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THE TORSION FREE PIERI FORMULA

D.J BRITTEN AND F. W. LEMIRE

AssTrRACT.  Central to the study of simple infinite dimensional g£(n, C)-modules
having finite dimensional weight spaces are the torsion free modules. All degree 1 tor-
sion free modules are known. Torsion free modules of arbitrary degree can be con-
structed by tensoring torsion free modules of degree 1 with finite dimensional simple
modules. In this paper, the central charactersof such atensor product module are shown
to be given by aPieri-likeformula, complete reducibility is established when these cen-
tral characters are distinct and an example is presented illustrating the existence of a
nonsimple indecomposable submodule when these charactersare not distinct.

0. Introduction. LetG beafinitedimensional simpleLiealgebraover the complex
numbers C with Cartan subalgebraH . Let V be asimple H -diagonalizable G-module
having finite dimensional weight spaces. The problem of classifying such modules V is
progressing. Theclassical casewhen V' isahighest weight moduleiswell known. Since
this includes al simple finite dimensional modules, we focus our attention on infinite
dimensional V . Recently, [BBL2] gave an explicit construction of all multiplicity free
modules V (i.e. having only 1-dimensional weight spaces). Earlier, [BL1] gave a less
explicit construction of such modules under the weaker condition that they have at least
one 1-dimensional weight space realizing them as quotients of the universal enveloping
algebra. Thiswork relied heavily on a paper by Fernando [F] which reducesthe general
classification problem to one of determining the simple torsion free modules of finite
degree and shows that torsion free modules exist for G of type A and C only. When G
isAy = sl(3,C), the simple torsion free modules are completely classified and found to
be submodules of the tensor product of a multiplicity free simple torsion free G-module
and asimplefinite dimensional one [BFL]. The definition and basic properties of torsion
free modules are presented in Section 1¢).

Let st(n, C) denotethe n x n traceless complex matrices. If w; denotes the first fun-
damental weight of s/(n, C) then for each positiveinteger K, the simple s¢(n, C)-module
L(Kw1) with highest weight Kwy is multiplicity free and provides a finite dimensional
analogue of the multiplicity free torsion free s¢(n, C)-modules. Moreover, the tensor
product of L(Kwy) with any finite dimensional simples¢(n, C) moduleL(\) iscompletely
reducible and its simple constituents are described by the Pieri formula[FH].

Working under mild constraints which are justified by example, we establish a mod-
ified Pieri formula for the tensor product of a multiplicity free, torsion free s¢(n, C)-
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module M with a simple finite dimensional module L()). In fact, we transport infor-
mation from the finite setting to the infinite one via the Pieri formula. The main result
of this paper is stated in Theorem 3.4. This result provides an explicit specialization of
Kostant's results [K] on the general decomposition of the tensor product of an infinite
dimensional module, admitting a central character, with afinite dimensional module.

Each submoduleof M @ L()\) isatorsion free module of finite degree and we conjec-
ture that every simple torsion free module of finite degree can berealized in this manner.
Asindicated above, this conjectureis valid whenn = 3.

1. Preliminaries. Inthissection, weset down somebackground resultsinafashion
which facilitates our use of them and prove some general results concerning torsion free
modules.

(8 FINITE DIMENSIONAL MODULES. Throughout, let G, = gl(n,C) be the Lie
algebraof n x n matrices over C determined by the commutator product. Let {e; | i,] =
1,2,...,n} bethe set of standard matrix units of Gp. The subalgebraof G, having basis
{ej|i,j=1,...,r}isdenoted G;. The Cartan subalgebra of diagonal matrices of G, is
denoted H, and the subalgebraof tracelessmatricesin G, isdenoted s{(r, C). Let ¢; bethe
linear transformation which mapsany nx n diagonal matrix toits(i, i)-th component. The
weight functions of s¢(n, C) are normally described in terms of the fundamental weights
{wi | i =1,...,n— 1}, seefor example [H]. However, we find it more convenient to
describe weight functionsin terms of the ¢;’s. Since there are nindependent ¢’s and only
n — 1 w;'s this means that a normalization choice is to be made. Thisis equivalent to
specifying the action of I« € Gy. Thispoint isillustrated below.

Zelobenko, [Z], modified the Gel’fand-Zetlin presentation of simple finite dimen-
sional G,-modules V by redefining the action. In both presentations, a decreasing se-
guence of integers my, > Mpy > -+ - > My, uniquely labelsV = V(myp, . .., myy) having
linear basisB = {¢{(m) | m € | (Myn, ..., myy) } indexed by the set | (myy, . .., myy) of all
triangular patterns of integers,

Mun Mpn e Mhn

(1.1) m My n-1 Mn-1 -+ Mh-1p-1

My
where the components my; satisfy the inequalities
(1.2 Mjsr > Mj > Mugjen forl<i<j<n-1

For convenience,weset m; = [y, ..., My], R:(m) = ¥{_; my; and Ry(m) = O. In order
to describe the module action of G, on V, it sufficesto give the actions of the generators
&k, Ex—1k and e 1. Following Zelobenko, we have

(1.3 au(m) = (R(M) — Re_1(m))¢(m);
k=l M ik — ljx-1) .
(1.4) &-1k6(M) = > ¢(m + 6j x-1);

S Mgl —lixa)
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k=1 k=2
i—

2l k2 — li k1)
15 ~ - 0 y
9 St = T e o

¢(mM — dj k—1);

wherel;; = mj — i, and m =% §; x_; denotes the pattern m with the (j, k — 1) component
replaced by my_; &+ 1. By convention, we assume that ((m) = O for any pattern m ¢
I (M, ..., myy). Evidently, ¢(m) is aweight vector belonging to the functional

A= (R(m) — Rog(m))ei.
i=1
We further note that subpatterns give us a natural branching of V with respect to sub-
agebras G, for eachr = 1,...,n and we define the symbol m, by

My Myr T M
Myr—1 Myr—1 M_1r-1 e l(my,...,my).
My

Thest(n, C)-moduleV obtained by restricting the action aboveto elementsof s¢(n, C)
remains simple. However, the labeling by decreasing sequencesis nolonger aone-to-one
correspondence. In particular, V(myy, ..., My,) and V(my, — ¢, ..., My, — C) are isomor-
phic s¢(n, C)-modulessincethe only elementsin G,, which distinguish these modules are
the nonzero multiples of the identity Inxn. Since we are primarily interested in sé(n, C)-
modules, we may pick ¢ so that my, — cis zero. Thisallows usto label our simplefinite
dimensional modules by partitions

T={m >m > " > M1 > = 0}.

with 7; positive integers whenever convenient. Our basisis then labeled by | () where
the conditionson our triangular patternsin | () satisfy conditionsdescribedin (1.2) with
M, = 7. Our notation for this moduleis V().

Of considerable interest to us are the multiplicity free simple modules V() corre-
spondingto r = {K > 0 > --- > 0}. In addition to the pattern realization, there is a
very elementary realization of V(K,0,. .., 0) as being isomorphic to the module

n
span. {x1 = x{ - | g = (G, Go). G GZzowithK=§%}
i=

under the action
eyx! = g™

where g + 6; — ¢; denotes the vector obtained from g by adding 1 to its i-th coordinate
and subtracting 1 from its j-th coordinate so that formally &; is multiplication by x; and
partial differentiation with respect to x;. We notice that x% is a weight vector belonging
to weight 37, gje;, since &;x9 = ¢ x4

Vector exponential notation such asxY isused throughout this paper to denotethe prod-
uct of thex;"sraised to the corresponding coordinate powers, i.e. x4 = X{1xF - - - X¥. Also,
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throughout this paper, we assumethat 7 = {m; > m, > -+ > m_1 > 7 = O} isapar-
tition of the non-negative integer N and consider it in Z%,. For p = (p1, P2, ..., Pn-1) €
7%, we write

p<m &= m=>pr=2m>->ph1=>mm=0.

