negatively associated with the
occurrence of HB compared to Guanzhong Plain [46]. This can be
explained by the large flow of people in economically developed
areas (Guanzhong Plain) weremore likely to frequently contact and
infected through the consumption of contaminated food or the use
of items carrying the pathogen [47]. In less developed and under-
populated areas (Shaanbei Plateau and Shaannan Region),

urbanization process appeared to exert a counteractive influence
on the prevalence of epidemics.

In general, the dominant factors influencing HB distribution in
the three regions of Shaanxi Province were different: climate factors
in Shaanbei mainly facilitates the spread of HB, while livestock
development in Guanzhong primarily contributes to its transmis-
sion. Both climate factors and socioeconomic development level in
Shaannan Region restricted the expansion of HB.

The contribution of this study is threefold. Firstly, distinct from
the conventional statistical modelling approach, we compared
different machine learning models in predicting the potential risk
ofHB. This improves the accuracy and allows for better utilizing the
advantages of each model from a spatiotemporal perspective. Sec-
ondly, we took account of multiple influential factors into charac-
terize the driving effects of both meteorological conditions and
anthropogenic activities. This can provide a comprehensive under-
standing of howHB expands and transmits in the context of animal
husbandry intensification. Furthermore, as a practical example of
exploring how different impact factors drive the occurrence and
transmission of an epidemic from a more specific scenario, this
study presents some new perspectives to support formulating more
effective public health strategies.

This study also has several limitations as well. Firstly, there still
exists some HB cases of asymptomatic carriers unable to be sur-
veilled and reported. Particularly, tourism and travelling are iden-
tified as important driving factors to impact the transmission ofHB,
but currently, it is difficult to obtain such data with enough spatial
and temporal information. In further research, multiple spatial data
sources (e.g., social media data, volunteer survey data, and high

Figure 7.Maps of kernel density analysis of various enterprises engaged in animal husbandry in Shaanxi, 2007–2020, and the impacts of various features on the number of HB cases
in sub-regions. (a) beef cattle, (b) dairy, (c) sheep, (d) goat, (e) cow, (f) comprehensive animal husbandry enterprises, (g) Shaanbei Plateau, (h) Guanzhong Plain, and (i) Shaannan
Region.
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spectral remote sensing information) need to be enriched for
providing more useful factors such as dietary habits, tourism and
travelling. In addition, the neighbouring brucellosis-endemic
regions of Shaanxi Province (e.g., Shanxi, Innermoglia, Hebei,
and Gansu) may also contribute to the cross-region transmission
and risk redistribution, which necessitates interdisciplinary and
cross-regional cooperative studies. Finally, due to the data access
policy, we did not obtain enough data to create a separate dataset for
cross-validation and automatic parameter optimization which are
critical for developing a robust predictive model.

Conclusions

To conclude, this study examined the suitability of machine learn-
ingmodels in spatiotemporally predicting human brucellosis under
livestock husbandry intensification, and revealed the driving effects
of different factors by considering the spatial heterogeneity. To
effectively prevent and control HB in Shaanxi Province, strict
supervision of the livestock living environment and the manage-
ment of animal husbandry practices need to be improved.

Data availability statement. The original research data for this paper can be
obtained by sending a request email to the corresponding author
(liukun5959@qq.com).

Acknowledgements. We are grateful to the editor of the journal and all the
reviewers, whose suggestions have been helpful in the preparation of the
manuscript.

Author contribution. C.A., Z.S., and K.L. conceptualized the study, and M.S.,
C.Z., and T.F. collected data and resources. L.S., C.J., and F.W. conducted the
analysis, and L.S., C.J., and F.W. wrote the original draft. K.L., T.F., C.A., and
Z.S. reviewed and edited the manuscript. All authors contributed to the article
and approved the submitted version.

Funding statement. This work was supported by grants from the National
Natural Science Foundation of China (L.S., grant number: 42201448; K.L., grant
number: 82273689); and Natural Science Foundation of Hubei Province (L.S.,
grant number: 2022CFB610).

Competing interest. The authors declare that they have no competing inter-
ests.

