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Adjoint-based interfacial control of
viscous drops
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We develop a continuous adjoint formulation for controlling the deformation of clean,
neutrally buoyant droplets in Stokes flow. The focus is on surface tension-driven flows
where the interface is deformed by the local fluid velocity. We apply results from shape
optimization to rigorously derive the optimality conditions for a range of interfacial
problems. In the cases of interest, we make use of boundary integral methods as a
natural choice for the numerical discretization of the flow variables. In the static case,
our methodology is tested on a tracking-type cost functional and corresponds to classic
shape optimization problems. We show agreement with black-box finite difference-based
gradients and accurate minimization of the cost functionals. Finally, we demonstrate the
methodology on the control of unsteady droplet deformation through external forcing.
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1. Introduction

In this article we develop and apply an adjoint-based approach for controlling
incompressible two-phase flows with sharp interfaces governed by the Stokes equations.
The main model we consider is that of

∇ · u± = 0, x ∈ Ω±
∇ · σ± = 0, x ∈ Ω±

}
, (1.1)

where a discontinuity in traction forms at the interface due to (a possibly non-constant)
surface tension.

While a significant simplification of many practical flows, this model shares important
features prevalent in more complex multiphase flows, such as discontinuous flow
quantities (here pressure and velocity gradients) and the presence of higher-order surface
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properties such as curvature. Understanding these features and their effect on optimization
problems permits optimization of more realistic fluids at higher Reynolds numbers.
Common extensions to this model are important to many engineering and industrial
applications, such as the interactions of water and oil in reservoirs (see Pau et al. 2009),
air and fuel in combustion engines (see Desjardins, Moureau & Pitsch 2008), water and
air in sprinklers (see Hua et al. 2002), etc. Developing a robust and flexible control and
optimization framework will enable improved efficiency in these systems.

The optimal control of single-phase fluid problems has been extensively studied, starting
with the pioneering work of Pironneau (1974) and Jameson (1988) in the context of
aerodynamic design. However, there are only a few contributions to two-phase flows.
Extending single-phase results to two-phase flows has generally been difficult due to
the inclusion of the geometry as a problem unknown and the ensuing discontinuities in
flow quantities. In the sharp interface limit, the fluid–fluid interface acts similarly to a
domain boundary and, thus, the optimal control of two-phase flows shares many features
in common with shape optimization. Therefore, the shape calculus for shape optimization
developed in Delfour & Zolésio (2001) and later, extended to time-dependent domains in
Moubachir & Zolésio (2006) plays a central role. To efficiently perform optimal control
of partial-differential-equation-constrained systems, the preferred approach is generally
through the adjoint method based on the Lagrange multiplier theory. A major downside
of the method is that it is purely formal, in that it assumes the required differentiability
of the problem variables, so care must be taken when applying it directly to problems
with discontinuous solutions. In the case of incompressible two-phase flows with a sharp
interface, a commonly used formulation is the so-called one-fluid model (see Prosperetti
& Tryggvason 2009). In this model, the velocity and pressure are considered as variables
over the whole domain, e.g.

u � αu+ + (1 − α)u−,

p � αp+ + (1 − α)p−,

}
(1.2)

where α is an indicator function. However, recent work on similar systems with
discontinuous coefficients, such as Pantz (2005) for a heat equation and Allaire, Jouve
& van Goethem (2011) for linear elasticity, has shown that the bulk variables are not
differentiable with respect to the domain, i.e. not shape differentiable. The present
manuscript considers the restrictions (u±, p±) separately and develops an adjoint method
for the coupled system, instead of a single-equation system like the one-fluid model.

The novelty of our contribution lies in extending and verifying the methodology
proposed by Pantz (2005) to models similar to the above surface tension-driven two-phase
flow. In particular, we derive the adjoint equations and adjoint-based gradient for static
and quasi-static two-phase Stokes systems, which have been successfully used in many
studies of droplet stability and breakup (see Stone & Leal 1989; Pozrikidis 1990; Hou,
Lowengrub & Shelley 1994; Stone 1994; Lac & Homsy 2007; Ojala & Tornberg 2015)
and provide a practical set-up for advancing the control of multiphase flows. Furthermore,
the use of shape calculus allows for deriving an adjoint-based gradient independent of the
representation of the interface. From the continuous adjoint perspective, the smoothness
of the resulting flow and control parameters is also very important. For example, smooth
solutions to the Stokes problem require a smooth curvature, but this is not a priori
guaranteed by the optimization procedure. For the forward problem, several time-varying
interfacial models have been recently studied in Pruss & Simonett (2016) and shown to
be well-posed, paving the way to similar results for the adjoint problem. The smoothness
requirement on the interface and curvature also poses problems numerically. For example,
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Interfacial control of viscous drops

the widely used volume of fluid (known as VOF) method requires substantial effort to
provide an accurate representation of the curvature (see Popinet 2009). Our numerical
discretization relies on boundary element methods (see Pozrikidis 1992) to provide
accurate representations of all quantities of interest. In particular, since the interface is
expressed explicitly, we can compute accurate geometric quantities. The use of boundary
element methods in shape optimization problems also has a long history, as found in classic
monographs such as Aliabadi (2002) and in recent applications from Alouges, Desimone
& Heltai (2011), Bonnet, Liu & Veerapaneni (2020) and others.

The current work can also provide a starting point for the adjoint-based optimization of
higher Reynolds number multiphase flows governed by the incompressible Navier–Stokes
equations. However, the flow nonlinearity and interface breakup will require changes to the
formulation. Nonetheless, the present work can be viewed as a verification formulation as
well as a predictive approach for droplets in the Stokes regime. Note that optimal control of
multiphase Navier–Stokes systems has been approached in the past with various models.
For example, in Feppon et al. (2019) the authors derive a coupled thermal fluid-structure
model and in Deng, Liu & Wu (2017) and Garcke et al. (2018) a phase field model was
used to describe the interface. Phase-field models have seen the most development in this
area, due in part to the fact that solutions are quickly varying but continuous and allow
for a standard approach through adjoint-based methods. In contrast, the current method
requires the more complex shape calculus to handle the sharp discontinuities explicitly,
but the resulting gradients are not quickly varying and the optimization is shown to be
well behaved. Other multiphase applications include the optimal control of a two-phase
Stefan problem with level set methods in Bernauer & Herzog (2011), free-surface Stokes
problems in Repke, Marheineke & Pinnau (2011), Palacios, Alonso & Jameson (2012) and
Sellier (2016), etc. To the authors’ knowledge, no previous work has incorporated sharp
interfaces and surface tension in a fluid optimal control problem.

The paper is organized as follows. We begin by introducing the required notation, fluid
model and notions of boundary perturbations in § 2. In § 3, we define the optimization
problems of interest and derive the adjoint equations and the gradients required for the
optimization using gradient descent-type methods. The discretization details are presented
in § 4. The discretization and numerical results are focused on a single droplet under
axisymmetric assumptions. The presented results are then numerically verified in § 5 for
several test problems. Finally, concluding remarks are given in § 6.

2. Preliminaries

2.1. Two-phase Stokes system
We are interested in the quasi-static evolution of multiple clean droplets in an
incompressible flow. The droplets experience no phase change, but are driven by a
constant surface tension at the fluid–fluid interface. Such a system is governed by the
two-phase Stokes equations, which have been described in detail in classic monographs
(see Ladyzhenskaya 1963; Pozrikidis 1992; Temam 2001). The notation and main auxiliary
results used below are presented in appendix A.

We consider a three-dimensional domain Ω− ⊂ R
d, d = 3, and its complement Ω+ =

R
d \ Ω̄− to denote the union of the droplets’ interiors and the ambient fluid, respectively.

The boundary between the two domains is Σ � Ω̄− ∩ Ω̄+. In the following, we assume Σ

is a finite set of disjoint, closed, bounded and orientable surfaces. Furthermore, we require
that Σ is of class C2 to allow for the definition of a unique curvature at every point.

The droplets and the ambient fluid have dynamic viscosities μ− and μ+, respectively.
The flow in each phase is described by the velocity fields u± : Ω± → R

d and the pressures
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p± : Ω± → R. We also define the Cauchy stress tensor and the rate-of-strain tensor by

σ± � −p±I + 2μ±ε±,

ε± � 1
2 (∇u± + (∇u±)T).

}
(2.1)

Following these definitions, the static incompressible two-phase Stokes equations are
given by

∇ · u± = 0, x ∈ Ω±,

∇ · σ± = 0, x ∈ Ω±,

u+ = u∞, ‖x‖ → ∞.

⎫⎪⎬
⎪⎭ (2.2)

The boundary conditions at the interface between the fluids are given as a set of jump
conditions on Σ . Namely, the velocity must satisfy a no-slip condition and the surface
stresses are related to the additive curvature of the interface by the Young–Laplace law.
We write

[[u]] = 0,

[[ f ]] = γ κn,

}
(2.3)

where f ± � n · σ± is the surface traction, γ is the surface tension coefficient and n is the
exterior normal vector to Ω−. The jump operator is defined as [[ f ]] � f+(x+) − f−(x−),
where

f (x±) = lim
ε→0+

f (x ± εn). (2.4)

It is convenient to non-dimensionalize the equations to reduce the number of parameters
in the problem. We choose the following non-dimensionalizations, common in the
literature:

u± = Uû±, p± = μ±U
R

p̂±, x = Rx̂, (2.5a–c)

where U is a characteristic velocity magnitude and R is a characteristic droplet radius. The
resulting non-dimensional parameters governing the systems are the viscosity ratio λ and
the capillary number Ca, defined as

λ � μ−
μ+

and Ca � μ+U
γ

. (2.6a,b)

In the remainder, we will continue by using the non-dimensional equations. We will
write the non-dimensional stress jump condition (2.3) as follows:

[[ f ]]λ � f + − λf − = 1
Ca

κn. (2.7)

In order to evolve the shape of the droplets in time, we use a quasi-static approach in
which we first compute the velocity using (2.2) and then displace the interface using an
ordinary differential equation. The evolution of the interface is described by

∂X
∂τ

= V (u, X ), (2.8)

where X is a parameterization of the interface and V is a given source term. Typical
examples of the source term are

V (u, X ) � (u · n)n + (I − n ⊗ n)w, (2.9)
where w can be chosen to be 0, u or a different tangential correction to u. The choice of w is
left open, since only the normal component of the velocity field governs the deformation of
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Interfacial control of viscous drops

the interface. The tangential component can be artificially imposed for numerical reasons,
e.g. to cluster points in regions of high curvature; for example, see the works of Hou et al.
(1994) and Ojala & Tornberg (2015).

2.2. Shape derivatives
Interfacial control in multiphase flows with sharp interfaces is inherently a form of shape
optimization. With this in mind, we will review some of the concepts behind shape
optimization and perturbations with respect to the domain. We consider here Hadamard’s
method for boundary variations, which has been detailed rigorously in works such as
Moubachir & Zolésio (2006), Allaire & Schoenauer (2007), Delfour & Zolésio (2001)
and, from the view of differential geometry, in Walker (2015).

The method is based on defining so-called perturbations of the identity by

Ωε = X ε(Ω) = (Id + εX̃ )(Ω), (2.10)

where Id is the identity mapping, X̃ ∈ W2,∞(Rd; R
d) is a perturbation and ε > 0 is a

real constant. If ε is sufficiently small, then X ε is a diffeomorphism on R
d (Allaire

& Schoenauer 2007, lemma 6.13). As such, by Hadamard’s method we can identify
every admissible shape Ωε with a perturbation X ε . Therefore, the method allows, among
other things, defining differentiation of shapes by differentiation in the Banach space
W2,∞(Rd; R

d) in terms of well known concepts, such as the Gâteaux and Fréchet
derivatives.