To facilitate later generalizations, fix ¢ € 7%, with 331 (i = K > nmy and set
n
(1.6) M (¢;N) = span@{x“h | 6+ € Zsowith S h = —N}.
i=1

Clearly M (£;N) ~ V(K — N, 0, ..., 0). We now consider the tensor product module
1.7 T(;7) = M(£;N) @ V(m) ~ V(K —N,0,...,0) ® V(n).

In the setting of the Littlewood Richardson algorithm and Y oung tableaux (seefor ex-
ample[BBL1], pp. 79-81for abrief description), there areatotal of K boxesrepresenting
T(¢, 7). Applying this algorithm, we obtain a direct sum of simple modules:

n—1
(1.8 T(M):EBZV(K—_Zpa,pl,-..,pnfl).
p<r i=1
This restricted case of the Littlewood Richardson algorithm is known as the Pieri For-
mula (seefor example [FH]).

The action of I,y on M (¢;N) is multiplication by K — N and on V(r) ~
V(K—N,0,...,0) multiplication by N. Therefore V(K — =1 pi, p1, - . . , Pn—1) hashigh-
estweight A = (K— S/ pi)ea +paea+Paes+- - - +pn_16n. Foreachp < m, set X{ equal
to the character of the simple highest weight module L((K — Yl pi)er + prea + poes +
-+ + Pn_1€n). It should be noted that when (K — S/ pi)es + Prea + Paeg +- -+ + Pn_1€n
is restricted to s¢(n, C), it is equal to the weight given in the basis (1.1) by (K — p; —
S p)ws + (P — P2)wz + - - - + (Pn—2 — Pr—1)wn—1 Which isthe usual expression for this
weight.

This meansthat the set of highest weights and the central characters of the decompo-
sition of T(¢; 7) are

n—1
{(K— Z Pi)er + prez + Poez + - -+ + Pr_i€n | p< 7r} and Ch(¢;N) = {X,g/) | p< W},
i=1

respectively.

ProPosITION 1.9. Fix any n-tuple ¢ € 7%, with ¢; > =y fori = 1,...,nand
Y, 6 = K. Let A9 denote the weight function 1, Ziej, p < 7 with P = Y-} p; and
g = L1+ ---+ /. Then

(i) theweight space T((; ), of T(¢; 7) belongingto A(D = 3| /i¢; hasbasis

Byo = {liﬂ[lxr(’fR‘(m)JrRH(m) @¢(m) [me |(7T)}
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and so dim¢ T(¢; )y = dimg V(r),
(i) V(K — X1 pi, p1y--- Pre1)yo hasbasis {¢([¢;m]) | m € I (x),m—1 = p}
where[£; m] is described using the bottom n — 1 rows of m as given by:

agh—P P1 T Pn-1
On—1 — Ra—2(m) Myn-2 e Mh—2n-2

02 — Ry(m) M1
01

PROOF.  For any pattern m = (my;) € | ()
0<m, < R(M) — R-i(m) <my <m

forr = 1,...,n. Since {; > my, it follows that ¢, — R(m) + R_;(m) > 0. Also,
"1 (—Ri(m) + R_1(m)) = —Ry(m) = —N and hence

n
H Xr(’rfR((m)+R:71(m) ceM (L;N).
r=1
Moreover, for eachr = 1,...,nwe have
nf—m+Rm nf—m+Rm
err(HXss Re(m)+Rs-1( )®<(m)) = gr(HXSs Ro(m+Rs 4 )®<(m))
s=1 s=1

and therefore TT0_; x(s~RM*Re-1(M & ¢(m) belongsto the A" weight space. Since {¢(m) |
m € | ()} isalinear independent set, it is clear that B, (, forms a basisfor T(¢; 7).
This completes part (i). Part (ii) follows from (1.3), since {([¢; m]) are the only basis
vectorsof V(K — =1 pi, py, - . ., Pa—1) having weight A(9). .

(b) GEL'FAND-ZETLIN ALGEBRA. Let U, = U(G,) denote the universal enveloping
agebra of G;, UP denote the centralizer of H, in U, and Z, denote the center of U.
Clearly Z, c UP. By the universal mapping property of the universal envelopingalgebra,
every G;-module is a U(G,)-module and by the inclusion G, ¢ U(G,) the converseis
true.

From [Z], we know that Z, is generated by the set of all elements

Crk = quqm “ Gy

where kK = 1,2,...,r and the sum ranges over al distinct sequences of integers
{ji1, -kt with1 <ji <r.

In[L2], it isshownthat if onewantsto study simple H;-diagonalizable modules, then
it suffices, in the following sense, to study simple UP-modules.
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THEOREM 1.10. (i) If M is a simple H,-diagonalizable module, then each weight
space M, of M isa simple U%-module.

(ii) If M, isasimple U%-module, then there exist a unique simple H,-diagonalizable
module having M,, as one of its weight spaces.

Although U9 isimportant to us thereis an abelian subalgebraof US—whichisequally
important. Following Drozd-Ovienko-Futorny [DOF], we define the Gel’ fand-Zetlin
subalgebra " of U, to be the subalgebra generated by {cx | 1 < k < r < n}. From
[DOF], I is an abelian subalgebra of U, which is isomorphic to the polynomial ring
in @ variables ¢, over C. We wish to address the I -diagonalizability of simple fi-
nite dimensional G,-modules. By this we mean that there exists a basis of simultaneous
eigenvectors for the operators in I'. Towards this end, we let N ;' denote the subalge-
braof G, consisting of all strictly upper triangular matrices and throughout we choose a
description of UP which makes computations on maximal vectors easy.

(1.11) Ul = UH,) @ (UWPNUN .

Letz= p,+u, € UP withp, € U(H,) andu, € USNU,N /. If v* isamaximal vectorina
G;-module, then N fv* = 0 and sowe havezv* = p,v*. U(H,) isisomorphic to the poly-
nomial ring C[ey, ..., &]. We identify these rings and write U(H,) = Cleu,...,ex].
Let : US — UQ denote the projection of U2 onto U(H,,) along U° NULN [ which gives
(2 = p, € UH,) = Cley, ..., e ]. Form e | (n), let

(1.12) AMUH) — ¢
/\{“(p(ell, ceey err)) = p(my, ..., My).

A" is the natural extension of the weight >{_, my¢; to an algebra homomorphism on
U(H,). As we did for z above, we write ¢y = p(€,...,6mn) + Ux € UH,) @
(U2 UN M. SinceT is the polynomial ring in the m%ll variables ¢ over C, an al-
gebra homomorphismy,: T — C is determined by its action on each ¢,k given by

(1.13) Ym(Crk) = /\In 0 1(Ck) = /\In(prk(ell' ey err)) = Pr(Myr, ..., M)
An agebrahomomorphism~: " — C iscalled a GZ-character.

LEMMA 1.14. Letm,m’ € | (). Then

(i) if ze Z;, then z(m) = (A" o )(2)¢(m), and therestrictionto Z;, A" o (17,z,), is
the central character of the simple G,-module V(m,),

(i) ifze I, then (M) = Ym(2)¢(M),

(i) if my # m/ then Yo 12, %# Ym 12,

(iv) V(n)isT-diagonalizable with 1-dimensional I'-weight spaces C{(m).

