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Abstract

The loop space of a string manifold supports an infinite-dimensional Fock space bun-
dle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on
loop space appears in the description of two-dimensional sigma models as the bundle
of states over the configuration space of the superstring. We construct a product on
this bundle that covers the fusion of loops, i.e. the merging of two loops along a com-
mon segment. For this purpose, we exhibit it as a bundle of bimodules over a certain
von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion
of von Neumann bimodules. Our main technique is to establish novel relations between
string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product
on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a
programme to explore the relation between generalized cohomology theories, functorial
field theories, and index theory. It is related to the pair of pants worldsheet of the
superstring, to the extension of the corresponding smooth functorial field theory down
to the point, and to a higher-categorical bundle on the underlying string manifold, the
stringor bundle.
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1. Introduction

In this article we construct a Connes fusion product on the spinor bundle on the loop space of
a string manifold and, thus, solve a problem formulated by Stolz and Teichner in 2005 [ST05].
We recall that a spin manifold M admits a string structure if and only if its first fractional
Pontryagin class vanishes, i.e.

1
2p1(M) = 0.

If M is a string manifold, then its free loop space LM = C∞(S1,M) is a spin manifold in the
sense of Killingback [Kil87], i.e. it comes equipped with a certain principal bundle for the basic
central extension

U(1) → L̃Spin(d) → LSpin(d)

of the loop group of Spin(d), where d = dim(M). In our previous work [KW20] we have con-
structed an infinite-dimensional Hilbert space bundle F (LM) on LM by associating a certain
unitary representation

L̃Spin(d) → U(F )

to this principal bundle, where F is the Fock space of ‘free fermions on the circle’. We have
proved [KW20] that the bundle F (LM) realizes precisely what Stolz and Teichner called the
spinor bundle on loop space [ST05].

In the present article, we construct a hyperfinite type III1 von Neumann algebra bundle N
over the space PM of smooth paths in M , and prove (Theorem 5.2.5) that the spinor bundle
F (LM) is a p∗1N–p∗2N -bimodule bundle, where p1, p2 : LM → PM are the maps that divide
a loop into its two halves. From a fibrewise point of view, if β1, β2 ∈ PM are paths with a
common initial point and a common endpoint, and β1 ∪ β2 denotes the corresponding loop, then
F (LM)β2∪β1 is an Nβ1–Nβ2-bimodule. Our main result (Theorem 5.3.1) is the existence and
unique characterization of unitary intertwiners

χβ1,β2,β3 : F (LM)β2∪β3 � F (LM)β1∪β2 → F (LM)β1∪β3

of Nβ3–Nβ1-bimodules, where � is the Connes fusion of bimodules over Nβ2 , and β1, β2, β3 ∈ PM
is any triple of paths with a common initial point and a common endpoint. One may regard the
loop β1 ∪ β3 as the fusion of the loops β1 ∪ β2 and β2 ∪ β3 along the common segment β2, and
regard χβ1,β2,β3 as lifting this loop-fusion product. We call the collection of intertwiners χβ1,β2,β3 ,
varying over all triples of paths with a common initial point and a common endpoint, the
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Connes fusion product on the spinor bundle on loop space; it is an associative product covering
the fusion of loops (Proposition 5.3.3).

Our construction of the Connes fusion product on the spinor bundle on loop space became
possible because we found a specific way to relate string structures, loop fusion, and Connes
fusion.

(1) We use the recent discovery of a certain loop-fusion product on Killingback’s spin structure
on loop space [Wal16a, Wal15]. This fusion product belongs to a loop space equivalent
formulation of a string structure onM , and thus provides a neat way to use a string structure
while working on the loop space.

(2) A similar, Lie group-theoretical loop-fusion product exists on the basic central extension
L̃Spin(d), and it satisfies a certain compatibility condition with the fusion product of
part (1). In our previous work [KW22] we have found an operator-theoretic description of
this loop-fusion product, using Tomita–Takesaki theory of the free fermions F .

(3) We use that the free fermions F are a standard form for a certain Clifford–von
Neumann algebra to construct a novel Connes fusion product between certain operators
on F (Definition 3.4.5). We derive a new and crucial relation (Theorem 4.3.3) between the
loop-fusion product of part (2) and this Connes fusion product.

Our construction of the Connes fusion product on the spinor bundle in Theorem 5.3.1 combines
these three fusion products, and uses the above-mentioned correspondences between the differ-
ential geometric setting and the operator-algebraic setting. In particular, we discovered how the
datum of a string structure on M is involved; this was probably the main issue that needed to
be solved.

The question for the existence of an associative Connes fusion product on the spinor bun-
dle F (LM) was formulated as Theorem 1 in [ST05], but has not been carried out so far. In
addition to proving its (fibrewise) existence, we address and solve the question in which way
these structures can be upgraded from a purely topological setting into a smooth setting. In
our previous work [KW20], we started this by generalizing the concept of a rigged Hilbert
space to C∗-algebras and bundle versions thereof. In particular, we proved there that the spinor
bundle F (LM) is a rigged Hilbert space bundle over LM . In the present article, we further
extend this framework to von Neumann algebras, and exhibit our von Neumann algebra bun-
dle N over PM as a rigged von Neumann algebra bundle, and the spinor bundle F (LM) as a
rigged von Neumann p∗1N–p∗2N -bimodule bundle (Theorem 5.2.5). Moreover, we show that our
Connes fusion product on the spinor bundle is smooth with respect to these rigged structures
(Proposition 5.3.5). Concerning smoothness aspects, we work as far as possible with Fréchet
spaces and Fréchet manifolds. When it comes to fusion, we use the convenient setting of diffe-
ological spaces in order to properly describe spaces of paths with common endpoints, on which
operations like (β1, β2) �→ β1 ∪ β2 are well-defined and smooth. The extension of, for instance,
rigged von Neumann algebra bundles from Fréchet manifolds to diffeological spaces is performed
in a concrete way that fits at the same time in a neat sheaf-theoretic perspective (Remark 2.3.3).

Our results here are part of a programme to explore the relation between functorial field
theories, generalized cohomology theories, and index theory. Within this programme there are,
among others, two big (and still open) problems, to which the results of this article make a
contribution. The first problem is to realize the two-dimensional supersymmetric sigma model
(the ‘free superstring’) rigorously as a smooth functorial field theory (FFT) in the sense of
Atiyah [Ati88], Segal [Seg81], and Stolz and Teichner [ST04]. In this sigma model, the Hilbert
space F (LM)γ is the ‘state space’ for superstrings with underlying ‘world-sheet embedding’
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(a) (b) (c)

Figure 1. (a) A pair of pants. (b) A decoration where boundary loops are split into two halves.
(c) The three paths with a common initial point and a common end point, at which we the halves
of (b) meet. There, our Connes fusion product on the spinor bundle on loop space can be applied.
Still missing is a notion of ‘parallel transport’ in the spinor bundle, which would take care of the
passage from the boundary loops to the three loops β1 ∪ β2, β2 ∪ β3, and β1 ∪ β3.

γ : S1 →M ; in other words, it is the value of the FFT on the circle (equipped with map γ). Our
result that the spinor bundle is a rigged Hilbert space bundle is at the basis of the statement
that this FFT is smooth. The main contribution is, however, that our Connes fusion product
on F (LM) is the central ingredient to what the FFT assigns to a pair of pants, as sketched
in Figure 1. A further contribution is that our rigged von Neumann algebra bundle N over
PM is part of the answer to the question how the FFT can be extended to a point: we discuss
in § 5.4 that N furnishes a certain 2-vector bundle over M , the ‘stringor bundle’ of the string
manifold M . The FFT then assigns to the point (equipped with a map x : ∗ →M) the fibre of
this 2-vector bundle over x.

Yet, two major steps are still missing in the construction of the supersymmetric sigma model
as a smooth extended FFT. First, a proper definition of an appropriate smooth bordism category
over M (probably, it will be a sheaf of (∞, 2)-categories). There have been very recent promising
proposals [LS21, GP20] raising hope that this is accomplishable. Second, a construction and
investigation of a connection on the spinor bundle F (LM), which would provide assignments to
cylinders (see Figure 1). Some ideas and results in this direction have already been reported by
Stolz and Teichner under the name ‘string connection’ [ST04] or ‘conformal connection’ [ST05].
Further results have been obtained in [Wal13, Wal15], discussing string connections in terms of
Killingback’s spin structures on loop spaces. Altogether, we believe that a complete solution to
the problem to cast the free superstring as an extended smooth FFT is now in reach.

The second problem that arises in the above-mentioned programme is the quest for a Dirac-
type operator acting on spinors on loop space [Wit88, Tau89]. Admittedly, our results do not
yet place this goal in easy reach. However, they might be relevant in order to specify the precise
space of spinors on which such an operator may act. At this point, we would like to highlight
the general philosophy behind fusion on loop space, following Stolz and Teichner [ST05]: fusion
characterizes geometric structure on LM that subtly encodes geometry on M . This is supported
by the following list of incarnations of this philosophy.

(a) A fusion product on a line bundle on LM encodes a bundle gerbe on M ; similarly, a fusion
product on a central extension of a loop group LG encodes a multiplicative bundle gerbe
on G. The precise statements are the main results of [Wal12b, Wal17].

(b) A fusion product on a Killingback spin structure on LM encodes a string structure on M ,
as mentioned above. The precise statement is in [Wal15].
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(c) Our Connes fusion product on the spinor bundle on LM encodes the stringor bundle on M ,
as outlined above and described in § 5.4.

(d) Finally, the following lower-categorical analog of (b) has been proved by Stolz and Teichner
[ST05]: the orientation bundle of LM carries a canonical fusion product, and the fusion-
preserving sections encode precisely the spin structures on M .

In analogy to statement (d), we expect that the relevant space of spinors on loop space con-
sists of fusion-preserving sections of the spinor bundle F (LM). In this sense, we believe that
our construction of the Connes fusion product on the spinor bundle will help to approach the
mysterious Dirac operator on loop space.

For completeness, we remark that both problems described above are conjectured to be
related by a yet unknown index theory with family indices taking values in a certain generalized
cohomology theory, whose objects can be represented by certain smooth FFTs. It is expected
that the index of the Dirac operator on loop space corresponds precisely to the free superstring
FFT [ST04, ST05].

This article is organized as follows. In § 2 we develop the theory of rigged von Neumann
algebra bundles and bimodule bundles, first over Fréchet manifolds and then over diffeological
spaces. In § 3 we discuss the free fermions F , exhibit it as a rigged von Neumann bimodule, and
construct the Connes fusion of certain operators on F . Section 4 is devoted to all aspects of
loop fusion, including a discussion of the relation between Killingback spin structures and string
structures. In § 5 we carry out our main constructions: the rigged von Neumann algebra bundle
N , the N–N -bimodule structure on the spinor bundle F (LM), and, finally, the Connes fusion
product on F (LM). We include two appendices about bimodules of von Neumann algebras:
Appendix A.1 collects results about the theory of standard forms that we mainly use in § 3.3;
and Appendix A.2 contains definitions and properties of Connes fusion.

2. Rigged von Neumann algebras

One of the central objects of consideration in this article are certain bundles of von Neumann
algebras over the space of smooth paths/loops in a manifold. It is highly desirable that these
bundles are equipped with a smooth structure, because they are expected to host interesting
differential operators. However, to the best of the authors’ knowledge, no treatment of locally
trivial smooth bundles of Hilbert spaces, C∗-algebras, or von Neumann algebras is available. In
our previous work [KW20] on spinor bundles on loop space, we found that these smoothness
issues are best addressed in the setting of rigged Hilbert spaces, which we extended there to
rigged C∗-algebras and smooth bundles thereof.

In this section, we expand these notions further to include rigged von Neumann algebras and
smooth bundles of rigged von Neumann algebras, as well as rigged bimodules over von Neumann
algebras and bundles thereof. Then, in order to discuss fusion in loop spaces, we further extend
these structures from Fréchet manifolds to diffeological spaces. This is necessary because the
spaces of paths and tuples of paths we consider are not Fréchet manifolds anymore, but have
nice and natural diffeologies.

2.1 Representations on rigged Hilbert spaces
In this paper, we work with rigged Hilbert spaces and rigged C∗-algebras as introduced in § 2
of our paper [KW20]; we briefly review all required notions and results, and refer the reader to
that paper for more motivation and context.
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Definition 2.1.1. A rigged Hilbert space is a Fréchet space equipped with a continuous
(sesquilinear) inner product. A morphism of rigged Hilbert spaces is simply a continuous
linear map. A morphism of rigged Hilbert spaces is called bounded/isometric if it is
bounded/isometric with respect to the inner products, and it is called unitary, if it is an isometric
isomorphism.

Given a rigged Hilbert space E, one obtains an honest Hilbert space, denoted Ê, by comple-
tion with respect to the inner product. The prototypical example of a rigged Hilbert space is the
Fréchet space of smooth functions on the circle, equipped with the L2-inner product; its Hilbert
completion is the space of square-integrable functions on the circle.

By a smooth representation of a Fréchet Lie group G on a rigged Hilbert space E we mean an
action of G on E by unitary morphisms of rigged Hilbert spaces, such that the map G × E → E
is smooth. The typical example in this paper is the rigged Hilbert space F s

L of smooth vectors
in a Fock space of a Lagrangian L ⊂ V , which carries a smooth representation of a Lie group
ImpθL(V ) of implementers, see Proposition 3.2.2.

Definition 2.1.2. A rigged C ∗-algebra is a Fréchet algebra A, equipped with a continuous
norm ‖ · ‖ : A→ R�0 and a continuous complex anti-linear involution ∗ : A→ A, such that its
completion with respect to the norm is a C∗-algebra. A morphism of rigged C ∗-algebras is a
morphism of Fréchet algebras that is bounded with respect to the norms and intertwines the
involutions. A morphism of rigged C∗-algebras is called isometric, if it is an isometry with respect
to the norms.

By definition, an actual C∗-algebra Â can be obtained from a rigged C∗-algebra A by norm
completion. By a smooth representation of a Fréchet Lie group G on a rigged C∗-algebra A we
mean an action of G on A by isometric isomorphisms of rigged C∗-algebras, such that the map
G ×A→ A is smooth. The typical example in this paper is the Fréchet algebra Cl(V )s of smooth
vectors in the Clifford algebra of a real Hilbert space V , which carries a smooth representation
of the orthogonal group O(V ) via Bogoliubov automorphisms, see Proposition 3.2.4.

Of major importance for this article is a certain type of representations of rigged C∗-algebras
on rigged Hilbert spaces.

Definition 2.1.3. Let A be a rigged C∗-algebra. A rigged A-module is a rigged Hilbert space
E together with a representation ρ of (the underlying algebra of) A on (the underlying vector
space of) E, such that the map ρ : A× E → E is smooth and the following conditions hold for
all a ∈ A and all v, w ∈ E:

〈ρ(a, v), ρ(a, v)〉 � ‖a‖2〈v, v〉 and 〈ρ(a, v), w〉 = 〈v, ρ(a∗, w)〉. (1)

A (unitary) intertwiner from a rigged A1-module E1 to a rigged A2-module E2 is a pair (φ, ψ) of
a morphism φ : A1 → A2 of rigged C∗-algebras and a bounded (unitary) morphism ψ : E1 → E2

of rigged Hilbert spaces that intertwines the representations along φ.

We recall that if a map ρ : A× E → E is bilinear, it is smooth if and only if it is continuous.
The typical example is the rigged Hilbert space F s

L, which becomes under Clifford
multiplication a rigged Cl(V )s-module, see Proposition 3.2.5. A couple of remarks are in order.

Remark 2.1.4. (a) Conditions (1) in Definition 2.1.3 are chosen such that a rigged A-module E
with underlying representation ρ induces a ∗-homomorphism ρ̂ : Â→ B(Ê), i.e. a representation
of the C∗-algebra Â on the Hilbert space Ê, see [KW20, Remark 2.2.11].
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(b) If φ : A→ B is a morphism of rigged C∗-algebras, and E is a rigged B-module with
representation ρ, then E becomes a rigged A-module under the induced representation (a, v) �→
ρ(φ(a), v). Moreover, the pair (φ,1) is a unitary intertwiner.

(c) Rigged C∗-algebras and rigged modules are compatible with dualization. If A is a rigged
C∗-algebra, then its opposite algebra, Aopp, is a rigged C∗-algebra in a natural way, and its
completion (Aopp)‖·‖ is the usual opposite C∗-algebra. Let E be a rigged A-module. The inner
product
on E gives us a complex anti-linear injection ι : E → E∗ mapping E into its continuous linear
dual E∗. Denote the image of ι by E�. We turn E� into a Fréchet space using the identification
with E. If ρ denotes the representation of A on E, then the map

ρ� : Aopp × E� → E�, (a, ϕ) �→ ϕ ◦ ρ(a,−),

is a representation of Aopp on E�, and it is straightforward to show that it turns E� into a rigged
Aopp-module.

Next, we extend our framework, which we have so far recalled from [KW20], by introducing
new structures that ultimately lead to the notion of rigged bimodules over rigged von Neumann
algebras.

Definition 2.1.5. Let A1 and A2 be rigged C∗-algebras. A rigged A1–A2-bimodule is a rigged
Hilbert space E with commuting representations of A1 and Aopp

2 , in such a way that E is a rigged
A1-module and a rigged Aopp

2 -module. A (unitary) intertwiner from a rigged A1–A2-bimodule E
to a rigged A′

1–A
′
2-bimodule E′ is a triple (φ1, φ2, ψ) consisting of morphisms φ1 : A1 → A′

1 and
φ2 : A2 → A′

2 of rigged C∗-algebras, and of a bounded (unitary) morphism ψ : E → E′ of rigged
Hilbert spaces that intertwines both representations along φ1 and φ2.

Under completion, a rigged A–B-bimodule E becomes a Hilbert space Ê with commuting
representations of the C∗-algebras Â and B̂opp = B̂opp. Our main example of a rigged bimodule
is again the space F s

L of smooth vectors in a Fock space, which we equip with a rigged bimodule
structure over a certain subalgebra of Cl(V )s, see § 3.3. Next, we develop the setting of rigged
von Neumann algebras.

Definition 2.1.6. A rigged von Neumann algebra is a pair N = (A,E) consisting of a rigged
C∗-algebra A and a rigged A-module E, with the property that the induced C∗-representation
Â→ B(Ê) is faithful. The representation underlying the rigged A-module E is called the defining
representation of N .

Remark 2.1.7. If N = (A,E) is a rigged von Neumann algebra, and ρ its defining representation,
then the assumption that ρ̂ : Â→ B(Ê) is faithful implies that it is an isometry and, hence,
a homeomorphism onto its image. We may thus identify ρ̂(Â) with Â. Then, we define the
von Neumann algebra

N ′′ ..= (Â)′′ ⊆ B(Ê),

and conclude that it contains Â as a weakly dense (and, thus, also σ-weakly dense) subspace.
In particular, any rigged von Neumann algebra N gives rise to an ordinary von Neumann
algebra N ′′.

An example of a rigged von Neumann algebra is the Clifford algebra Cl(V )s with its defining
representation on Fock space F s

L, see Proposition 3.2.5. The associated von Neumann algebra
is B(FL). More interesting examples will be constructed in Proposition 3.2.9; these give rise to
type III1-factors.

1602

https://doi.org/10.1112/S0010437X24007188 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007188


Connes fusion of spinors on loop space

Remark 2.1.8. If N = (A,E) is a rigged von Neumann algebra, then Nopp ..= (Aopp, E�) is a
rigged von Neumann algebra, see Remark 2.1.4.

Definition 2.1.9. Let N1 = (A1, E1) and N2 = (A2, E2) be rigged von Neumann algebras. A
morphism of rigged von Neumann algebras from N1 to N2 is a morphism φ : A1 → A2 of rigged
C∗-algebras that extends to a normal ∗-homomorphism N ′′

1 → N ′′
2 .

We recall that ‘normal’ means to be continuous in the σ-weak topologies, and we recall that
these topologies are generated by semi-norms pρ(T ) ..= |tr(ρT )|, where ρ is a trace-class operator.
Since Â ⊂ N ′′ is σ-weakly dense, it is clear that the extension N ′′

1 → N ′′
2 is unique, if it exists.

The following lemma gives us a useful sufficient criterion for the extendability.

Lemma 2.1.10. Let N1 = (A1, E1) and N2 = (A2, E2) be rigged von Neumann algebras. Suppose
that (φ, ψ) is a unitary intertwiner from E1 to E2 in the sense of Definition 2.1.3. Then, φ is a
morphism of rigged von Neumann algebras.