In fact, using this simple definition, we can define the Fréchet derivatives of relevant
functionals of the type

J1(Ω) �
∫

Ω

f (x;Ω) dV,

J2(Σ) �
∫

Σ

f (x;Ω) dS,

J3(Σ) �
∫

Σ

g(x;Σ) dS.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.11)

We refer to Allaire & Schoenauer (2007) and Walker (2015) for proofs of these results
and additional shape derivatives of quantities of interest, such as the normal and the
additive curvature. The lemma below reproduces the main derivatives of functionals used
in the current work.

LEMMA 2.1 ( Walker 2015, lemma 5.7). Let X̃ ∈ W2,∞(Rd; R
d) be a sufficiently small

perturbation, Ω ⊂ R
d and Σ ⊂ R

d a d − 1 manifold without boundary. Then, we have
that the shape derivatives of the functionals (2.11) are

DJ1[X̃ ] =
∫

Ω

f ′[X̃ ] +
∫

∂Ω

f X̃ · n dS,

DJ2[X̃ ] =
∫

Σ

f ′[X̃ ] +
∫

Σ

(∇f · n + κf )X̃ · n dS,

DJ3[X̃ ] =
∫

Σ

g′[X̃ ] +
∫

Σ

κgX̃ · n dS.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.12)

Extensions to moving domains Ω(t) and Σ(t) are presented in Moubachir & Zolésio
(2006). An important result in shape optimization is the Hadamard–Zolésio structure
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theorem from Delfour & Zolésio (2001, theorem 3.6, chapter 9), which guarantees that
we can always express the first-order shape derivative of functionals (2.11) as boundary
integrals that only depend on the normal component of X̃ . Restricting the shape gradient
to the boundary of a domain Ω is of special interest to us, since it greatly simplifies the
numerical aspects. In particular, it allows restricting the whole problem to a problem on
the interface Σ between the droplets and the surrounding fluid.

Finally, we will informally consider the shape differentiability of surface functionals that
depend on the problem variables p±, u± and X . The main issue, also discussed in Pantz
(2005) and Allaire et al. (2011), is that u as a function on Ω is not shape differentiable,
but u± as restrictions to Ω± are shape differentiable.

Recall that, for Ca < ∞, there is always a non-zero jump in pressure

[[p]] = (1 − λ)(n · ∇u) · n + 1
Ca

κ, (2.13)

and the following jumps in the components of the velocity gradient

[[tα · ∇u]] = 0, [[n · ∇u]] /= 0 and [[(n · ∇u) · n]] = 0, (2.14a–c)

where tα , for α ∈ {1, . . . , d − 1}, is an orthonormal basis for the tangent space to Σ .
Similar jump relations can be derived for the rate-of-strain tensor. With this in mind, we
consider the general functional

J =
∫

Σ

j( p±, u, X ) dS. (2.15)

We can see from lemma 2.1 that the integrand must be differentiable up to the boundary
to allow defining ∇j · n. In the following, we will restrict to differentiable functionals of
the type

J =
∫

Σ

j(u · n, X ) dS, (2.16)

i.e. that only depend on the normal component of the velocity field and the surface
parameterization, both of which have continuous normal gradients. In the case of volume
integrals, we would not need further restrictions on the cost functionals we consider.

3. Optimization problem

We now define two constrained optimization problems that we will attempt to characterize.
In particular, we will use the Lagrange multiplier theory to determine adjoint equations and
derive an expression for first-order variations of the cost functionals of interest.

Firstly, we define a classic shape optimization problem

min
X∈U1

J1,

E1(uk, pk, X ) = 0,

}
(P1)

where U1 is the set of all admissible parameterizations of interfaces Σ ⊂ R
d and E1

corresponds to the constraints (2.2) and (2.3). In general, we require that the fluid–fluid
interfaces remain of class C2.

Remark 3.1. Note that the parameterizations of a surface Σ are not unique. To rigorously
define the set U1, we would be required to define an appropriate notion of equivalence
classes (Delfour & Zolésio 2001).
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Interfacial control of viscous drops

Secondly, we consider the optimization with respect to a parameter of the problem,
namely the capillary number Ca. This problem is defined by

min
Ca∈U2

J2,

E2(uk, pk, X , Ca) = 0,

}
(P2)

where U2 � R+ and E2 encodes the constraints (2.2), (2.3) and (2.8). At least conceptually,
we can see that the second problem is a superset of the first one, since it simply includes
an additional constraint. For this reason, we will focus our attention on the first problem,
with extensions to the second problem as necessary.

The two optimization problems use tracking-type cost functionals restricted to the
interface Σ . They are

J1(X ) � J1(X , u(X )) = 1
2

∫
Σ

(u · n − ud)
2 dS,

J2(Ca) � J2(Ca, X (Ca)) = 1
2

∫
Σ

‖X (T) − X d‖2 dS,

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where ud and X d represent a desired surface normal velocity field and geometry. We
differentiate between Jk, which is a function of the control only, and Jk, which is a
function of the control and the state variables (as required). The equivalence between
the two, through the corresponding constraints Ek, is given by the implicit function
theorem under some assumptions. The main theorem that is used in the theory of equality
constrained optimization is stated below.

THEOREM 3.2. Let J : X → R be a functional and E : X → Z be a set of constraints,
where both X and Z are Banach spaces. Let x0 be a local extremum of J and a regular
point of E . If both J and E are continuously Fréchet differentiable in a neighbourhood
U of x0, then there exists a point z∗

0 ∈ Z∗, such that the Lagrangian functional

L (x, z∗) � J (x) − 〈z∗,E (x)〉, (3.2)

is stationary at (z∗
0, x0), i.e. the Fréchet derivative satisfies

∂L

∂x
(x0, z∗

0) = DJ (x0) − 〈z∗
0, DE (x0)〉 = 0. (3.3)

A proof of the Lagrange multiplier theorem above can be found in Luenberger (1997).
For a control problem, we have that the variable x � ( y, u), where y are the state variables
and u is the control. In this case, the statement that (x0, z∗

0) is a stationary point of the
Lagrangian L can be split into the following equations:

∂L

∂z∗ = 0 =⇒ E (x) = 0, (state equations)

∂L

∂y
= 0 =⇒

(
∂E

∂x

)∗
[z∗] = ∂J

∂x
, (adjoint equations)

∂L

∂u
= 0 =⇒ dJ

du
= ∂J

∂u
−
(

∂E

∂u

)∗
[z∗] = 0, (optimality condition)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

which are valid for all directions h in the necessary spaces. In the following we will show
the specific Lagrangian functionals for our problems of interest and the equations satisfied
by the adjoint variables.

911 A39-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1013


A. Fikl and D.J. Bodony

Remark. Rigorous proofs of existence and uniqueness of solutions to (P1) and (P2) are
out of scope for this work. We refer to the seminal work of Ladyzhenskaya (1963) on
smooth domains for results related to the static problem (2.2) and (2.3). Extensions to the
unsteady problem can be found in Denisova & Solonnikov (1991) and subsequent work.
More recently, such problems have been investigated in Kunisch & Lu (2011) and Pruss &
Simonett (2016).

3.1. Static problem
We start by looking at the optimization problem (P1) with the static constraints (2.2) and
(2.3). The resulting Lagrangian can be written as

L1 � J1 − 〈z∗,E1(w, X )〉, (3.5)

where z∗ are the adjoint variables and w± � (u±, p±) are the state variables on Ω±, such
that w � (w+, w−). Expanding the constraints, we write

L1 � J1 +
∫

Ω+
∇u∗

+ · σ+ dV −
∫

Ω+
p∗
+(∇ · u+) dV + 1

Ca

∫
Σ

κ〈u∗〉 · n dS

+
∫

Ω−
λ∇u∗

− · σ− dV −
∫

Ω−
λp∗

−(∇ · u−) dV

+
∫

Σ

〈 f 〉λ · [[u∗]] dS +
∫

Σ

〈 f ∗〉λ · [[u]] dS, (3.6)

where 〈 f 〉λ denotes a weighted average, defined as

〈 f 〉λ � 1
2( f+ + λf−). (3.7)

The weak form of the Stokes equations, (2.2), can be obtained by integration by parts and
then applying the following equality:

[[ fg]]λ = [[ f ]]〈g〉λ + 〈 f 〉[[g]]λ. (3.8)

Remark 3.3. The main subtlety in our derivation comes from the choice in constructing
the Lagrangian. In classic single-phase works, such as Bewley, Moin & Temam (2001) and
Wei & Freund (2006), the strong form of the equations is used with an integral over the
whole domain. In the context of multiphase flows, such an approach would be possible
using the one-fluid model, where (u, p) are considered as bulk variables with the jump
conditions carried over as singular source terms. However, such a choice results in an
incorrect shape derivative. As discussed in Pantz (2005), the reason for this is that the
state variables are not shape differentiable over Ω .

Therefore, equations with discontinuous coefficients and, in particular, multiphase flows
must be treated with care. The correct construction involves considering the restrictions
to Ω±, i.e. (u±, p±) as above, and enforcing values that are well-defined on the interface.
For example, an alternative expansion of

[[ fg]]λ = f+[[g]]λ + λ[[ f ]]g−, (3.9)

would lead to ill-defined results. The choice of a weak form in (3.6) is not formally
required, but allows us to directly apply the results from lemma 2.1 and is consistent
with the methods used in the shape optimization community, e.g. in Allaire &
Schoenauer (2007).
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Interfacial control of viscous drops

We start by stating the equations satisfied by the adjoint variables in the following result.

LEMMA 3.4. At a stationary point of the Lagrangian (3.6), the adjoint variables w∗±
satisfy the following equations:

∇ · u∗± = 0, x ∈ Ω±,

∇ · σ ∗± = 0, x ∈ Ω±,

u∗+ = 0, ‖x‖ → ∞,

⎫⎪⎬
⎪⎭ (3.10)

with the jump conditions
[[u∗]] = 0,

[[ f ∗]]λ = ∇uJ1.

}
(3.11)

The adjoint Cauchy stress tensor, rate-of-strain tensor and traction vector are in complete
analogy to the definitions of the primal Stokes problem given in § 2. For the cost functional
(3.1), we have that

∇uJ1 = (u · n − ud)n. (3.12)

Proof . The adjoint equations are easily obtained by differentiating the Lagrangian with
respect to the state variables w±. We have that

∂L1

∂w
[w̃] = ∂J1

∂w
[w̃] +

∫
Ω+

∇u∗
+ · σ̃+ dV −

∫
Ω+

p∗
+(∇ · ũ+) dV

+
∫

Ω−
λ∇u∗

− · σ̃− dV −
∫

Ω−
λp∗

−(∇ · ũ−) dV +
∫

Σ

〈 f̃ 〉λ · [[u∗]] dS. (3.13)

For k ∈ {+, −}, we have that∫
Ωk

∇u∗
k · σ̃k dV −

∫
Ωk

p∗
k(∇ · ũk) dV =

∫
Ωk

σ ∗
k · ∇ũk dV −

∫
Ωk

(∇ · u∗
k)p̃k dV, (3.14)

by algebraic manipulations. This is the weak formulation of the adjoint equations from
lemma 3.4 with test functions (ũ±, p̃±). �

We are now in a position to give the definition of the shape derivative of the cost
functional from (P1). It is stated as follows.