PrROOF.  First, we notice that (i) implies (ii) and so we prove (i). From 1.3-1.5, we
seethat if weignorethetop n— r rows of the labeling patterns, then the action of z € Z;
on ¢(m) is the “same” as the action of z on ¢(m) in the G,-module V(m,) where m, =
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[y, My, ..., My]. EXpresszasz = p, + U With p; = py(en, ..., &r) € Clew, ..., eyl
and u, € USNUN . The maximal vector v € V(m,) islabeled by the pattern

My My My
X My My -+ Mgy

My
and so it belongs to the weight

A = Y3 (R() = R-a())e = 21 Mee,

i=1

Thus, for z € Z;,

ZV+ = (pz + UZ)V+ = pz(ell, e ,e|'r)v+ = pz(m]_r, ey mr)v+ = (/\P’] 9] 7])(Z)V+.

The simplicity of the G,-module V(m,) implies z(m}) = (A" o n)(2)¢(m.) for all z € Z,
which implies A" o (17,z,) isthe central character of the G,-module V(m;). Also, by our
observation above, we have (M) = py(ex1, ..., &)V = p(Myr, . .., M )C(M).

Since (ii) and (iii) imply (iv) and (ii) is established, we prove (iii). Assumethat m; #
my are distinct. If Y |7, = Yw |z, thenwe haveA™ |y = AT | where H, denotes
the Cartan subalgebraof diagonal matricesin s(r, C). By the Harish-Chandra Theorem,
thisin turn implies that the highest weights 5°{_; mye; lH, and >i_; € lHr arelinked.
Thus, for 6 = 2{21(% — i)ei, half the sum of the positive roots of s(r, C), there exists
an element ¢ in the Weyl group S such that

r r+1 . (o, r+1 .

2(me 5= =) = 2+ = = i)

Thus, M, -1, — o~Y(i) = m, —i for al i. However sincemy, > --- > my and my, >
.-+ >, it follows that m; = n,, contradicting the assumption that m, # my. n

(c) TorsloN FREE MobuLES.  An H,-diagonalizable G,-module M is said to be
torsion free provided each root vector g;j, i # j, acts injectively on M. It is shown
in [F] that we need only require that e._; x and ecx_1 act injectively for k = 2,...,n.
Throughout, M is an H,-diagonalizable torsion free module having weights ® = X +
{¥L, kiei | k € Z,5 1 ki = O} for some fixed weight X. The torsion free assumption
and the condition on the weights of M imply that we may move from one weight space
to another by the repeated action of root vectors of the form e,_;x and ecx_1. Thus, the
injectivity assumption implies that the weight spacesof M all have the same dimension
called the degree of M . Throughout, we assumethat M is of finite degree.

THEOREM 1.15. Let M beatorsion free G,-module of degreed.
(i) Everysubmoduleof M istorsion free.
(i) Every quotient module of M istorsion free.
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(iii) 1f F isa Uy-module of dimension m, then the tensor product moduleM ® F is
torsion free of degree md.

PrROOF. (i) isclear. For (ii), let N be atorsion free suomoduleof M . Then

M/N=>M,+N)/N
ved
is the weight space decomposition of M /N . Clearly, g; isinjectiveon M /N if and
only if it isinjective on each (M, + N ) /N . Suppose (ii) is false then, for some choice
of i # ], gigj € UQ is not injective on the finite dimensional U2-module

M, +N)/N ~M,/N,.

But thisimpliesthat dimgigjM, < dimM,,, contrary to M being torsion free.

To prove (iii) we first note that by the complete reducibility of finite dimensional Up-
modules, we may assumethat F is simple. Let v* be a maximal vector of F of weight
o and let p be any weight of F. Then « — u = Y, kiy with ki € Z and sinceiit is
in the root lattice of G,, >, ki = 0. Suppose the weight space F,, belonging to ;1 has
basis {v(l“), ..., V#"} and the weight space M, belongingto v = A + X1, kie; has basis
{m,...,m{’}. Then m") @ ) isin the weight space of M belongingto A + a. Since
this can be done for every weight space of F, we seethat (M ® F),., has dimension
greater than or equal to md. The reverse inequality follows also by noting that we have
accounted for all simple tensorswhich liein (M @ F ),+,. Thus, deg(M ® F) = md.

Finally suppose M @ F isnot torsion free. Then there is some element g; with i # j
which annihilatesanonzero weight vector v. We canwritev = 22:1 m @V wherethe m
are linearly independent weight vectors with weights A\, in M . Since M istorsion free,
we have that {ejm¢ | k = 1,...,h} islinearly independent set of weight vectors with
weights A\ +€; —¢j. Without lossof generality wemay assumethat A1 +ei—¢j ¢ { A | k =
1,...,h},whichimpliesthat ejmy ¢ {m | k = 2,...,h}.Itfollowsthenthat (ejm)®v,
isnot in the span of theset {(em) @ w | k=2,...,h}u{m@ (gjw) | k= 1,...,h}
and therefore ejv # 0. This contradiction establishesthat M @ F is torsion free as
required. ]

LEMMA 1.16. Supposethat M hasdegreed withweights® = A + {>" ; kie; | ki €
Z,>" , ki = 0} for somefixedweight \. Let M, denote the weight spaceof M belonging
tov. Then

(i) M isasimple G,-moduleif and onlyif M, isa simple U%-module for someweight
v € ® (or equivalently for all v € ®),

(i) M hasa composition seriesO c My c My, c --- ¢ My, = M of G,-modules
if and only if the U%-module M,, has a composition series

0C (Ml)l/ - (M2)1/ c---C (Mm)z/ = Mz/

for somev € @ (or equivalently for all v € ®).
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(iii) For 1 <i <q,let M; beUp-modules. ThenM = & ¥ | M if and only if each
M is torsion free with weight lattice ® and M, = & > (M), for somev € ® (or
equivalently for all v € ®).

ProOF. By Theorem 1.10, if M issimple, then each of itsweight spacesisasimple
U%-module. Suppose some weight space M, is a simple US-module and yet M is not
asimple U,-module having a proper submodule N . Since the weightsof M are @ =
A+{>N kiei | k € Z,x1, k = 0} for somefixed weight A and N istorsion free, it too
hasthis set of weights. Thedegreeof N must be lessthan d but thisimpliesthat M,, has
a proper US-submodule, contrary to assumption. Also, we now have that if any weight
spaceof M issimple then they all are. This gives (i).

Since

(Mi/Mi.1) ~ (M), /(Mi_y),

as U%-modules, (i) follows from (i). Part (iii) is clear. ]

Before closing this part we point out that, by [BL1], if M is multiplicity free, then
for some fixed positive integer N and some choice of noninteger complex numbers
all DL | an,

(1.17) M zM(a;N)zspm@{xa+h|hi eZwichn;hi:—N}

under the action of multiplication and partial differentiation
gx° = i,
Compare (1.17) with (1.6).

(d) THE POLYNOMIAL LEMMAS. Letty,...,t, beagebraicaly independent over the
complex numbers C, C[t] = C[ty,...,t;] be the polynomial ring in ty,...,ty, C(t) =
C(ty, ..., t,) be the transcendental field extension. There are two results concerning the
zeroes of polynomials which we require.

LEMMA 1.18. Let B bea positiveinteger and ko = 0.

(i) Suppose 1(t), p2(t) € C(t) with ¢i(t) = L& wheref;(t), 6i(t) < €[] and ¢1(0) =
¢2(q) for all g = (qu,...,0n) € ZEowithg — gi—1 > Bfori =1,...,n. Then ¢4(t) =
P2(t).