References

[1] An C, et al. (2023) Exploring risk transfer of human brucellosis in the
context of livestock agriculture transition: A case study in Shaanxi, China.
Frontiers in Public Health 10, 2–15. http://doi.org/10.3389/fpubh.2022.
1009854.

[2] Li M, et al. (2017) Model-based evaluation of strategies to control brucel-
losis in China. International Journal of Environmental Research and Public
Health 14, 1–15. https://doi.org/10.3390/ijerph14030295.

[3] Shen L, et al. (2023) Synergistic driving effects of risk factors on human
brucellosis in Datong City, China: A dynamic perspective from spatial
heterogeneity. Science of the Total Environment 894, 1–9. http://doi.
org/10.1016/j.scitotenv.2023.164948.

[4] Battikh H, et al. (2021) Clinical and laboratory features of brucellosis in a
university hospital in Tunisia. Infectious Diseases Now 51, 547–551. http://
doi.org/10.1016/j.idnow.2021.03.005.

[5] Pappas G, et al. (2006) The new global map of human brucellosis. Lancet
Infectious Diseases 6, 91–99. http://doi.org/10.1016/S1473-3099(06)
70382-6.

[6] Yang Z, et al. (2020) Spatiotemporal expansion of human brucellosis in
Shaanxi Province, northwestern China and model for risk prediction.
PeerJ 8, 1–17. http://doi.org/10.7717/peerj.10113.

[7] Dadar M, Shahali Y and Whatmore AM (2019) Human brucellosis
caused by raw dairy products: A review on the occurrence, major risk
factors and prevention. International Journal of Food Microbiology 292,
39–47. http://doi.org/10.1016/j.ijfoodmicro.2018.12.009.

[8] Yang H, et al. (2020) Epidemiological characteristics and spatiotemporal
trend analysis of human brucellosis in China, 1950–2018. International
Journal of Environmental Research and Public Health 17, 1–15. http://doi.
org/10.3390/ijerph17072382.

[9] Baker RE, et al. (2022) Infectious disease in an era of global change.Nature
Reviews Microbiology 20, 193–205. https://doi.org/10.1038/s41579-021-
00639-z.

[10] Cao L, et al. (2020) Relationship of meteorological factors and human
brucellosis inHebei province, China. Science of the Total Environment 703,
1–8. https://doi.org/10.1016/j.scitotenv.2019.135491.

[11] Peng R, et al. (2022) Driving effect of multiplex factors on human
brucellosis in high incidence region, implication for brucellosis based on
one health concept. One Health 15, 1–11. https://doi.org/10.1016/j.
onehlt.2022.100449.

[12] Ahmadkhani M, et al. (2017) Space-time analysis of human brucellosis
considering environmental factors in Iran. Asian Pacific Journal of Trop-
ical Disease 7, 257–265. https://doi.org/10.12980/apjtd.7.2017D6-353.

[13] Sun W, et al. (2021) Effects and interaction of meteorological factors on
hemorrhagic fever with renal syndrome incidence in Huludao City, north-
eastern China, 2007–2018. PLoS Neglected Tropical Diseases 15, 1–14.
http://doi.org/10.1371/journal.pntd.0009217.

[14] ChenZ, et al. (2020) Prediction of hot spot areas of hemorrhagic fever with
renal syndrome in Hunan Province based on an information quantity
model and logistical regression model. PLoS Neglected Tropical Diseases
14, 1–16. http://doi.org/10.1371/journal.pntd.0008939.

[15] XiaoH, et al. (2013) Atmosphericmoisture variability and transmission of
hemorrhagic fever with renal syndrome in Changsha City, mainland
China, 1991–2010. PLoS Neglected Tropical Diseases, 7, 1–7. http://doi.
org/10.1371/journal.pntd.0002260.

[16] Tian H, et al. (2017) Anthropogenically driven environmental changes
shift the ecological dynamics of hemorrhagic fever with renal syndrome.
PLoS Pathogens 13, 1–19. http://doi.org/10.1371/journal.ppat.1006198.