THEOREM 3.5. We assume that (u±, p±) and J1 are shape differentiable. Then, the
shape gradient of the cost functional (P1) is

∇X J1 = ∇XJ1 + C∗[w∗; X ] + S∗[w∗, X , w], (3.15)

where

C∗[w∗; X ] � 1
Ca

(κ∗[u∗ · n] + n∗[κu∗ · t] + κ2u∗ · n + κ(n · ∇u∗) · n),

S∗[w∗; X , w] � 〈 f 〉λ · [[n · ∇u∗]] + 〈 f ∗〉λ · [[n · ∇u]] − 2[[ε∗ · ε]]λ.

⎫⎬
⎭ (3.16)

For the cost functional (3.1), we have that

∇XJ1 = n∗[ ju] + j(n · ∇u) · n + 1
2κj2, (3.17)

where j � u · n − ud. The operators κ∗ and n∗ correspond to the adjoint operators of the
Eulerian shape derivative of the additive curvature and normal vector, respectively. They
are defined in appendix B.
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A. Fikl and D.J. Bodony

Proof . A detailed derivation of the shape gradient is given in appendix C. We note that
both the derivation of the shape gradient in theorem 3.5 and the adjoint equations in lemma
3.4 are purely formal; they assume that the state variables have shape derivatives of the
required regularity. �

3.2. Quasi-static problem
The extension from (P1) to the unsteady problem (P2) is straightforward from the
point of view of the Lagrangian formalism. However, introducing the unsteady element
complicates the theoretical analysis of the problem, since it is not clear if the solution will
maintain the required smoothness. Similar issues appear at a numerical level, as we will
see in subsequent sections.

Furthermore, the shape derivative formalism from § 2.2 needs to be extended.
Intuitively, we now want to perturb the time-dependent domains Ω±(t). In the
(d + 1)-dimensional (t, x) space, one can think of a fixed domain Ω as a cylinder, while a
moving domain Ω(t) will be a general tubular manifold. Domain perturbations of this kind
were made rigorous in Moubachir & Zolésio (2006), to which we refer to any additional
details.

As before, the Lagrangian functional associated with (P2) is given by

L2 � J2 − 〈z∗,E2(w, X , Ca)〉, (3.18)

or, explicitly,

L2 � J2 +
∫ T

0

∫
Ω+(t)

∇u∗
+ · σ+ dV dt −

∫ T

0

∫
Ω+(t)

p∗
+(∇ · u+) dV dt

+
∫ T

0

∫
Ω−(t)

λ∇u∗
− · σ− dV dt −

∫ T

0

∫
Ω−(t)

λp∗
−(∇ · u−) dV dt

+ 1
Ca

∫ T

0

∫
Σ(t)

κu∗ · n dS dt

+
∫ T

0

∫
Σ(t)

〈 f 〉λ · [[u∗]] dS dt +
∫ T

0

∫
Σ(t)

〈 f ∗〉λ · [[u]] dS dt

−
∫ T

0

∫
Σ(t)

X ∗ · (X t − V (u, X )) dS dt

−
∫

Σ(0)

X ∗
0 · (X (0) − X 0) dS. (3.19)

LEMMA 3.6. We assume that w± and J2 are shape differentiable. Furthermore, the
source term V in (2.8) is also assumed to be shape differentiable. Then, at a stationary
point of the Lagrangian (3.19), the adjoint variables w∗± satisfy the Stokes equations (2.2)
with the jump conditions

[[u∗]] = 0,

[[ f ∗]]λ = ∇uJ2 +
(

∂V
∂u

)∗
[X ∗],

⎫⎬
⎭ (3.20)

where X ∗ is given by lemma 3.7. In the case of the cost functional from (3.1), we have that

∇uJ2 = 0. (3.21)
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Interfacial control of viscous drops

Also, using the forcing term described in (2.9), we have that(
∂V
∂u

)∗
[X ∗] = (X ∗ · n)n. (3.22)

Proof . The proof is completely equivalent to that of lemma 3.4. �

LEMMA 3.7. Under the assumptions of lemma 3.6, we have that at a stationary point of
the Lagrangian (3.19), the adjoint variable X ∗ satisfies the following evolution equation:

−X ∗
t = {∇XJ2 + (∇Σ · V )(X ∗ · n) + V∗[X ∗; X , w]

+ C∗[w∗; X ] + S∗[w∗; X , w]}n,

X ∗(T) = ∇X (T)J2,

⎫⎪⎬
⎪⎭ (3.23)

where C∗ and S∗ are defined in lemma 3.4 and V∗ is the adjoint operator corresponding
to (2.8). In the case of the cost functional (3.1), we have that

∇XJ2 = (X − X d) · n + κ

2
‖X − X d‖2. (3.24)

Similarly, for the choice of forcing term described in (2.9), we have that

V∗[X ∗; X , w] � n∗[(X ∗ · n)u] + n∗[(u · n)X ∗] + ((n · ∇u) · n)(X ∗ · n). (3.25)

Proof . The derivation of the above evolution equation is presented in appendix C.
Determining the shape gradient of the cost functional (3.1) is a direct application of
lemma 2.1. �

THEOREM 3.8. The gradient of the cost functional for (P2) is given by

∇CaJ2 = − 1
Ca2

∫ T

0

∫
Σ

κu∗ · n dS dt. (3.26)

Proof . The proof of theorem 3.8 follows from the definition of the Lagrangian given in
(3.19). Note that the gradient is simply a classic derivative in R in this case. �

This completes the statement of the two optimization problems we have proposed. In
both cases, we have access to first-order variations that can be used as part of gradient
descent algorithms to perform the optimization.

4. Numerical methods

In this section, we will detail the numerical methods used to solve the Stokes system
(2.2) and (2.3) and the adjoint Stokes system described in lemma 3.4. Since the Stokes
equations are symmetric, we require a single solver in both cases. We will also look
into discretizations of the shape gradient in theorem 3.5, the interface evolution equation
(2.8) and the corresponding adjoint evolution equation from lemma 3.7. The numerical
methods described here have been implemented in an open-source code that can be found
in Fikl (2020).
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4.1. Boundary integral equations
An efficient method of solving the Stokes equation is based on boundary integral equations
(Pozrikidis 1992). In our case, this is particularly useful because the entire problem reduces
to the interface if the cost functional is expressed on Σ alone, as is the case for the choices
presented in (3.1).

Boundary integral methods are based on Green’s function fundamental solutions to the
Stokes problem. Using the fundamental solutions as kernels in a linear integral operator,
there are many possible representations of the two-phase Stokes problem. A common
representation is based on the Lorentz reciprocal theorem and has been used in studies
of interfacial dynamics (see Pozrikidis 1990; Stone 1994; Lac & Homsy 2007). However,
this representation is less suitable for our case, since the pressure and stress kernels
are hypersingular. Hypersingular integrals are generally harder to analyse and accurately
evaluate numerically.

A second representation for two-phase flows with a stress discontinuity has been
discussed in Pozrikidis (1990) and is described in detail in Pozrikidis (1992, chapter 5.3).
It is a so-called single-layer potential representation, with the velocity field described by,
for x /∈ Σ ,

ui(x) = Gi[q](x) �
∫

Σ

Gij(x, y)qj( y) dS, (4.1)

where q : Σ → R
d and Gij are usually referred to as the density and the Stokeslet, (4.4).

This representation is complemented by definitions of the pressure and stress, for x /∈ Σ ,

p±(x) = P[q](x) �
∫

Σ

pj(x, y)qj( y) dS, (4.2)

(σ±)ik(x) = Tik[q](x) �
∫

Σ

T ijk(x, y)qj( y) dS, (4.3)

where both have been appropriately non-dimensionalized, as described in § 2.1. The
usual summation convention over repeated indices has been used in the definitions. The
fundamental solutions for the three main variables in Stokes flow are given by

pi(r) � 2
ri

r
,

Gij(r) � δij

r
+ rirj

r
,

T ijk(r) � −6
rirjrk

r
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.4)

for i, j, k ∈ {1, . . . , d}, where r � x − y and r � ‖r‖. To solve for the density we use the
provided boundary and jump conditions, which, however, require limits as x → Σ of the
layer potentials above. These limits are generally not trivial, since the kernels in question
are all singular at Σ . The jumps in the velocity, pressure and traction are well known and
given in Pozrikidis (1992, § 4.1). Using the surface limits of the traction and the jump
(2.3), we obtain the following equation (Pozrikidis 1992, (5.3.9)):

4πqk(x) − 1 − λ
1 + λni(x)Tik[q](x) = − 1

1 + λ [[ fk]]λ. (4.5)

In the non-homogeneous far-field boundary conditions case, additional terms can be
added, as described in Pozrikidis (1992).
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Interfacial control of viscous drops

Equation (4.5) is a Fredholm integral equation of the second kind. The linear operator
acting on the density q is generally well-conditioned. In fact, it matches the conditioning
of the underlying physical problem, which is well-conditioned for 0 < λ < ∞. This allows
for efficient results by classic iterative linear solvers such as GMRES.

The layer potentials presented so far are sufficient to solve the forward Stokes equations
(2.2), (2.3) and (2.8). However, in the case of the adjoint equations, we further require
knowledge of the normal and tangential velocity gradients. They can be obtained by
differentiating the velocity (4.1) and are given, for x /∈ Σ , by

(n · ∇u)i(x) = Ui[q](x) � nk(x)

∫
Σ

U ijk(x, y)qj( y) dS, (4.6)

(tα · ∇u)i(x) = Vα
i [q](x) � tαk (x)

∫
Σ

U ijk(x, y)qj( y) dS. (4.7)

The kernel for the velocity gradient is given by

U ijk(x, y) = ∂

∂xk
Gij(x, y) = rkδij − riδjk − rjδik

r3 + 3
rirjrk

r5 . (4.8)

The surface limits of the new layer-potential operators are not standard, but they can be
easily derived from the main variables and the definition of the stress tensor (2.1).

THEOREM 4.1. The jump conditions for the normal and tangential velocity gradient layer
potentials, defined in (4.6)–(4.7), are given by

lim
ε→0+

Ui[q](x ± εn) = ±4π(qi − (qjnj)ni) + p.v.

∫
Σ

nk(x)Uijk(x, y)qj( y) dS,

lim
ε→0+

Vα
i [q](x ± εn) = p.v.

∫
Σ

tαk (x)Uijk(x, y)qj( y) dS,

⎫⎪⎪⎬
⎪⎪⎭ (4.9)

where p.v. denotes the Cauchy principal value interpretation of the singular integral.

We must also obtain formulae for the stress and strain-rate tensors that appear in
theorem 3.5. The stress tensor can most easily be obtained algebraically from the traction,
the pressure and the components of the velocity gradient from (4.6) and (4.7), by means
of (2.1). Then, the strain rate tensor can be directly obtained from (2.1). Explicit formulae
for the stress components in both two and three dimensions are given in Aliabadi (2002,
§ 2.5.1).

Finally, for the numerical implementation, we will make an axisymmetric assumption
on the problem set-up, with coordinates x = (x, ρ, φ) (see figure 1). With this assumption,
we must also change the meaning of the fundamental solutions we have used thus far. For
example, in the three-dimensional case, Gij represents the interactions between a source
point y and a target point x of strength q. However, in the axisymmetric setting, we must
consider the interactions between a target point x and a ring of source points y for fixed
(x0, ρ0). This is achieved by analytically integrating the kernels in the azimuthal direction
φ, with the aid of elliptic integrals. Several axisymmetric kernels have been derived in
Pozrikidis (1992). We give in appendix D a short description of all the kernels required in
this work.
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x

y

ρ

z

ρ

θφ

Γ

Figure 1. Droplet in axisymmetric coordinates (x, ρ, φ).