(i) Supposefy(t), f(t) € C[t] and f1(¢) = f2(¢) for all £ = (L4,..., ln) € 2%, with
(i >Bfori=1,...,n. Thenfy(t) = fo(t).

PrROOF. Let h(t) = f1(t)gz2(t) — f2(t)g1(t). By assumption h(q) = O for al n-tuples of
integersq = (qy, ..., gn) With g — gi—1 > B. It sufficesto provethat h(t) = 0.

Proceed by induction on n. For n = 1 the result is obvious since any nontrivial poly-
nomial in one variable can have only finitely many zeroes.

Assumen > 1 and write

N .
h(t) = > 6(ts, ..., th-2)th
=
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For any n— 1tuple of integers(qy, . . ., n—1) Satisfying g — gi—1 > B, h(qy, ..., Gn-1,tn)
is a polynomial in one variable with infinitely many zeroes, namely all integers ¢, >
gn—1 + B and hence must be identically zero. It follows that 6;(cf, . .., gn—1) = O for any
sequenceof integers{q, . .., gn—1 } satisfying g, —qi_; > B. By our inductive hypothesis
then we havethat 6;(ty, ..., t,—1) = 0 and hence h(t) = 0 asrequired for (i).

For (ii), set gj = ¢j + gj—1 for 1 <j <nand ¢i(ts, t — t, ..., th — th—1) = fi(t). Then
fi(€) = ¢i(€1, L2 —L1,..., ln— Ln-1) = ¢i(q) forall g — q—1 = ¢; > B and so this part
follows from (). ]

LEMMA 1.19. Forn > 2, let &, ..., a, befixed complex numbers. Let B be a fixed
positive integer. Let p(t) be a polynomial in C[t]. If p(ag + hy,...,a, + hy) = 0 for all
hi,...,hh—1 > Bandh, = —Zln;f' hi, then

Pt ote) = (Lt +th— (@ + -+ +an))g(ts, ..., 1)
for someg(ty, ..., tn) € C[t].

ProOF. Replacingt by tj + & in p(ty, ..., t,), we obtain a polynomial p'(ty, ..., tn)
such that p’(hy,...,hy) = Oforal hy,...,hp-y > Band h, = —Zi";llhi. Sets =
ty + -+ + . Then we may expressp'(ty, ..., tn) asapolynomia p”(si,...,s,). Now, if
wesetq = h;+---+handgy = 0, thenp”(qy,...,0,-1,0) = Oforal g — g_1 > B
andi =1,...,n— 1. It sufficesto provethat p”(sy, ..., S,) isdivisible by s,.

Our proof isby inductiononn > 2.

If n = 2then p(s1,S2) = ¥ 6i(s2)s; hasthe property that p”(sy, 0) = 5 6;(0)s, has
infinitely many roots, namely g; > B and so thisisthe zero polynomial. Thus each §;(sp)
isdivisible by s,.

Assume now that n > 2 and set p(st, ..., ) = ¥ 6i(St, .- -, S-2,S)s, ;. By our
inductive assumption it sufficesto show that 6;(c, . . ., Oh—2, 0) = Ofor all g —qgi—1 > B.
Clearly the polynomial

p”(qu L an72: Sﬂ*l! 0) = Z 6] (qli e !qnfzv O)SJ;']?]_
J

is zero whenever s, 1 is replaced by any value 9,1 > B + g,—2 and hence each
6i(@1,...,0n—2,0)iszeroforal g —g%_1 > Bwithi =1,...,n—2. n

2. Generic modules. As noted in the introduction our primary goal is to study
the decomposition of tensor product modules of the form M (a; N) @ V() where a =
(a1...,ay) is an n-tuple of complex noninteger scalars. However when computing in
such moduleswe are continually plagued with the problem of knowing when certain co-
efficients depending on the scalars a; might be zero. In order to overcomethis difficulty
we replace the scalars g by algebraically independent variables t; and study the analo-
gous decomposition problem over the transcendental field extension C(t). We first need
to formulate this problem precisely.

Let G () = gl(r,C) @ C(t) denote the Lie algebra obtained from G; by extension
of the base field. This construction carries along with it the Cartan subalgebra H, (t) =
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H, ®¢ C(t) consisting of al diagonal matricesin G, (t), the universal enveloping algebra
Ur(t) = Uy @¢ C(t) of G,(t), the center Z,(t) = Z; ®¢ C(t) of U,(t), and the centralizer
Uo(t) = U2 @ C(t) of the Cartan subalgebra H,(t) in U, (t). Z(t) is generated by the
elements {cx @ 1| 1 <k <r}. Finaly the Gel'fand-Zetlin subalgebraof Un(t) isgiven
by F(t) =T ®¢ C(t).

It isclear that if V is aGp-module then V @ C(t) is a G,(t)-module under the action

(9@ f))(ve h(t) = gve L)

where fi(t), f2(t) € C(t), g € G, and v € V. Moreover, the simplicity of V implies the
simplicity of V®@¢C(t). Inthissection, we establish the anal oguesof (1.8), Proposition 1.9
and Lemma 1.14 as formulated in the setting of Gp(t)-modules.

REMARK 2.1. Evidently, the analogues of Theorem 1.10, Theorem 1.15, and
Lemma 1.16 hold in the setting of H,(t) diagonalizable G, (t)-modules.

The following notion of specialization allows us to transport information for one set-
ting to another.

DEFINITION 2.2. Leta= (ay,...,a,) € C". Let Abean associative algebraover the
complex numberswhich is generated by {g,, | « € Q} andlet M® be an A-module with
basisB(a) = {m®@ | i € 1}. Assume MO isan A® C(t)-module with basis B(t) = {m" |
i €1}, alsoindex by I. Then M@ is said to be a specialization of M® by a provided for
each g,:

(9o @ DM = 3" qijoOM  for gij.(t) € C(t), and
jel
gom® = le Gij.o(8)m®
je
where g j,»(a) is obtained from the rational function g «(t) by substituting a; for t;. Im-

plicitly, we are assuming that q; ; (&) are well defined.
We now present an example which illustrates the notion of specialization.

EXAMPLE 2.3. Every multiplicity free torsion free G,-module M (a; N) defined in
Section 1 part (c) can be obtained through specialization of the Gy (t)-module M (t; N) by
awhereM (t; N) isdefined asfollows. Let {xy, ..., X, } beaset of ncommuting variables.
Let

(2.4) M (t; N) = span@(t){x”h Ih=(h,....he) € 2", 3" hy = —N}.
i=1

For 1 <i,j < ntheaction of &j on M (t; N) is defined by
&X' = (f + )X
Compare (2.4) with (1.6) and (1.17). It is clear that x*" is a weight vector belonging to
the weight 37, (ti + hy)e;.
According to [BL2], the algebras U° and U°(t) are finitely generated associative al-
gebras. In fact, the generators of U? are given by

{€.,8,i5 - 8,; | 1 <lij <r,ig, ..., i distinct}
We now establish some general results on specializationsfor finitely generated algebras.
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LEMMA 2.5. Let A be an associative algebra over C with a finite generating set
{gk | 1 < k < m} and let M® be a finite dimensional A ® C(t)-module with basis
B(®) = {m" | 1 <i < d}. Assumethat there existsa B € Z such that M(¥) with basis
B(t) = {m" | 1 <i < d} isa specialization of M® by ¢ for all ¢ with ¢; € Z, and
¢; > B. If each specialization M() is simple, then M® is simple.