Proof. All that needs to be shown is that φ : A1 → A2 extends to a normal ∗-homomorphism
N ′′

1 → N ′′
2 . According to Remark 2.1.7 we view A1 as a subset of B(Ê1) and A2 as a subset of

B(Ê2). Now, we have, for all a ∈ A1 and all v ∈ Ê2,

φ(a)v = φ(a)ψψ∗v = ψaψ∗v.

Here, ψψ∗ = 1 since ψ is unitary and, thus, extends to a unitary operator ψ : Ê1 → Ê2 on
the completions. It follows that φ(a) = ψaψ∗ as elements of B(Ê2), which implies that the map
Cψ : B(Ê1) → B(Ê2), a �→ ψaψ∗ extends φ. Next, we prove that Cψ is normal. If ρ is a trace-class
operator on Ê2, then ψ∗ρψ is a trace-class operator on Ê1, and we have

pψ∗ρψ(a) = pρ(Cψ(a)),

for all a ∈ B(Ê1). This implies that Cψ is σ-weakly continuous. Now, because A1 is σ-weakly
dense in N ′′

1 , and A2 is σ-weakly dense in N ′′
2 it follows that Cψ(N ′′

1 ) ⊆ N ′′
2 , and that, moreover,

Cψ : N ′′
1 → N ′′

2 is a ∗-homomorphism. �
Remark 2.1.11. Lemma 2.1.10 motivates the following terminology: a spatial morphism from
a rigged von Neumann algebra N1 to another rigged von Neumann algebra N2 is a unitary
intertwiner (φ, ψ) between the underlying rigged modules. Lemma 2.1.10 implies then that φ
is a morphism of rigged von Neumann algebras. In addition, a spatial morphism (φ, ψ) will be
called invertible, or spatial isomorphism if it is invertible by another spatial morphism. We note
that this is the case if and only if (φ, ψ) is an invertible unitary intertwiner, i.e. in addition to
ψ being unitary, φ must be an isometric isomorphism. Spatial isomorphisms appear frequently
in the context of bundles of rigged von Neumann algebras, whose local trivializations will be
spatial isomorphisms in each fibre, see Definition 2.2.9 and Remark 2.2.12.

Next is the discussion of modules and bimodules for rigged von Neumann algebras.

Definition 2.1.12. Let N = (A,E) be a rigged von Neumann algebra. A rigged von Neumann
N -module is a rigged A-module F whose induced ∗-homomorphism Â→ B(F̂ ) extends to a
normal ∗-homomorphism N ′′ → B(F̂ ).

Remark 2.1.13. Again, the extension N ′′ → B(F̂ ) in Definition 2.1.12 is unique, if it exists.
It guarantees that, for N a rigged von Neumann algebra and F a rigged von Neumann
N -module, the completion F̂ is an N ′′-module in the usual von Neumann theoretical sense (see
Appendix A.1). Observe, moreover, that the defining representation of any rigged von Neumann
algebra is automatically a rigged von Neumann module.
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We will need the following lemma, which will be used later in the proof of Lemma 2.1.16.

Lemma 2.1.14. Let N = (A,E) be a rigged von Neumann algebra, and let F be a rigged
von Neumann N -module with underlying representation ρ : A× F → F . Then, the normal
∗-homomorphism N ′′ → B(F̂ ) factors through the von Neumann algebra ρ̂(Â)′′ ⊂ B(F̂ ).

Proof. Let a ∈ N ′′ be arbitrary. We wish to prove that its image in B(F̂ ) in fact lies
in ρ̂(Â)′′. Thus, let an be a sequence in Â that σ-weakly converges to a. Then, by continu-
ity of N ′′ → B(F̂ ), the image of the sequence converges to some element in B(F̂ ), but because
all elements an were in Â to begin with, the limit must already lie in its completion ρ̂(Â)′′. �

Finally, we come to bimodules for rigged von Neumann algebras. One of the fundamen-
tal results of this work exhibits the Fock space F s as a rigged von Neumann bimodule, see
Proposition 3.3.4.

Definition 2.1.15. If N1 = (A1, E1) and N2 = (A2, E2) are rigged von Neumann algebras, then
a rigged von Neumann N1–N2-bimodule is a rigged A1–A2-bimodule F that is a rigged von
Neumann N1-module and a rigged von Neumann Nopp

2 -module. A (unitary) intertwiner from
a rigged von Neumann N1–N2-bimodule F to a rigged von Neumann Ñ1–Ñ2-bimodule F̃
is a (unitary) intertwiner (φ1, φ2, ψ) between the underlying rigged bimodules in the sense
of Definition 2.1.5, such that φ1 : N1 → Ñ1 and φ2 : N2 → Ñ2 are morphisms of rigged von
Neumann algebras. A spatial intertwiner from F to F̃ is a quintuple (φ1, ψ1, φ2, ψ2, ψ) in
which (φ1, φ2, ψ) is a unitary intertwiner from F to F̃ , and (φ1, ψ1) : N1 → Ñ1 and (φ2, ψ2) :
N2 → Ñ2 are spatial morphisms.

Here, Lemma 2.1.10 implies again that spatial intertwiners are in particular (unitary) inter-
twiners. We assure by the following result that completion brings us into the classical setting,
see Appendix A.1.

Lemma 2.1.16. If F is a rigged von Neumann N1–N2-bimodule, then its completion F̂ is a
N ′′

1 –N ′′
2 -bimodule in the ordinary von Neumann theoretical sense. Likewise, any (unitary) inter-

twiner between rigged von Neumann bimodules induces a bounded (unitary) intertwiner in the
ordinary sense.

Proof. For the first statement, we only have to argue that the actions of the von Neumann
algebras N ′′

1 and N ′′
2 on F̂ commute. Indeed, as the actions of the rigged C∗-algebras commute,

it is clear that the images ρ̂1(Â1) and ρ̂2(Â2) in B(F̂ ) commute, for instance, ρ̂2(Â2) ⊂ ρ̂1(Â1)′.
Taking commutants, we obtain ρ̂1(Â1)′′ ⊂ ρ̂2(Â2)′ = ρ̂2(Â2)′′′. This shows that the von Neumann
algebras ρ̂1(Â1)′′ and ρ̂2(Â2)′′ commute. Now, Lemma 2.1.14 proves the claim. The statement
about intertwiners follows from the usual continuity arguments. �

We remark that ordinary von Neumann algebras, bimodules and intertwiners form a bicate-
gory, in which the composition of morphisms is given by the Connes fusion of bimodules [Bro03,
ST04]. We have, unfortunately, not yet been able to lift Connes fusion to the setting of rigged
von Neumann bimodules and, thus, there is no corresponding bicategory of rigged von Neumann
algebras. This is an important issue that we are going to address in future work.

2.2 Locally trivial rigged bundles
In this section we introduce locally trivial bundles of rigged von Neumann algebras and rigged
von Neumann bimodules over Fréchet manifolds. The prerequisite notions of rigged Hilbert space
bundles, rigged C∗-algebra bundles, and rigged module bundles have been introduced in § 2 of
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[KW20], and are discussed there in more detail. Throughout this section, we let M be a Fréchet
manifold.

Definition 2.2.1. Let E be a rigged Hilbert space. A rigged Hilbert space bundle over M
with typical fibre E is a Fréchet vector bundle π : E → M with typical fibre E equipped with
a map g : E ×π E → C, such that g is fibrewise an inner product and local trivializations Φ :
E|U → E × U of E can be chosen to be fibrewise isometric. A morphism of rigged Hilbert space
bundles is a morphism of the underlying Fréchet vector bundles. A morphism is called locally
bounded/isometric if it is locally bounded/isometric with respect to the inner products, and it
is called unitary if it is isometric and an isomorphism of Fréchet vector bundles.

It is straightforward to see that the fibres of a rigged Hilbert space bundle E are rigged
Hilbert spaces [KW20, Remark 2.1.10], and that the fibrewise completion of E is a locally trivial
continuous Hilbert space bundle over M with typical fibre Ê (see [KW20, Lemma 2.1.13]). Here,
a locally trivial continuous Hilbert space bundle with fibre H has continuous local transition
functions U ×H → H or, equivalently, strongly continuous maps U → U(H). Likewise, on the
level of morphisms, any locally bounded morphism of rigged Hilbert space bundles extends
uniquely to a continuous morphism of the corresponding continuous Hilbert space bundles. The
following lemma [KW20, Proposition 2.1.15] shows that our notion of smooth representations
(see § 2.1) fits well into the context of rigged Hilbert space bundles.

Lemma 2.2.2. Let G be a Fréchet Lie group, P be a Fréchet principal G-bundle over M, and
let ρ : G × E → E be a smooth representation of G on a rigged Hilbert space E. Then, the
associated bundle (P × E)/G is a rigged Hilbert space bundle with typical fibre E in a unique
way, such that every local trivialization Φ : P|U → G × U of P induces a local trivialization
[p, v] �→ (ρ(g(p), v), π(p)) of (P × E)/G, where p ∈ P, v ∈ E, and Φ(p) = (g(p), π(p)).

The spinor bundle on loop space is a rigged Hilbert space bundle over M = LM , and will be
defined via Lemma 2.2.2, see Definition 4.1.4. We proceed similarly for rigged C∗-algebra bundles.

Definition 2.2.3. Let A be a rigged C∗-algebra. A rigged C ∗-algebra bundle over M with typical
fibre A is a Fréchet vector bundle π : A → M, equipped with:

– a map ‖ · ‖ : A → R�0; and
– fibre-preserving maps m : A×π A → A and ∗ : A → A;

such that the following conditions hold for each x ∈ M.

– The map ‖ · ‖x : Ax → R�0 is a norm.
– The maps mx : Ax ×Ax → Ax and ∗x : Ax → Ax turn Ax into a ∗-algebra.
– There exists a local trivialization around x that is fibrewise an isometric ∗-homomorphism.

A morphism of rigged C ∗-algebra bundles over M is a morphism φ : A1 → A2 of Fréchet vector
bundles that is fibrewise a morphism of ∗-algebras and locally bounded with respect to the
norms. A morphism is called isometric if it is isometric with respect to the norms.

One can show that each fibre of a rigged C∗-algebra bundle A is a rigged C∗-algebra,
and that the opposite multiplication produces a rigged C∗-algebra bundle Aopp with typical
fibre Aopp. Further, the fibrewise norm completion gives a locally trivial continuous bundle of
C∗-algebras with typical fibre Â, and strongly continuous transition functions [KW20,
Lemma 2.2.6]. Likewise, any morphism of rigged C∗-algebra bundles extends uniquely to a con-
tinuous morphism of continuous bundles of C∗-algebras. We remark that every locally trivial
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continuous bundle of C∗-algebras yields a continuous field of C∗-algebras by taking its continuous
sections.

Rigged C∗-algebra bundles can be obtained by associating a smooth representation to a
principal bundle, as the following result [KW20, Proposition 2.2.8] shows.

Lemma 2.2.4. Let P be a Fréchet principal G-bundle over M, and let ρ : G ×A→ A be a
smooth representation on a rigged C∗-algebra A. Then, the associated bundle (P ×A)/G is a
rigged C∗-algebra bundle with typical fibre A in a unique way, such that every local trivialization
Φ : P|U → G × U of P induces a local trivialization [p, a] �→ (ρ(g(p), a), π(p)) of (P ×A)/G, where
p ∈ P, a ∈ A, and Φ(p) = (g(p), π(p)).

The Clifford bundle on loop space is a rigged C∗-algebra bundle, and it will be defined via
Lemma 2.2.4, see Definition 4.1.5. Next, we discuss module bundles and bimodule bundles for
rigged C∗-algebra bundles.

Definition 2.2.5. Let A be a rigged C∗-algebra and E be a rigged A-module, with repre-
sentation ρ0, and let A be a rigged C∗-algebra bundle over M with typical fibre A. A rigged
A-module bundle with typical fibre E is a rigged Hilbert space bundle E with typical fibre E, and
a fibre-preserving map

ρ : A×M E → E
with the property that around every point in M there exist local trivializations Φ of A and Ψ of
E that fibrewise intertwine ρ with ρ0, i.e. we have Ψx(ρ(a, v)) = ρ0(Φx(a),Ψx(v)) for all x ∈ M
over which Φ and Ψ are defined, and all a ∈ Ax and v ∈ Ex. A pair (Φ,Ψ) of local trivializations
with this property is called compatible.

One can easily show that ρ is automatically a morphism of Fréchet vector bundles.
Furthermore, for each x ∈ M, the map ρx turns Ex into a rigged Ax-module; and every pair of
compatible local trivializations (Φ,Ψ) around x yields an invertible unitary intertwiner (Φx,Ψx)
between the rigged Ax-module Ex and the rigged A-module E.

Definition 2.2.6. A (unitary) intertwiner between a rigged A1-module bundle E1 and a rigged
A2-module bundle E2 is a pair (Φ,Ψ) of a morphism Φ : A1 → A2 of rigged C∗-algebra bundles,
and a locally bounded (unitary) morphism Ψ : E1 → E2 of rigged Hilbert space bundles, such
that (Φx,Ψx) is a (unitary) intertwiner of rigged modules in the fibre over each point x ∈ M.

The definition of a rigged bimodule bundle now follows naturally; it is, however, important
enough that we give it in full detail.

Definition 2.2.7. Let A1 and A2 be rigged C∗-algebra bundles over M with typical fibres A1

and A2, respectively, and let E be a rigged A1–A2-bimodule. A rigged A1–A2-bimodule bundle
E with typical fibre E is a rigged Hilbert space bundle E over M that is both a rigged A1-module
bundle and a rigged Aopp

2 -module bundle, such that around every point in M there exist local
trivializations Φ1 of A1, Φ2 of A2, and Ψ of E with both (Φ1,Ψ) and (Φ2,Ψ) compatible. A triple
(Φ1,Φ2,Ψ) of local trivializations with this property is again called compatible.

It is straightforward to see that the fibres Ex are rigged (A1)x–(A2)x-bimodules, for each x ∈
M, and that compatible local trivializations around x establish an invertible unitary intertwiner
between Ex and E. For completeness, we also note the bundle version of a bimodule intertwiner.

Definition 2.2.8. A (unitary) intertwiner from a rigged A1–A2-bimodule bundle E to a rigged
Ã1–Ã2-bimodule bundle Ẽ is a triple (Φ1,Φ2,Ψ) consisting of morphisms Φ1 : A1 → Ã1 and Φ2 :
A2 → Ã2 of rigged C∗-algebra bundles and of a locally bounded (unitary) morphism Ψ : E → Ẽ
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of rigged Hilbert space bundles, such that over each point x ∈ M the triple (Φ1
x,Φ

2
x,Ψx) is a

(unitary) intertwiner of rigged bimodules.

Later, we will exhibit the spinor bundle on loop space as a rigged module bundle for the
Clifford bundle, see § 4. Next we come to the definition of rigged von Neumann algebra bundles
and rigged von Neumann bimodule bundles. These definitions are a novelty introduced in this
article; we are not aware of any other treatment of smooth locally trivial bundles of von Neumann
algebras, or von Neumann bimodules.

Definition 2.2.9. Let N = (A,E) be a rigged von Neumann algebra. A rigged von Neumann
algebra bundle N = (A, E) with typical fibre N over M is a rigged C∗-algebra bundle A with
typical fibre A and a rigged A-module bundle E with typical fibre E.

Thus, the difference between a rigged A-module bundle E and a rigged von Neumann algebra
bundle N = (A, E) only lies in fact that the typical fibre is required to be a rigged von Neumann
algebra. Via compatible local trivializations (Definition 2.2.5), this property extends to all fibres;
thus, every fibre Nx = (Ax, Ex) is a rigged von Neumann algebra. Moreover, Lemma 2.1.10 guar-
antees that any choice of compatible local trivializations induces fibrewise spatial isomorphisms
from Nx to N .

Definition 2.2.10. A morphism Φ : N1 → N2 between rigged von Neumann algebra bundles
N1 = (A1, E1) and N2 = (A2, E2) is a morphism Φ : A1 → A2 of rigged C∗-algebra bundles that
is fibrewise a morphism of rigged von Neumann algebras.

Remark 2.2.11. Again, it is useful to introduce the notion of a spatial morphism from
N1 = (A1, E1) to N2 = (A2, E2) as a unitary intertwiner (Φ,Ψ) of rigged module bundles
(Definition 2.2.6). In this situation, we have in the fibre over each point x ∈ M a unitary
intertwiner (Φx,Ψx) from (E1)x to (E2)x, i.e. a spatial morphism from (N1)x to (N2)x. By
Lemma 2.1.10, Φx is a morphism of rigged von Neumann algebras, and thus, by definition, Φ is a
morphism of rigged von Neumann algebra bundles. This shows that spatial morphisms of rigged
von Neumann algebra bundles are, in particular, morphisms in the sense of Definition 2.2.10.

Remark 2.2.12. Let N = (A, E) be a rigged von Neumann algebra bundle with typical fibre
N = (A,E). Then, there exist compatible local trivializations (Φ,Ψ) over open subsets U ⊂ M
as in Definition 2.2.5, which are invertible unitary intertwiners between the rigged module bundles
E|U and E × U and, thus, spatial isomorphisms of rigged von Neumann algebra bundles from
N|U to N × U . In particular, rigged von Neumann algebra bundles are locally trivial in this
strong sense of spatial isomorphisms.

The rigged von Neumann algebra bundles that appear in this paper are certain Clifford
algebra bundles over loop spaces, and they appear in §§ 4.1 and 5.1. For now, it remains to
define rigged von Neumann bimodule bundles.

Definition 2.2.13. Let N1 = (A1, E1) and N2 = (A2, E2) be rigged von Neumann algebras, and
let F be a rigged von Neumann N1–N2-bimodule. Further, let N1 = (A1, E1) and N2 = (A2, E2)
be rigged von Neumann algebra bundles over M with typical fibres N1 and N2, respectively. A
rigged von Neumann N1–N2-bimodule bundle with typical fibre F is a rigged A1–A2-bimodule
bundle F with typical fibre F , such that around each point x ∈ M there exist compatible local
trivializations (Φ1,Ψ1) of N1 and (Φ2,Ψ2) of N2, and a local trivialization Ψ of F such that
(Φ1,Φ2,Ψ) is compatible in the sense of Definition 2.2.7.
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The following lemma is to ensure that Definition 2.2.13 gives the correct structure in each
fibre.

Lemma 2.2.14. If F is a rigged von Neumann N1–N2-bimodule bundle with typical fibre F ,
then the fibre Fx is a rigged von Neumann (N1)x–(N2)x-bimodule, for each x ∈ M.

Proof. Because F is a rigged A1–A2-bimodule bundle, we have that Fx is a rigged (A1)x–(A2)x-
bimodule. Let (̂ρ1)x : (̂A1)x → B(F̂x) be the corresponding ∗-homomorphism. The statement
that Fx is a rigged (N1)x-module is then equivalent to the statement that (̂ρ1)x extends
to (N1)′′x. But, since the typical fibre F is a rigged von Neumann bimodule, its correspond-
ing maps Â1 → B(F̂ ) extend to N ′′

1 . Next, consider local trivializations (Φ1,Ψ1) and Ψ around
x as in Definition 2.2.13. Then, we have the extensions Φ1

x : (N1)′′x → N ′′
1 , and the conjugation

by the unitary operator Ψx, which yields a normal ∗-homomorphism B(F̂ ) → B(F̂x). Using the
compatibility of Φ1 with Ψ it then follows that the map

(N1)′′x → N ′′
1 → B(F̂ ) → B(F̂x)

is an extension of (̂ρ1)x, which is moreover the composition of normal ∗-homomorphisms and,
thus, a normal ∗-homomorphism itself. A similar argument for the ∗-homomorphism (̂ρ2)x proves
that Fx is a rigged von Neumann (N2)

opp
x -module. �

In the next section, we will glue rigged von Neumann bimodules bundles; therefore, we also
need to introduce (spatial) intertwiners between them.

Definition 2.2.15. A (unitary) intertwiner from a rigged von Neumann N1–N2-bimodule bun-
dle F to a rigged von Neumann Ñ1–Ñ2-bimodule bundle F̃ is a (unitary) intertwiner (Φ1,Φ2,Ψ)
between the underlying rigged bimodule bundles in the sense of Definition 2.2.8, such that Φ1

and Φ2 are morphisms of rigged von Neumann algebra bundles. A spatial intertwiner from F
to F̃ is a quintuple (Φ1,Ψ1,Φ2,Ψ2,Ψ) in which (Φ1,Φ2,Ψ) is a unitary intertwiner of rigged
von Neumann bimodule bundles, and (Φ1,Ψ1) : N1 → Ñ1 and (Φ2,Ψ2) : N2 → Ñ2 are spatial
morphisms.