4.2. Boundary element methods
The numerical discretization of the layer potentials from § 4.1 has been performed using
a standard collocation method (also known as a boundary element method), similar to
the methods described in Kress (1989, chapter 13.3). We will only present the details for
a single droplet, as seen in figure 1. In an axisymmetric setting, all the integrals over
the surface Σ can be reduced to integrals over the top half-plane and a one-dimensional
interface Γ � {x ∈ Σ : φ = 0}. We refer to Kress (1989), Aliabadi (2002) or Pozrikidis
(1992) for additional details on the construction of one-dimensional collocation methods
and only briefly describe the chosen notation for this work.

We define a uniform one-dimensional computational grid with parameter ξ ∈ [0, 1/2]
discretized into M elements Γm � [ξm, ξm+1), for m ∈ {0, . . . , M}. On each element Γm,
we define a set of N + 1 uniformly distributed collocation points ξm,n, for a total of
Nc � (M × N) + 1 unique points. For a high-order finite element type discretization,
we use the standard nodal Lagrange basis functions φn. Finally, we use the standard
Gauss–Legendre quadrature rule on regular elements and specialized methods for elements
containing singularities.

4.3. Singularity handling and singular quadrature rules
The main difficulty in implementing a boundary element method lies in the handling of
the singularities for each kernel. As seen in the previous sections, the adjoint problem
requires all the quantities present in the Stokes problem with several different singularity
types. The surface limit of the velocity layer potential (4.1) is weakly singular, with a
log-type singularity, and the remaining layer potentials, e.g. (4.3), are defined by means of
the Cauchy principal value and are strongly singular, with a r−1-type singularity.

There are multiple methods used to handle singular integrals, such as changes of
variables, singularity subtraction, regularization or generalized quadrature rules (see
Aliabadi 2002, chapter 11). We focus on making use of generalized quadrature rules and
analytical techniques for accurate numerical integration. For all singularity types we rely
on an element subdivision method, as seen in figure 2.

This method proceeds by isolating the element containing the currently evaluated
target point xi and splitting it into two elements with specially constructed quadrature
rules on each. This allows reducing the problem to that of endpoint singularities, and
minimizing the required quadrature rules. This is important because in the case of
generalized quadrature rules, their construction depends on the location of the singularity,
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xi xi

Γm Γm

(a) (b)

Figure 2. (a) Collocation points (black circles) on two adjacent elements and (b) element subdivisions and
quadrature points (grey circles) for a singularity at point xi.

e.g. Carley (2006) and Kolm & Rokhlin (2001). There are two special cases that need to be
handled: element endpoints consider the two existing adjacent elements as the subdivision
and the two points at the poles (ρ = 0) only make use of the interior element for a
one-sided evaluation.

4.3.1. Singularity subtraction
The pressure kernel (4.2), the traction kernel (4.3) and the normal velocity gradient
kernel (4.6) can all be handled by the method of singularity subtraction. The singularity
subtraction for the traction is described in Pozrikidis (1990). In the case of the pressure
kernel, we make use of the well known identities

∫
Σ

pj(x, y)nj( y) dS = 4π and
∫

Σ

εijkpj(x, y)nk(x) dS = 0, (4.10)

where εijk is the Levi-Civita symbol forming the cross product. We can express the
pressure layer potential (4.2), for x ∈ Σ , as

P[q](x) =
∫

Σ

( pj(x, q)qj( y) − p̃j(x, y)qj(x)) dS + 4π(qknk)(x). (4.11)

The new kernel p̃j is given by

p̃j(x, y) � pk(x, y)nk( y)nj(x) + pj(x, y)nk( y)nj(x) − pk(x, y)nk(x)nj( y). (4.12)

The axisymmetric form of this kernel can be found in appendix D. Finally, the
layer-potential representation of the normal velocity gradient (4.6) can be desingularized
by noting that

U ijk(r) = 1
2(pk(r)δij − pi(r)δjk − pj(r)δik) − 1

2 T ijk(r) (4.13)

and using the formulae derived for the pressure and traction layer potentials. Since the
integrals are no longer singular, we use the standard Gauss–Legendre quadrature rules
on each subdivision. The subdivisions are still required in this case, even though the
singularity is removed, because the resulting integrand is generally not smooth (only
continuous) and can degrade the accuracy of the solution.
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4.3.2. Weakly singular integrals
For the weakly singular integrals in our problem, such as the velocity single-layer potential
representation (4.1), we make use of the known Alpert quadrature rules. Alpert quadrature
rules are a set of corrected trapezoidal rules that achieve high accuracy for log singularities.
These quadrature rules can be constructed for endpoint singularities, as described in Alpert
(1999), and require no additional changes to the kernels.

4.3.3. Strongly singular integrals
The remaining layer potential representation that requires special handling is that of the
tangential velocity gradient, (4.7). This kernel is strongly singular and does not have known
solutions for singularity subtraction. Therefore, we require a set of generalized quadrature
rules for Cauchy principal value integrals. We have made use of the quadrature rules
described in Carley (2006), based on the work of Kolm & Rokhlin (2001).

However, we cannot make use of the subdivision method in this case. Applying the
quadrature rules relies on a change of variables from the reference element [−1, 1] to
the surface element, which cannot be naively applied for strongly singular integrals with
endpoint singularities (Monegato 1994). Instead, we construct unique quadrature rules for
each interior collocation point in the reference element. As before, the element endpoints
are handled by considering the union of the adjacent elements with a singularity at the
origin ξ = 0. The two poles need to be handled separately, since they are by definition
one-sided and do not allow a change of variables. Therefore, we are forced to construct
quadrature rules directly on the elements Γ1 and ΓM . This is done by extending the results
from Carley (2006) to arbitrary [a, b] intervals. Unlike the previous cases, we require
N + 1 unique quadrature rules to handle the tangential velocity layer potential (4.7).

4.4. Geometry representation
The geometry is represented spectrally by Fourier modes, for high accuracy. Together
with the discretization of the layer potentials from § 4.2, the result is a superparametric
collocation method.

To compute the tangent vector, the normal vector and the curvature, we make use of
fast Fourier transform. The fast Fourier transform is computed on the uniform grid formed
by the collocation points, to avoid issues with non-uniform spacing. Since we only have
access to the top half-plane, we mirror the geometry to form a closed curve on which
the Fourier transform can be directly applied. Finally, all the quantities are interpolated
to the required quadrature points using the Fourier coefficients computed at the uniform
collocation points.

4.5. Evolution equation
The interface evolution (2.8) is integrated using the classic third-order strong-stability-
preserving Runge–Kutta method

k1 = X n + ΔτV (un, X n),

k2 = 3
4 X n + 1

4 {k1 + ΔτV (un+1, k1)},
X n+1 = 1

3 X n + 2
3 {k2 + ΔτV (un+1/2, k2)}.

⎫⎪⎬
⎪⎭ (4.14)

At each stage of the Runge–Kutta method, we solve the discrete Fredholm integral,
equation (4.5), and compute the velocity with (4.1). The time step used is based on
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restrictions by the capillary number from Denner & van Wachem (2015) and is given
by

Δτ � θ

√
Cah3

min, (4.15)

where θ > 0 is a Courant number and

hmin � min
m∈[[0,M]]

∣∣∣∣
∫

Γm

dS
∣∣∣∣ , (4.16)

is the smallest panel size in physical space. To maintain a smooth surface, we also perform
smoothing by the penalized least squares method described in Eilers (2003) at regular time
intervals. In the studied cases, the interface deformation is sufficiently small and does not
require advanced mesh adaptation techniques. We refer to Pozrikidis (1990) and Ojala &
Tornberg (2015) for a discussion on existing methods.

4.6. Discrete shape gradient
The discretization of the shape gradient in theorem 3.5 will be performed using finite
element-based methods. The collocation points and Lagrange polynomial basis from
the boundary element method are used for this purpose. The inner product used in the
discretization is given by

( f , g) �
∫

Γ

f (x)g(x)ρ ds. (4.17)

Discretely, this inner product is described using the mass matrix as follows:

( f , g) � fiM ijgj, (4.18)

where the mass matrix M is given by

M ij =
∫

Γ

φi(ξ)φj(ξ)ρ ds =
P∑

p=0

φi(ηp)φj(ηp)ρ(ηp)J(ηp)wp, (4.19)

for Gauss–Legendre quadrature nodes and weights (ηp, wp). We obtain weak forms of the
adjoint normal operator n∗ and the adjoint curvature operator κ∗ from theorem 3.5 by a
direct application of integration by parts. This helps avoid even higher-order derivatives of
the geometry and reduces the required smoothness.

Taking the results from theorem 3.5, multiplying by the basis functions and integrating
by parts as required, we obtain a linear system of the type

Mg = b, (4.20)

where g is the gradient and b is the right-hand side. To enforce a smooth boundary without
cusps at the poles, we additionally require that

dg
dξ

(0) = dg
dξ

(1/2) = 0. (4.21)

In our work, we use Lagrange multipliers to impose the boundary condition and augment
the mass matrix accordingly. Note, however, that this condition should be automatically
satisfied if the flow quantities are similarly smooth in theorem 3.5.
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4.7. Discrete adjoint quasi-static equation
The adjoint evolution equation in lemma 3.7 is also discretized by a finite element method.
Finite element methods on moving meshes have been described in Dziuk & Elliott (2007)
and we employ the same ideas to discretize (3.23). By integrating and using the surface
Reynolds transport theorem from A.3, we obtain

− d
dt

(M(t)X ∗) = V ∗[X ∗, w∗; X , w], (4.22)

where V ∗ now denotes the combined right-hand side of the evolution equation in lemma
3.7. As the terms are the same as those present in the shape gradient from § 4.6, the same
steps are used to obtain an appropriate weak form. To maintain dual consistency at the
time advancement level, we use the discrete adjoint of (4.14), namely

k∗
2 = X ∗,n+1 + Δτ V̂ ∗[X ∗,n+1, w∗,n+1; k2, wn+1/2],

k∗
1 = k∗

2 + Δτ V̂ ∗[k∗
2, w∗,n; k1, wn+1],

X ∗,n = 1
3 X ∗,n+1 + 1

2 k∗
2 + 1

6 {k∗
1 + Δτ V̂ ∗[k∗

1; w∗,n−1; X n, wn]},

⎫⎪⎪⎬
⎪⎪⎭ (4.23)

where V̂ ∗ � M−1V ∗. As the adjoint to (4.14), this method maintains the same stability
region, but an analysis of its order conditions reveals that it is only second-order accurate.
The gradient from theorem 3.8 is integrated in time using the same method, by noting that
solving

dg
dt

= − 1
Ca2

∫
Σ(t)

κu∗ · n dS (4.24)

with g(T) = 0, results in ∇J2 = −g(0).

4.8. Optimization algorithm
The optimization method used in this work is based on gradient descent and requires
first-order shape derivatives. For the problem (P1) they are given in theorem 3.5 and
for problem (P2) they are given in theorem 3.8. The results provided in the respective
theorems refer to the normal component of the gradient. Therefore, a descent direction for
the directional derivative

DJ1[X̃ ] =
∫

Σ

(∇X J1)X̃ · n dS (4.25)

is given by

X̃ = −α∇X Jkn, (4.26)

for a positive constant α. A similar reasoning holds for (P2), where the problem is greatly
simplified by the fact that ∇CaJ2 ∈ R. This leads us to the gradient descent method
described in algorithm 1.

