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1. The more important properties of the class H of all
bounded convex bodies in E3 with non-empty interior include:
uniform approximability by polyhedra, existence of volume and
surface area, and Blaschke's selection principle, [1],[2]. In
this note we define and consider a class ¢ of star-shaped bodies
in E3, which enjoys many properties of X, among them the
above-mentioned ones, and is considerably larger. Roughly
speaking, H consists of closed bounded sets in Ej3 with non-
empty interior, whose boundary is completely visible from every
point of a set with non-empty interior. It turns out that & is
identifiable with the class of all real-valued positive functions
on the sphere S3 which satisfy a Lipschitz condition.

Although we deal with E3 only, extensions to E, and, in
some respects, to infinitely dimensional spaces, present no
difficulty. ‘

Small Latin letters o, p, q, ... will denote points and
capital ones will usually denote sets. Script letters will stand
for classes of sets. The absolute value symbol will denote both
the absolute value lal of a real number a and the length |pgl of
the closed straight segment pq. L{p,q) will be the straight line
through p and q, R(p,q) will be the open half-line through q start-
ing at p, and N(p,q) will be L(p,q) - R(p,q) - p. WhenSis a
simple closed surface we write ZC S if the set Z is inside or on
S. The empty set will be denoted by é.

2. In E3 we consider a fixed Cartesian coordinate system
with the origin o. A solid K will be any bounded closed set in E3
with non-empty interior; B(K) and I(K) will denote its boundary
and interior respectively. Let Ol be the class of all solids K such
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that o € I(K). LetK € OU , p € K; K is said to be star-shaped
(or locally convex) at p if pqCK for any q € K. The hub H(K) of
K € OU is the set of all points at which K is star-shaped. The
following lemma is obvious.

LEMMA 1. If K € Ol and H(K) # ¢ then H(K) is a closed
convex set.

We define the class d€ as follows: K € d€ if and only if
a) K e Ot , b) I[H(K)] # 6, c) o € I[H(K)] . Let S be the unit
sphere in E3 about o and let K€ 4f , s € S. Then
R(os)n B(K) = p; we define a function fg on S to positive real
numbers by lopl = fi(s). It is clear that fi defines K com-
pletely.

LEMMA 2. IfK € & then fg(s) >0 and
[fg(s1) - fK(s2)l< ¥ klsyszl, 0 <¥g < ®. Conversely, any
such function f defines a solid K € 4€ .

When Z is any set in E3 and A >0, A Z will denote the
similar and similarly located set scaled up with respect to o in
ratio A :1. By the hypotheses A;S CH(K) and
Kc A5, 0< Aj¢€ Az < o. Lets],sz €S, by considering
the situation in the plane os}sp we see that
lfK(sl) - fx(so)l < AR/ A sys,l. If f satisfies the conditions
of the lemma then f is continuous on S and therefore uniformly
continuous, and the rest follows easily.

Now we make dl into a metric space by defining the
following metric p : for K1,K, € H let g(s) = le(s) - £, (s)
and put

p (K1, K,) = maxg ;¢ g Llg(s)] + |g(s) - g)]/lstll.
The three metric axioms are easily verified. We have

LEMMA 3. 3{’ is complete under P -

Let {Kn} be a Cauchy sequence in d . Then the set
{fK } is uniformly bounded and equicontinuous on S. Now the

lemma follows from Ascoli's Theorem and from Lemma 2.

The following theorem is an extension of Blaschke's
selection principle.
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THEOREM 1. Let £ be an infinite set in ¢ , such that
a)if K€ ® thenK € AS, 0< A< o, b) Il o HKI # 6.
Then O possesses a convergent subsequence K.} and
imK,ed .

Since a) and b) imply that D is uniformly bounded and
equicontinuous, the theorem follows from Lemma 3.

Let 4 be the set of all polyhedra in #€ . In dealing with
polyhedra it will be convenient to replace the sphere S by the
surface T of its inscribed regular tetrahedron. For P € % the
function fp is defined on T, all properties relative to the
Lipschitz condition hold as before, and fp is piecewise linear on
T. It is simply verified that

LEMMA 4. @ is dense in ¥ .

Let K€ df . To obtain the existence of a continuous
volume V(K) of K and a continuous surface area A(K) of B(K) we
take a sequence {Pn’} in ¢ , such that {Pn} —> K. For each
P, the volume and surface area are defined as usual.

Suppose that Pj’ P c AS, then

WV(P) - V(P € (4T/3) A3p(Py, Py

la(p)) - APl € 8T A2p (P, Py) .

Therefore {V(P,)} and {A(P,)} are Cauchy sequences and the
limits lim, V(Pp) and limp A(P,) exist and are continuous ondt .

We remark that by Lemma 4,4 is sepafable since the
subset of ¥ consisting of all polyhedra all of whose vertices
have all coordinates rational is countable and dense in

3. In this section we consider in more detail the hub H(K)
of a solid Ke # . Since fi(s) satisfies a Lipschitz condition
on S, after a suitable coordinatization of S, f (s) will possess
partial derivatives almost everywhere. The phrase 'almost
everywhere' can be used with reference to measure on S or on
B(K) itself. In this connection see references [3] and [4]. Let
P € B(K) and assume that there exists the tangent plane mp at

P

LEMMA 5. Tfp

SinceK € # , ASCI[HK] , 0 <A. Take pand let

is bounded uniformly away from o.
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Q= Use/us,/u«)\ R(ps) .