[17] Li Y, et al. (2019) Intrinsic and extrinsic drivers of transmission dynamics
of hemorrhagic fever with renal syndrome caused by Seoul hantavirus.
PLoS Neglected Tropical Diseases 13, 1–16. http://doi.org/10.1371/journal.
pntd.0007757

[18] Peng C, et al. (2020) An estimate of the incidence and quantitative risk
assessment of human brucellosis in mainland China. Transboundary and
Emerging Diseases 67, 1898–1908. http://doi.org/10.1111/tbed.13518.

[19] Peng C, et al. (2020) Spatial-temporal distribution of human brucellosis in
mainland China from 2004 to 2017 and an analysis of social and envir-
onmental factors. Environmental Health and Preventive Medicine 25,
1–14. http://doi.org/10.1186/s12199-019-0839-z.

[20] Liang W, et al. (2018) Mapping the epidemic changes and risks of
hemorrhagic fever with renal syndrome in Shaanxi Province, China,
2005–2016. Scientific Reports 8, 1–10. http://doi.org/10.1038/s41598-
017-18819-4.

[21] Yu L, et al. (2016) ARIMA model analysis of the epidemic characteristics
of hemorrhagic fever with renal syndrome and meteorological factors in
the Guangdong Region. Chinese Journal of Disease Control 20, 851–855.
http://doi.org/10.16462/j.cnki.zhjbkz.2016.08.024 (in Chinese).

[22] Hu B, et al. (2020) Integration of a Kalman filter in the geographically
weighted regression for modeling the transmission of hand, foot and
mouth disease. BMC Public Health 20, 1–15. http://doi.org/10.1186/
s12889-020-08607-7.

[23] He J, et al. (2019) Probabilistic logic analysis of the highly heterogeneous
spatiotemporal HFRS incidence distribution in Heilongjiang province
(China) during 2005–2013. PLoS Neglected Tropical Diseases 13, 1–28.
http://doi.org/10.1371/journal.pntd.0007091.

[24] Zhao Y, et al. (2018) A new seasonal difference space-time autoregressive
integrated moving average (SD-STARIMA) model and spatiotemporal
trend prediction analysis for hemorrhagic fever with renal syndrome
(HFRS). PLoSOne 13, 1–20. http://doi.org/10.1371/journal.pone.0207518.

10 Li Shen et al.

https://doi.org/10.1017/S0950268824001018 Published online by Cambridge University Press

mailto:liukun5959@qq.com
https://doi.org/10.3389/fpubh.2022.1009854
https://doi.org/10.3389/fpubh.2022.1009854
https://doi.org/10.3390/ijerph14030295
https://doi.org/10.1016/j.scitotenv.2023.164948
https://doi.org/10.1016/j.scitotenv.2023.164948
https://doi.org/10.1016/j.idnow.2021.03.005
https://doi.org/10.1016/j.idnow.2021.03.005
https://doi.org/10.1016/S1473-3099(06)70382-6
https://doi.org/10.1016/S1473-3099(06)70382-6
https://doi.org/10.7717/peerj.10113
https://doi.org/10.1016/j.ijfoodmicro.2018.12.009
https://doi.org/10.3390/ijerph17072382
https://doi.org/10.3390/ijerph17072382
https://doi.org/10.1038/s41579-021-00639-z
https://doi.org/10.1038/s41579-021-00639-z
https://doi.org/10.1016/j.scitotenv.2019.135491
https://doi.org/10.1016/j.onehlt.2022.100449
https://doi.org/10.1016/j.onehlt.2022.100449
https://doi.org/10.12980/apjtd.7.2017D6-353
https://doi.org/10.1371/journal.pntd.0009217
https://doi.org/10.1371/journal.pntd.0008939
https://doi.org/10.1371/journal.pntd.0002260
https://doi.org/10.1371/journal.pntd.0002260
https://doi.org/10.1371/journal.ppat.1006198
https://doi.org/10.1371/journal.pntd.0007757
https://doi.org/10.1371/journal.pntd.0007757
https://doi.org/10.1111/tbed.13518
https://doi.org/10.1186/s12199-019-0839-z
https://doi.org/10.1038/s41598-017-18819-4
https://doi.org/10.1038/s41598-017-18819-4
https://doi.org/10.16462/j.cnki.zhjbkz.2016.08.024
https://doi.org/10.1186/s12889-020-08607-7
https://doi.org/10.1186/s12889-020-08607-7
https://doi.org/10.1371/journal.pntd.0007091
https://doi.org/10.1371/journal.pone.0207518
https://doi.org/10.1017/S0950268824001018


[25] Sun L and Zou L (2018) Spatiotemporal analysis and forecasting model of
hemorrhagic fever with renal syndrome in mainland China. Epidemiology
and Infection 146, 1680–1688. http://doi.org/10.1017/S09502688180
02030.