In algorithm 1, we have directly used the gradient as a descent direction, resulting in
a steepest descent method. This choice is not always optimal or can lead to a jamming
phenomenon. A survey of gradient descent methods is given in Hager & Zhang (2006).
In our work, we have used a conjugate gradient method based on the Fletcher–Reeves
update with a step size α(n) chosen to satisfy the Armijo condition, but not the full Wolfe
conditions.
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Algorithm 1: Shape optimization algorithm

Data: Initial guess X (0)

Result: Optimal solution X opt
while Not Converged do

1. Solve (2.2)–(2.8) to obtain (u(n)
± , p(n)

± ).
2. Solve adjoint equations from lemma 3.4.
3. Compute gradient from theorem 3.5.
4. Update the geometry parameterization using (4.26)

X (n+1) = X (n) − α(n)∇X J (n)
1 n(n).

end

It is well known in shape optimization problems, like (P1), that the surface shape
gradient can have less regularity than the original solution. Intuitively, we can see this
from the appearance of the normal velocity gradient or the derivatives of curvature in the
shape gradient from theorem 3.5. This lack of smoothness can result in diverging results
when the gradient is used repeatedly in a gradient descent method. To counter some of
these issues we perform additional post-processing steps on the geometry X (n+1) after the
update in algorithm 1. They are as follows.

(1) The geometry is smoothed by a penalized least squares method, described in Eilers
(2003), where the penalization parameter is chosen at runtime.

(2) Since X (n) describes only the top half-plane of the axisymmetric geometry, we must
maintain ρ(n+1) > 0. This is ensured by a choosing a descent step α(n+1) that is
sufficiently small.

(3) We also remove any translations by enforcing that the on-axis points satisfy

x(n+1)(0) + x(n+1)(1/2) = 0. (4.27)

With these additional steps, we have observed that the optimization procedure is
sufficiently robust. In particular, accuracy in the computation of the required layer
potentials in § 4.1 is maintained and the axisymmetric assumptions are enforced
throughout. For more general applications, it may be desired to add additional
regularization terms to the cost functional. For example, we can consider

J ′
1 = J1 + α

2

∫
Σ

‖κ‖2 dS (4.28)

to penalize solutions with a non-smooth curvature. We can also use an H1 inner product,
which would require solving an additional Laplace–Beltrami equation on the interface.

Remark 4.2. The proposed algorithm for the shape optimization problem, (P1), does not
take into account the structure of shape spaces (Michor & Mumford 2006). Since shape
spaces are not flat, a general update formula can be written as

X n+1 = T [X (n) − α(n)∇X J (n)
1 n(n)], (4.29)

where T is a parallel transport operator. Taking the additional structure into account can
lead to better behaved algorithms, as seen in Ring & Wirth (2012) and Schulz (2014).
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Parameter Description Value

N Collocation basis order 4
P Gaussian quadrature nodes (far field) 8
Plog Weakly singular quadrature nodes (near field) 16
Nlog Weakly singular quadrature order (near field) 4
Pcpv Strongly singular quadrature nodes (near field) 16
Pss Singularity subtraction quadrature nodes (near field) 16

Table 1. Discretization parameters used in tests 1–6.

The optimization problem defined by (P1) is simpler in this regard, since it takes place
in R+ and relies on the smoothness of the evolution equation (2.8). Here, we can use the
standard steepest descent method with no additional post processing.

5. Numerical results

In this section, we present our results for the optimization of the two problems we have set
out in § 3, namely the shape optimization problem, (P1), and the parameter optimization
problem, (P2). All the presented results will be for a single axisymmetric droplet. The
formulation of the adjoint equation and gradients from § 3 are general and can be applied
to one-, two- or three-dimensional systems. The numerical methods described in § 4 can
also be generalized to multiple droplets, with care needed for near-singular evaluations of
the layer potentials.

In the following, we will present results for an (N = 4)-order collocation scheme. We
have chosen this order as a baseline because the adjoint-based gradient from theorem
3.5 contains a second derivative of the velocity field (in the form of κ∗), so the result will
always be of order N − 1 due to the weak formulation. We maintain the same discretization
parameters for all the tests we present, as detailed in table 1. The different types of
quadrature rules are given in § 4.3.

The errors are computed with the aid of the discrete L2 norm, defined as

‖g‖2
2 � (g, g) = giM ijgj, (5.1)

where M is the mass matrix. The reported errors are relative, i.e.

E[ĝ] � ‖g − ĝ‖2

‖g‖2
, (5.2)

where g is a known exact solution and ĝ is the approximation. In computing orders of
convergence, we use the largest element size as an abscissa, i.e.

hmax � max
m∈[[0,M]]

|Γm| = max
m∈[[0,M]]

∫
Γm

dS, (5.3)

where the element lengths are computed using the same quadrature rule as the mass
matrix M . The orders of convergence, e.g . in table 2, are then computed by a linear fit of
(hmax, E). The forward problem, consisting of the Stokes solver and the interface evolution
equation are validated in appendix E. We proceed here to validate the adjoint-based
gradients and describe optimization results.
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M λ = 1 EOC λ = 0.2 EOC

8 7.824622 × 10−3 — 1.018994 × 10−2 —
12 4.052027 × 10−4 7.172 1.051522 × 10−3 5.502
16 1.443181 × 10−4 3.933 3.237336 × 10−4 4.488
20 8.732405 × 10−5 2.290 1.587020 × 10−4 3.249
24 4.956662 × 10−5 3.007 8.637113 × 10−5 3.231
28 2.934344 × 10−5 3.604 6.028804 × 10−5 2.472
32 1.876884 × 10−5 3.369 6.710587 × 10−5 −0.808
44 6.893181 × 10−6 3.157 — —
48 7.024056 × 10−6 −0.212 — —

Table 2. Test 1: relative errors in finite difference versus adjoint gradients for a finite difference step size
ε = 10−6.

5.1. Adjoint gradient
We analyse here the validity of the adjoint-based gradients from theorem 3.5 and theorem
3.8. In both cases, the gradients will be validated by comparison against finite different
approximations. Further validation is presented in the next section by finding optimal
solutions to known problems.

5.1.1. Test 1: static problem gradient validation
We start by validating the adjoint gradient from theorem 3.5 by a standard first-order finite
difference approximation

(gFD)i = (∇J1, hi) ≈ J1(X + εhi) − J1(X )

ε
, (5.4)

where (·, ·) is the inner product (4.17). To ensure that the perturbed interface X ε = X +
εihi remains smooth and satisfies the axisymmetric assumptions for every i, we choose
hi � hin where

hi(ξ) � sin(2π cos(2πξ)) exp
(

−(ξ − ξi)
2

2σ 2

)
. (5.5)

To compare against the adjoint gradient, we also dot the adjoint gradient with the bump
functions in the same way, i.e. (gAD)i = (g, hi) with g given by (4.20).

We present results for panel sizes M ∈ {8, 16, 24, 32}, finite difference step sizes ε ∈
{10−d : d ∈ [[1, 7]]} and a finite difference bump thickness σ 2 = 10−2. For the test set-up,
we use ud ≡ 0 in (P1) with Ca = 1 and λ = 0.2 in an extensional flow

u∞ = xex − 1
2ρeρ and p∞ = 0, (5.6a,b)

where the geometry is given by an ellipse, for (a, b) = (1, 2), parameterized as

x(ξ) = r(ξ)(cos(2πξ), sin(2πξ)),

r(ξ) = ab√
(a cos(2πξ))2 + (b sin(2πξ))2

.

⎫⎪⎬
⎪⎭ (5.7)

The relative errors and gradients can be seen in figure 3. We expect that for a fixed and
sufficiently fine mesh, we retrieve the first-order convergence in ε. We also present the
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Figure 3. Test 1: (a) log10 relative errors for finite difference versus adjoint gradient with M = {8, 16, 24, 32}
elements, where the full line is O(ε); (b) pointwise errors for the finest case with M = 32 elements for full
range of ε.

exact values of the errors for ε = 10−6 in table 2. For a fixed finite difference step size,
we retrieve the expected discretization order (N − 1) or 3. We can also see that the errors
plateau at ≈ ε, when the finite difference errors dominates.

5.1.2. Test 2: quasi-static problem gradient validation
To validate the adjoint gradient of the quasi-static problem, as given by theorem 3.8, we
perform a standard finite difference method, since Ca ∈ R. We have that

∇CaJ2 ≈ J2(Ca + ε) − J2(Ca)

ε
. (5.8)

For this problem, we take Ca = 0.05, λ = 1 and the far-field (5.6a,b). The interface
equation, (2.8), is evolved to T = 1 with Δτ = 10−3 with the initial condition X (0) being
a sphere of radius R = 1. The desired geometry X d is obtained by evolving the interface
with the same set-up for Cad = 0.1. We have not applied additional smoothing to this case,
as we have found it skews the finite difference comparison. Choosing a small capillary
number and a small time step instead ensures stability for the duration of the simulation.

In figure 4a, we present the convergence for ε ∈ {10−d : d ∈ [[1, 7]]}. We can see that
the error for a fixed discretization M = 32 behaves as expected, with an initial first-order
accuracy. However, in the case from figure 4(b), we can see that the discretization error
behaves considerably better than expected achieving close to fourth-order convergence.
This is an artefact of the fact that λ = 1, resulting in smaller errors as in table 2, and that
the deformation in the drop is small for Ca = 0.05. We present in table 3, the values for
the case where Ca = 0.1 and Cad = 0.05 and obtain values closer to the expected third
order.

5.2. Optimization
Finally, we will look at finding close to optimal solutions to the optimization problems
(P1) and (P2). These test cases use all the machinery described in § 4. In particular, we
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Figure 4. Test 2: (a) relative errors in finite difference versus adjoint gradient for a fixed panel count M = 32,
where the full line is O(ε) convergence; (b) relative errors for a fixed finite difference step size ε = 10−5 and
M ∈ {8, 12, 16, 24, 32}, where the full line is O(h3

max) convergence.

M Case 1 EOC Case 2 EOC

8 1.471168 × 10−3 — 8.207707 × 10−3 —
12 2.521489 × 10−4 4.445 2.104812 × 10−3 3.701
16 4.561245 × 10−5 6.012 1.367458 × 10−3 1.593
24 1.208718 × 10−6 9.009 1.175697 × 10−3 0.386
32 2.976712 × 10−6 −3.142 1.161352 × 10−3 0.043

Table 3. Test 2: relative errors in finite difference versus adjoint gradients. Case 1 is Ca = 0.05 and
Cad = 0.1 (see figure 4b); case 2 is Ca = 0.1 and Cad = 0.05.

will allow post processing of the interface during its evolution and during the gradient
descent (as described in § 4.8).