PROOF.  Suppose that M® is a reducible A @ C(t)-module. It follows that we can
select abasis B = {vi(t) = >, p()m® | i = 1,...,d} of MO such that for some
1 <d; < dtheelements{v(t) | i = 1,...,d1} span a proper submodule. Thus, each
generator ghk ® 1 hasamatrix representation of the form

ko ok
e
with respect to the ordered basis B. Without loss of generality, we may assume that
the coefficients p;;(t) have been selected to be polynomials. Clearly, det[p;;(t)] # O. By
Lemma 1.18, there exists a vector ¢ such that ¢; > B and det[p;j(¢)] # 0 and dl the
rational functions are well defined. Hence, B{" = {vi(¢) | i = 1,...,d} isabasis of
M) and the matrix representation of each generators g of A with respect to the basis
B(®) is obtained by substituting ¢; for t; in the matrix representation of g, ® 1 with respect
to BY. However thisimplies that {vi(¢) | i = 1,...,d;} spansa proper submodule of
M) contrary to our assumption. .

LEMMA 2.6. Let A be an associative algebra over C with finite generating set {gy |
1 < k < m} and let MO and M'® be two A ® €(t)-modules with bases B(t) = {m{9 |
1<i<d}andB/(t) = {mM® | 1 <i < d}, respectively. Assume there existsa B € Z
such that M() is a specialization of both M® and MO by ¢ for all ¢ with ¢; € Z, and
¢ > Bwith cm{” = cm/” for all ¢. Then, if M® issimple sois M"® and MO ~ M'0.

PROOF. We claim that the annihilator of m{’ is equal to the annihilator of m¥. In
factleta = 5, & @ £} whereeach a |saproduct of the generators {gy | 1 < k < m}
and fi(t), gi(t) € C[t]. Then

q
am) =0 = Z(a ®f.(t)]_[g,(t))]@(t)m(‘) =

Hi=1 jFi
q

— Z(f.(z)ngj(z)a)]@mg” — OV with ¢; > B
=1 i#
q

= Z(f. (z)ng,(g)a)]cmf” — OV with ¢; > B
=1 j#i
q

= [ (aot0g0)|com’ =0
Ni=1 jF#i

— am® =0.

Thus, theannihilatorsof m{? and m® in A2 C(t) are equal. Thismeansthat the submodule
of M'® generated by m® is |somorph|c to the submodule of M® generated by m{". By
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simplicity, the submodule generated by m(lt) is M® and has dimension d. Therefore, the
submodule generated by m” is M'® because each has dimension d. .

We now construct afamily of torsion free simple G, (t)-modules which will be proven
to be isomorphic to the direct summands in the decomposition of the tensor product
module M (t; N) @ V().

EXAMPLE2.7. Forp < 7, constructanindexing set | (t; p) consisting of all triangular
patterns [t; |; m] defined using the bottom n— 1 rows of m < | () which havem,_; = p:
(2.8)

sh—P P1 e Pn-2 Pn-1
[t:1:m] = Sn-1—In1 My -2 - Mh—2n-2

S

Let V(t; p) denote the C(t) linear space having a formal basis consisting of vectors
¢([t;1; m]) indexed by the elements [t;1; m] € |(t;p). We define an action of Gy(t) on
V(t; p) by abuse of notation, writing e; ® 1 ase; and [t; |; m] asm and using (1.3)~1.5)
to define our action by replacing the pattern entries appearing in these formulas by the
corresponding entries from [t; I; m]. Once we have shown that V(t; p) is a G,(t)-module,
then we shall focus on its A® = 1, ti¢; weight space and so we give the patterns
indexing these weight vectors a special designation as [t; m] which denotes:

wheres, = Y1 ti, P = Y pi, and i € Z.

SH—2p P1 e Pr-1
Sn-1 — Ra2(m) Myn—2 e Mh-2n-2

S — Ry(m) M1
s

and so we have the analogue of the finite situation described in Proposition 1.9.

REMARK 2.9. Foragiven|t;l;m] € | (t;p), let B([t;|; m]) be the maximum valuein
theset {0,py + 11,12 —11,...,In-1 — In—2,P —In_1}. Let A be any finite set of indexing
patternsin | (t; 7). Define B(A) to be the maximumvaluein {B([t; [;m]) | [t;I;m] € A}.
Letq = (O1,...,0n) € Z% and gp = O besuchthat i = g — gi_1 > B(A). Then
substituting g; for s (or equivalently ¢; for t;) into any indexing pattern in A yields an
indexing patternin | (g, — P, p1, . .., Pn-1)-

THEOREM 2.10. V(t;p) is a simple torsion free Gp(t)-module of dimension |1 (p)|
which is the dimension of the G,,_1-module V(p).

PrOOF.  Sincethe algebra structure of Gp(t) is determined by the commutation rela-
tions
(e, &] = (k&1 — il&),
V(t; p) is a Gy (t)-module provided

(2.11) (&), ed]d([t: ; m]) = (Gjken — dueq)S([t; 15 m]).

https://doi.org/10.4153/CJM-1998-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-014-8

THE TORSION FREE PIERI FORMULA 279

Weexpresshoth sidesof (2.11) intermsof our basisusing (1.3)—(1.5) as described above;

(212) (&, @ald([t 1 m]) = > on(C(t: | mlpn)
(213) (@& — dieg)o((t; 1 ml) = 3 o)t 1 min).

Let A be the finite set of indexing patterns appearing in (2.12) and (2.13). Let q =
(h, ..., 0Gn) € Z% and go = O be such that g — g1 > B(A). Then substituting ¢ for s
into any indexing patternin A yieldsanindexing patternin I (,—P, py, . . ., pn—1) and so
the complex numbers ¢n(0) = ¢,(9). It now follows from Lemma1.18 that ¢n(t) = &1 (t)
and so (2.11) holds.

In view of the definition of the action of g; on the basis vectors of V(t; p) it is clear
that this module is an H,(t) diagonalizable module and in fact its weights are given by

n n

B(t) = A0 + {Zl(h,l — 1 + Ra(m) — R_o(m))ei | I € 2.3l =0andme | (w)}
1= 1=

As noted in Remark 2.1, in order to show that V(t; p) is simple it suffices to show that

any weight spaceis asimple U%(t)-module.

Consider the A\® = s, ti¢; weight space V(t; p),o . As noted earlier, abasis for this
weight spaceisindexed by the finite set of patterns A = {[t;m] | m € | (7), m—1 = p}.

Fix K, ¢,q, and \(") satisfying the conditions of Proposition 1.9. Then substituting g;
for 5 in the patterns of A yields exactly the patterns labeling a basis for the simple Ug-
module V(gh — P, Py, - - ., Pr—1)o0- US and UC(t) are finitely generated and it is clear that
V(Ky — P,p1, ..., Pn-1)y0 1S a specialization of V(t; p),o. Therefore, by Lemma 2.5, it
follows that V(t; p),« isasimple G,(t)-module.