The definitions guarantees full compatibility with the fibrewise notions: any (spatial) inter-
twiner induces in the fibre over each point x ∈ M a (spatial) intertwiner between rigged
von Neumann bimodules in the sense of Definition 2.1.15. Moreover, if F is a rigged von
Neumann N1–N2-bimodule bundle with typical fibre F , any choice of local trivializations
(Φ1,Ψ1), (Φ2,Ψ2), and Ψ over an open subset U ⊂ M as in Definition 2.2.13, assemble into an
invertible spatial intertwiner (Φ1,Ψ1,Φ2,Ψ2,Ψ) from F|U to F × U . In particular, rigged von
Neumann bimodule bundles are locally trivial in this strong sense of invertible spatial
intertwiners.

We would like to make clear and summarize the following important feature of our definitions.
Rigged von Neumann algebra bundles and bimodule bundles over M have in the fibre over
each point x ∈ M rigged von Neumann algebras and bimodules, as introduced in § 2.1 (see
Lemma 2.2.14). Likewise, (spatial) morphisms between rigged von Neumann algebra bundles, and
(spatial) intertwiners between rigged von Neumann bimodules restrict in each fibre to (spatial)
morphisms of rigged von Neumann algebras and (spatial) intertwiners of rigged von Neumann
bimodules, as introduced in § 2.1. In turn, we have shown in Remark 2.1.7 and Lemma 2.1.16
that these fibrewise structures induce, respectively, ordinary von Neumann algebras, ordinary
(spatial) morphisms, ordinary bimodules between von Neumann algebras, and ordinary bounded
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intertwiners between these, in the classical sense. Thus, one can pass, at any time and over any
point, to this classical setting.

2.3 Rigged bundles over diffeological spaces
For the discussion of fusion on loop space, we need to treat bundles over diffeological spaces.
We recall briefly that a diffeology on a set X consists of a set of maps c : U → X called ‘plots’,
where U ⊂ Rk is open and k ∈ N0 can be arbitrary, subject to three natural axioms; see [Igl13]
for a comprehensive textbook. A map f : X → Y between diffeological spaces is called smooth,
if its composition with any plot of X results in a plot of Y . We let Diff denote the category
of diffeological spaces. Any smooth manifold M or Fréchet manifold M becomes a diffeological
space by saying that every smooth map c : U →M , for every open subset U ⊂ Rk and any k, is
a plot. Maps between smooth manifolds or Fréchet manifolds are then smooth in the classical
sense if and only if they are smooth in the diffeological sense. In other words, the category Fréch
of Fréchet manifolds fully faithfully embeds into Diff (see [Los92]).

Next we describe a general procedure to extend a presheaf F of categories on Fréch to one
on Diff , and then apply this to various presheaves of bundles defined in the previous section. We
briefly recall that a presheaf F of categories on a category C is a weak functor F : Copp → Cat
to the bicategory of categories, functors, and natural transformations. That is, F assigns to
each object X of C a category F(X), to each morphism f : X → Y in C a functor f∗ : F(Y ) →
F(X), and to each pair (f, g) of composable morphisms f : X → Y and g : Y → Z a natural
equivalence ηf,g : (g ◦ f)∗ ⇒ f∗ ◦ g∗, such that the natural equivalences respect the associativity
of the composition.

Remark 2.3.1. In § 2.2 we have encountered the following presheaves of categories over Fréch.
– For a Fréchet Lie group G, the presheaf of principal G-bundles and bundle morphisms.
– For a rigged Hilbert space E, the presheaf of rigged Hilbert space bundles with typical fibre
E, and with isometric morphisms (Definition 2.2.1).

– For a rigged C∗-algebra A, the presheaf of rigged C∗-algebra bundles with typical fibre A, and
with isometric morphisms (Definition 2.2.3).

– For rigged C∗-algebras A1 and A2, and a rigged A1–A2-bimodule E, the presheaf of triples
(A1,A2, E) of rigged C∗-algebra bundles A1 and A2 with typical fibres A1 and A2, respectively,
and a rigged A1–A2-bimodule bundle E with typical fibre E as defined in Definition 2.2.7, with
unitary intertwiners as defined in Definition 2.2.8 as morphisms.

– For a rigged von Neumann algebra N , the presheaf of rigged von Neumann algebra bundles
with typical fibre N , and with spatial morphisms (Definition 2.2.9 and Remark 2.2.11).

– For rigged von Neumann algebras N1 and N2, and a rigged von Neumann N1–N2-bimodule
F , the presheaf of triples (N1,N2, E) of rigged von Neumann algebra bundles N1 and N2 with
typical fibres N1 and N2, respectively, and a rigged von Neumann N1–N2-bimodule bundle
F with typical fibre F as defined in Definition 2.2.13, with spatial intertwiners as defined in
Definition 2.2.15 as morphisms.

Our aim is to assign to any presheaf F of categories over Fréch a presheaf FDiff of categories
over Diff . There is an abstract canonical procedure how to do this, which we explain later
in Remark 2.3.3. In the following definition we spell out directly the result of this procedure,
emphasising the concrete perspective.

Definition 2.3.2. Let F be a presheaf of categories over Fréch, and let X be a diffeological
space. We define a category FDiff (X) in the following way.

1609

https://doi.org/10.1112/S0010437X24007188 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007188


P. Kristel and K. Waldorf

(a) An object of the category FDiff (X) is a pair E = ((Ec), (φc1,c2,f )) consisting of:
– a family (Ec), indexed by the plots c : U → X of X, with Ec an object of F(U);
– a family (φc1,c2,f ), indexed the set of all triples (c1, c2, f) consisting of two plots c1 :
U1 → X and c2 : U2 → X and of a smooth map f : U1 → U2 such that c2 ◦ f = c1, with a
morphism φc1,c2,f : Ec1 → f∗Ec2 in the category F(U1).
This structure is subject to the condition that whenever (c1, c2, f12) and (c2, c3, f23) are

triples as above, the diagram

Ec1
φf23◦f12

��

φf12

��

(f23 ◦ f12)∗Ec3
ηf12,f23

��

f∗12Ec2
f∗12φf23

�� f∗12f
∗
23Ec3

of morphisms in F(U1) is commutative.
(b) A morphism from an object E = ((Ec), (φc1,c2,f )) to an object E ′ = ((E ′

c), (φ
′
c1,c2,f

)) in
FDiff (X) is a family ψ = (ψc), indexed by the plots c : U → X of X, with morphisms
ψc : Ec → E ′

c in F(U), such that the diagram

Ec1
ψc1

��

φf

��

E ′
c1

φ′f
��

f∗Ec2
f∗ψc2

�� f∗Ec1

is commutative for all triples (c1, c2, f). The composition of morphisms is plot-wise.

It is straightforward to complete the assignment X �→ FDiff (X) given in Definition 2.3.2 to
a presheaf of categories on Diff . This is how we extend presheaves of categories from Fréch to
Diff . If M is a Fréchet manifold, which we may consider as a diffeological space, then there is a
faithful functor

F(M) → FDiff (M), (2)

which takes an object E of F(M) to the pair ((Ec), (φc1,c2,f )), where Ec ..= c∗E is just the pullback
in F (recall that any plot c is a smooth map between Fréchet manifolds here) and φc1,c2,f : c∗1E →
f∗c∗2E is the isomorphism ηf,c2 provided by F . A morphism ψ : E → E ′ is sent to the family with
ψc ..= c∗ψ; it is obvious that this preserves composition and is faithful.

Remark 2.3.3. The extension of presheaves of categories from Fréch to Diff that we defined in
Definition 2.3.2 fits into a more conceptual perspective, which we want to outline in this remark.
To this end, we infer that any diffeological space X can be viewed as a presheaf X (of sets) on the
category Open of open subsets of cartesian spaces, see [BH11]. Namely, the presheaf X assigns
to an object U in Open the set X(U) of all plots c : U → X with domain U . In the following
we regard X even as a presheaf of categories on Open, and we do this simply by regarding the
sets X(U) as categories with only identity morphisms. Now, let F be a presheaf of categories
on Fréch, which we may restrict to Open ⊂ Fréch. Presheaves of categories on Open form a
bicategory PSh(Open), the bicategory of weak functors Openopp → Cat. Now, we consider the
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functor represented by F|Open and restricted along Diff → PSh(Open),

HomPSh(Open)( · ,F|Open) : Diffopp → Cat.
Explicitly, it assigns to a diffeological space X the category HomPSh(Open)(X,F|Open) of
morphisms between the objects X and F|Open of PSh(Open). It is a straightforward exercise
to show that

HomPSh(Open)(X,F|Open) = FDiff (X);

this embeds our Definition 2.3.2 into a proper topos-theoretical framework. The bicategorical ver-
sion of the Yoneda lemma (see, e.g., [JY21]) implies now that FDiff (U) ∼= F(U) for every object
U in Open. This exhibits FDiff as the (left) Kan extension of F|Open along Openopp → Diffopp,
which is precisely the standard way to extend presheaves from dense subsites to sites [Joh02].
This is our main justification for Definition 2.3.2.

We apply Definition 2.3.2 to the presheaves listed in Remark 2.3.1, obtaining neat definitions
of rigged Hilbert space bundles, rigged C∗-algebra bundles, rigged bimodule bundles, rigged
von Neumann algebra bundles, and rigged von Neumann bimodule bundles over diffeological
spaces. Most examples of such bundles that appear in this article are obtained via the functor
(2), in the following way: consider a diffeological space X, a Fréchet manifold M, and a smooth
map f : X → M. Then, the composite

F(M)
(2)

�� FDiff (M)
f∗

�� FDiff (X)

produces objects in FDiff (X) from objects in F(M).

Remark 2.3.4. It might be worth pointing out that bundles over a diffeological space X have
fibres over points x ∈ X, just like ordinary bundles. Indeed, the axioms of diffeology imply that
cx : R0 → X : 0 �→ x is always a plot. Thus, if N is, say, a rigged von Neumann algebra bundle
over X, then Nx

..= Ncx is a rigged von Neumann algebra bundle over the point R0, i.e. a rigged
von Neumann algebra, the fibre of N at x. If N = f∗N ′ is obtained by pullback of a rigged
von Neumann algebra bundle N ′ over a Fréchet manifold M along a smooth map f : X → M,
then Nx = N ′

f(x) is just the ordinary fibre of N ′ over f(x) ∈ M.

3. The free fermions on the circle

In this section we consider a bimodule for certain von Neumann algebras, known as the
free fermions on the circle. It plays the role of the typical fibre of the spinor bundle
of the loop space. In the first three subsections we recall and then extend our earlier
work [KW22, KW20] about the free fermions. Most importantly, we introduce a descrip-
tion of Clifford algebras and Fock spaces in the setting of rigged von Neumann algebras
(Proposition 3.3.4), and throughout explore the effects of splitting circles into two halves,
which is at the basis of loop fusion. In § 3.4 we then define a novel Connes fusion product
of certain implementers on Fock space (Definition 3.4.5). Its relation to loop fusion proved
later in Theorem 4.3.3 is a cornerstone of our construction of a fusion product on the spinor
bundle.

3.1 Lagrangians and Fock spaces
We recall some aspects of infinite-dimensional Clifford algebras and their representations on
Fock spaces, for which the book [PR94] is an excellent reference. The results we require on
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implementers are more spread out across the literature; see, for instance, [Ara87, Ott95, Nee10b,
KW22]. In §§ 3.1 and 3.2 we consider in some generality a complex Hilbert space V equipped
with a real structure α, i.e. an anti-unitary involution α : V → V . From § 3.3 on, we restrict to
a specific example, described at the beginning of § 3.3.

Given a unital C∗-algebra A, we say that a map f : V → A is a Clifford map if the following
equations are satisfied, for all v, w ∈ V :

f(v)f(w) + f(w)f(v) = 2〈v, α(w)〉1, f(v)∗ = f(α(v)). (3)

The Clifford C∗-algebra Cl(V ) is the unique (up to unique isomorphism) unital C∗-algebra equip-
ped with a Clifford map ι : V → Cl(V ), such that for each unital C∗-algebra A and each
Clifford map f : V → A, there exists a unique unital C∗-algebra homomorphism Cl(f) :
Cl(V ) → A with the property that Cl(f) ◦ ι = f . An explicit construction of Cl(V ) is given in
[PR94, § 1.2].

The orthogonal group of V , denoted by O(V ), consists of those unitary transformations of V
that commute with the real structure. If g ∈ O(V ), then ιg : V → Cl(V ) is a Clifford map. We
write θg ..= Cl(ιg) : Cl(V ) → Cl(V ) for its extension to Cl(V ). The map θg is called the Bogoliubov
automorphism associated to g. The map θ : g �→ θg is a continuous homomorphism from O(V )
to Aut(Cl(V )), where O(V ) is equipped with the operator norm topology, and Aut(Cl(V )) is
equipped with the strong operator topology; see, e.g., [Amb12, Proposition 4.35].

A Lagrangian in V is a subspace L ⊂ V such that V splits as the orthogonal direct sum
V = L⊕ α(L). If L is a Lagrangian, then the Fock space FL is the Hilbert completion of the
exterior algebra, ΛL, of L. We identify α(L) with the dual of L by identifying w ∈ α(L) with
the linear map L � v �→ 〈v, α(w)〉. If v ∈ L and w ∈ α(L) � L∗, then we write c(v) : FL → FL
for left multiplication with v, and a(w) : FL → FL for contraction with w. The maps c(v) and
a(v) are bounded operators on FL, and the map

ρL : V = L⊕ α(L) → B(FL), (v, w) �→
√

2(c(v) + a(w))

is a Clifford map. This means that Cl(ρL) : Cl(V ) → B(FL) is a unital C∗-algebra homomorphism,
i.e. a representation of Cl(V ) on FL. This representation is irreducible [PR94, Theorem 2.4.2]
and faithful; hence, we may identify Cl(V ) with its image in B(FL). Whenever convenient, we
adopt the notation a � v = Cl(ρL)(a)(v) for a ∈ Cl(V ) and v ∈ FL.

If g ∈ O(V ), then we say that g is implementable, if there exists U ∈ U(FL) with the property
that

θg(a) = UaU∗ (4)

for all a ∈ Cl(V ); the operator U is said to implement g. The problem to decide which g ∈ O(V )
are implementable is called the ‘implementability problem’. It is completely solved: an element
g ∈ O(V ) is implementable if and only if the operator PLgP⊥

L is Hilbert–Schmidt, where PL is
the orthogonal projection to L, see [PR94, Theorem 3.3.5] or [Ara87, Theorem 6.3]. We write
OL(V ) for the set consisting of those g ∈ O(V ) which are implementable; the set OL(V ) is, in
fact, a subgroup of O(V ).

The group O(V ) can be equipped with the structure of Banach Lie group in the
standard way, with underlying topology the operator norm topology. The Lie algebra of
O(V ) is

o(V ) = {X ∈ B(V ) | [X,α] = 0, X∗ = −X}.
The subgroup OL(V ) can also be equipped with the structure of a Banach Lie group, whose
underlying topology is given by the norm ‖g‖J = ‖g‖ + ‖PLgP⊥

L ‖2, where ‖g‖ is the operator
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norm of g, and where ‖ · ‖2 is the Hilbert–Schmidt norm [KW22, § 3.4]. The inclusion OL(V ) →
O(V ) is smooth. The Lie algebra of OL(V ) is

oL(V ) = {X ∈ o(V ) | ‖PLXP⊥
L ‖2 <∞}.

The group of implementers, ImpL(V ), is defined to be the subgroup of U(FL) consist-
ing of those operators U ∈ U(FL), for which there exists a g ∈ OL(V ) such that (4) holds.
If U ∈ ImpL(V ), then the element g ∈ OL(V ) that it implements is determined uniquely, and we
obtain a group homomorphism q : ImpL(V ) → OL(V ). Using the irreducibility of the represen-
tation of Cl(V ) on FL together with Schur’s lemma, we see that, for each g ∈ OL(V ), the fibre
q−1{g} is a U(1)-torsor. We equip the group ImpL(V ) with the structure of Banach Lie group
as in [KW22, Theorem 3.15], see also [Wur01]. We then have that the exact sequence

U(1) → ImpL(V )
q−→ OL(V ),

is a central extension of Banach Lie groups. It is important to note that the topology underlying
the Banach Lie group structure on ImpL(V ) is not the operator norm topology, and that the
inclusion map ImpL(V ) → U(FL) is not continuous, let alone smooth.

Let us assume that we are given a further orthogonal decomposition V = V− ⊕ V+ of V into
two Hilbert spaces V± which are preserved under α. In the sequel, such a splitting will implement
the splitting of a loop into two paths. Given such a splitting, we are interested in the operators
on V which preserve this splitting. We write P± for the projection onto V± and define

oθ(V ) ..= {X ∈ o(V ) | P±XP∓ = 0}, oθL(V ) ..= {X ∈ oL(V ) | P±XP∓ = 0}.
We observe that the maps X �→ P±XP∓ are linear and continuous (with respect to the operator
norm), which implies that oθ(V ) is a closed linear subspace of o(V ) and, hence, a Banach space.
The subspace oθL(V ) is the pre-image of oθ(V ) under the continuous inclusion oL(V ) → o(V ),
and hence a Banach space as well. The spaces oθ(V ) and oθL(V ) are Lie subalgebras of o(V ) and
oL(V ), respectively. Next, we define the metric groups

Oθ(V ) ..= {g ∈ O(V ) | P±gP∓ = 0}, Oθ
L(V ) ..= {g ∈ OL(V ) | P±gP∓ = 0}.

Using standard techniques (see, e.g., [KW22, Lemma 3.13]), one may then show that the expo-
nential maps oθ(V ) → Oθ(V ) and oθL(V ) → Oθ

L(V ) are local homeomorphisms, which allows us
to equip Oθ(V ) and Oθ

L(V ) with the structure of Banach Lie groups, with Lie algebras oθ(V )
and oθL(V ), respectively. It is then clear from the construction that Oθ(V ) and Oθ

L(V ) are closed
submanifolds of O(V ) and OL(V ), respectively. If g ∈ Oθ(V ), then we set g± ..= P±gP± ∈ O(V±).
We observe that the maps g �→ g± are smooth group homomorphisms. Finally, we restrict the
group of implementers to the split setting, and define the Banach Lie group

ImpθL(V ) ..= ImpL(V )|Oθ
L(V ),

which then is a central extension of Oθ
L(V ) by U(1).

Next, we consider the Clifford algebras Cl(V±). We observe that extending by zero gives
isometries V± → V which moreover intertwine the real structures, and thus induce isometric
∗-homomorphisms ι± : Cl(V±) → Cl(V ). The algebra product

Cl(V−) × Cl(V+) ⊂ Cl(V ) × Cl(V ) → Cl(V )

induces a unital isomorphism Cl(V−) ⊗ Cl(V+) ∼= Cl(V ) of C∗-algebras. (Here, ⊗ stands for
any choice of tensor product of C∗-algebras. The choice is immaterial, because the Clifford
C∗-algebra is uniformly hyperfinite and, hence, nuclear.) Under these identifications, we have
ι−(a−) = a− ⊗ 1 and ι+(a+) = 1⊗ a+, for a± ∈ Cl(V±). The following result expresses that the
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Bogoliubov automorphisms are compatible with the splitting; this will be used later in the proofs
of Lemmas 3.4.2 and 5.2.1.

Lemma 3.1.1. For all g− ⊕ g+ ∈ Oθ(V ) and all a± ∈ Cl(V±) we have

θg−⊕g+(a− ⊗ a+) = θg−(a−) ⊗ θg+(a+),

where θg± are the Bogoliubov automorphisms of the Clifford algebras Cl(V±).

Proof. This follows from the fact that (g− ⊕ g+) ◦ ι± = ι± ◦ g± for all g− ⊕ g+ ∈ Oθ(V ). �

3.2 Smooth Fock spaces
In §§ 4 and 5 we construct bundles of rigged Hilbert spaces and rigged C∗-algebras over Fréchet
manifolds. This requires a detailed study of smoothness properties of the representations obtained
in § 3.1; this is the goal of this section. We continue working with a complex Hilbert space V
with a real structure α, additionally equipped with an orthogonal decomposition into two Hilbert
spaces V± which are preserved under α. Our first goal is to equip the Fock space FL and the
Clifford C∗-algebra Cl(V ) with the structure of a rigged Hilbert space and a rigged C∗-algebra,
respectively. We have done this already in our earlier paper [KW20]; however, there we have not
taken the splitting V = V− ⊕ V+ into account. For the purpose of this article, the splitting is
essential, and it leads to a finer rigging (we compare them in Remark 3.2.6 below). Therefore,
we describe the important steps again.