5.2.1. Test 3: shape optimization
The first test we will perform is a classic shape optimization problem based on (P1).
For this problem, we use a high viscosity ratio λ = 48.02 and capillary number of
Ca = 1, corresponding roughly to a water droplet suspended in air. The far-field boundary
conditions for the velocity and pressure are given by

u∞ = xex − ρeρ and p∞ = 0. (5.9a,b)

The initial shape in the optimization is a sphere of radius R = 1 and the desired normal
velocity field ud in (3.1) is given by the solution on a geometry from Veerapaneni et al.
(2009), namely

r(ξ) �
√

(a cos2(2π ξ))2 + (b sin(2π ξ))2) + cos2(2πk ξ),

x(ξ) � r(ξ)(cos(2π ξ), sin(2π ξ)),

}
(5.10)
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Figure 5. Test 3: (a) geometry and (b) normal velocity. Initial conditions (dashed), desired solution (dotted)
and optimal solution (•).

with a = 1, b = 1 and k = 1. The initial geometries and velocity fields are shown in
figure 5. The optimization is performed using a standard conjugate gradient descent,
as described in algorithm 1 from § 4.8, using the Fletcher–Reeves update formula from
Hager & Zhang (2006). We choose a regularization parameter of 10−2 (Eilers 2003) and
the smoothing is performed at every step of the optimization. Finally, the discretization
continues to follow the parameters described in table 1 with M = 64 elements.

The optimal solutions are shown in figure 5. We can see that the algorithm reaches
both the desired geometry and the desired normal velocity field. In figure 6 we have the
per-iteration values of the normalized cost functional and gradient, defined as

Ĵ (n) = J (n)

J (1)
and ‖ĝ(n)‖∞ = ‖g(n)‖∞

‖g(1)‖∞
. (5.11a,b)

The optimization algorithm was terminated after 128 iterations. We can see that the cost
functional itself was decreased by approximately six orders of magnitude and plateaus
when approaching the optimum. We have found that, with the chosen smoothing, the
optimization is sufficiently robust and optimal solutions can be retrieved, with reasonable
choices of initial conditions. Of course, this is a highly nonlinear optimization problem,
so we do expect the existence of local minima, which a gradient descent algorithm cannot
overcome.

5.2.2. Test 4: matching droplet evolution
Next, we look at a quasi-static optimization problem. The physical set-up we will be
considering is Taylor’s ‘four roller’ apparatus, described and analysed in Taylor (1934)
(see figure 7). The same deformation problem of a droplet in extensional flow was studied
in Stone & Leal (1989). The problem is one of boundary control, where the boundary
conditions at ‘infinity’ are given by the (dimensional) velocity field

u∞ = C(xex − ρeρ), (5.12)
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Figure 6. Test 3: (a) cost functional and (b) descent directions. Absolute values (full) normalized by first
iteration (dashed) and Fletcher–Reeves descent direction (dotted).

Figure 7. Test 4: schematic of Taylor’s ‘four roller’ apparatus (not to scale).

with C > 0, the strain rate, as a control parameter. In the non-dimensional equations, this
amounts to using the capillary number

Ca = μ+C
γ

, (5.13)

as a control variable. The viscosity ratio is λ = 48.02. This is a high viscosity ratio, similar
to Taylor’s droplet formed from a tar–pitch mixture.

The optimization is set-up as follows. The initial guess is given by Ca(0) = 0.1. The
desired geometry in (3.1) is obtained by evolving (2.8) with a capillary number Cad =
0.05. This allows achieving J2 ≈ 0. For the optimization, we use the steepest descent
choice of the descent direction, since the control parameter is a scalar. The optimization is
run until convergence.

Finally, to evolve the interface, we use the third-order strong-stability-preserving
Runge–Kutta method described in § 4.5, with an initial condition X (0), a sphere of radius
R = 1. The simulation is run to a final time T = 1 and a time step of Δτ = 10−3, with
a coarse mesh of M = 16 elements and the parameters from table 1. We also include the
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Figure 8. Test 4: (a) cost functional and (b) gradient. Normalized by first iteration (dashed) and absolute
values (full).

tangential forcing described in Loewenberg & Hinch (1996) and a smoothing filter from
Eilers (2003), with a filter strength of 10−4.

The results of the optimization can be seen in figure 8. As before, we report the cost and
gradient normalized by their initial values. We can see that the cost functional converges
to machine precision in only 14 conjugate gradient iterations.

5.3. Test 5: propulsion by Marangoni effects
Finally, we present a quasi-static problem where the control is a prescribed variable surface
tension. Such a variation in surface tension can be achieved by a varying surfactant
concentration, temperature gradients or electric fields. The first two cases have been
studied in Muradoglu & Tryggvason (2008), for example, to which we refer for further
details. We will attempt to find an optimal surfactant distribution on the droplet surface
to maximize its propulsion in an otherwise quiescent flow. Due to the variable surface
tension, the jump in traction becomes (Prosperetti & Tryggvason 2009)

[[ f ]]λ = 1
Ca0

(γ κn + ∇Σγ ), (5.14)

where we take a non-dimensional surface tension that is a perturbation of the constant case

γ � 1 + εγ̃ , (5.15)

for a small ε. The control is taken to be γ̃ in the cost functional

J3(γ̃ ) = 1
2 |xc(T) − xd|2, (5.16)

where xd is a desired centroid and xc(t) is the centroid at time t, as given by

xc � 1
|Ω−|

∫
Ω−(t)

x dV = 1
|Ω−|

∫
Σ(t)

1
2
‖x‖2n dS. (5.17)

As this is a different optimization problem, we must expand on the results from § 3 to
allow for the proposed changes. First, we have that the shape gradient and adjoint-based
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Figure 9. Test 5: (a) cost functional and (b) surface tension along iterations of the optimization algorithm.

gradient of the cost functional are

∇XJ3 = 1
|Ω−|(xc(T) − xd) · (X (T) − xc(T)),

∇γ̃ J3 = ε

Ca0
(2κu∗ · n + (n · ∇u∗) · n).

⎫⎪⎪⎬
⎪⎪⎭ (5.18)

To finalize the definitions from lemma 3.7, the source term arising from the jump
conditions becomes

C∗[w∗; X ] � 1
Ca0

(κ∗[γ u∗ · n] + n∗[γ κu∗ · t] + κu∗ · j + 〈n · ∇u∗〉 · j), (5.19)

where j � γ κn + ∇Σγ . An important difference in this case is that the last term now
involves an averaging of the normal adjoint velocity gradient, since j also has a tangential
component. All the terms can be obtained by following the steps described in appendix C.

For the fluid problem, we choose a quiescent flow u∞ = 0 and p∞ = 0 with an initial
condition X (0) given as a sphere of radius R = 1. The parameters are given by Ca0 =
0.05, λ = 1 and ε = −0.15. The equations are evolved to a final time of T = 1 with a
Courant number of θ = 0.75 in (4.15). We have found that the resulting time steps ensure
stability for all the configurations found during the optimization.

The optimization is started with an initial guess of

γ̃ (0) � sin
(π

4
cos(2θ)

)
, (5.20)

which is symmetric around θ = π/2, as seen in figure 9(b). Due to this symmetry, the
initial guess does not transport the droplet, but simply changes its shape, while remaining
centred at xc(0) = 0. The desired centroid is taken to be at a distance of 10 times the radius
of the initial sphere, i.e. we have xd = (10R, 0). For the descent direction, we have used
the simpler steepest descent.

The cost functional and the control γ̃ during the optimization can be seen in figure 9
and figure 10. As before we can see that the cost correctly converges to the desired
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Figure 10. Test 5: geometry at the final time T along iterations of the optimization algorithm.

centroid location with a final value that approaches machine precision. The optimization
was stopped when a step size that satisfied the Armijo condition could not be found, due
to the small value of the cost functional. Additional results for a non-symmetric initial
distribution of γ̃ have shown a clear tendency to evolve the droplets in the direction
of larger surface tension, as also shown in Muradoglu & Tryggvason (2008) for a more
general case. This is a well known result for variable surface tension problems.

6. Conclusions

In the current work, we have presented a derivation of the adjoint equations and
adjoint-based gradient for two multiphase flow problems with a sharp interface. On a
theoretical level, the main difficulty in handling sharp interfaces lies in the fact that
the problem variables are not shape differentiable over the whole domain and must be
considered separately over each fluid domain. We extend preliminary results from scalar
problems with discontinuous coefficients (Pantz 2005) to the vector Stokes problem. This
allows us to derive a general set of adjoint equations for static and quasi-static cases.

The optimization problems we have investigated naturally reduced to the fluid–fluid
interface. However, the resulting gradients are highly non-trivial functions of the state
and adjoint variables, as well as their derivatives (see § 3). This makes a numerical
approximation of the shape gradients difficult. To work around these difficulties, we
use boundary integral methods, which allow high-order representations of boundary
restrictions for all the quantities of interest. As we have reported in § 5, using boundary
integral methods we are able to numerically verify the adjoint-based gradients to at least
single precision. We present two optimization problems – a static shape optimization
problem and a quasi-static interface tracking optimization – that also reach their known
minima to orders of 10−8 or less. A non-trivial application to variable surface tension
problems is also given, showing how the current results can be extended to more complex
scenarios.

The numerical results we have presented are axisymmetric and reduce to
one-dimensional interfaces. However, the theoretical results concerning the adjoint
equations and adjoint-based gradients are independent of the spatial dimension. A fully
three-dimensional implementation would allow for a much wider variety of applications.
We believe the current work sufficiently motivates the continuous equations and prepares
for such future applications. In particular, we anticipate the formulation and results to
be useful in verifying forthcoming finite-inertia multiphase flow solvers with adjoint
capabilities and in extensions to droplet control with electrostatic or other body forces.

Even so, many open questions remain. A more rigorous footing is required regarding
the existence and uniqueness of optimal controls for the presented optimization problems.
In general, we have not shown that the adjoint equations and adjoint-based gradients have
the required regularity. Extensions to different classes of cost functionals are also required
in practice, e.g. problems of drag minimization are very common. However, their shape
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differentiability in the multiphase case is rarely obvious. Finally, the numerical methods
required to accurately represent shape gradients, such as the ones presented in theorem
3.5, are not trivial to implement in the general three-dimensional case. A possible route
forward in this regard would require deriving an equivalent volumetric representation of
the shape gradient (Giacomini, Pantz & Trabelsi 2017; Feppon et al. 2019), which requires
less regularity.
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Appendix A. Notation

We give here a brief description of the notation and main auxiliary results used throughout
the paper. We start by defining some functional spaces that appear.

We denote by Ck(Ω), with Ω ⊂ R
d, the space of all k-times continuously differentiable

functions equipped with the uniform convergence norm. We also define Ws,p(Ω) as the
standard Sobolev spaces of real order s with derivatives in Lp(Ω), as described in Temam
(2001, chapter 1), Delfour & Zolésio (2001) and the references therein. We denote by
Hs(Ω) � Ws,2(Ω) the corresponding family of Hilbert spaces. If a mapping f is a function
of both time and space, we make use of the common notation for Bochner spaces, i.e. we
say that f ∈ X([0, T]; Y) if f (·, x) ∈ X([0, T]), for fixed x, and f (t, ·) ∈ Y , for fixed t. A
similar notation will be employed for vector quantities, where we say that v ∈ X(Ω; R

d)
if each component vi ∈ X(Ω).

Let X be a Banach space, then we denote its topological dual by X∗. If A : X → Y is a
linear operator, where X and Y are Banach spaces, then we define its adjoint by the linear
operator A∗ : Y∗ → X∗ that satisfies

〈A[x], y∗〉Y×Y∗ = 〈x, A∗[y∗]〉X×X∗, (A1)

for all x ∈ X and y∗ ∈ Y∗, where 〈·, ·〉X×X∗ denotes the dual mapping. In the case of Hilbert
spaces, such as Hk(Ω) � W2,k(Ω), we can identify the dual with the space itself and
the dual mapping with the chosen inner product. We have the following definition of the
Fréchet derivative from Luenberger (1997).