[26] Bagheri H, et al. (2020) Forecasting the monthly incidence rate of bru-
cellosis in west of Iran using time series and data mining from 2010 to
2019. PLoS One 15, 1–18. http://doi.org/10.1371/journal.pone.0232910.

[27] Wang Y, Shen Z and Jiang Y (2018) Comparison of ARIMA andGM(1,1)
models for prediction of hepatitis B in China. PLoS One 13, 1–11. http://
doi.org/10.1371/journal.pone.0201987.

[28] Alfred R and Obit JH (2021) The roles of machine learning methods in
limiting the spread of deadly diseases: A systematic review. Heliyon 7,
1–12. http://doi.org/10.1016/j.heliyon.2021.e07371.

[29] Lu K, et al. (2018) Short-term wind power prediction model based on
encoder-decoder LSTM. IOP Conference Series Earth and Environmental
Science 186, 1–7. http://doi.org/10.1088/1755-1315/186/5/012020.

[30] Zhao M, et al. (2017) GDP spatialization and economic differences in
South China based on NPP-VIIRS nighttime light imagery. Remote Sens-
ing 9, 1–20. https://doi.org/10.3390/rs9070673.

[31] Bennett MM, et al. (2017) Advances in using multitemporal night-time
lights satellite imagery to detect, estimate, and monitor socioeconomic
dynamics. Remote Sensing of Environment 192, 176–197. http://doi.
org/10.1016/j.rse.2017.01.005.

[32] Wu K, et al. (2012) Land use dynamics, built-up land expansion patterns,
and driving forces analysis of the fast-growing Hangzhou metropolitan
area, eastern China (1978–2008). Applied Geography 34, 137–145. https://
doi.org/10.1016/j.apgeog.2011.11.006.

[33] Pei C (2014) Research on Principal Component Analysis and Its Applica-
tion in Feature Extraction.Dissertation, Shaanxi Normal University, 65pp.
(in Chinese).

[34] Shi X, et al. (2015) Convolutional LSTM Network: A machine learning
approach for precipitation nowcasting. In Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems.
Cambridge: MIT Press, pp. 802–810.

[35] Hochreiter S and Schmidhuber J (1997) Long short-termmemory.Neural
Computation 9, 1735–1780. http://doi.org/10.1162/neco.1997.9.8.1735.

[36] Lundberg SM and Lee S (2017) A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems 30,
4768–4777. https://dl.acm.org/doi/10.5555/3295222.3295230.

[37] Shen L, et al. (2022) Predicting the spatial-temporal distribution of human
brucellosis in Europe based on convolutional long short-term memory
network. Canadian Journal of Infectious Diseases and Medical Microbiol-
ogy 2022, 1–11. http://doi.org/10.1155/2022/7658880.

[38] Xiang J, et al. (2018) Impact of meteorological factors on hemorrhagic
fever with renal syndrome in 19 cities in China, 2005-2014. Science of the
Total Environment 636, 1249–1256. https://doi.org/10.1016/j.scito-
tenv.2018.04.407.

[39] Liu K, et al. (2020) Effect of climatic factors on the seasonal fluctuation of
human brucellosis in Yulin, northern China. BMC Public Health 20, 1–11.
https://doi.org/10.1186/s12889-020-08599-4.

[40] Lou P, et al. (2016)Modelling seasonal brucellosis epidemics in bayingolin
mongol autonomous prefecture of Xinjiang, China, 2010–2014. BioMed
Research International 2016, 1–17. http://doi.org/10.1155/2016/5103718.

[41] Zheng H, et al. (2023) Influence and prediction of meteorological factors
on brucellosis in a northwest region of China. Environmental Science and
Pollution Research 30, 9962–9973. http://doi.org/10.1007/s11356-022-
22831-1.