Finally we show that V(t; p) is a torsion free G,(t)-module. It suffices to show that
&1k and ek—1 act injectively on V(t; p). We restrict attention to the action of g1k
on V(t; p) since the case of g_1 is similar. By definition of the action of e it is
clear that the coefficient of {([t; £; m] + §1x_1) in the expansion of e (([t; £; m]) isa
nonzero rational function. Now consider any nonzero element x € V(t; p) and assume
that {([t; £; m]) isabasisvector with a nonzero coefficient in the expansion of x such that
lk_1 isminimal then by the minimality condition the only contribution to the coefficient of
C(It; £; m] +61 k1) arisesfrom the action of e_1 x on¢([t; £; m]) we havethat ec_j X # O
asrequired. ]

Let

T(t; ) = M (& N) @) (V(W) Q¢ C(t))

and \® = 31 tie;. Then the weight space T(t; 7)o of T(t; 7) hasbasis:

B = {(1:11 XROVRA™) @ (m) [ m e | (my) |

and so dimT(t; 7),0 = |l (7)], i.e. this torsion free tensor product module has degree
equal to the dimension of V(). SincedimT(t; 7),0 = || (7)] and dimV(t; p),o = |l (p)|,
we see that
(2.14) dimT(t; )0 = > dimV(t;p),o.

p=<m

https://doi.org/10.4153/CJM-1998-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-014-8

280 D.J. BRITTEN AND F. W. LEMIRE

Our aim now is to improve (2.14) by showing

(2.15) Tt ) ~EP > V(t;p) orequivaently
p=<m
(2.16) Tt mho 2P > VEP)ho-
p=<m

To this end we prove first that, in analogy with the finite dimensiona case, the weight
space T(t; 7)o can be decomposed into one dimensional eigenspaces with respect to
the action of the elements of the Gel’fand-Zetlin subalgebra ' (t). In fact for eachr =
1,...,nwe observethat the universal enveloping algebra U(H; (t)) = U(H:) © €(t) ~
C(t)[ew,...,&]. Thenfor each pattern m € | (7) we define the map

(2.17) AM:U(H(1) — C(0);
AT't(p(ell, cey err)) = p(Sr - erl(m), Myr—1,..., mfl,rfl)
and the map

Viemp: T (t) — C(t) by defining its action on each c;
Vi (Cri) = /\mt(n(crk))

and extending as an algebra homomorphism to all of I'(t). (Compare with (1.12) and
(1.13).)

PROPOSITION 2.18. (i) For any patternm € | () and any element z € Z, we have
that V;m) (2) is a polynomial over C inthesinglevariables:.

(i) 1fm,m’ e () withm,_1 # m/_, then Ve 12, # Yiem lz,-

(iii) For any element z € Z; we have Z([t; m]) = V[em (2¢([t; M]).

PrROOF. Since Z, is generated by the elements ¢, part (i) follows directly from the
definition of the map Y.

For (i) itis clear that if m,m’ € | () with m,_; # m/_, then A™! is not linked to
A™* and hence by the Harish-Chandra Theorem, the maps Yixm lz, and Vg |z, are
not equal.

Finally for part (iii) let A = {[t;m] | m € | (r)}. Following the technique described
in Remark 2.9, wetakeany vector q € 72, suchthat ¢; = gi—gj—1 > B(A). Then substi-
tuting g; for s; (or equivalently ¢; for t;) into any indexing patternin A yieldsanindexing
patternin | (qn — R_a(m), my;—1,...,M_1,1). Now in each of thesefinite dimension
representations we have that z(([(; m]) = V[,m (2¢([¢; m]). Therefore by part (i) of this
proposition and Lemma 1.18(i), we may conclude that z(([t; m]) = Vjtm (@¢([t; M]). =

By Proposition 2.18 the right hand side of (2.16) decomposes as a I (t)-module into
inequivalent one dimensional submoduleswith scalar action given by the maps ;) for
eachm € | (7). We now show that the same is true for the left hand side of (2.16).

Fix m € | (7). For eachm’ € | () with m’ # m, there exists amaximal index r such
that m{ # m; and hence by Proposition 2.18(ii) an element z,y € Z, such that

Yigm) (Zw) # Vigm (Zaw)
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In fact Vigm) (Zww) — Ve (Z) is @ nonzero polynomial over C in the single variable s.
Now we define the operator

PO= I (Zw—m(@n)).

el (7);m'#m
PROPOSITION 2.19.  For each z € I'(t) and eachv € POT(t; 7),0 We have
v = Vem (v
and moreover dimPOT(t; 7),0 = 1.

ProoF. This result follows by considering various specializations of T(t; 7),0. In
particular select any integral n-tuple ¢ with sufficiently large components so that
T(L, 7)o isaspecidization of T(t; )0 and

(zw — e (2m) (@ > V(L p),\(/.)) = C¢([¢;m]) # 0.

m'el (7);m'#m p=<m

From (1.8), we know that

T(f, 71');\(/) ~ @ Z V(f; p)w)

p<m
Therefore, POT(¢, ), is 1-dimension and for any z € I we have
(2= em@)PRT(E )0 = (0)

It follows then that
POT(; m)y0 # (0)

andforany z< I we have

(z— Ym@)PYT(E )50 = (0).

Finally, since dim T(t; 7)o = |l ()| and the maps Vjtm for m € I (x) are distinct, we
have that dim POT((; ), = 1. .

We now summarize the main results of this section in the following theorem.

THEOREM 2.20. For eachp < wletJ(p) = {m € I(n) | m1 = p} and let
XO =Ytm 1z, for m € J(p). Then
(i)

@ > POTE )0 = {veTtmo | (z—Ytm(@)v = 0for all ze Z,}

mel(p)
~@ > ot m]) =Vt pho

m'ed(p)

is a U2(t)-module isomor phism where these modules have dimension |1 (p)| equal to the
dimension of the G,,_;-module V(p),

https://doi.org/10.4153/CJM-1998-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-014-8

282 D.J. BRITTEN AND F. W. LEMIRE

(i) themodule T(t; ) is completely reducible

T(t;7) ~ EB Z V(t; p) ~ EB Z Txp(t),
p=<m p=<m
with simple constituents V(t; p) ~ Tyo = {v € T(t;7) | (z—X9(@)v = 0ofor all
ze Zy(1)},
(iii) the central character XV is determined by the pseudo-highest weight

n—1
<Sn - pi)el +Ppie2 + -+ Pr1€n,
i=1

(iv) Ch(t;N) = {X{? | p < =} isthe set of central characters of the decomposition
of the tensor product module T(t; ).

ProOOF.  First, wenoticethat Yiim restricted to Z, isacentral character and that these
central characters are different for m € | () having distinct (n — 1) rows. In particular
the definition of X9 isindependent of our choice of m € J(p). Also we seethat

@ > POTE ™0 = {veTE w0 | (2= 1wm@)v="0foralze Z,}.
med(p)
Since the maps V(i are distinct, Sy PE;),T(I; m),0 is direct and hence as a U9(t)-
submodule has dimension |l (p)).
For all ¢ with ¢; large, we havethat V(¢; p),« isaspecialization of both V(t; p),» and
Swred @ PO T(L m),0. Moreover, our isomorphism

> POT( w0 =~ V(I p)yo
med(p)
carries POT(¢; )0 to €¢([¢; m']) and so by Lemma 2.6 we have a T (t)-module direct
sum

@ Z P%?,T(t, 7'())\(1) ~ V(t; p))\(t).
m'ed(p)
This completes the proof of part (i).
Part (ii) follows from part (i) and Lemma 1.16, part (iii) is merely the definition of
X and part (iv) is clear. .

3. Main Theorem. Let M bean arbitrary simple multiplicity free torsion free G-
module. Our goal in this section is to study the torsion free G,-module M @ V() or
equivalently, by (1.17), the G,-module T(a; 7) = M (a;N) ® V() where a is a given
n-tuple of complex noninteger scalars.

As afirst step we determine the central characters which can occur in the decom-
position of T(a; 7). For each p < 7, the central character Xét) of the module V(t; p) is
determined by the pseudo-highest weight

¢ n—1 n—1
/\E,) = (S’] — Z pi)el + Z Pi€i+1-
i=1 i=1
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By Proposition 2.18,if p,q < wwith p # qwehavethat X # X{. Now for eachp < =
we define X{ to be the central character determined by the pseudo-highest weight

n n—1 n—1
NS = (Z&' -2 pi)ﬁl + 2 Piciv
i=1 i=1 i=1
and define
Ch(a, ) = {X,ga) |p =<}

ProPOSITION 3.1. The central characters which occur in the decomposition of
T(a; 7) are contained in the set Ch(a; ).