DEFINITION A.1. Let f : X → Y be a mapping, with X and Y Banach spaces. If, for every
point x ∈ X and direction h ∈ X, there exists a bounded linear operator (with respect to h)
Df (x) : X → Y such that

lim
‖h‖X→0

‖f (x + h) − f (x) − Df (x)[h]‖Y

‖h‖X
= 0, (A2)

then f is said to be Fréchet differentiable at x and Df (x)[h] is its Fréchet derivative in the
direction h.
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If the space X is the direct sum of spaces Xn, i.e. X = ⊕
n Xn, then we define the

following notation for the partial derivative

∂f
∂xn

[hn] � D(x)[(0, . . . , hn, . . . , 0)]. (A3)

If the space Y = R, f is usually called a functional. In this case, we can also define the
gradient of f , if it exists, as the point ∇f (x) ∈ X∗ that satisfies

Df (x)[h] = 〈h, ∇f (x)〉X×X∗, (A4)

for the chosen dual mapping on X. If X is a Hilbert space, the existence of the gradient is
guaranteed by the Riesz representation theorem (Luenberger 1997, § 5.3).

If X � R
d, we employ the usual notions of tensor calculus on Cartesian spaces. To

avoid ambiguities, we will define our tensor derivatives using the common summation
convention over repeated indices. We have that, for a vector u and a tensor σ ,

(∇u)ij � ∇iuj and (∇ · σ)j � ∇iσij, (A5a,b)

are the vector gradient and tensor divergence, respectively. We also denote the left and
right multiplications between a vector and a tensor as

(n · σ)j � niσij and (σn)i � σijnj. (A6a,b)

Finally, we use the single dot notation for the Frobenius inner product of two
second-order tensors, i.e. A · B � AijBij. Of special interest in our case are notions of
tangential calculus (Delfour & Zolésio 2001). The divergence theorem and Reynolds
transport theorem are well known on a volume Ω and the following theorems provide
extensions to moving surfaces.

THEOREM A.2 (Surface divergence theorem). Let v ∈ C1(Σ; R
d), where Σ is a smooth

manifold of dimension d − 1. Then

∫
Σ

∇Σ · v dS =
∫

Σ

κv · n dS +
∫

∂Σ

v · μ dS, (A7)

where κ denotes the additive curvature (twice the mean curvature) and the surface
divergence is defined in Delfour & Zolésio (2001, § 5.4). The conormal is defined as
μ � τ × n, where τ is the boundary tangent positively oriented with respect to n.

THEOREM A.3 (Surface Reynolds transport theorem). Let f ∈ C1([0, T]; C1(Ω)) and
Σ(t) be a moving surface with velocity w. Then

d
dt

∫
Σ(t)

f (t, x) dS =
∫

Σ(t)

∂f
∂t

dS +
∫

Σ(t)
(∇f · n + κf )w · n dS

=
∫

Σ(t)

df
dt

dS +
∫

Σ(t)
∇Σ · wf dS. (A8)
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Appendix B. Axisymmetric geometry shape derivatives

In this appendix, we provide a statement of the required shape derivatives of the main
geometric quantities in an axisymmetric setting, i.e. for the tangent vector, normal vector
and the curvature. Similar results in the two-dimensional setting can be found in Castro
et al. (2007) and in the three-dimensional setting in Walker (2015). The corresponding
adjoint operators are not provided in the given references, but can be derived easily from
the linearized results.

In the context of shape optimization, we know from the Hadamard–Zolésio structure
theorem that only the normal component of the perturbation is relevant to first order.
However, we present here the results in their full generality, so that extensions to
second-order Newton-based methods can also be performed, if desired. The required
simplifications can be performed by decomposing a perturbation in

X̃ = X̃nn + X̃tt, (B1)

and applying the Frenet–Serret formulae. To derive the corresponding adjoint operators,
we use the inner product (4.17). The adjoint operators are derived according to the
definitions from appendix A using integration by parts.

In the following, we will give the definitions of all the geometric quantities (their
linearizations and corresponding adjoint operators) that are required in the statement of
the adjoint-based gradient in § 3.1 and § 3.2. The notation employed is that f ′ denotes the
Eulerian shape derivative and f ∗ denotes the corresponding adjoint operator.

(1) Tangent vector. The tangent vector operators are

t(X ) � dX
ds

=
(

dx
ds

,
dρ

ds

)
,

t′[X̃ ] �
(

dX̃
ds

· n

)
n,

t∗[X ∗] � − 1
ρ

d
ds

(ρX ∗ · n)n − κx(X ∗ · n)t.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

(2) Normal vector. The normal vector operators are

n(X ) �
(

dρ

ds
, −dx

ds

)
,

n′[X̃ ] � −
(

dX̃
ds

· n

)
t,

n∗[X ∗] � 1
ρ

d
ds

(ρX ∗ · t)n + κx(X ∗ · t)t.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

911 A39-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1013


A. Fikl and D.J. Bodony

(3) First principal curvature. The first principal curvature operators are

κx(X ) � −d2X
ds2 · n,

κ ′
x[X̃ ] � −

(
2κx

dX̃
ds

· t + d2X̃
ds2 · n

)
,

κ∗
x [X∗] �

(
1
ρ

d
ds

(ρκxX∗) − κx

ρ

d
ds

(ρX∗)
)

t −
(

1
ρ

d2

ds2 (ρX∗) + κ2
x X∗

)
n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

(4) Second principal curvature. The second principal curvature operators are

κφ(X ) � nρ

ρ
,

κ ′
φ[X̃ ] � nx

nρ

κφ(κx − κφ)X̃t − nx

nρ

κφ

dX̃n

ds
− κ2

φX̃n,

κ∗
φ[X∗] � nx

κx − κφ

ρ
X∗t +

(
1
ρJ

d
ds

(nxX∗) − κ2
φX∗

)
n.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(B5)

Finally, the additive curvature is given as the sum of the two principal curvatures. For
a derivation of the principal curvatures in axisymmetric coordinates see Pozrikidis (2011,
§ 1.8.7).

The adjoint operators given above are not valid for all inputs because the limits as ρ → 0
are not always well-defined. If the inputs are also part of an axisymmetric problem, as is
the case of the resulting gradient in lemma 3.4, the limits are all well-defined and bounded
by a simple application of L’Hôpital’s rule. However, numerically, care must still be taken
to ensure a robust result. In our case, this is handled by the finite element method presented
in § 4, since the area element also contains a ρ factor.

Appendix C. Derivation of adjoint equations

In this appendix we will follow the Lagrangian formalism to derive the adjoint-based
gradients for (P1) and (P2).

C.1. Static problem
For (P1), the problem reduces to finding the shape derivative of the Lagrangian functional
(3.6)

L1 � J1 +
∫

Ω+
∇u∗

+ · σ+ dV −
∫

Ω+
p∗
+(∇ · u+) dV + 1

Ca

∫
Σ

κ〈u∗〉 · n dS

+
∫

Ω−
λ∇u∗

− · σ− dV −
∫

Ω−
λp∗

−(∇ · u−) dV

+
∫

Σ

〈 f 〉λ · [[u∗]] dS +
∫

Σ

〈 f ∗〉λ · [[u]] dS. (C1)

The admissible variations in this case are those that satisfy the assumptions in
§ 2.2. Additional assumptions can be added if specializing to the axisymmetric case.
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Applying lemma 2.1 to each term in the Lagrangian, we obtain

DL1[X̃ ] =
∫

Σ

j(u · n′) dS +
∫

Σ

(
j(n · ∇u) · n + κ

2
‖j‖2

)
X̃ · n dS

−
∫

Σ

[[∇u∗ · σ ]]λX̃ · n dS +
∫

Σ

[[p∗(∇ · u)]]λX̃ · n dS

+ 1
Ca

∫
Σ

{κ ′〈u∗〉 · n + κ〈u∗〉 · n′} dS

+ 1
Ca

∫
Σ

{κn · 〈n · ∇u∗〉 + κ2〈u∗〉 · n)}X̃ · n dS

+
∫

Σ

〈 f 〉λ · [[n · ∇u∗]]X̃ · n dS +
∫

Σ

〈 f ∗〉λ · [[n · ∇u]]X̃ · n dS, (C2)

where j � (u · n − ud). First, we note that the velocity field is incompressible in both
fluids, so we have that ∫

Σ

[[p∗(∇ · u)]]λ(X̃ · n) dS = 0. (C3)

While most terms above are direct applications of lemma 2.1, the last two terms have
been greatly simplified. Applying the lemma directly to the last term gives

∂

∂X

∫
Σ

〈n · σ ∗〉λ · [[u]] dS =
∫

Σ

〈n′ · σ ∗〉λ · [[u]] dS

+
∫

Σ

(∇(〈 f ∗〉λ · [[u]]) · n)X̃ · n dS

+
∫

Σ

(κ〈 f ∗〉λ · [[u]])X̃ · n dS. (C4)

However, we know that at a stationary point of the Lagrangian, [[u]] = 0, so the first and
last terms will vanish. For the second term a simple application of the product rule gives

∇(〈 f ∗〉λ · [[u]]) · n = 〈n · ∇σ ∗n〉λ · [[u]] + 〈 f ∗〉λ · [[n · ∇u]], (C5)

where the first term again cancels, leaving the desired result. Finally, we use the definition
of the stress tensor to write

[[∇u∗ · σ ]]λ = 2[[ε∗ · ε]]λ. (C6)

To obtain the shape gradient from theorem 3.5, we use the adjoint operators for the normal
and curvature (defined in appendix B) by writing∫

Σ

(κ ′〈u∗〉 · n + κ〈u∗〉 · n′) dS =
∫

Σ

(κ∗[〈u∗〉 · n] + n∗[κ〈u∗〉]) · X̃ dS, (C7)

and gather all the terms. We note that [[u∗]] = 0 and [[(n · ∇u∗) · n]] = 0, so the averages
around these terms can be dropped.
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C.2. Quasi-static problem
We will now look at (P2). We can see from the definition of the Lagrangian (3.19) that we
can write

L2 = J2 −
∫ T

0
〈z∗,E1(w, X )〉 dt

−
∫ T

0

∫
Σ

X ∗ · (X t − V (u, X )) dS dt −
∫

Σ

X ∗
0 · (X (0) − X 0) dS, (C8)

where the main part of the Lagrangian is composed out of the constraints of the previous
optimization problem. Therefore, we will focus on the shape derivatives of the remaining
terms. We have that

DL2[X̃ ] = DJ2[X̃ ] −
∫ T

0
D〈z∗,E1〉[X̃ ] dt

−
∫ T

0

∫
Σ

X ∗ · (X̃ t − V ′[X̃ ]) dS dt

+
∫ T

0

∫
Σ

(X ∗ · (n · ∇V ))X̃ · n dS dt

−
∫

Σ

X ∗
0 · X̃ (0) dS. (C9)

We can now use the surface Reynolds transport theorem from theorem A.3, to obtain∫ T

0

∫
Σ

X ∗ · X̃ t dS dt =
∫

Σ

X ∗ · X̃ dS
∣∣∣∣
t=T

t=0
−
∫ T

0

∫
Σ

X ∗
t · X̃ dS dt

−
∫ T

0

∫
Σ

(∇Σ · V )X ∗ · X̃ dS dt, (C10)

where the velocity of the interface is given by V (u, X ) in (2.8). Gathering the terms gives
the evolution equation from lemma 3.7.