[42] Zhu H, et al. (2017) Analysis onepidemiology and spatial-temporal clus-
tering of human brucellosis in Fujian province, 2011–2016. Chinese Jour-
nal of Epidemiology 38, 1212–1217. https://doi.org/10.3760/cma.j.
issn.0254-6450.2017.09.014.

[43] Lee HS, et al. (2013) Time series analysis of human and bovine brucellosis
in South Korea from 2005 to 2010. Preventive Veterinary Medicine 110,
190–197. https://doi.org/10.1016/j.prevetmed.2012.12.003.

[44] Chen Q, et al. (2016) Epidemic characteristics, high-risk townships and
space-time clusters of human brucellosis in Shanxi Province of China,
2005-2014. BMC Infectious Diseases 16, 1–10. http://doi.org/10.1186/
s12879-016-2086-x.

[45] Shen M and Shen J (2018) Evaluating the cooperative and family farm
programs in China: A rural governance perspective. Land Use Policy 79,
240–250. http://doi.org/10.1016/j.landusepol.2018.08.006.

[46] Shen L, et al. (2022) Spatiotemporal association of rapid urbanization and
water-body distribution on hemorrhagic fever with renal syndrome: A
case study in the city of Xi’an, China. PLoS Neglected Tropical Diseases 16,
1–21. https://doi.org/10.1371/journal.pntd.0010094.

[47] Liang D, et al. (2021) Spatiotemporal distribution of human brucellosis in
Inner Mongolia, China, in 2010–2015, and influencing factors. Scientific
Reports 11, 1–8. http://doi.org/10.1038/s41598-021-03723-9.

Epidemiology and Infection 11

https://doi.org/10.1017/S0950268824001018 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268818002030
https://doi.org/10.1017/S0950268818002030
https://doi.org/10.1371/journal.pone.0232910
https://doi.org/10.1371/journal.pone.0201987
https://doi.org/10.1371/journal.pone.0201987
https://doi.org/10.1016/j.heliyon.2021.e07371
https://doi.org/10.1088/1755-1315/186/5/012020
https://doi.org/10.3390/rs9070673
https://doi.org/10.1016/j.rse.2017.01.005
https://doi.org/10.1016/j.rse.2017.01.005
https://doi.org/10.1016/j.apgeog.2011.11.006
https://doi.org/10.1016/j.apgeog.2011.11.006
https://doi.org/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.1155/2022/7658880
https://doi.org/10.1016/j.scitotenv.2018.04.407
https://doi.org/10.1016/j.scitotenv.2018.04.407
https://doi.org/10.1186/s12889-020-08599-4
https://doi.org/10.1155/2016/5103718
https://doi.org/10.1007/s11356-022-22831-1
https://doi.org/10.1007/s11356-022-22831-1
https://doi.org/10.3760/cma.j.issn.0254-6450.2017.09.014
https://doi.org/10.3760/cma.j.issn.0254-6450.2017.09.014
https://doi.org/10.1016/j.prevetmed.2012.12.003
https://doi.org/10.1186/s12879-016-2086-x
https://doi.org/10.1186/s12879-016-2086-x
https://doi.org/10.1016/j.landusepol.2018.08.006
https://doi.org/10.1371/journal.pntd.0010094
https://doi.org/10.1038/s41598-021-03723-9
https://doi.org/10.1017/S0950268824001018

	Spatiotemporal risk of human brucellosis under intensification of livestock keeping based on machine learning techniques in Shaanxi, China
	Introduction
	Study area and data
	Study area
	Reported human brucellosis cases
	Driving factors
	Points of interest related to livestock keeping

	Methods
	The geospatial grid partitioning
	The PCA-based ConvLSTM network
	Model performance evaluation metrics
	Shapley additional explanations method

	Results
	Predictive performance for Shaanbei Plateau
	Predictive performance for Guanzhong Plain and Shaannan Region
	Predictive performance for the whole Shaanxi Province
	Assessment of driving factors across three sub-regions

	Discussion
	Conclusions
	Data availability statement
	Acknowledgements
	Author contribution
	Funding statement
	Competing interest
	References