As a subgroup of U(FL), the group ImpθL(V ) comes equipped with a unitary representation
on FL. As is typical for infinite-dimensional representations, the action map ImpθL(V ) × FL → FL
is not smooth. The subspace of smooth vectors in FL is defined as usual to be

F s
L

..= {v ∈ FL | ImpθL(V ) → FL, U �→ Uv is smooth}.
The following result follows directly from [KW22, Proposition 3.17], see also [Nee10b, § 10.1].

Lemma 3.2.1. The set of smooth vectors F s
L contains the exterior algebra ΛL and is, hence, a

dense subspace of FL.

By definition of smooth vectors, the Lie algebra impθ(V ) of ImpθL(V ) acts infinitesimally
on F s

L, i.e. for X ∈ impθ(V ) and v ∈ F s
L, we may define

Xv ..=
d

dt

∣∣∣∣
t=0

exp(tX)(v).

Let P(FL) be the set of all continuous semi-norms on FL. We define a topology on F s
L by the

following family of semi-norms [Nee10a, § 4]:

pn(v) = sup{p(X1 . . . Xnv) | Xi ∈ impθ(V ), ‖Xi‖ � 1}, p ∈ P(FL), n ∈ N0.

The following result is proved completely analogously to [KW20, Proposition 3.2.4].

Proposition 3.2.2. The space of smooth vectors F sL is a rigged Hilbert space, and it carries a
smooth representation of the Banach Lie group ImpθL(V ).

Just like the action map ImpθL(V ) × FL → FL is not smooth, the map Oθ(V ) × Cl(V ) →
Cl(V ) for the action by Bogoliubov automorphisms is not smooth either, an issue that we handle
in a similar way. We write Cl(V )s for the subspace of smooth vectors in Cl(V ), i.e.

Cl(V )s ..= {a ∈ Cl(V ) | Oθ(V ) → Cl(V ), g �→ θg(a) is smooth}.
Lemma 3.2.3. The set of smooth vectors Cl(V )s contains the algebraic Clifford algebra of V
and is, hence, dense in the C∗-Clifford algebra Cl(V ).

1614

https://doi.org/10.1112/S0010437X24007188 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007188


Connes fusion of spinors on loop space

The Lie algebra oθres(V ) acts on Cl(V )s, which allows us to proceed as follows. Let R(Cl(V ))
be the set of continuous semi-norms on Cl(V ). The topology on Cl(V )s is then defined by the
family of semi-norms

rn(a) = sup{r(Y1 . . . Yna) | Yi ∈ oθ(V ), ‖Yi‖ � 1}, r ∈ R(Cl(V )), n ∈ N0.

In analogy with [KW20, Proposition 3.2.7] we then have the following proposition.

Proposition 3.2.4. The algebra of smooth vectors Cl(V )s is a rigged C∗-algebra, and it carries
a smooth representation of the Banach Lie group Oθ(V ).

Finally, we adapt to this situation, and obtain the following result.

Proposition 3.2.5. The Fock space representation Cl(V ) × FL → FL restricts to a map
Cl(V )s × F s

L → F s
L and exhibits F s

L as a rigged Cl(V )s-module. Moreover, ClvN(V )s ..=
(Cl(V )s, F s

L) is a rigged von Neumann algebra.

Proof. Showing that the Fock space representation restricts and that the map ρ : Cl(V )s × F s
L →

F s
L is continuous is completely analogous to the proof we gave in [KW20, Proposition 3.2.8] for

the slightly coarser riggings. By [KW20, Remark 2.2.9] this implies that F s
L as a rigged Cl(V )s-

module. In order to show that ClvN(V )s is a rigged von Neumann algebra, we only have to note
that the C∗-representation induced by ρ is the Fock space representation, which is faithful. �

We remark that the rigged von Neumann algebra ClvN(V )s determines an ordinary
von Neumann algebra ClvN(V ) ..= (ClvN(V )s)′′ as the completion of Cl(V ) acting on FL
(Remark 2.1.7). It is well-known that ClvN(V ) = B(FL).

Remark 3.2.6. In our earlier paper [KW20, § 3.2] we considered different Fréchet spaces as the
riggings on FL and Cl(V ), obtained without assuming a splitting of V :

F∞
L

..= {v ∈ FL | ImpL(V ) → FL, U �→ Uv is smooth},
Cl(V )∞ ..= {a ∈ Cl(V ) | O(V ) → Cl(V ), g �→ θg(a) is smooth}.

Because of the fact that ImpθL(V ) is contained in ImpL(V ) we have that F∞
L ⊂ F s

L. This means
that we improve the rigging by passing to the subgroup ImpθL(V ). The analogous statement
is true for Cl(V )∞ and Cl(V )s. The riggings F∞

L and Cl(V )∞ have been appropriate for the
construction of the spinor bundle on loop space and its Clifford action. For the construction of
the fusion product we need the ‘finer’ riggings F s

L and Cl(V )s; in particular, we need these in
Lemma 3.2.7, see Remark 3.2.8.

We now move beyond the analogy with [KW20, § 3.2] and lift the separate Clifford C∗-algebras
Cl(V±) to the setting of rigged C∗-algebras, by defining

Cl(V±)s ..= {a ∈ Cl(V±) | O(V±) → Cl(V±), g �→ θg(a) is smooth}.
Just like Cl(V )s these are rigged C∗-algebras.

Lemma 3.2.7. The inclusion maps ι± restrict to isometric morphisms ι± : Cl(V±)s → Cl(V )s of
rigged C∗-algebras.

Proof. Let a ∈ Cl(V−) be arbitrary. We then see from Lemma 3.1.1 that the map

Oθ(V ) → Cl(V ), g �→ θg(a⊗ 1) (5)

is the composition of the Lie group homomorphism Oθ(V ) → O(V−), g �→ g− with the action map
O(V−) → Cl(V−), g− �→ θg−(a), followed by the smooth map ι− : Cl(V−) → Cl(V ). This proves
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that if a ∈ Cl(V−)s, then (5) is smooth, and we have a⊗ 1 ∈ Cl(V )s; and thus ι− restricts to a
map ι− : Cl(V−)s → Cl(V )s. What remains to be shown is that this restriction ι− : Cl(V−)s →
Cl(V )s is continuous with respect to the Fréchet space structures. Because ι− is linear, it
suffices to show continuity at 0. First, observe that if r ∈ R(Cl(V )), then r ◦ ι− ∈ R(Cl(V−)).
Moreover, we claim that

rn(a⊗ 1) = (r ◦ ι−)n(a), (6)
indeed

rn(a⊗ 1) = sup{r(Y1 . . . Yn(a⊗ 1)) | Yi ∈ oθ(V ), ‖Yi‖ � 1}
= sup{r(Y1|V− . . . Yn|V−(a) ⊗ 1) | Yi ∈ oθ(V ), ‖Yi‖ � 1}
= sup{r ◦ ι−(Y−,1 . . . Y−,n(a)) | Y−,i ∈ o(V−), ‖Yi‖ � 1}
= (r ◦ ι−)n(a).

From (6) it follows that the preimage of the subbasis open neighbourhood of zero given by {x ∈
Cl(V ) | rn(x) < ε} ⊂ Cl(V ) is the subbasis open neighbourhood of zero given by {a ∈ Cl(V−) |
(r ◦ ι−)n(a) < ε}. The discussion of Cl(V+) is analogous. �

Remark 3.2.8. For Lemma 3.2.7 it is essential that we work with Oθ(V ) and not with O(V ),
because O(V ) does not come equipped with a map to O(V−) and, moreover, because (6) only
holds because we use Oθ(V ). Further, the Fock space representation of Cl(V ) on FL does not
restrict to a representation of Cl(V )s on F∞

L ; this is why we have to use the bigger rigging F s
L

on FL a well.

We obtain the following result about the rigged C∗-algebras Cl(V±)s.

Proposition 3.2.9. The isometric morphisms ι± induce on F s
L the structure of a rigged Cl(V±)s-

module. Moreover, N±(V )s ..= (Cl(V±)s, F s
L) are rigged von Neumann algebras, and the pairs

(ι±,1) are spatial morphisms N±(V )s → ClvN(V )s.

Proof. The first claim follows from Lemma 3.2.7 and Remark 2.1.4(b). The second claim (see
Definition 2.1.6) follows since the representation of Cl(V±)s on F s

L extends to the representation
of Cl(V±) on FL, which is faithful. �

The rigged von Neumann algebra N±(V )s = (Cl(V±)s, F s
L) determines a von Neumann alge-

bra N±(V ) := (N±(V )s)′′ in the classical sense, as the von Neumann closure of the C∗-algebra
Cl(V±) acting on FL, see Remark 2.1.7. It is well known that these von Neumann algebras are
III1-factors (see [ST04, Example 4.3.2] and [Was98, § 16]).

3.3 Free fermions as a rigged bimodule
We now fix a concrete Hilbert space V , a real structure α, a Lagrangian L, and a splitting
V = V− ⊕ V+, which will remain the same for the rest of the paper. Let S → S1 be the odd
spinor bundle on the circle, i.e. that associated to the odd (i.e. the connected) spin structure on
the circle. We set V ..= L2(S1,S ⊗ Cd), where d is a natural number (later it is the spacetime
dimension). Pointwise complex conjugation gives a real structure α : V → V . In [KW22, § 2] it
is explained how the space of smooth 2π-antiperiodic functions on the real line can be identified
with the dense subspace Γ(S1,S ⊗ Cd) ⊂ V of smooth sections. Under this identification, V has
an orthonormal basis {ξn,j}n∈N,j=1,...,d by setting

ξn,j(t) = e−i(n+1/2)tej ,
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where {ej}j=1,...,d is the standard basis of Cd. It is further shown that α(ξn,j) = ξ−n−1,j for all n
and all j. It follows that the closed linear span

L ..= span{ξn,j | n � 0, j = 1, . . . , d}
is a Lagrangian in V . The corresponding Fock space F ..= FL is called the free fermions. Let us
write I+ ⊂ S1 for the open upper semicircle and I− ⊂ S1 for the open lower semicircle. If f ∈ V ,
then we write Supp(f) for the support of f . We consider the subspaces

V± ..= {f ∈ V | Supp(f) ⊆ I±};
they yield a decomposition V = V− ⊕ V+, and α restricts to real structures on V±. This puts
us in the setting of § 3.2, and we thus obtain rigged von Neumann algebras N s± ..= N±(V )s ..=
(Cl(V±)s, F s).

We denote by τ the complex-linear extension of the map ξn,j �→ ξ−n−1,j . The map τ is
orthogonal, exchanges L with α(L), and exchanges V+ with V−. We remark that while τ ∈ O(V ),
one can show that it is not implementable. Since α interchanges L with α(L) as well, the anti-
unitary isomorphism ατ preserves both L and α(L). In particular, it induces an anti-unitary
operator Λατ : F → F .

If g ∈ O(V ), then we write τ(g) ..= τ ◦ g ◦ τ ∈ O(V ). With this notation we have, for all f ∈ V
and all g ∈ O(V ), that τ(g(f)) = τ(g)(τ(f)). Because τ interchanges L with α(L) we have that
conjugation by τ yields an isometric (hence, smooth) group homomorphism from OL(V ) into
OL(V ). Finally, because τ exchanges V+ with V− we have that τ preserves Oθ

L(V ), and moreover
exchanges O(V−) with O(V+).

Remark 3.3.1. In the following discussion of the Clifford algebras Cl(V±) we will focus on Cl(V−)
instead of Cl(V+), and in the remainder of this work we will continue to do so. The rigged
von Neumann algebra N− = (Cl(V−)s, F s) will be denoted by just N in the following. Nothing
is lost by this choice, the theory for Cl(V+) is completely parallel.

We recall that the Fock space F is equipped with the left action of Cl(V−) induced by the
inclusion ι− : Cl(V−) → Cl(V ). Next, we equip it with a compatible right action of Cl(V−). We
note that F is naturally graded, as it is the completion of an exterior algebra. We let k : F → F
be the ‘Klein transformation’, that is, k acts on F as the identity on the even part, and as
multiplication by i on the odd part. Note that k is unitary. Then we define the operator

J ..= k−1 Λατ , (7)

which is an anti-unitary operator on F with J2 = 1. Now, we define a right action as

F × Cl(V−) → F, (v, a) �→ Ja∗Jv. (8)

We shall then write v � a for the right action of a on v.

Lemma 3.3.2. Right and left actions of Cl(V−) on F commute.

Proof. It is convenient to use Tomita–Takesaki theory to see this. The vector Ω ..= 1 ∈
Λ0L ⊂ F is cyclic and separating for the von Neumann algebra Cl(V−)′′ ⊂ B(F ), see [KW22,
§ 4.2]. In Tomita–Takesaki theory, one considers the triple (Cl(V−)′′, F,Ω) and associates to it
a so-called modular conjugation operator. In our case, this is precisely the operator J ,
see [KW22, § 4.2] and other references listed there. A main result of Tomita–Takesaki theory
(recalled as Theorem A.1.3) is that a �→ Ja∗J is an anti-isomorphism of von Neumann algebras
from Cl(V−)′′ onto its commutant. This shows that the action of a ∈ Cl(V−) on F commutes with
the one of Ja∗J . �
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Next, we pass to the rigged setting. In Propositions 3.2.5 and 3.2.9 we have seen that F s is
a rigged Cl(V−)s-module under the left action. The analog is true for the right action of (8), as
the following result shows.

Lemma 3.3.3. The right action (v, a) �→ v � a restricts to an action of Cl(V−)s on F s, and exhibits
F s as a rigged (Cl(V−)s)opp-module. In particular, F s is a rigged Cl(V−)s–Cl(V−)s-bimodule.

Proof. The proof is mostly standard, and analogous to that of [KW20, Proposition 3.2.8]. To
carry out the necessary computations one must make use of the formulas

Jθτ(g)(a)J = θg(JaJ) (a ∈ Cl(V ), g ∈ O(V )), (9)

which is [KW22, Lemma 4.8], and

X(v � a) = X(v) � a+ v � τ(X)(a) (X ∈ oL(V )),

where τ(X) = τ ◦X ◦ τ ∈ oL(V ), which follows from (9). From this, one obtains a non-
commutative binomial expansion, cf. [KW20, Equation (12)], at which point the proof is
completely analogous to that of Proposition 3.2.5. �

We recall from Proposition 3.2.9 that Cl(V−)s is not just a rigged C∗-algebra but also forms
a rigged von Neumann algebra N s = N s− = (Cl(V−)s, F s), whose defining representation is the
left action.

Proposition 3.3.4. The rigged bimodule F s is a rigged von Neumann N s–N s-bimodule.

Proof. It remains to show that the right action, (Cl(V−)s)opp × F s → F s, makes F s a rigged
von Neumann (N s)opp-module, where (N s)opp = ((Cl(V−)s)opp, (F s)�), see Definition 2.1.12. For
this, all that needs to be shown is that the induced map

ρ̂ : Cl(V−)opp → B(F ), a �→ Ja∗J

extends to a normal ∗-homomorphism

(Cl(V−)opp)′′ → B(F ).

Now, let ρ0 be the defining representation of (N s)opp, let c : F � → F be the canonical anti-linear
isomorphism, and let σ : B(F �) → B(F ) be the ∗-homomorphism

σ : T �→ JcTc−1J,

then one checks that the following diagram commutes.

Cl(V−)opp
ρ∨0

��

ρ̂ ������������
B(F �)

σ

��

B(F )

Thus, σ extends ρ̂. Moreover, since Jc : F � → F is an isometric isomorphism, it follows that σ
is a normal ∗-homomorphism. �

We recall that the rigged von Neumann algebra N s = N s− = (Cl(V−)s, F s) determines a
von Neumann algebra N = (N s)′′, see Remark 2.1.7. Moreover, the statement that F s is a
rigged von Neumann N s–N s-bimodule implies that its completion, the Fock space F , is an
N–N -bimodule in the classical sense, see Lemma 2.1.16.
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As we recall in Appendix A.1, a cyclic and separating vector for a representation of a von
Neumann algebra equips that representation with the structure of a so-called standard form
of the von Neumann algebra. Using this in our case for Ω ∈ F (see [KW22, § 4.2]), we note the
following result.

Proposition 3.3.5. The Fock space F is a standard form of N .

Remark 3.3.6. (a) From the uniqueness of standard forms (see Theorem A.1.2) it follows that F
is isomorphic to the canonical standard form L2

Ω(N) constructed from the faithful and normal
state N → C, a �→ 〈a � Ω,Ω〉. We recall that L2

Ω(N) is defined as the completion ofN with respect
to the sesquilinear form (a, b) �→ 〈a � Ω, b � Ω〉. An explicit isomorphism u : F → L2

Ω(N) is given
by the extension of the densely defined map F → N, a � Ω �→ a, see Lemma A.1.6.

(b) A standard form of a von Neumann algebra is in a natural way a bimodule for this
von Neumann algebra, see Remark A.1.5. The left action is the given representation, whereas
the right action is given by the formula v ⊗ a �→ Ja∗Jv, where J is the modular conjugation for
the triple (Cl(V−)′′, F,Ω). In our case, this is precisely the right action we have defined in (8).
In other words, the N–N -bimodule structure on F defined above coincides with the bimodule
structure obtained from the theory of standard forms; moreover, the isomorphism u : F → L2

Ω(N)
is an intertwiner.

A standard form of a von Neumann algebra, viewed as a bimodule, is neutral with respect
to Connes fusion, as we recall in Proposition A.2.6 and Corollary A.2.7. More precisely, there
are unitary intertwiners λK : F �K → K and ρK : K � F → K for any N–N -bimodule K, and
for K = F we have coincidence λF = ρF . We will denote this unitary intertwiner by

χ : F � F → F.

We shall need a more explicit description of χ to prove one of our key results, Theorem 4.3.3. To
make sense of this explicit description, we first recall the basic definition of the Connes fusion
product, see Appendix A, and in particular Definition A.2.1, for more details. We start by writing
D(F,Ω) ..= Hom−,N (L2

Ω(N), F ) for the space of bounded linear maps that intertwine the right
N actions. We define a map

pΩ : Hom−,N (L2
Ω(N), L2

Ω(N)) → N

by requiring pΩ(x) � v = x(v) for all v ∈ L2
Ω(N). Next, we consider the space D(F,Ω) ⊗ F

equipped with the degenerate inner product

〈x⊗ v, y ⊗ w〉Ω ..= 〈v, pΩ(x∗y) � w〉.
The Connes fusion F � F is now the Hilbert completion of D(F,Ω) ⊗ F/ ker〈·, ·〉Ω. On the space
D(F,Ω) ⊗ F the map χ : F � F → F is given by (see Proposition A.2.6 and Corollary A.2.7)

x⊗ v �→ pΩ(u ◦ x) � v, (10)

where u is the invertible intertwiner u : F → L2
Ω(N) of Remark 3.3.6.

Remark 3.3.7. It is interesting to note that in our case the map χ : D(F,Ω) ⊗ F → F is surjective,
which implies that the space D(F,Ω) ⊗ F/ ker〈·, ·〉Ω, is already complete.

We remark that Connes fusion is coherently associative (Proposition A.2.5), which allows us
to omit bracketing of multiple Connes fusions. The following lemma follows then directly from
Corollary A.2.7.
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Lemma 3.3.8. The isomorphism χ is associative in the sense that the following diagram
commutes.

F � F � F
1�χ

��

χ�1

��

F � F

χ

��

F � F
χ

�� F

3.4 Connes fusion of implementers
The goal of this section is to use Connes fusion and the unitary intertwiner χ : F � F → F in
order to define a product of certain implementers. Since Connes fusion is only available in an
ungraded setting, we need to restrict the discussion to even implementers, i.e. to operators U ∈
ImpL(V ) ⊂ B(F ) that preserve the natural grading of F . The collection of all even implementers
is, in fact, easy to find. Namely, the group OL(V ) has two connected components, thus ImpL(V )
has two connected components as well. All the elements of the identity component of ImpL(V )
are even, and all the remaining elements are odd [Ara87, Theorem 6.7]. Later, in § 4, we will
pull back all this structure to a connected Lie group, and hence anyway only see the connected
component of OL(V ).