PROOF. By Proposition 2.18, for each p < 7 and any element z € Z, we have that
(z— X®(2) V(t; p) = 0. Since by Theorem 2.20 we have that

T(tm) ~ 3 V(L p),

p<m

we may concludethat for any elements z, € Z,

[T (20— XP(z)) T(t; ) = 0.

p=<m

It follows that if we substitutet; = a; we havethat

11 (2o — X{P(z)) T(a; w) = 0. .

p=<m

Although the central characters xgﬂ aredistinct for distinct p < , this property may
be lost when we substitute a for t.

PROPOSITION 3.2. Letp,q < 7 withp # g. Then X® = X if and only if there
existsan index i suchthat pj = ¢ for j # i, and Sp_; a = S py + g — .

PROOF. By the Harish-Chandra Theorem, X{@ = X if and only if
n n—1 n—1 n n—-1 n—1

A = (Za -2 Dj)€1 +2 P and AP = (Z &= Qj)€1 + 2 Giein
R e i=1 e R i=1

arelinked whichisequivalent to thesequences(>-[_; & —Zj”;ll Bi—1,P1—2,...,Pn—1—N)
and (XL, & — Ej“;ll g—21,0:—2,...,0n—1—nN) being permutations of oneanother. Since

p, q < m, this permutation cannot map p; — i — 1to gj —j — L withi # j. Thereforesince
p # gwemust have ! ; & —er‘;llpj —l=qg—-i—landp—j—1=q —j—1for
j #i. "

REMARK 3.3. Proposition 3.2 implies that for any fixed 7 there exist only finitely
many values (necessarily integer) for -7, a which will permit X = X for p,q < =
with p # g.

We are now in position to state the main theorem of this paper.
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MAIN THEOREM 3.4. For anyn-tuplea = (ay, . . ., an) of complex noninteger scalars
such that the central characters Xéa) aredistinct for p < 7 the module T(a; ) is com-
pletely reducible. In fact

T m) =D 2 T(@mye

p<m

where, for eachp < , T(a; My @ = {veT(@an) |zv=X@@v foral ze Z,} isa
nonzero simple module.

Since the central characters xg@ are assumed to be distinct, it follows from the proof

of Proposition 3.1 that
Tam) = Ty @

p=<m

To complete the proof of the Theorem 3.4, it suffices to show that each summand
T(a; 7r)xp<a) is a simple U,-module or equivalently, by Lemma 1.16, that there exists a

weight space of this module which is a simple U%-module. We now develop some pre-
liminary results aimed at selecting a convenient weight space with which to work.
The set of weights of T(a; ), and hence of T(a; )y @, is given by

n n
@ m) =A@+ {Yhe |[h €2, = 0.
i=1 i=1

LetZ§ = {h = (hy,...,hn) | hi € Z," ;hi = 0}. For any h € Zf and each
m € | (r), we define amap Vathym): I — C such that Yjawnm 1z isthe central character
of the simple G,-module of highest weight

r r—1
/\?+h,m _ (Z(a +hi) — R,_l(m))el + Z M r—1€i+1.
i=1 i=1

ProPOSITION 3.5. Assumethat a € C" is an n-tuple of noninteger complex scalars
such that the central characters X{@ are distinct for all p < 7. Leth € Z§ with the
real part Re(ag; + hy) of & + h; being greater than 7, for all i = 1,...,n — 1. Then for
m,m € | (7‘(‘) with m 7é n, Va+h;m] 7é Ya+rhm] -

Proor. Letm,m’ € l(r) withm # m'. Thereexists 1 < r < n — 1 such that
m; # m',.. If r = n — 1 then we have by assumption that

Varhm 1z,= X@ | # erq?fl = Vashm] 1Z,-

Onthe other hand, if r <n— 1thenforanyj=1,...,r—1
r
Re(Z(ai +hi) — R_1(m) — 1) >m—1>nm,_; —j—1
i=1

Thisimpliesthat A@"™ js not linked to A®*"™) and hence by the Harish-Chandra The-
orem Via+h;mj lzr 7é Va+hm] lZ, . m
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Fix p < 7 and apattern m € | (z) such that m,_; = p. Then by Proposition 2.19, we
know that POT(t; 7),« is a 1-dimensional C(t) vector space. Certainly, it is possible to
select a vector Viem € POT(t; 7),0 such that when expanded in terms of the basis B,
the coefficients are polynomialsin t and (s, — > ; &) is not a common factor of these
polynomials. By Lemma1.19, there existsavector h € Z§ such that Re(a; +h;) > w1 for
ali=1,...,n—1andat least one of the B,y coefficients of Viym) evaluatedat t = a+h
is nonzero. In other words, Vja+h;m) iS @ nonzero vector. Also since v = Vitm (2Vitm
foral zc I, it followsthat 2vjainm = Vjarhm] (DVjashm) fOrall z€ . The T, (a; +hy)e;
weight space of T(a; ) is the weight space on which we will focus.

REMARK 3.6. We note that for any h € 78, M (a+ h;N) ~ M (a;N) and hence
T(a+ h;m) ~ T(a; 7). Therefore, in order to simplify our notation and without loss of
generality, we assume that the vector h, selected above, is 0. In other words, we are
assuming that Re(a;) > w1 forall i = 1,...,n — 1, vjam iS @ nonzero vector in the
A@ = 51 aie; weight space of T(a; 7) and 2Viam) = Vam (DViam foral zeT.

Recall that V(t; p),o isasimple US(t)-module having alinear basis {¢([t;m]) | m €
J(p)}. It follows that for any distinct patterns m’, m” € J(p) there exists an element
Uy (1) € UY(t) such that

Uy (G M'T) = Quvr (C([E; M"])
where Qv (t) is anonzero rational functionin t. We claim alittle more.

PROPOSITION 3.7.  Thereexist a choice of Uy (t) € US(t) suchthat the correspond-
ing rational function Quy (t) evaluated at t = a iswell defined and nonzero.

PROOF. We say that two patterns m®, m@ ¢ J(p) are adjacent provided they are
equal in all entries but two, these two are both on the row indexed by r, and there the
difference is that the p-th coordinate is one greater in m®@ than in m» while the g-th
coordinate is one lessin m®@ than in m®. Briefly, using the notation introduced in Sec-
tion 1, there existsanindexr = 1,...,n— 1l andindicesl < p # g < r such that
[t; m@] = [t; mD] + 6, — §qr. Since for any patterns ', m” € J(p) there exists a se-
guence of adjacent patterns connecting them, without loss of generality, we may assume
that m’, m” are adjacent. Therefore we assumethat, [t; m”] = [t; '] +6pr — ¢ for some
choiceof indicesr, p, .