Then NnQ=¢, o€ Qand $AS<cQ, which proves the lemma.

Tip
Let U(TTP) be the closed half-space bounded by TTP and
containing o.

THEOREM 2. H(K) =ﬂPU( T

The intersection is taken over all p € B{K) at which there
exists a tangent plane. A similar convention applies in the
sequel. Let q € I{H(K)]; as in Lemma 5 it can be shown that
there exists a sphere V about q disjoint from every m_. It
follows that q € f\ u(m therefore I[H(K)] < ﬂPU(W ), and
since the 1ntersecmon oipclosed sets 15 closed, H(K)cC PU( ﬂ'p).

Now let q € I{ ﬂ U(m ) ) and take t & K. Suppose that
¢ K. The set X = {x{x € qt, x *_ K} is open and therefore

o8t countable union of intervals, Let (u,v) be one such
¥ . lithe tungent planes T, and Wy exist then
q ¢ LU ) n U(T y)] which is a contradiction. But even if
Ty and Ty do not emst one can always select points uj and
v1, at which tangent planes exist, and which are arbitrarily
close to u and v respectively. Now the contradiction is estab-
lished as before.

Therefore qt € K for every t € K. It follows in succes-
sion that q € H(K), I(ﬂPU( FP) ) <€ H(K), ﬂPU( T:'p) < H(K), and
so MNpU(T ) = HK).

COROLLARY. The function K —» H(K) is continuous on
F# to H .

Theorem 2 shows that the concept of hub of a set is in a
certain sense dual to that of convex hull.

THEOREM 3. Given any convex C &€ #€ , any A > 0 such

that C € AS, and any & > 0, there exists K € # such that
a) HK) = C, b) CCI(K), ¢) ASc K< (A + £)5.

Let{s_ }, n=1,2,..., be a dense seq ience of points on

S. Let {Xn} ,n=1,2,..., be a monctone increas 1*1;1 seqguencs
of real numbers, such that A < }\1 and lim 7\ = A 4
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Let py = R(osp) n A ;S and let
4 Qn = UséI(C) N(pns) .
Let (A+ €)S=B(Z), z € & , and put
K=2-U,%,Qn.

The above-defined solid K satisfies the conditions of the theorem.
This construction could be varied in many ways and the theorem
could be extended. For example, one could take in c¢) any B(K)
instead of S, subject to the condition C € H(Ky) .

Theorem 3 suggests that if H(K) € I(K) and B(K) is a
fairly smooth surface, then H(K) ought to be a fairly special
type of a convex set (this is taken with particular reference to
the set of its extreme points).

Let K € # , a set YT B(K) is called enveloping if
HEK) = N e YUl T(P), and it is called essential if it is envelop-
ing, closed and possesses no proper enveloping subset. Since
the enveloping sets of B(K) are partially ordered by inclusion
and B(K) is one of them, the existence of at least one essential
set follows from Zorn's Lemma. It is clear that if a tangent
plane exists at all p € B(K) and Y is enveloping, then Y is
essential only if TpAN H(K) # ¢ for every p € Y. Further, if
B(K) is essential then K is convex and every point p € B(K) is
extreme.

A simple closed surface W in E3 will be called smooth
if it is of class C2 and if the sets Wg and Wy of its elliptic and
its hyperbolic points are both open. Wp will denote the set of
parabolic points of W.

THEOREM 4. Let K€ # , H(K)c I(K) and suppose that
B = B(K) is smooth. If Y € B is essential then Y ¢ Bp.

Suppose that p &€ Yn By. Assume first that the vector
normal to B at p points outward. If T,N B = p then it follows
that p € H(K), which is a contradiction since H(K) < I(K). If
T _n B contains a point q # p, then there exists a pointt € B,
such that T{ is parallel to T, and closer to o than FP. This
contradicts the assumptionp € Y.

Assume now that the vector normal to B at p points inward.
Let C be a small simple closed curve on B encircling p, for

179

https://doi.org/10.4153/CMB-1959-023-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1959-023-6

instance, a geodesic circle of small radius about p. Let
V=N¢cec U(T), it is easy to verify that V is disjoint from
Wpe By Theorem 2 H(K) < V, therefore Tp is disjoint from
H(K) which again contradicts the assumption p € Y.

It can be proved by almost exactly the same means that
if p€ Byythenp ¢ Y. Since B = BpuBpuBp and the three
summands are disjoint, the proof is complete.

COROLLARY. If Bp consists of a finite number of arcs,
not necessarily disjoint, then H(K) is bounded by a finite number
of developable surfaces. Therefore the extreme points of H(K),
like the parabolic points of K, lie on a finite number of arcs.

Let C be a subarc of Bp. Then the tangents to B along C
envelop a surface which is a one-parameter family of straight
lines., It follows that B[H(K)] is bounded by a finite number of
ruled surfaces. However, H(K) is convex and a convex ruled
surface is developable., The rest follows from the definitions
of an extreme point and a developable surface.
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