We begin by specifying the domain of our Connes fusion product of implementers. It
mimics the fusion condition in loop spaces and later turns out to imply that condition (see
Theorem 4.3.3).

Definition 3.4.1. A pair (U,U ′) of even implementers U,U ′ ∈ ImpθL(V ) is called fusable, if
the elements g− ⊕ g+ and g′− ⊕ g′+ of Oθ

L(V ) implemented by U and U ′, respectively, satisfy
g′− = τg+τ .

Next are some preparative steps.

Lemma 3.4.2. Let U ∈ ImpθL(V ) be even and implement an element g = g− ⊕ g+ ∈ Oθ
L(V ).

Then, the Bogoliubov automorphisms θg± : Cl(V±) → Cl(V±) extend uniquely to automorphisms
of the von Neumann algebras N±, induced by a �→ UaU∗.

Proof. We discuss θg− , the proof for θg+ is analogous. Because Cl(V−) is dense in N = N−, it
is sufficient to prove the existence of an extension. We know that θg : Cl(V ) → Cl(V ) restricts
to θg− (by Lemma 3.1.1) and at the same time extends to an automorphism of Cl(V )′′ = B(F ),
namely a �→ UaU∗. It is thus sufficient to prove that conjugation by U preserves N ⊂ Cl(V )′′.
Let c ∈ Cl(V−) and let b ∈ Cl(V−)′. Then, because UcU∗ = θg−c ∈ Cl(V−), we have

U∗bUc = U∗bUcU∗U = U∗UcU∗bU = cU∗bU,

and, hence, U∗bU ∈ Cl(V−)′. Now let a ∈ N , then we have

UaU∗b = UaU∗bUU∗ = bUaU∗,

and hence UaU∗ ∈ N . �

We emphasize that the resulting automorphism θg− : N → N depends on neither g+ nor
U , as it is the unique extension of a map only depending on g−. Next we need to explore the
relation between the automorphisms θg± and the group homomorphism τ : Oθ

L(V ) → Oθ
L(V ) that

exchanges O(V−) with O(V+). To this end, we consider the orthogonal operator ατ : V → V from
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§ 3.3, which is not implementable in the classical sense but as it were implementable by an anti-
unitary operator. The following lemma summarizes this and further results about ατ from our
earlier work [KW22, Lemmas 4.4 and 4.6, Propositions 4.9 and 4.11].

Lemma 3.4.3. The map ατ : V → V extends uniquely to a complex anti-linear ∗-automorphism
κ : Cl(V ) → Cl(V ) of the Clifford algebra. Moreover, the anti-unitary operator Λατ : F → F
implements κ in the sense that for all a ∈ Cl(V ) we have

κ(a) = ΛατaΛατ

as elements of B(F ). In particular, κ : Cl(V ) → Cl(V ) extends uniquely to an anti-unitary
automorphism of B(F ). From there, it restricts to a Lie group homomorphism κ : ImpL(V ) →
ImpL(V ) covering τ : OL(V ) → OL(V ).

It follows from Lemmas 3.4.2 and 3.4.3 that θτ(g+) : Cl(V−) → Cl(V−) extends uniquely to an
automorphism of N , induced by a �→ κ(U)aκ(U)∗. Now we are in position to prove a fundamental
relation between implementability, the splitting V = V− ⊕ V+, and the bimodule structure of the
Fock space F .

Proposition 3.4.4. Let U : F → F be an even unitary map and let g± ∈ O(V±). Then, the
following are equivalent:

(a) U implements g− ⊕ g+ ∈ Oθ(V );
(b) the triple (θg− , θτ(g+), U) is a bimodule intertwiner.

Proof. Suppose that part (a) holds. It then follows from Lemma 3.4.2 that U intertwines the left
action along θg− :

U(a � v) = θg−(a) � Uv (a ∈ N, v ∈ F ).

Because U is even, we have that U commutes with the Klein operator k and, thus, by Lemma 3.4.3
and the definition of the operator J in (7), we have κ(U) = JUJ . Using this, we compute, again
for a ∈ N and v ∈ F

(Uv) � θτ(g+)(a) = Jθτ(g+)(a
∗)J � Uv = Jκ(U)a∗ � κ(U)∗JUv = UJa∗ � Jv = U(v � a).

This shows that the triple (θg− , θτ(g+), U) is a bimodule intertwiner.
Now, assume part (b). Running the above arguments in reverse, we obtain for all a− ∈ Cl(V−)

and all a+ ∈ Cl(V+) the equalities

Ua−U∗ = θg−(a−), Ua+U
∗ = θg+(a+).

Thus, we have that for all elements a of the algebraic tensor product of Cl(V−) with Cl(V+) the
equation

UaU∗ = θg−⊕g+(a)

holds. Because the algebraic tensor product is dense in the Clifford C∗-algebra Cl(V− ⊕ V+) =
Cl(V ) this equation holds for all a ∈ Cl(V ), and this completes the proof. �

Consider now two fusable implementers U,U ′ ∈ ImpθL(V ), with U implementing g− ⊕
g+ ∈ Oθ

L(V ) and U ′ implementing g′− ⊕ g′+ ∈ Oθ
L(V ), where g′− = τg+τ . We have three

∗-automorphisms of N , namely θg− , θτ(g+) = θg′− , and θτ(g′+), and, additionally, we have the
bimodule intertwiners (θg− , θτ(g+), U) and (θg′− , θτ(g′+), U

′) according to Proposition 3.4.4. Since
Connes fusion is a functor (Proposition A.2.3) we obtain a bimodule intertwiner (θg− , θτ(g′+),

U � U ′) : F � F → F � F .
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Definition 3.4.5. The Connes fusion of fusable implementers U and U ′ is the unitary
μ̂(U,U ′) ∈ U(F ) defined as the following composite.

F
χ−1

�� F � F
U�U ′

�� F � F
χ

�� F

By construction, the triple (θg− , θτ(g′+), μ̂(U,U ′)) is an intertwiner. Moreover, we have the
following.

Lemma 3.4.6. The Connes fusion μ̂(U,U ′) ∈ U(F ) of an even operator U implementing g− ⊕ g+
and an even operator U ′ implementing τg+τ ⊕ g′+ is an even operator and implements g− ⊕ g′+ ∈
Oθ
L(V ). In particular, μ̂(U,U ′) ∈ ImpθL(V ).

Proof. It suffices to show that μ̂(U,U ′) is even, the rest follows then from Proposition 3.4.4. In
order to show that μ̂(U,U ′) is even, we consider the grading involution g ..= k2 : F → F , which
has the property that an operator on F is even if and only if it commutes with g. We also
consider the grading involution ν : N → N on the von Neumann algebra N , which implements
the extension of the canonical grading of the Clifford algebra Cl(V−). It is straightforward to check
that the triple (ν, ν, g) is an intertwiner of N–N -bimodules. Therefore, functoriality of Connes
fusion determines an operator g � g : F � F → F � F . Next we compute for x⊗ v ∈ D(F,Ω) ⊗ F
using the formula of Proposition A.2.3 that

(g � g)(x⊗ v) = (g ◦ x ◦ ν∗) ⊗ g(v).

Observe that we have used that the map u used in Proposition A.2.3 is the identity. Now, we
apply χ, and calculate

χ((g � g)(x⊗ v)) = χ((g ◦ x ◦ ν∗) ⊗ g(v)) = pΩ(u ◦ g ◦ x ◦ ν∗) � g(v);

here, u is the invertible intertwiner of Remark 3.3.6, which is even. We recall that pΩ(u ◦ g ◦
x ◦ ν∗) is the unique element of N that satisfies pΩ(u ◦ g ◦ x ◦ ν∗) � w = u ◦ g ◦ x ◦ ν∗(w) for all
w ∈ L2

Ω(N). We then continue, for arbitrary w ∈ L2
Ω(N),

u ◦ g ◦ x ◦ ν∗(w) = ν ◦ u ◦ x ◦ ν∗(w) = ν(pΩ(u ◦ x) � ν∗(w)) = ν(pΩ(u ◦ x)) � w,
whence pΩ(u ◦ g ◦ x ◦ ν∗) = ν(pΩ(u ◦ x)). We continue where we left off, and compute

pΩ(u ◦ g ◦ x ◦ ν∗) � g(v) = ν(pΩ(u ◦ x)) � g(v) = g(pΩ(u ◦ x) � v) = g(χ(x⊗ v)),

obtaining
χ ◦ (g � g) = g ◦ χ.

Using this identity twice together with the functoriality of Connes fusion (Proposition A.2.3)
and the fact that U and U ′ are even and, hence, commute with g, we obtain the identity

χ ◦ (U � U ′) ◦ χ−1 ◦ g = g ◦ χ ◦ (U � U ′) ◦ χ−1;

this finishes the proof. �
The following result follows directly from the functoriality of Connes fusion (see

Proposition A.2.3).

Proposition 3.4.7. Connes fusion μ̂ of implementers is multiplicative in the following sense.
Let U,U ′, V, V ′ ∈ ImpθL(V ) be even implementers, of which U and U ′ are fusable, and V and V ′

are fusable. Then, UV and U ′V ′ are fusable, and we have

μ̂(U,U ′)μ̂(V, V ′) = μ̂(UV,U ′V ′).
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In § 4.3 we further study the Connes fusion of implementers. In particular, we relate it to the
fusion product on the universal central extension of LSpin(d), see Theorem 4.3.3. This relation
will be crucial for the proof of our main result, Theorem 5.3.1.

4. Fusive spin structures on loop space

In this section, we recall and relate the notions of spin structures on loop space, fusion products,
and string structures. The relation between loop fusion and the Connes fusion of implementers
is established in Theorem 4.3.3.

4.1 The spinor bundle on loop space
At the basis of our work is the notion of a spin structure on loop space according to
Killingback [Kil87]. We suppose M is a spin manifold of dimension d, and consider its spin
structure as a principal Spin(d)-bundle Spin(M) over M that lifts the structure group of the
oriented orthonormal frame bundle SO(M) along the central extension Z2 → Spin(d) → SO(d).

By definition of the Fréchet manifold structure on LM , a tangent vector at a loop γ ∈ LM
is a smooth section of TM along γ. This is the motivation to consider LSpin(M), the Fréchet
manifold of smooth free loops in the total space of Spin(M), as (a version of) the frame bundle
of LM . We note that LSpin(M) is a Fréchet principal LSpin(d)-bundle over LM , see [SW07,
Proposition 1.8], where LSpin(d) is the loop group of Spin(d). The following definition is due to
Killingback [Kil87].

Definition 4.1.1. A spin structure on LM is a lift of the structure group of the frame bundle
LSpin(M) of LM along the basic central extension

U(1) → L̃Spin(d) → LSpin(d).

Thus, a spin structure on LM is a principal L̃Spin(d)-bundle L̃Spin(M) over LM together
with a bundle map σ : L̃Spin(M) → LSpin(M) that intertwines the group actions along the
projection L̃Spin(d) → LSpin(d). We remark that the map σ : L̃Spin(M) → LSpin(M) has
itself the structure of a principal U(1)-bundle, where the U(1)-action is the one of the central
subgroup. Concerning the existence of spin structures on loop spaces, the following result was
proved by McLaughlin [McL92].

Proposition 4.1.2. The loop space LM of a spin manifold M admits a spin structure if
1
2p1(M) = 0.

The group LSO(d) acts in V = L2(S1,S ⊗ Cd) by pointwise multiplication; under the point-
wise projection map LSpin(d) → LSO(d), this defines an action of LSpin(d) in V . It is clear
that LSpin(d) acts on V through Oθ(V ), and a standard result that it acts through OL(V )
(see [PS03, Proposition 6.3.1]; also see [KW22, Lemma 3.21]). Moreover, the resulting map

ω : LSpin(d) → Oθ
L(V )

is smooth, [KW22, Lemma 3.22]. The following result is [KW22, Theorem 3.26].

Theorem 4.1.3. If 1 < d �= 4, then the pullback of the central extension U(1) → ImpθL(V )
q−→

Oθ
L(V ) along ω : LSpin(d) → Oθ

L(V ) is the basic central extension of LSpin(d).

From now on we will use this fixed model for the basic central extension. Most importantly,
it comes with a smooth map ω̃ : L̃Spin(d) → ImpθL(V ). It pulls back the smooth representation
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of ImpθL(V ) on Fock space F s (Proposition 3.2.2) to a smooth representation of the basic cen-
tral extension on F s. The spinor bundle on loop space is obtained using the associated bundle
construction of Lemma 2.2.2.

Definition 4.1.4. Let M be a spin manifold equipped with a spin structure L̃Spin(M) on its
loop space. The spinor bundle on loop space is the associated rigged Hilbert space bundle

F s(LM) ..=
(
L̃Spin(M) × F s

)
/L̃Spin(d).

The Clifford bundle is obtained in a similar way using Lemma 2.2.4 and the smooth represen-
tation of LSpin(d) on Cl(V )s, induced via ω : LSpin(d) → O(V ) from the smooth representation
of O(V ) on Cl(V )s by Bogoliubov automorphisms (Proposition 3.2.4).

Definition 4.1.5. The Clifford bundle on loop space is the associated rigged C∗-algebra bundle

Cls(LM) ..= (LSpin(M) × Cl(V )s)/LSpin(d).

Remark 4.1.6. The Clifford bundle on loop space can even be defined without a spin structure
on M , since ω factors through LSO(d).

The Clifford bundle Cls(LM) acts on the spinor bundle F s(LM) by ‘Clifford multiplication’.
To make this precise, we consider the rigged Cl(V )s-module F s of Proposition 3.2.5, with repre-
sentation (a, v) �→ a � v. We have proved in [KW20, Proposition 2.2.19] that this representation
extends from the typical fibres to all fibres, resulting in the following statement.

Proposition 4.1.7. There is a unique bundle map

Cls(LM) ×LM F s(LM) → F s(LM)

such that

([ϕ, a], [ϕ̃, v]) �→ [ϕ̃, a � v],

for all ϕ̃ ∈ L̃Spin(M) lifting ϕ ∈ LSpin(M), and all a ∈ Cl(V )s and v ∈ F s. Moreover, this map
equips the spinor bundle F s(LM) with the structure of a rigged Cls(LM)-module bundle with
typical fibre F s.

As the typical fibre of the rigged Cls(LM)-module bundle F s(LM) is, in fact, a rigged
von Neumann algebra, ClvN(V )s = (Cl(V )s, F s) (Proposition 3.2.5), we note immediately the
following consequence of Proposition 4.1.7.

Corollary 4.1.8. The pair ClsvN(LM) ..= (Cls(LM), F s(LM)) is a rigged von Neumann algebra
bundle over LM with typical fibre ClvN(V )s.

Remark 4.1.9. Let us comment on the relation between the spinor bundle on loop space defined
in our earlier work using coarser riggings F∞ of Fock spaces and Cl(V )∞ of Clifford algebras
[KW20, § 4]. As remarked in Remark 3.2.6, we have F∞ ⊂ F s, in other words, there is an isometric
morphism of rigged Hilbert spaces F∞ → F s, which induces the identity on the completion F ;
and similarly for the rigged Clifford algebras. Comparing Definitions 4.1.4 and 4.1.5 with [KW20,
Definitions 4.4 and 4.3], respectively, we observe that the above-mentioned isometric morphisms
induce isometric morphisms on the level of the spinor bundle and the Clifford algebra bundle on
loop space:

F∞(LM) → F s(LM) Cl∞(LM) → Cls(LM).

Moreover, this pair of isometric morphisms, in fact, is an isometric intertwiner as in
Definition 2.2.6. On the completions to continuous Hilbert space bundles and continuous
C∗-algebra-bundles (see § 2.2), these isometric intertwiners induce the identity maps.
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4.2 Fusion on loop space
We review first the general notion of a fusion product for principal U(1)-bundles over the loop
space LM of a smooth manifold M , following [Wal16b]. In the subsequent subsections we apply
this to two situations: central extensions of loop groups and spin structures on loop spaces.
We write PM for the set of smooth paths in M with sitting instants, i.e.

PM ..= {β : [0, π] →M | β is smooth and constant around 0 and π}. (11)

We use sitting instants so that we are able to concatenate arbitrary paths with a common end
point: the usual path concatenation β2 � β1 is again a smooth path whenever β1(π) = β2(0).
Unfortunately, with sitting instants, PM is not any kind of manifold; however, we may regard it
as a diffeological space, see § 2.3 for a quick review. The plots of PM are all maps c : U → PM
whose adjoint map c∨ : U × [0, π] →M , with c∨(u, t) ..= c(u)(t), is smooth. We remark that path
concatenation � and path reversal β �→ β̄ are smooth maps. The evaluation map ev : PM →
M ×M,β �→ (β(0), β(π)) is a smooth map, and since diffeological spaces admit arbitrary fibre
products, the iterated fibre products PM [k] ..= PM ×M×M · · · ×M×M PM are again diffeological
spaces: their plots are simply tuples (c1, . . . , ck) of plots of PM , such that ev ◦ c1 = · · · = ev ◦ ck.
In the following, we will use the smooth map

PM [2] → LM, (β1, β2) �→ β1 ∪ β2
..= β̄2 � β1

that combines two paths with a common initial point and a common end point to a loop.
If (β1, β2, β3) ∈ PM [3], we will regard the loop β1 ∪ β3 as the ‘fusion’ of the loops β1 ∪ β2 and
β2 ∪ β3. A fusion product on a principal U(1)-bundle over LM is now a lift of this fusion operation
to the total space.

Definition 4.2.1. Let π : L → LM be a Fréchet principal U(1)-bundle over LM . A fusion
product on L assigns to each element (β1, β2, β3) ∈ PM [3] a U(1)-bilinear map

λβ1,β2,β3 : Lβ1∪β2 × Lβ2∪β3 → Lβ1∪β3 ,

such that the following two conditions are satisfied.

(i) Associativity: for all (β1, β2, β3, β4) ∈ PM [4] and all qij ∈ Lβi∪βj ,

λβ1,β3,β4(λβ1,β2,β3(q12, q23), q34) = λβ1,β2,β4(q12, λβ2,β3,β4(q23, q34)).

(ii) Smoothness: for every plot (c1, c2, c3) : U → PM [3] and all smooth maps c12, c23 : U → L
such that (π ◦ cij)(x) = ci(x) ∪ cj(x) for all x ∈ U and ij ∈ {12, 23}, the map

U → L : x �→ λc1(x),c2(x),c3(x)(c12(x), c23(x))

is smooth.

Early versions of fusion products have been studied in [Bry93] and [ST05]. For a com-
prehensive treatment of this topic we refer to [Wal16b]. Fusion products are a characteristic
feature of structure in the image of transgression. The main result of [Wal16b] is that principal
U(1)-bundles over LM equipped with a fusion product (and a so-called thin homotopy equivari-
ant structure) form a category that is equivalent to the category of bundle gerbes over M , with
the equivalence established by transgression and regression functors. In particular, every princi-
pal U(1)-bundle over LM obtained by transgression of a bundle gerbe over M comes equipped
with a fusion product.
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4.3 Fusion in the basic central extension
The first occurrence of a fusion product in this paper is when the smooth manifold M is a
Lie group G, and the principal U(1)-bundle L is a central extension U(1) → L → LG of the
loop group. The diffeological space PG of paths with sitting instants becomes now a diffeological
group, i.e. (pointwise) multiplication and (pointwise) inversion are smooth maps; further, path
concatenation and path reversal are smooth group homomorphisms. We require compatibility
between fusion products and these group structures in the following sense.

Definition 4.3.1. A fusion product μ on a central extension U(1) → L → LG is called
multiplicative, if it is a group homomorphism, i.e.

μβ1,β2,β3(q12, q23) · μβ′
1,β

′
2,β

′
3
(q′12, q

′
23) = μβ1β′

1,β2β′
2,β3β′

3
(q12q

′
12, q23q

′
23)

for all (β1, β2, β3), (β′1, β′2, β′3) ∈ PG[3], qij ∈ Lβi∪βj , and q′ij ∈ Lβ′
i∪β′

j
.

The basic central extension of any compact simple Lie group can be obtained by transgression,
and thus comes equipped with a fusion product, which is automatically multiplicative and unique
up to isomorphism [Wal17]. In this paper, we need a precise formula for this fusion product μ
on the basic central extension of LSpin(d). Within the operator-theoretic model for L̃Spin(d)
described above, such a formula has been obtained in [KW22], and we shall recall this.

A key ingredient to this work will be a relation between that fusion product μ and the Connes
fusion of implementers defined in § 3.4.