The element uyvny (t) that we want will be constructed as the product of two elements
of UY(t). The first factor is € r+16+1,. The coefficient of the basis vector {([t; m”]) in
the expansion of the element & r+16r41(([t; M']) is equal to the product of the coefficient
of ¢([t; '] — &qr) in the expansion of e.1,(([t; m']) and the coefficient of {([t;m"]) =
¢([t; m'] +6pr — d¢r) inthe expansion of & r+1(([t; M'] — d¢r). We claim that each of these
rational functionsis well defined and nonzero when evaluated at t = a. By definition of
the action of .1, onthe basiselement {([t; m']) the coefficient of {([t; m'] —é¢ ) isgiven
by

(k-1 — lgr)
Hk;éj (Ik,r - |q,r)
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where;; is equal to the (i, ) component of the pattern [t; m'] minusi. As noted earlier
this is a nonzero rational function in the variables t;. We further claim that since each
g is assumed to be noninteger with Re(a) > w1 fori = 1,...,n — 1 evauating this
function at t = a also yields a nonzero value. This requires an evaluation of each factor
lr—1 — lgr and Iy, — I under substitution of t = a. Rather than an exhaustive treatment
of each possible case we will illustrate this by considering two typical examples and
leave the rest to the reader. First assume that g > 2 and consider the term Iy, — I =
(s —R—2(m’) — 1) — (Mg_1,,_; — ) which occursin the denominator. Substituting ti = &
and using the assumption that Re(a;) > m; we have

r
Re((l o) li=a) = Re(Z a—R_g(m)—1—mg,, ;+ q)
i=1
>m—(—-1)m—-1-m+q=q9q—-1>0

i.e. (lr —lgr) |t=a## 0. As asecond example assumethat g = 1 and consider the factor
-1 — 1y = (srfl — R_(m') — 1) — (5 — R-a(m) — 1) = (_tr — R_(m') +
Rr,l(m’)) which occurs in the numerator. In this case since the scalars a; are assumed
to be noninteger it immediately followsthat (13,1 — l1r) |i=a 0. A similar analysis of
the coefficient of {([t; m”]) occurring in the expansion of the element e ;+1¢([t; M'] —¢r)
establishesthat itisanontrivial rational function whichiswell defined and nonzerowhen
evaluated at t = a. Combining these two statements yields our claim.

The secondfactor in the element unyny (t) isarefinement of the element PQ introduced
in Section 2 withm = m” . Since Re() > =y fori = 1,...,n— 1, by Proposition 3.5
we know that the maps Vjzm are distinct for all m € | (r). Therefore for any pattern
m # m” there exists an element z,, € U_,Z, such that Yiam(zn) # V[am(Zn) and
hence afortiori Vitm(zm) # Ve (Zm). Using these elements we define

PE]?// = H (Zm - '\/[t;m] (Zm))

m#m//
Asin Section 2, we note that for any pattern md e | () with m® # m’” we have

POt m®P]) =0

m”

and
POIEM D) = TT (Viem(Zm) — Viem (@m))<([t M) # O.

m#£m’

Further by our choice of the elements z,, we also havethat PS]),,C([I; mB]) |i=a isnONZzero
if and only if m® = m”.
The element Upypy (t) = Pf]?,,er,,ﬂeﬁlyr then hasthe required properties. n

We are now in position to complete the proof of the Main Theorem.

PROOF OF THEOREM 3.4. Fix m € J(p) and select a vector Vi € PET?,T(t; T)\0
suchthat 0 # Vigm € PAT(a; 7). Let

o:VEp) — B S POTE )0
m'eJ(p)
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be the U{(t)-module isomorphism determined by setting ®(¢([t; m])) = Vigm.
For eachm’ € J(p) with m’ # m, we define Vit = Umny (Vi We note that

Urym () Uy (t)V[t;m] = Unym(t) Uy (t)CD(C([t; m]))
(3.8) = & Unyen (&)U (OC(TE; 1))
= Quvm(t) Qv (t)V[t;m] .

Since each of the terms on the right hand side is well defined and nonzero when
we substitute t = a we have that Upym(@)umn (@)V([a; m]) # 0 and therefore vign =
umm/(a)v[a;m] # 0. Clearly Vitm] € PS]),T(t; ™) and hencev[a;m/] S P@T(a; NCE

By Proposition 3.5, the maps Vs are distinct for distinct patterns m’ € J(p) and
hence the A®@ weight space of T(a; T)x @ isadirect sum of inequivalent I'-submodules

Pfﬁ?T(a; 7),@-. In order to prove that this subspace is an simple US-module, it suffices
to show that for each m’ € J(p) with m’ # m we have Vigm) € UVam and Vizm €
UV Thefirst result followsfrom the definition of Viqm) = Umm (2)Vja;m and the sec-
ond follows from (3.8), i.€. Uywm(@)Vjam] = Unwm(&)Umny (2)V([&; M]) which is a nonzero
multiple of vigm. n

4. Anindecomposablesubmoduleof atensor product. To thebest of our knowl-
edge, there is no known nonsimple indecomposable torsion free module for the sim-
ple finite symplectic algebras sp(2n, C). In fact, a slight modification of Chen’s work
[C], shows that no such modules of degree 2 exist for sp(2n, C). However, nonsim-
ple indecomposable torsion free modules do exist for s¢(n, C). In this section, such an
example is presented. It arises in T(a; N) when the central characters of Ch(a; N) are
not distinct. This then justifies the hypothesis of our Main Theorem. Consider the sim-
ple G4-module V(1,1,0,0) having highest weight €1 + €. St K = 1and N = 0,
and recall (1.6). Then V(1, 1,0, 0) can be redlized as the 6 dimensional submodule of
M ((1,0,0,0);0) ® M ((1,0,0,0); 0) asgiven by:

V(1,1,0,0) = spanc{x @ x —x @x | 1 <i<j<4}
under the usual action on a tensor product module. Fix a 4-tuple of complex scalars
a = (ay,ap, ag,a4) such that a;, ap, ag, a4, a1 + ap, a1 + ay + ag are nonintegersand a; +
ap +ag +as = 0. Recall that M (a; 2) denotes the pointed torsion free module with basis
given by
{x§1+h1x§2+“2x§3+h3xj“+h4 | hi € Zwithhy +hy, + hg +hy = —2}.

The tensor product module T(a; (1,1,0,0)) = M (a;2) @ V(1, 1,0, 0) is torsion free of
degree 6. By Lemma 1.16, the composition seriesfor T(a; (1, 1,0,0)) asaUs-moduleis
determined by the composition series for any weight space as a U%-module.

The \®@ = 5}, aje; weight space T(a; (1, 1,0,0)),, of T(a; (1,1,0,0)) hasalinear
basis given by

@
X«’iil ng X§3 Xa4

W”:ij4 @ (X @ X — X © %)
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wherel <i <j < 4andtheratio expression gives us a short hand way of subtracting 1
from exponents. For 1 < i < 6, definev; by

A1 1 -1 1 0 0 0 W12
Vo ata a3 -, —y—dp—a, ytatas 0 Wi3
V3| 0 a as —a —a a +ay Wo3
Vg - 0 0 0 ai adp asz W14
Vs 0 0 0 0 a t+ay ag Woy
Vg 0 0 0 0 0 ar W34

The determinant of the coefficient matrix is a2(ay + a2)%(ay + ax + ag) # 0. Thus, B =
{vi|i=1,...,6} forms an aternate basis for this \® weight space.
Straightforward calculations using the generators of U9

{€.i,80i5 - - 84y | 1 <ij < 4ig,ip, ..., i distinct}

showsthat theweight space T(a; (1, 1,0,0))
proper US-submodules:

@ isacyclic modulegenerated by v having

Vi = span;{vz,Va}, Va2 =span.{vi,vz,Va}, V3= span.{vi, vz, Vs, Va}.
(These calculations are easily done using Maple.)

T(2(1,1,0,0)),, > Vs> V2>V >0

@

is a composition series. We also note that Ty /V3 is equivalent to V; under the map
defined by sending the vectorsvs + V3, Vg + V3 to the vectors vy, vs respectively. Finally
V3/V, and V,/V; are pointed torsion free modules with the first module isomorphic to
M (a; 0) and the second quotient module isomorphic to M ((al —lapa—laz—1,a4—
1);0).
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