We note that for the Lagrangian to be shape differentiable and the manipulations above
to be valid, we require that V is shape differentiable. Following the same considerations
as those preceding (2.16), we note that

V � V (u · n, X ), (C11)

i.e. the forcing must also only depend on the normal component of the velocity field.

Appendix D. Axisymmetric Stokes kernels

In this appendix, we will give a listing of all the kernels described in § 4.1 in the
axisymmetric setting. Under the axisymmetric assumptions, a vector u is given by the
components (ux(x, ρ), uρ(x, ρ), 0), i.e. it does not depend on the azimuthal coordinate φ.
Rotated to the Cartesian coordinate system, we have that

u = (ux, uρ cos θ, uρ sin θ), (D1)

where θ = tan−1(ρ/x). To determine the axisymmetric kernels, we introduce this form
into the full three-dimensional formulae.
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We also introduce the following integral (Pozrikidis 1992, (2.4.7)), for x0 � (x0, ρ0, 0)

and x � (x, ρ, φ):

Imn(x0, x) =
∫ 2π

0

cosn φ

rm dφ = 4km

(
√

4ρρ0)m

∫ π/2

0

(2 cos2 φ − 1)n

(
√

1 − k2 cos φ)m
dφ, (D2)

where

k2 = 4ρρ0

(x − x0)2 + (ρ + ρ0)2 . (D3)

These integrals can be expressed analytically in terms of complete elliptic integrals of
the first and second kind

F(k) =
∫ π/2

0

1√
1 − k2 cos2 φ

dφ, E(k) =
∫ π/2

0

√
1 − k2 cos2 φ dφ. (D4a,b)

We have the following standard kernels .

(1) The velocity kernel (from (4.1)) is

Gxx = ρ(I10 + (x − x0)
2I30),

Gρx = ρ(x − x0)(ρI30 − ρ0I31),

Gxρ = ρ(x − x0)(ρI31 − ρ0I30),

Gρρ = ρ(I11 + (ρ2 + ρ2
0)I31 − ρρ0(I30 + I32)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D5)

(2) The pressure kernel (from (4.2)) is

Px = 2ρ(x − x0)I30,

Pρ = 2ρ(ρI30 − ρ0I31).

}
(D6)

(3) The stress kernel (from (4.3)) is

T xxx = −6ρ(x − x0)
3I50,

T xxρ = −6ρ(x − x0)
2(ρI51 − ρ0I50),

T xρx = −6ρ(x − x0)
2(ρI50 − ρ0I51),

T xρρ = −6ρ(x − x0)((ρ
2 + ρ2

0)I51 − ρρ0(I50 + I52)),

Tρxx = −6ρ(x − x0)
2(ρI51 − ρ0I50),

Tρxρ = −6ρ(x − x0)(ρ
2I52 + ρ2

0 I50 − 2ρρ0I51),

Tρρx = −6ρ(x − x0)((ρ
2 + ρ2

0)I51 − ρρ0(I50 − I52)),

Tρρρ = −6ρ(ρ3I52 − ρ2ρ0(I53 + 2I51) + ρρ2
0(I50 + 2I52) − ρ3

0 I51).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D7)
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(4) The velocity gradient kernel (from (4.6)) is

Uxxx = T xxx/2 − ρ(x − x0)I30,

Uxxρ = T xxρ/2 + ρ(ρI31 − ρ0I30),

Uxρx = T xρx/2 − ρ(ρI30 − ρ0I31),

Uxρρ = T xρρ/2 − ρ(x − x0)I31,

Uρxx = Tρxx/2 − ρ(ρI30 − ρ0I31),

Uρxρ = Tρxρ/2 − ρ(x − x0)I30,

Uρρx = Tρρx/2 + ρ(x − x0)I31

Uρρρ = Tρρρ/2 − ρ(ρI30 − ρ0I31).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D8)

The velocity and stress kernels are also provided in Pozrikidis (1990, appendix B).
Additionally, we have the following kernels used in singularity subtractions.

(5) The pressure (from (4.12)) is

p̃α(x, y) = Rαβγ (x, y)nβ( y)nγ (x), (D9)

where

Rxxx = 2ρ(x − x0)I30,

Rxxρ = 2ρ(ρ0I30 − ρI31),

Rxρx = 2ρ(ρI30 − ρ0I31),

Rxρρ = 2ρ(x − x0)I31,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Rρxx = −Rxxρ,

Rρxρ = Rxxx,

Rρρx = −Rxρρ,

Rρρρ = Rxρx.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D10a,b)

Finally, we have the following expressions for the integrals Imn used in the above kernel
definitions. On the left, we have the expressions for ρ0 > 0 and on the right a Taylor
expansion for ρ0 → 0, where r = ‖x − y‖.

(1) First order

I10 = 4
r

F,

I11 = 4
rk2 ((2 − k2)F − 2E),

⎫⎪⎬
⎪⎭

I10 ≈ 2π

r
,

I11 ≈ 0.

⎫⎬
⎭ (D11a,b)

(2) Third order

I30 = 4
r3

1
1 − k2 E,

I31 = 4
r3k2

((
1

1 − k2 + 1
)

E − 2F
)

,

I32 = 4
r3k4

((
1

1 − k2 + (7 − k2)

)
E − 4(2 − k2)F

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

I30 ≈ 2π

r3 ,

I31 ≈ 0,

I32 ≈ π

r3 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D12a,b)
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(3) Fifth order

I50 = 4
3r5

2(2 − k2)J30 − J10

1 − k2 ,

I51 = 4
3r5

2(1 − k2 + k4)J30 − (2 − k2)J10

k2(1 − k2)
,

I52 = 4
3r5

2(6k2 − k6 − 4)J30 − (k4 + 8k2 − 8)J10

k4(1 − k2)
,

I53 = 4
r5

2(k8 + k6 − 33k4 + 64k2 − 32)J30 − (96k2 − 30k4 − k6 − 64)J10

k6(1 − k2)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D13)
where

J10 = r
4

I10 = F, J30 = r3

4
I30 = E

1 − k2 , (D14a,b)

with the limits at the poles

I50 ≈ 2π

r5 , I51 ≈ 0, I52 ≈ π

r5 and I53 ≈ 0. (D15a–d)

Appendix E. Stokes solver validation

We briefly validate our Stokes solver, described in § 4.2.

E.1. Test 1: Stokeslet nullspace
As a first test, we check the nullspace of the Stokeslet in the velocity layer-potential (4.1).
The equation

Gi[n](x) = 0, (E1)

is valid on any geometry Σ and results from integrating the continuity equation. For testing
purposes, we choose the geometry (5.10), with a = 3, b = 1 and k = 4. Following the
notation from § 4, we use N = 4 collocation points in each element, P = 8 quadrature
points and Ps = 16 Alpert quadrature nodes of order four in elements containing the
singularity, as in table 1.

The geometry and pointwise errors can be seen in figure 11. The orders of convergence
for increasingly refined grids can be seen in table 4. We obtain the desired error of
convergence to reasonable accuracy for a non-trivial geometry. The results are comparable
to the ones obtained in Veerapaneni et al. (2009), where a more accurate spectral
representation was used for the density.

E.2. Test 2: drag on a fluid droplet
In this second example, we will test the solution to (4.5) and the surface traction. For
this purpose, we will use the analytic Hadamard–Rybczynski solution for a spherical
fluid–fluid droplet under the effects of constant surface tension, which can be found in
Clift, Grace & Weber (2005, chapter 3). The drag on the droplet is obtained by integrating
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Figure 11. Test 1: (a) test geometry and (b) log10 pointwise errors in the x component of the velocity layer
potential.

M Gx EOC Gρ EOC

8 1.039342 × 100 — 9.871344 × 10−1 —
16 4.673494 × 10−1 1.23 3.242120 × 10−1 1.72
32 1.383086 × 10−2 6.30 2.503554 × 10−2 4.59
64 9.246571 × 10−4 4.12 1.186508 × 10−3 4.64
128 1.493921 × 10−5 6.02 1.527738 × 10−5 6.35
256 1.018629 × 10−6 3.88 1.018583 × 10−6 3.91
512 6.755420 × 10−8 3.92 6.708805 × 10−8 3.93
Order — 4.50 — 4.49

Table 4. Test 1: relative L2 errors in Gi[n] for multiple element counts M.

the x component of the traction along the surface, i.e.

CD,± � 2π

∫
Γ

(ex · f ±)ρ ds. (E2)

We compare the approximation of the above integral with the analytic results

CD,+ = 2π
2 + 3λ
1 + λ ,

CD,− = 0.

⎫⎬
⎭ (E3)

We choose the same discretization parameters as before, with a viscosity ratio of λ = 5
and capillary number of Ca = 0.01. The resulting relative errors can be observed in table 5.

E.3. Test 3: droplet deformation
Finally, we perform a test for the evolution of the droplet described in (2.8). This test is
based on the work of Stone & Leal (1989), where we will recreate figure 4 in their paper.
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M CD,+ EOC CD,− EOC

2 3.401086 × 10−3 — 4.389532 × 10−3 —
4 3.672092 × 10−4 3.21 7.775172 × 10−4 2.50
8 2.455678 × 10−5 3.90 5.294892 × 10−5 3.88
16 1.560101 × 10−6 3.98 3.351019 × 10−6 3.98
32 9.806201 × 10−8 3.99 2.079816 × 10−7 4.01
64 6.155924 × 10−9 3.99 1.272862 × 10−8 4.03
128 3.862458 × 10−10 3.99 7.858355 × 10−10 4.02
256 2.229348 × 10−11 4.11 8.062964 × 10−11 3.28
Overall — 3.92 — 3.80

Table 5. Test 2: relative errors in the drag around a spherical fluid droplet (Hadamard–Rybczynski).
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Current

O(Ca)
O(Ca2)

0.10 0.15

x

Ca

D

1

(b)(a)

Figure 12. Test 3: (a) deformed droplet versus Ca and (b) the droplet dilatation for λ = 1.

The test case tracks the deformation of the droplet by looking at

D � L − B
L + B

, (E4)

where L and B are the distances from the right-most and top-most points on the droplet to
the centre of mass (here the origin). Steady state is determined based on the magnitude of
the normal velocity, i.e. the simulation is stopped if

‖u · n‖∞ ≤ ε, (E5)

for ε = 10−4. The far-field conditions are given by the extensional flow (5.6a,b).
The methods used in our implementation differ significantly from the ones presented in

Stone & Leal (1989). We use a third-order Runge–Kutta time integrator and the tangential
corrections proposed in Loewenberg & Hinch (1996) to cluster points towards in regions
of higher curvature. The time step is computed at each iteration according to (4.15) with
a Courant number of θ = 0.1. We use a coarse grid with only M = 16 elements and the
same number of collocation and quadrature points per element as reported in table 1.

The droplet deformation is shown in figure 12. We can see that our results match those
obtained by Stone & Leal (1989) and also agree very well with the asymptotic expansions
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Figure 13. Test 3: relative change in volume of the droplet up to steady state, with increasing loss for
increasing Ca.

for small Ca. Finally, in figure 13, we report the relative volume loss

ΔV � |V(t) − V(0)|
V(0)

. (E6)

In Stone & Leal (1989), the authors report a loss of 1 % to 10 % of the volume of the
droplet over the span of 600–3000 time steps. In our implementation, we can see a relative
volume loss of � 10−5 after 200–3000 iterations.
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