We first note that the map ω : LSpin(d) → Oθ
L(V ) that defines our operator-theoretic model

via pullback, is compatible with all relations between loops and paths in Spin(d). To make
this more precise, let p± : Oθ

L(V ) → O(V±) denote the projections. Further, let Δ : P Spin(d) →
LSpin(d), β �→ β ∪ β be the doubling map. We define smooth maps ω± : P Spin(d) → O(V±) by
ω±(β) ..= p±(ω(Δ(β))). Since the action of LSpin(d) on V is pointwise, we have the following
result.

Lemma 4.3.2. The following diagram is commutative.

P Spin(d)

ω+

��

P Spin(d)[2]
pr1

��
pr2

��

∪
��

P Spin(d)

ω−

��

LSpin(d)

ω
��

O(V+) Oθ
L(V )

p−
��

p+
�� O(V−)

Next, we recall from [KW22, Definition 5.5] that a fusion factorization for L̃Spin(d) is
a smooth group homomorphism ρ : P Spin(d) → L̃Spin(d) such that the following diagram
commutes.

Such a fusion factorization was constructed in [KW22, § 5.3]; it is uniquely character-
ized by the property that ρ(β) satisfies ω̃(ρ(β))J = Jω̃(ρ(β)) and PΩ = Pω̃(ρ(β))Ω, where
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ω̃ : L̃Spin(d) → ImpθL(V ) is the map from § 4.1, J is the modular conjugation (see (7)) and
Pv is the closed self-dual cone corresponding to a vector v ∈ F (see Appendix A.1). Any fusion
factorization induces a multiplicative fusion product [KW22, Theorem 5.6]. In the present case,
ρ induces the fusion product μ on L̃Spin(d):

μβ1,β2,β3(g1, g2) ..= g1ρ(β2)−1g2,

where (β1, β2, β3) ∈ P Spin(d)[3], g1 ∈ L̃Spin(d)β1∪β2 , and g2 ∈ L̃Spin(d)β2∪β3 .
The following key result now tells us that the fusion product μ and the Connes fusion map

μ̂ of § 3.4 coincide under the group homomorphism ω̃ : L̃Spin(d) → ImpθL(V ).

Theorem 4.3.3. Let β= (β1, β2, β3)∈ P Spin(d)[3], g1∈ L̃Spin(d)β1∪β2 and g2 ∈ L̃Spin(d)β2∪β3 .
Then, the implementers ω̃(g2) and ω̃(g1) are fusable in the sense of Definition 3.4.1. Moreover,
ω̃ exchanges fusion on the basic central extension with the Connes fusion of implementers, i.e.

ω̃(μβ1,β2,β3(g1, g2)) = μ̂(ω̃(g2), ω̃(g1)).

Proof. Since the map ω : LSpin(d) → OL(V ) factors through LSO(d), its image is contained in
the connected component of the identity of Oθ

L(V )0. Thus, all implementers in the image of ω̃ are
even, which is a prerequisite for being fusable (Definition 3.4.1). For brevity, we set Ui ..= ω̃(gi)
for i = 1, 2. According to Lemma 4.3.2, U1 implements ω(β1 ∪ β2) = ω−(β2) ⊕ ω+(β1), and U2

implements ω(β2 ∪ β3) = ω−(β3) ⊕ ω+(β2), and we have τ(ω+(β2)) = ω−(β2). This shows that
the pair (U2, U1) is fusable in the sense of Definition 3.4.1.

Let K ..= ω̃(ρ(β2))−1, so that

ω̃(μβ1,β2,β3(g1, g2)) = U1KU2. (12)

We compute, using the multiplicativity of μ̂ (Proposition 3.4.7),

μ̂(U2, U1) = μ̂(U2KK
−1, U1KK

−1) = μ̂(U2K,U1K)μ̂(K−1,K−1).

We claim that
μ̂(U2K,U1K) = U1KU2K and μ̂(K−1,K−1) = K−1;

this proves the theorem, in view of (12). The element K has the property that U2K imple-
ments an operator of the form g− ⊕ 1 ∈ Oθ

L(V ) (see [KW22, Equation (13)]), which implies
that U2K ∈ (Cl(V+)′′)′, see Proposition 3.4.4. Moreover, because U2K is even, this implies that
U2K ∈ Cl(V−)′′. Similarly, one shows that U1K ∈ Cl(V+)′′ and, thus, U1KU2K = U2KU1K. Let
f : L2

Ω(Cl(V−)′′) → F be the inverse of the isomorphism u defined in Remark 3.3.6, given by
a �→ a � Ω. Let v ∈ F ; then, to determine μ̂(U2K,U1K) we compute

χ((U2K � U1K)χ−1v) = χ((U2K � U1K)(f ⊗ v)) = χ(U2Kf ⊗ U1K(v))

= pΩ(uU2Kf) � U1K(v)

using the definition of χ in (10) and the formula in Proposition A.2.3, with ν2 = 1N and u = 1.
We then use the defining property of pΩ, getting

pΩ(uU2Kf) � w = uU2Kfw = U2K � w

for all w ∈ L2
Ω(Cl(V−)′′) and, thus,

χ((U2K � U1K)χ−1v) = U2KU1K(v) = U1KU2K(v).

This proves the first equation. Because of the fact that K−1 has the property that JK−1 =
K−1J and PK−1Ω = PΩ (see [KW22, Lemma 5.16]), we see that the corresponding map
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L2
Ω(Cl(V−)′′) → L2

Ω(Cl(V−)′′) is f−1K−1f . We compute

(K−1 �K−1)(f ⊗ v) = K−1ff−1Kf ⊗K−1v = f ⊗K−1v;

this proves the second equation. �
Remark 4.3.4. Theorem 4.3.3 establishes a new relation between loop fusion and Connes fusion.
It might fit into a larger framework, together with fusion of positive energy representations of
loop groups established by Wassermann and Toledano-Laredo [Was98, Tol97], but we currently
do not understand the full picture.

4.4 Fusive spin structures and string structures
We return to the discussion of spin structures on the loop space of a spin manifold M . We recall

that a spin structure L̃Spin(M) on LM can be viewed as a principal U(1)-bundle over LSpin(M)

and thus, in particular, over a loop space. As such, L̃Spin(M) may host fusion products. The
following definition is [Wal16a, Definition 3.6].

Definition 4.4.1. A fusion product on a spin structure L̃Spin(M) on LM is a fusion product
λ on the principal U(1)-bundle L̃Spin(M) over LSpin(M) that is equivariant with respect to

the fusion product μ on L̃Spin(d) under the principal action, i.e.

λβ1γ1,β2γ2,β3γ3(ϕ̃12 · g12 ⊗ ϕ̃23 · g23) = λβ1,β2,β3(ϕ̃12 ⊗ ϕ̃23) · μγ1,γ2,γ3(g12 ⊗ g23) (13)

for all (β1, β2, β3) ∈ P Spin(M)[3], (γ1, γ2, γ3) ∈ P Spin(d)[3], ϕ̃ij ∈ L̃Spin(M)βi∪βj , and gij ∈
L̃Spin(d)γi∪γj . A spin structure on LM with a fusion product is called a fusive spin structure.

Fusive spin structures bring us one step forward on the way from spin structures on LM to
string structures on M . They already fix the missing ‘only if’ part of Proposition 4.1.2, as shown
in [Wal16a, Theorem 1.4]: LM admits a fusive spin structure if and only if 1

2p1(M) = 0. A full
string structure yet contains more information related to thin homotopy equivariance; however,
this information is not needed for the construction of a fusion product on the spinor bundle on
loop space, which we perform in § 5. There, we only need a fusive spin structure.

In the following we want to explain how a fusive spin structure on LM , the main ingredient
of our construction in § 5, can be obtained from a (geometric) string structure on M . There are
essentially four different, but equivalent, ways to say what a string structure on a spin manifold
M is. All four versions have in common that their existence is obstructed by 1

2p1(M) ∈ H4(M,Z),
and that, under appropriate notions of equivalence, they form a torsor over the group H3(M,Z).

(1) In purely topological terms, a string structure is a lift of the structure group of the spin frame
bundle Spin(M) to the 3-connected covering group of Spin(d) (see [ST04]). That covering
group, the topological string group, does not allow (finite-dimensional) Lie group structures
(it has cohomology in infinitely many degrees).

(2) In terms of higher-categorical structures, a string structure is a lift of the structure group of
the spin frame bundle Spin(M) along the central extension of Lie 2-groups,

BU(1) → String(d) → Spin(d),

where BU(1) denotes the Lie 2-group with a single object, Spin(d) is considered as a Lie
2-group with only identity morphisms, and String(d) is, for instance, the String Lie 2-group
constructed in [BSCS07] (strict, but infinite-dimensional) or in [Sch11] (finite-dimensional,
but not strict), or in [Wal12a] (again strict, and with diffeological spaces). Geometric
realization establishes the relation with part (1), see [BS09, NW13a].
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(3) In terms of bundle gerbes, a string structure is a trivialization of the Chern–Simons
2-gerbe over M (see [Wal13]). We explain below some more details about this approach.
Its equivalence with part (2) was established in [NW13b, Theorem 7.9].

(4) In terms of loop space geometry, a string structure is a thin homotopy equivariant fusive
spin structure on LM ; this definition and its equivalence with part (3) is in [Wal15]; we will
recall it below.

Now we want to describe some details about part (3) in condensed form. A trivialization of
the Chern–Simons 2-gerbe (i.e. a string structure) is a triple (S,A, σ) consisting of the following
structure.

– A bundle gerbe S in the sense of Murray [Mur96] over Spin(M).
– A bundle gerbe isomorphism

A : δ∗Gbas ⊗ pr∗2 S → pr∗1 S
over the double fibre product Spin(M)[2] over M , where Gbas is the basic gerbe over Spin(d)
constructed by Meinrenken [Mei03] and Gawedzki and Reis [Gaw88], and δ(ϕ,ϕ′) ∈ Spin(d)
is defined by ϕδ(p, p′) = ϕ′ for frames ϕ,ϕ′ ∈ LSpin(M) at the same point.

– A certain 2-isomorphism σ over the triple fibre product, expressing a compatibility condition
between A and the multiplicativity of Gbas. For the details we refer to [Wal13].

A major advantage of this notion of a string structure is that it allows a differential refinement
by string connections. A string connection consists of a connection on the bundle gerbe S, such
that the bundle gerbe morphism A is connection-preserving (the basic gerbe Gbas has a canonical
connection). In the present context, string connections are useful for establishing the relation
between parts (3) and (4), which we explain next. String connections always exist, and the space
of string connections relative to a fixed string structure is affine [Wal13, Theorem 1.3.4].

The key technique is the earlier-mentioned transgression functor

T : h1Grb∇(M) → FusBun(LM)

from the homotopy 1-category of the bicategory of bundle gerbes with connection over M to
the category of principal U(1)-bundles over LM equipped with fusion products, in the sense of
Definition 4.2.1. Versions of this functor have been described in [Gaw88, Bry93], the complete
construction is in [Wal16b]. As a prerequisite, we apply the transgression functor to the basic
gerbe Gbas over Spin(d), and obtain a principal U(1)-bundle T (Gbas) with fusion product over
the loop group LSpin(d). Functoriality allows to transgress multiplicativity; thus, what we really
obtain is a central extension with a multiplicative fusion product. In fact, it is the basic central
extension [Wal10], and we have proved in [KW22, Theorem 6.4] that there is even a canonical,
fusion-preserving isomorphism

T (Gbas) ∼= L̃Spin(d) (14)

to our operator-theoretic model for the basic central extension of Theorem 4.1.3, equipped
with the fusion product μ of § 4.3. Next, we apply transgression to a string structure (S,A, σ)
with a connection. The bundle gerbe S transgresses to a principal U(1)-bundle S ..= T (S) over
LSpin(M) equipped with a fusion product. Taking the isomorphism (14) into account, the bundle
gerbe morphism A transgresses to a fusion-preserving bundle morphism

T (A) : δ∗L̃Spin(d) ⊗ pr∗2 S → pr∗1 S,
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from which one can extract an L̃Spin(d)-action on S turning S into a principal L̃Spin(d)-bundle
over M . One can then show that S is a spin structure on LM , and further, that the fusion
product on S turns it into a fusive spin structure. For the details, see [Wal16a].

Summarizing, a geometric string structure on M (i.e. a string structure with a string con-
nection) induces in a canonical way a fusive spin structure on LM . Thus, our construction of the
Connes fusion product on the spinor bundle on loop space, which we describe in the subsequent
§ 5, applies, in particular, to spin manifolds equipped with a geometric string structure.

5. Fusion in the spinor bundle on loop space

This section contains our main results: we first exhibit the spinor bundle F s(LM) on loop
space as a rigged von Neumann bimodule bundle, and then equip its completion with a Connes
fusion product over the fusion of loops. Throughout this section, M is a spin manifold equipped
with a spin structure L̃Spin(M) on its loop space. In § 5.3 we will then require a fusive spin
structure.

5.1 The von Neumann algebra bundle over path space
In this section we construct a rigged von Neumann algebra bundle N s on the path space PM
of M , which, heuristically, has the property that the algebra N s

β2
sits in the Clifford algebra

ClsvN(LM)β1∪β2 as Cl(V−)s sits in Cl(V )s, for paths (β1, β2) ∈ PM [2]. In order to construct
N s, we start with the underlying rigged C∗-algebra bundle As. We recall from § 4.3 that we
have a Fréchet Lie group homomorphism LSpin(d) → Oθ

L(V ), which is induced by the point-
wise multiplication of LSO(d) on V . From § 3.1 we recall that we have a Fréchet Lie group
homomorphism Oθ

L(V ) → O(V−). Finally, O(V−) acts smoothly on Cl(V−)s, and we thus obtain
an induced smooth representation LSpin(d) × Cl(V−)s → Cl(V−)s. This allows us to define, via
Lemma 2.2.4, an associated rigged C∗-algebra bundle

Cls−(LM) ..= LSpin(M) ×LSpin(d) Cls(V−)

over LM with typical fibre Cl(V−)s. Next we consider the diffeological space PM of paths in M ,
together with the doubling map Δ : PM → LM,β �→ β ∪ β, which is well-defined and smooth
(see § 4.2). Then, we define the rigged C∗-algebra bundle

As ..= Δ∗ Cls−(LM)

with typical fibre Cls(V−) over PM , as explained in § 2.3.

Remark 5.1.1. Analogous to Remark 4.1.6, our construction of the rigged C∗-algebra bundle As

holds if M is merely oriented, it neither needs a spin structure on M nor on LM . The following
discussion requires both, however.

We have proved in Lemma 3.2.7 that the inclusion ι− : Cl(V−)s → Cl(V )s, a �→ a⊗ 1 is
smooth, and since ι− obviously intertwines the LSpin(d)-actions, we obtain an induced isometric
morphism

Cls−(LM) → Cls(LM), [ϕ, a] �→ [ϕ, a⊗ 1] (15)

of rigged C∗-algebra bundles over LM . Further, we have considered the induced representation
of Cl(V−)s on Fock space F s, turning F s into a rigged Cl(V−)s-module. On the level of rigged
module bundles, no general induction procedure exists; however, the following result shows that
it works in the present case.
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Proposition 5.1.2. The restriction of Clifford multiplication Cls(LM) × F s(LM) → F s(LM)
along (15) equips the spinor bundle F s(LM) with the structure of a rigged Cls−(LM)-module
bundle with typical fibre the rigged Cl(V−)s-module F s.

Proof. In order to meet the assumptions of Definition 2.2.5, we have to find compatible local
trivializations Ψ of F s(LM) and Φ of Cls−(LM). As associated bundles, local trivializations
can be induced from local trivializations of the underlying principal bundles (Lemmas 2.2.2
and 2.2.4); here, L̃Spin(M) and LSpin(M). Let ϕ̃ : U → L̃Spin(M) be any local section, and let
ϕ : U → LSpin(M) be the local section obtained by composing ϕ̃ with the projection
L̃Spin(M) → LSpin(M). The corresponding local trivializations of principal bundles induce
the following local trivializations of associated bundles:

Ψ : F s(LM)|U → F s × U, Ψ([ϕ̃(x), v]) = (v, x),
Φ : Cls−(LM)|U → Cl(V−)s × U, Φ([ϕ(x), a]) = (a, x).

It is obvious that these exchange the rigged module structure on the fibres with that on the
typical fibre and, hence, are compatible in the sense of Definition 2.2.5. �

Again via pullback along the doubling map Δ, we obtain the rigged As-module bun-
dle Δ∗F s(LM), with typical fibre the rigged Cl(V−)s-module F s. Since the latter is a rigged
von Neumann algebra, N s = (Cl(V−)s, F s), we have that

N s ..= (As,Δ∗F s(LM))

is a rigged von Neumann algebra bundle over PM with typical fibre N s in the sense of
Definition 2.2.9. This implies that for each β ∈ PM the fibre N s

β = (As
β , F

s(LM)Δ(β)), is a
rigged von Neumann algebra, and thus induces an ordinary von Neumann algebra Nβ

..= (N s
β)

′′,
see Remark 2.1.7. Any choice of compatible local trivializations as in Proposition 5.1.2 establishes
a normal ∗-isomorphism u : Nβ → N of von Neumann algebras, see Remark 2.2.12. In particular,
the von Neumann algebras Nβ are type III1-factors.

5.2 The spinor bundle as a bundle of bimodules
The goal of this section is to exhibit the spinor bundle F s(LM) as a rigged von Neumann N s–N s-
bimodule bundle. We start fibrewise, and shall, for each loop of the form γ = β1 ∪ β2, where
(β1, β2) ∈ PM [2], equip the Fock spaces F s(LM)γ with representations of the rigged C∗-algebras
(As

β1
)opp and As

β2
. We recall that F s is a rigged Cl(V−)s–Cl(V−)s-bimodule, with representations

denoted by a1 � v � a2 (Lemma 3.3.3).

Lemma 5.2.1. For each (β1, β2) ∈ PM [2] and γ ..= β1 ∪ β2, there exist unique maps

(ρ1)β1,β2 : (As
β1

)opp × F s(LM)γ → F s(LM)γ and (ρ2)β1,β2 : As
β2

× F s(LM)γ → F s(LM)γ

with the property that the equations

(ρ1)β1,β2([Δ(ϕ1), a], [ϕ̃, v]) = [ϕ̃, v � a] and (ρ2)β1,β2([Δ(ϕ2), a], [ϕ̃, v]) = [ϕ̃, a � v]

hold for all (ϕ1, ϕ2) ∈ P Spin(M)[2] lifting (β1, β2), all ϕ̃ ∈ L̃Spin(M) lifting ϕ1 ∪ ϕ2, all a ∈
Cl(V−)s and all v ∈ F s

L.

Proof. It is clear that the maps are determined uniquely by the given equations, provided that
choices of (ϕ1, ϕ2) and ϕ̃ exist for arbitrary (β1, β2). To see this, we choose a lift ỹ ∈ Spin(M) of
the initial point y := β1(0) = β2(0), and define ϕ′

1, ϕ2 : [0, π] → Spin(M) as the horizontal lifts
of β1, β2, with respect to some fixed connection and with initial point ϕ′

1(0) = ϕ2(0) = ỹ. Since
horizontal lifts of constant paths are again constant paths, the lifts ϕ′

1 and ϕ2 have the same
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sitting instants as β1 and β2, respectively. Now we let g ∈ Spin(d) be the unique element such that
ϕ2(π) = ϕ′

1(π)g. Since Spin(d) is connected, there exists a path g̃ : [0, π] → Spin(d) connecting e
with g, and we may choose it with sitting instants. Then, ϕ1 := ϕ′

1g̃ and ϕ2 form a pair (ϕ1, ϕ2) ∈
P Spin(M)[2] as required. Moreover, ϕ1 ∪ ϕ2 ∈ LSpin(M), and since L̃Spin(M) → LSpin(M)
is surjective, a lift ϕ̃ exists.

For existence, we have to check that the given equations can be used as definitions, i.e. that
they are independent of the involved choices. To see this, we suppose (ϕ′

1, ϕ
′
2) ∈ P Spin(M)[2]

lifts the same pair (β1, β2), and ϕ̃′ lifts ϕ′
1 ∪ ϕ′

2. Then, using the pointwise principal actions,
we have ϕ′

i = ϕigi for gi ∈ P Spin(d) and ϕ̃′ = ϕ̃g̃ for g̃ ∈ L̃Spin(d). By definition of As and
F s(LM) as associated bundles, we have [Δ(ϕ′

2), a] = [Δ(ϕ2), θω−(g2)(a)] and [ϕ̃′, v] = [ϕ̃, Uv],
with ω− : P Spin(d) → O(V−) defined in § 4.3, and U ..= ω̃(g̃) ∈ ImpθL(V ). Thus, we get

(ρ2)β1,β2([Δ(ϕ′
2), a], [ϕ̃

′, v]) = [ϕ̃, (θω−(g2)(a) ⊗ 1) � Uv]

= [ϕ̃, (θω(g1∪g2)−(a) ⊗ θω(g1∪g2)+(1)) � Uv]

= [ϕ̃, θω(g1∪g2)(a⊗ 1) � Uv]

= [ϕ̃, U((a⊗ 1) � v)]

= [ϕ̃′, a � v],

as intended. In the second step we have used the commutativity of diagram Lemma 4.3.2, together
with the fact that Bogoliubov automorphisms are unital. The third step uses Lemma 3.1.1,
and the fourth step uses the fact that U implements ω(g1 ∪ g2). For ρ2, we have [Δ(ϕ′

1), a] =
[Δ(ϕ1), θω−(g1)(a)], and compute

(ρ1)β1,β2([Δ(ϕ′
1), a], [ϕ̃

′, v]) = [ϕ̃, J(θω−(g1)(a) ⊗ 1)∗J � Uv]

= [ϕ̃, Jθω(g2∪g1)(a⊗ 1)∗J � Uv]

= [ϕ̃, θω(g1∪g2)(J(a⊗ 1)∗J) � Uv]

= [ϕ̃, U(J(a⊗ 1)∗J � v)]

= [ϕ̃′, v � a],

where, in the third step, we have used (9) from [KW22, Lemma 4.8] together with the obvious
identity τ(ω(g1 ∪ g2)) = ω(g2 ∪ g1). �

It is clear from the formulas in Lemma 5.2.1 that the maps (ρ1)β1,β2 and (ρ2)β1,β2 are indeed
left actions of (As

β1
)opp and As

β2
, respectively, and that they commute. We remark that it is

further true (this follows later from Proposition 5.2.4) that F s(LM)β1∪β2 is a rigged As
β2

–As
β1

-
bimodule in the sense of Definition 2.1.5.

Trying to assemble the maps (ρ1)β1,β2 and (ρ2)β1,β2 into bundle morphisms, we face the
problem that the bundle F s(LM) lives over LM , whereas the algebra bundle As lives over PM .
Therefore, we work over the space PM [2] of pairs of paths with common end points, and work
with the pullbacks of bundles to this space, along the following maps.

LM PM [2]
∪

��

p2
��

p1
��
PM

We recall from § 2.3 that over the diffeological space PM [2], bundles consist of plot-wise defined
bundles, and bundle isomorphisms for the transition of plots. Let c : U → PM [2] be a plot.
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We write ci ..= Δ ◦ pi ◦ c for i = 1, 2 and c̃ ..= ∪ ◦ c. By definition of the involved diffeolo-
gies, the maps c1, c2, c̃ : U → LM are smooth maps between (Fréchet) manifolds. The rigged
C∗-algebra bundles p∗1As and p∗2As, consist of the plot-wise defined rigged C∗-algebra bun-
dles (p∗1As)c = c∗1 Cls−(LM) and (p∗2As)c = c∗2 Cls−(LM) over U , respectively, and the rigged
Hilbert space bundle ∪∗F s(LM) consists of the plot-wise defined rigged Hilbert space bundles
(∪∗F s(LM))c = c̃∗F s(LM) over U . Moreover, if c′ : U ′ → PM [2] is another plot, and f : U → U ′

is a smooth map such that c′ ◦ f = c, then the bundle isomorphisms (p∗iAs)c → f∗(p∗iAs)c′ are
the canonical ones obtained from the equality ci = c′i ◦ f . Similarly, the bundle isomorphism
(∪∗F s(LM))c → f∗(∪∗F s(LM))c′ is the canonical one obtained from the equality c̃ = c̃′ ◦ f .

Our goal is to show that the maps of Lemma 5.2.1 equip the rigged Hilbert space bundle
∪∗F s(LM)) over PM [2] with the structure of a rigged p∗2As–p∗1As-bimodule bundle. We will
first discuss the situation on a fixed plot c : U → PM [2], and to this end, consider x ∈ U and
(β1, β2) ..= c(x). Then, for the fibres over x we find

((p∗1As)c)x = c∗1 Cls−(LM)x = Cls−(LM)Δ(β1) = As
β1

and, similarly,

((p∗2As)c)x = As
β2

and (∪∗F s(LM)c)x = F s(LM)β1∪β2 .

Now we see that the maps (ρ1)β1,β2 and (ρ2)β1,β2 of Lemma 5.2.1 assemble into fibre-preserving
maps

ρ1,c : (p∗1(As)opp)c ×U ∪∗F s(LM)c → ∪∗F s(LM)c,

ρ2,c : (p∗2As)c ×U ∪∗F s(LM)c → ∪∗F s(LM)c.

Lemma 5.2.2. Let c : U → PM [2] be a plot. The maps ρ1,c and ρ2,c equip the rigged Hilbert
space bundle (∪∗F s(LM))c over U with the structure of a rigged (p∗2As)c–(p∗1As)c-bimodule
bundle with typical fibre the rigged Cl(V−)s–Cl(V−)s-bimodule F s.

For the proof of Lemma 5.2.2 we require the following lemma, which delivers us appropriate
local trivializations that at each point meet the conditions of Lemma 5.2.1.

Lemma 5.2.3. Each x ∈ U has an open neighbourhood W ⊂ U admitting smooth maps

ϕ1, ϕ2 : W → P Spin(M) and a smooth map ϕ̃ : W → L̃Spin(M), such that (ϕ1(u), ϕ2(u)) ∈
P Spin(M)[2] for all u ∈W , and the diagram

L̃Spin(M)

��

P Spin(M)[2]

��

∪
�� LSpin(M)

��

W

ϕ̃

��

(ϕ1,ϕ2)

��

c
�� PM [2]

∪
�� LM

is commutative.

Proof. We consider the map y : U →M sending u ∈ U to the common initial point of the pair
of paths c(u). We choose W such that Spin(M) →M has a section ỹ : W → Spin(M) along y|W .
As in Lemma 5.2.1, we define ϕ′

1(u), ϕ2(u) ∈ P Spin(M) as the horizontal lifts of (β1, β2) := c(u)
starting at ỹ(u). Since horizontal lifts depend smoothly on the initial condition and on the base
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path, this yields smooth maps ϕ′
1, ϕ2 : W → P Spin(M). The endpoints differ by a smooth map

g : W → Spin(d). After shrinking W further to a contractible set, and since Spin(d) is connected,
g is homotopic to the constant map with value e ∈ Spin(d). Such a homotopy g̃ : W × [0, π] →
Spin(d) can be chosen to have sitting instants for each u ∈W ; then, ϕ1(u) := ϕ′

1(u)g̃(u,−) yields
a smooth map ϕ1 : W → Spin(M) such that ϕ1, ϕ2 have all required properties. Now, the map
W → LSpin(M) : u �→ ϕ1(u) ∪ ϕ2(u) is smooth, and since L̃Spin(M) → LSpin(M) is a locally
trivial bundle, a section ϕ̃ exists, possibly after a further shrinking of W . �

An immediate consequence of the definitions of the bundles (p∗iAs)c and (∪∗F s(LM))c as
(pullbacks of) associated bundles, is that the sections into the corresponding principal bundles
obtained from Lemma 5.2.3 induce local trivializations

Φ1 : (p∗1As)c|W → Cl(V−)s ×W Φ1([Δ(ϕ1(x)), a]) = (a, x),

Φ2 : (p∗2As)c|W → Cl(V−)s ×W Φ2([Δ(ϕ2(x)), a]) = (a, x),

Ψ : (∪∗F s(LM))c|W → F s ×W Ψ([ϕ̃(x), v]) = (v, x);

(16)

see Lemmas 2.2.2 and 2.2.4.

Proof of Lemma 5.2.2. According to Definition 2.2.7, the statement can be proved locally in
a neighbourhood of any point x ∈ U . We may assume an open neighbourhood V ⊂ U that
admits smooth maps ϕ1, ϕ2 : W → P Spin(M) and ϕ̃ : W → L̃Spin(M) satisfying the conditions
in Lemma 5.2.3. Then, we let Φ1, Φ2, and Ψ be the local trivializations of (16). Inspecting the
definition of ρ1,c and ρ2,c in Lemma 5.2.1, we find that

Ψ(ρ1,c(a1, v)) = Ψ(v) � Φ1(a1) and Ψ(ρ2,c(a2, v)) = Φ2(a2) �Ψ(v)

for all appropriate a1 ∈ (p∗1As)c, a2 ∈ (p∗2As)c and v ∈ (∪∗F s(LM))c. This proves that (Φ1,Ψ)
and (Φ2,Ψ) are compatible local trivializations. �

Lemma 5.2.2 establishes the plot-wise definition of the rigged p∗2As–p∗1As-bimodule bun-
dle ∪∗F s(LM); now it remains to assure the correct gluing behaviour for the transition
between plots. Thus, suppose c : U → PM [2] and c′ : U ′ → PM [2] are plots, and f : U → U ′ is a
smooth map with c′ ◦ f = c. But the canonical bundle isomorphisms (p∗iAs)c → f∗(p∗iAs)c′ and
(∪∗F s(LM))c → f∗(∪∗F s(LM))c′ are under the fibre-wise identifications used in the definition
of ρ1,c and ρ2,c over each point x ∈ U the identity maps of Cls−(LM)βi∪βi and F s(LM)β1∪β2 ,
respectively, where (β1, β2) ..= c(x). In particular, they form a unitary intertwiner. This shows
the following.

Proposition 5.2.4. The plot-wise bimodule structure of Lemma 5.2.2 exhibits the spinor
bundle ∪∗F s(LM) as a rigged p∗2As–p∗1As-bimodule bundle, with typical fibre the rigged
Cl(V−)s–Cl(V−)s-bimodule F s.

The bundle As is a rigged C∗-algebra bundle; however, in § 5.1 we discussed how to upgrade it
to a rigged von Neumann algebra bundle N s = (As,Δ∗F s(LM)) with typical fibre N s. Moreover,
the typical fibre F s of the rigged bimodule bundle ∪∗F s(LM) is a rigged von Neumann N s–N s-
bimodule. Our main result in this section is that these rigged von Neumann structures carry
over to the spinor bundle.

Theorem 5.2.5. The spinor bundle on loop space ∪∗F s(LM) is a rigged von Neumann
p∗2N s–p∗1N s-bimodule bundle with typical fibre the rigged von Neumann N s–N s-bimodule F s.

For the proof, we note the following improvement of Lemma 5.2.3.
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Lemma 5.2.6. Let c : U → PM [2] be a plot. Then, each point x ∈ U has an open neighbourhood

W ⊂ U admitting smooth maps ϕ1, ϕ2 : W → P Spin(M) and ϕ̃1, ϕ̃2, ϕ̃ : W → L̃Spin(M) such
that ϕ1, ϕ2, and ϕ̃ satisfy the conditions of Lemma 5.2.3, and ϕ̃i lifts Δ ◦ ϕi : W → LSpin(M),
for i = 1, 2.

Proof. The additional maps ϕ̃i exist, possibly after a further shrinking of W , since L̃Spin(M) →
LSpin(M) is a locally trivial principal bundle. �

Proof of Theorem 5.2.5. Using Lemma 5.2.6 We obtain the local trivializations Φ1 of (p∗1As)c,
Φ2 of (p∗2As)c, and Ψ of (∪∗F s(LM))c of (16), and additionally from ϕ̃i, since Δ ◦ ϕi is a section
along

U
c

�� PM [2]
pi

�� PM
Δ

�� LM

local trivializations

Ψi : (p∗iΔ
∗F s(LM))c|W → F s ×W, Ψi([ϕ̃i(x), v]) = (v, x).

By inspection of the involved formulas, we see that (Φi,Ψi) is the pullback of the compati-
ble local trivializations of Proposition 5.1.2 and, hence, is a compatible local trivialization of
(p∗iN s)c. Consulting Definition 2.2.13, this proves that (∪∗F s(LM))c is a rigged von Neumann
(p∗2N s)c–(p∗1N s)c-bimodule bundle. Concerning the transition between plots, there is nothing to
add to the argument given in the proof of Proposition 5.2.4. �

We recall from § 2.2 that the fibrewise completion of the spinor bundle F s(LM) results in
a continuous Hilbert space bundle over LM , which we denote by F (LM). The following result
follows from Theorem 5.2.5 via the theory of rigged von Neumann algebra bundles developed in
§ 2.2. First, for each (β1, β2) ∈ PM [2] we have by Lemma 2.2.14 that the fibre F s(LM)β1∪β2 is a
rigged N s

β2
–N s

β1
-bimodule. Lemma 2.1.16 implies then the following result.

Corollary 5.2.7. The completion F (LM)β1∪β2 of each fibre of the spinor bundle on loop space
is an Nβ2–Nβ1-bimodule in the classical von Neumann theoretical sense.

In the next section it will be important to identify the bimodule F (LM)β1∪β2 with the typical
fibre bimodule F in a precise way, using the methods developed in the results above, reduced to
a single point. For later reference, we summarize this in the following remark.

Remark 5.2.8. For a pair (β1, β2) ∈ PM [2] of paths with common endpoints, consider a

lift (ϕ1, ϕ2) ∈ P Spin(M)[2] and a lift ϕ̃ ∈ L̃Spin(M) of ϕ1 ∪ ϕ2. Then, there exist unique
isomorphisms φi : N s

βi
→ N s of rigged von Neumann algebras and a unique isometric iso-

morphism ψ : F s(LM)β1∪β2 → F s of rigged Hilbert spaces with φi([Δϕi, a]) = a and ψ([ϕ̃, v]) =
v. Moreover, (φ2, φ1, ψ) is an invertible unitary intertwiner from the rigged von Neumann
p∗2N s–p∗1N s-bimodule F s(LM)β1∪β2 to the rigged von Neumann N s–N s-bimodule F s in the
sense of Definition 2.1.15. The isomorphisms φi induce normal ∗-isomorphisms ui : Nβi → N
of von Neumann algebras, and by Lemma 2.1.16, the isometric isomorphism ψ induces a uni-
tary map ν : F s(LM)β1∪β2 → F , such that the triple (u2, u1, ν) is an intertwiner between the
Nβ2–Nβ1-bimodule F (LM)β1∪β2 and the N–N -bimodule F .

5.3 Fusion of spinors
The goal of this section is to construct the Connes fusion of spinors on loop space. Now we
require L̃Spin(M) to be a fusive spin structure on LM (see Definition 4.4.1). Its fusion product
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is the essential ingredient to our construction, and will be denoted by λ. The main result is the
following.

Theorem 5.3.1. Let (β1, β2, β3) ∈ PM [3] be a triple of paths with common endpoints, let Nβi

be the von Neumann algebras over the paths βi, and let F (LM)βi∪βj be the completions of the
fibres of the spinor bundle on loop space, viewed as von Neumann Nβj–Nβi-bimodules over the
loops βi ∪ βj . Then, there exists a unique unitary intertwiner

χβ1,β2,β3 : F (LM)β2∪β3 �Nβ2
F (LM)β1∪β2 → F (LM)β1∪β3

of Nβ3–Nβ1-bimodules, where � is Connes fusion, such that the following condition is satisfied.

For all (ϕ1, ϕ2, ϕ3) ∈ P Spin(M)[3] such that ϕi lifts βi, and all ϕ̃12, ϕ̃23, ϕ̃13 ∈ L̃Spin(M)
such that ϕ̃ij lifts ϕi ∪ ϕj and such that λ(ϕ̃12, ϕ̃23) = ϕ̃13, the diagram

F (LM)β2∪β3 �Nβ2
F (LM)β1∪β2

(u3,u1,ν23�ν12)

��

χβ1,β2,β3
�� F (LM)β1∪β3

(u3,u1,ν13)

��

F �N F
χ

�� F

(17)

is commutative, where (uj , ui, νij) are the unitary intertwiners determined by ϕi, ϕj and ϕ̃ij as
in Remark 5.2.8, and χ is the Connes fusion of the free fermions of § 3.3.

Proof. For fixed ϕi and ϕ̃ij as in the theorem statement, there is exactly one map χβ1,β2,β3 such
that diagram (17) commutes, namely ν−1

13 ◦ χ ◦ ν23 � ν12. Thus, to prove the theorem, we must
prove that: (1) such choices of ϕi and ϕ̃ij exist; and (2) the resulting map χβ1,β2,β3 does not
depend on any of these choices.

We start with part (1). We may use Lemma 5.2.1 separately for (β1, β2) and then (β2, β3)
to obtain choices of (ϕ1, ϕ2) ∈ P Spin(M)[2] lifting (β1, β2), and (ϕ′

2, ϕ
′
3) ∈ P Spin(M)[2] lifting

(β2, β3). Since Spin(M) is a principal Spin(d)-bundle, there exists a unique g ∈ P Spin(d) such
that ϕ2 = ϕ′

2g. Then, (ϕ′
2g, ϕ

′
3g) ∈ P Spin(M)[2] also lifts (β2, β3), and with ϕ3

..= ϕ′
3g we have

(ϕ1, ϕ2, ϕ3) ∈ P Spin(M)[3]. Now, choices of ϕ̃12 and ϕ̃23 obviously exist, since L̃Spin(M) →
LSpin(M) is surjective, and we set ϕ̃13

..= λ(ϕ̃12, ϕ̃23). This finishes the proof of existence of
choices.

We now prove part (2), i.e. χβ1,β2,β3 does not depend on any of the choices. Indeed,

suppose (ϕ′
1, ϕ

′
2, ϕ

′
3) ∈ P Spin(M)[3] such that ϕi lifts βi, suppose ϕ̃′

ij ∈ L̃Spin(M) lift ϕ′
i ∪

ϕ′
j and ϕ̃′

13 = λ(ϕ̃′
12, ϕ̃

′
23). Then, there are unique elements g̃12, g̃23 ∈ L̃Spin(d) such that

ϕ̃′
12 = ϕ̃12 · g̃12 and ϕ̃′

23 = ϕ̃23 · g̃23. The compatibility between the fusion products μ on L̃Spin(d)

and λ on L̃Spin(M) in Definition 4.4.1 then implies that ϕ̃′
13 = ϕ̃13 · μ(g̃12 ⊗ g̃23). We write

(u′j , u
′
i, ν

′
ij) for the unitary intertwiners corresponding to ϕ̃′

ij and ϕ′
i according to Remark 5.2.8.

Using the definition of νij and ν ′ij via ϕ̃ij and ϕ̃′
ij , respectively, we obtain ν ′12 = U12 ◦ ν12

and ν ′23 = U23 ◦ ν23, for the implementers U12
..= ω̃(g̃12) and U23

..= ω̃(g̃23) in ImpθL(V ). By
Theorem 4.3.3, we have then ν ′13 = μ̂(U23, U12) ◦ ν13, where μ̂ denotes the Connes fusion of
implementers defined in § 3.4. Using properties and the definition of μ̂, and the functoriality
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of Connes fusion, we compute

(ν ′13)
∗ ◦ χ ◦ (ν ′23 � ν ′12) = ν∗13 ◦ μ̂(U∗

23, U
∗
212) ◦ χ ◦ (U23 � U12) ◦ (ν23 � ν12)

= ν∗13 ◦ χ ◦ (U∗
23 � U∗

12) ◦ (U23 � U12) ◦ (ν23 � ν12)

= ν∗13 ◦ χ ◦ (ν23 � ν12).

This proves that one can define χβ1,β2,β3
..= ν∗13 ◦ χ ◦ (ν23 � ν12) for arbitrary choices of ϕi and ϕ̃ij .

It remains to note that this definition indeed yields a unitary intertwiner of Nβ3–Nβ1-bimodules,
as all three components are unitary intertwiners. �

The collection χ = (χβ1,β2,β3) with (β1, β2, β3) ranging over PM [3] will be called the Connes
fusion product on the spinor bundle the loop space. Its construction proves the conjectured
Theorem 1 of [ST05]. In the remainder of this section we derive three fundamental properties.

Proposition 5.3.2. For a path β ∈ PM , the Nβ–Nβ-bimodule F (LM)β∪β is neutral with
respect to Connes fusion. Moreover, if (β1, β2) ∈ PM [2], the bimodules F (LM)β1∪β2 and
F (LM)β2∪β1 are inverses of each other with respect to Connes fusion. In particular, F (LM)β1∪β2

is a Morita equivalence between the von Neumann algebras Nβ2 and Nβ1 .

Proof. The Nβ–Nβ-bimodule F (LM)β∪β is a standard form of Nβ, since it is isomorphic via
a unitary intertwiner to the N–N -bimodule F , which is a standard form of N (Remark 5.2.8
and Proposition 3.3.5). In particular, F (LM)β∪β is neutral with respect to Connes fusion. If
(β1, β2) ∈ PM [2], then evaluating the Connes fusion product over the triples (β1, β2, β1) and
(β2, β1, β2) exhibits the bimodules F (LM)β1∪β2 and F (LM)β2∪β1 as inverses of each other. �

For the second result, we recall that Connes fusion is coherently associative
(Proposition A.2.5), which allows us to omit bracketing of multiple Connes fusions.

Proposition 5.3.3. The Connes fusion product on the spinor bundle is associative in the sense
that the diagram

is commutative for all (β1, β2, β3, β4) ∈ PM [4].

Proof. Let (β1, β2, β3, β4) ∈ PM [4]. Iterating the procedure described at the beginning of the
proof of Theorem 5.3.1, one can see that there exists (ϕ1, ϕ2, ϕ3, ϕ4) ∈ P Spin(M)[4] such that

ϕi lifts βi. Choose ϕ̃ij ∈ L̃Spin(M) lifting ϕi ∪ ϕj , for ij ∈ {12, 23, 34}. Then, we set ϕ̃13
..=

λ(ϕ̃12 ⊗ ϕ̃23), ϕ̃24
..= λ(ϕ̃23 ⊗ ϕ̃34), and ϕ̃14

..= λ(ϕ̃13 ⊗ ϕ̃34). Note that by the associativity of
the fusion product λ (Definition 4.2.1), we have that ϕ̃14 = λ(ϕ̃12 ⊗ ϕ̃24). We let (uj , ui, νij) be
the unitary intertwiners induced by ϕi and ϕ̃ij according to Remark 5.2.8. We consider the
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following diagram of unitary isomorphisms.

The four outer diagrams are commutative by Theorem 5.3.1, using above relations between fusion
products of the various ϕ̃ij . The ones on top and on the left additionally use the functoriality of
Connes fusion (Proposition A.2.3). The diagram in the middle is commutative by Lemma 3.3.8;
this completes the proof. �

The third result concerns the smoothness of the Connes fusion product. Since we have not yet
been able to lift Connes fusion to the setting of rigged Hilbert spaces, we cannot claim that the
fibre-wise maps χβ1,β2,β3 assemble into a smooth (or only continuous) bundle homomorphism.
Instead we will describe smoothness by showing that certain smooth sections are mapped to
smooth sections.

We consider the (set-theoretical) bundle p∗23F (LM) � p∗12F (LM) over PM [3], whose fibre
over (β1, β2, β3) ∈ PM [3] is the Hilbert space F (LM)β2∪β3 �Nβ2

F (LM)β1∪β2 . The Connes fusion
product on the spinor bundle assembles then into a (set-theoretical) bundle morphism

χ : p∗23F (LM) � p∗12F (LM) → p∗13F (LM)

over PM [3]. We will now specify a natural choice of smooth sections into p∗23F (LM) � p∗12F (LM).

To start with, we recall that a smooth section ϕ̃ : U → L̃Spin(M) and a smooth map v : U → F s

induce a smooth section σϕ̃,v : U → F s(LM) into the spinor bundle, with σϕ̃,v(x) = [ϕ̃(x), v(x)].
Since F s ⊂ F is dense, the image of all such sections is dense in each fibre. The following lemma
guarantees that similar local sections exist in a situation appropriate for fusion.

Lemma 5.3.4. Let (β1, β2, β3) : U → PM [3] be a plot. Then, for each x ∈ U there exists an
open neighbourhood W ⊂ U of x, smooth maps ϕ1, ϕ2, ϕ3 : W → P Spin(M), and smooth maps

ϕ̃12, ϕ̃23, ϕ̃13 : W → L̃Spin(M) such that (ϕ1(x), ϕ2(x), ϕ3(x)) ∈ P Spin(M)[3] for all x ∈W , ϕi
lifts βi for all i ∈ {1, 2, 3}, ϕ̃ij lifts ϕi ∪ ϕj for all ij ∈ {12, 23, 13}, and ϕ̃13(x) = λ(ϕ̃12(x), ϕ̃23(x))
for all x ∈W .

Proof. As in the proof of Theorem 5.3.1, we apply Lemma 5.2.3 separately to the plots (β1, β2)
and (β2, β3), obtaining smooth maps (ϕ1, ϕ2) and (ϕ′

2, ϕ
′
3). The difference between ϕ2 and ϕ′

2

is now a smooth map g : W → P Spin(d) with ϕ2(x) = ϕ′
2(x)g(x) for all x ∈W . With ϕ3(x) ..=

ϕ′
3(x)g(x) we obtain the desired triple (ϕ1, ϕ2, ϕ3) : W → P Spin(M)[3]. As explained in the

proof of Lemma 5.2.3, there exist ϕ̃12 and ϕ̃13 as claimed. Finally, since the fusion product λ

on L̃Spin(M) is a smooth in the sense of Definition 4.2.1, the pointwise definition ϕ̃13(x) ..=
λ(ϕ̃12(x), ϕ̃23(x)) yields a smooth map. �
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In the situation of Lemma 5.3.4, at each point x ∈W , the elements ϕ̃ij(x) and ϕi(x)
induce unitary intertwiners (u2

x, u
1
x, ν

12
x ) and (u3

x, u
2
x, ν

23
x ) as in Remark 5.2.8. For any smooth

map v : W → F s, we then obtain a section σ into the bundle p∗23F (LM) � p∗12F (LM) by
setting

σ(x) ..= (ν23
x � ν12

x )∗χ∗(v(x)) ∈ (p∗23F (LM) � p∗12F (LM))c(x) (18)

for all x ∈W . We will call any section that is locally of this form smooth. Again, since each fibre
of the bundle p∗23F (LM) � p∗12F (LM) is isomorphic to F , the image of all smooth sections is
dense. We have the following result.

Proposition 5.3.5. The Connes fusion product χ on F (LM) is smooth in the sense that it
sends smooth sections to smooth sections.

Proof. Let σ be a smooth section. Smoothness of χ ◦ σ can be checked locally on an open set
W , on which sections as in Lemma 5.3.4 and a smooth map v : W → F s exist such that (18)
holds. The conditions in Lemma 5.3.4 imply that at each x ∈W , diagram (17) in Theorem 5.3.1
is commutative, saying that

σ(x) = (ν13
x )−1(v(x)) ∈ (p∗13F (LM))c(x).

Thus, σ|W is (the completion of) the smooth section σϕ̃13,v : W → p∗13F
s(LM) and, hence,

smooth. �

5.4 The stringor bundle
Given the spinor bundle F s(LM) on the loop space LM together with its Connes fusion
product, it is possible to assemble a structure that deserves to be called the stringor bun-
dle of the string manifold M (this terminology is due to Stolz and Teichner [ST05]). While
Stolz and Teichner understood the stringor bundle as the pair of the spinor bundle on loop
space and its Connes fusion product (both not yet constructed at that time), our aim is to
exhibit the stringor bundle as a higher structure on the manifold M , rather than on its loop
space.

Suitable for our stringor bundle is the framework of 2-vector bundles. Roughly speaking, a
2-vector bundle is meant to be a bundle version of a 2-vector space, where the bicategory of
2-vector spaces is by definition the bicategory of algebras, bimodules, and intertwiners [ST04,
Sch09]. A comprehensive study of 2-vector bundles can be found in [KLW21]. Let us first take all
algebras and modules to be finite-dimensional and over C. In this setting, a 2-vector bundle over
a smooth manifold M consists of a surjective submersion π : Y →M , for instance, the disjoint
union of open sets of a cover, and:

(a) an algebra bundle A over Y ;
(b) an invertible p∗2A–p∗1A-bimodule bundle M over the double fibre product Y [2];
(c) an invertible intertwiner μ : p∗23M⊗p∗2A p

∗
12M → p∗13M of p∗3A–p∗1A-bimodule bundles

over Y [3];

such that μ satisfies an associativity condition over Y [4].
An example of a 2-vector bundle is a line bundle gerbe; there, the algebra bundle A is

trivial with fibre C, and the invertible bimodule bundle M is just a complex line bundle. A
result in bundle gerbe theory is that every bundle gerbe can be obtained, via a procedure
called regression, from a line bundle L on loop space and a fusion product λ in the sense of
Definition 4.2.1, see [Wal16b, Wal12b], at least if one allows Y to be a diffeological space. Namely,
one chooses a base point x ∈M , and considers Y = PxM , the diffeological space of smooth paths
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with sitting instants starting at x, with π ..= ev1 the end-point evaluation. Then, we have the
smooth map ∪ : PxM [2] → LM and obtain the line bundle M ..= ∪∗L. The intertwiner μ is the
restriction of the fusion product λ to PxM [3] ⊂ PM [3]; this defines a (diffeological) bundle gerbe
over M .

We extend regression to the spinor bundle and its Connes fusion product. Let M be a string
manifold with a fixed string structure and a fixed base point x ∈M . Then, the stringor 2-vector
bundle on M consists of the following structure.

(a) The diffeological space PxM together with the end-point evaluation ev1 : PxM →M .
(b) The rigged von Neumann algebra bundle N s over PxM , obtained as the restriction of the

rigged von Neumann algebra bundle constructed in § 5.1 to PxM ⊂ PM .
(c) The rigged von Neumann p∗2N s–p∗1N s-bimodule bundle ∪∗F s(LM) over PxM [2], constructed

in Theorem 5.2.5 and restricted to PxM [2] ⊂ PM [2].
(d) The Connes fusion product

χ : p∗23 ∪∗ F (LM) �p∗2N p∗12 ∪∗ F (LM) → p∗13 ∪∗ F (LM)

over PxM [3], constructed fibrewise in Theorem 5.3.1, which is associative (Proposition 5.3.3).

Though this stringor bundle is a perfectly well-defined structure, we do not yet have a well-
defined von Neumann theoretical version of 2-vector bundles, and thus at the moment cannot
claim that the stringor bundle is such a 2-vector bundle. To expand on this problem, we
remark that there exists a bicategory of von Neumann algebras, bimodules, and intertwin-
ers, with the composition by Connes fusion [Bro03, ST04]. However, as explained in § 2, a
proper discussion of a bundle version requires rigged von Neumann algebras and bimodules.
So far we have not been able to lift Connes fusion to the setting of rigged von Neumann
bimodules. Thus, we currently do not have a properly defined bicategory of rigged von
Neumann algebra bundles, bimodule bundles, and intertwiners, and hence cannot establish
the stringor bundle as an object in a corresponding bicategory of ‘rigged von Neumann
2-vector bundles’.

Yet, our stringor bundle realizes another claim of Stolz and Teichner [ST04, Corollary 5.0.4],
namely that, after picking a basepoint x ∈M , a string structure on M gives rise to a family of
von Neumann algebras parameterized by the points ofM . For y ∈M , we obtain from our stringor
bundle a family (Nβ) of von Neumann algebras, indexed by the set Px,yM of paths connecting
the base point x with y. Moreover, these von Neumann algebras are pairwise canonically Morita
equivalent, via the invertible Nβ1–Nβ2-bimodule F (LM)β1∪β2 , in a way compatible with triples
and quadruples of paths. Such a structure is as good as a single von Neumann algebra; thus, our
stringor bundle may be seen as a family of von Neumann algebras parameterized by the points
of M , associated to a string structure.

On the other hand, it is clear that the described definition of the stringor bundle is not quite
optimal. For example, it depends on the choice of a base point x, which is a typical disadvantage of
regression. Then, its construction depends rather indirectly on the string structure, and the string
2-group makes no direct appearance. We expect that there will be a more direct construction in
the future that will avoid these problems. But even if such a construction is found, we believe
that the results of the present article will remain useful, for instance to construct differential
operators acting on spinors on loop spaces, whereas no theory of operators acting on sections of
2-vector bundles is available.
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Appendix A. Bimodules of von Neumann algebras

A.1 Standard forms of a von Neumann algebra
In this appendix, we recall some facts about standard forms of von Neumann algebras. We
first recall the notion of modules of von Neumann algebras. Let A1 and A2 be von Neumann
algebras. A left A1-module is a Hilbert spaceH equipped with a normal (i.e. σ-weakly continuous)
∗-homomorphism A1 → B(H). We adopt the notation a � v for the element a ∈ A1 acting on the
vector v ∈ H. A right A2-module is a Hilbert space H equipped with a normal ∗-homomorphism
Aopp

2 → B(H) (where Aopp
2 is the opposite algebra of A2). We adopt the notation v � a for

the right action of a ∈ A2 on v ∈ H. An A1–A2-bimodule is a Hilbert space H which is a left
A1-module and at the same time a right A2-module, such that the left and right actions commute.
If H is an A1–A2-bimodule, and H̃ is an Ã1–Ã2-bimodule, then an intertwiner from H to H̃ is
a triple (f1, f2, T ) consisting of normal ∗-homomorphisms f1 : A1 → Ã1 and f2 : A2 → Ã2, and
of a bounded linear operator T : H → H̃ that intertwines both actions along f1 and f2, i.e.

T (a1 � v � a2) = f1(a1) � T (v) � f2(a2)

for all a1 ∈ A1, a2 ∈ A2, and v ∈ H. If f1 and f2 are identities, we just say that T is an intertwiner
of A1–A2-bimodules.

Next, we recall the notion of a standard form, see [Tak10, Chapter IX, Definition 1.13]
or [Haa75].

Definition A.1.1. A standard form of a von Neumann algebra A is a quadruple (A, H, J, P ),
where H is a left A-module, J is an anti-linear isometry with J2 = 1, and P is a closed self-dual
cone in H, subject to the following conditions:

(i) JAJ = A′;
(ii) JaJ = a∗ for all a ∈ A ∩A′;
(iii) Jv = v for all v ∈ P ;
(iv) aJaJP ⊆ P for all a ∈ A.
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The following result, proved in [Haa75, Theorem 2.3], tells us that standard forms are unique
up to unique isomorphism.

Theorem A.1.2. Suppose that (A1, H1, J1, P1) and (A2, H2, J2, P2) are standard forms, and
that π is an isomorphism of A1 onto A2. Then, there exists a unique unitary operator u from
H1 onto H2 such that:

(i) π(a) = uau∗ for all a ∈ A1;
(ii) J2 = uJ1u

∗;
(iii) P2 = uP1.

Let H be a left A-module. A vector ξ ∈ H is called cyclic if A � ξ is dense in H, and it
is called separating if the map A → H, a �→ a � ξ is injective. If a cyclic and separating vector
ξ ∈ H is given, then one can equip H with the structure of a standard form of A, a fact that we
make use of in § 3.3. We give the main points of the construction here.

First, we consider the densely defined Tomita operator S : H → H. It is defined to be the
closure of the operator

A � ξ → A � ξ, a � ξ �→ a∗ � ξ.

We then write S = JΔ1/2 for the polar decomposition of S, where J is an anti-unitary map
called the modular conjugation and Δ1/2 is a positive unbounded map called the modular
operator. A fundamental result of Tomita–Takesaki theory is the following, proven e.g. in
[Tak10, Chapter IX].

Theorem A.1.3. The assignment a �→ Ja∗J is an anti-isomorphism of von Neumann algebras
from A onto its commutant A′.

We define P ⊂ H to be the closure of {JaJa � ξ ∈ H | a ∈ A}. Then, P is a closed self-dual
cone in H. It is proved in [Ara74, Theorem 4] that Jv = v for all v ∈ P and that aJaJP ⊆ P
for all a ∈ A. In conclusion, we have the following result.

Proposition A.1.4. The quadruple (A, H, J, P ) is a standard form of A.

Remark A.1.5. We remark that any standard form (A, H, J, P ) of a von Neumann algebra A
can be equipped with the structure of an A–A-bimodule by defining the right action by v �
a ..= Ja∗J � v. Theorem A.1.3 readily shows that left and right action commute. Further, in
Theorem A.1.2, the triple (π, π, u) is automatically a unitary intertwiner of bimodules.

It is well-known that, through the Gelfand–Naimark–Segal (GNS) construction, any normal
state on a von Neumann algebra A produces a representation of A which has a cyclic vector. If
the state is faithful, then it has a cyclic and separating vector. This construction will be useful
later, so we review the main steps now. Let φ : A → C be a faithful and normal state on a
von Neumann algebra A. Then the assignment A×A → C, (a, b) �→ φ(b∗a) is a non-degenerate
sesquilinear form on A. We write L2

φ(A) for the completion of A with respect to this sesquilinear
form. The algebra A acts from the left on L2

φ(A) by (the extension of) left multiplication. Clearly
the identity 1 ∈ A ⊆ L2

φ(A) is a cyclic and separating vector for this left action. It follows that
the quadruple (A, L2

φ(A), J, P ) is a standard form of A.

Lemma A.1.6. Let H be a left A-module, and let ξ ∈ H be a cyclic and separating vector. Let
φ : A → C be the faithful and normal state φ(a) = 〈a � ξ, ξ〉. The unitary map u : H → L2

φ(A)
from Theorem A.1.2 with respect to π = 1 is given by the closure of the map

u : a � ξ �→ a.
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Proof. A straightforward verification shows that u satisfies properties (i)–(iii) from
Theorem A.1.2. �

A.2 Connes fusion of bimodules
In this appendix we review Connes fusion, and provide results about functoriality and associa-
tivity specifically adapted to our situation. Let A1,A2, and A3 be von Neumann algebras. Let H
be an A1–A2-bimodule and let K be an A2–A3-bimodule. In short, the Connes fusion of H with
K is an A1–A3-bimodule H �φ K, which is defined with respect to some faithful and normal
state φ : A2 → C. The result will be, up to unique isomorphism, independent of the state φ. Our
main references are [Tho11] and [Tak10, Chapter IX]. The articles [Bro03] and [BDH14] provide
results similar to ours concerning functoriality and associativity of Connes fusion.

We consider the standard form L2
φ(A2) of A2 as an A2–A2-bimodule, as explained in

Appendix A.1. We write D(H,φ) ..= Hom−,A2(L
2
φ(A2), H) for the space of bounded right mod-

ule maps from L2
φ(A2) into H. This space is canonically an A1–A2-bimodule; explicitly, if

x ∈ D(H,φ), v ∈ L2
φ(A2), a1 ∈ A1 and a2 ∈ A2, then we have

(a1 � x)(v) ..= a1 � x(v) and (x � a2)(v) ..= x(a2 � v).

We note that D(H,φ) includes into H as a dense subspace through the map x �→ x(1). This map
is, however, not an intertwiner between bimodules on the nose, in fact, one may verify that the
right action is twisted by conjugation by the modular operator Δ1/2.

There is a canonical A2-valued inner product on D(H,φ), defined as follows. If x ∈ D(H,φ),
then its adjoint, written x∗, is an element of Hom−,A2(H,L

2
φ(A2)). Hence, if x, y ∈ D(H,φ), then

y∗x ∈ Hom−,A2(L
2
φ(A2), L2

φ(A2)).

There is a canonical isomorphism pφ : Hom−,A2(L
2
φ(A2), L2

φ(A2)) → A2, which is determined by
the relation pφ(x) � v = x(v), for x ∈ Hom−A2(L

2
φ(A2), L2

φ(A2)) and v ∈ L2
φ(A2). The aforemen-

tioned A2-valued inner product on D(H,φ) is given by (x, y) = pφ(y∗x). On the algebraic tensor
product D(H,φ) ⊗K we define a (degenerate) sesquilinear form by

〈(x⊗ v), (y ⊗ w)〉φ = 〈pφ(y∗x) � v, w〉K .
Definition A.2.1. The Connes fusion product H �φ K of H with K relative to the faithful
and normal state φ of A2 is the completion of

D(H,φ) ⊗K/ ker〈·, ·〉φ
with respect to the inner product 〈·, ·〉φ, with the left A1 action obtained from the A1–A2-
bimodule structure of D(H,φ), and the right A3 action obtained from the A2–A3 bimodule
structure on K.

The definition above does not treat H and K on equal footing, the following observation tells
us that this is just an artifact of our description. We define D′(K,φ) = HomA2−(L2

φ(A2),K) to be
the space of bounded left module maps from L2

φ(A2) into K. We then have that D′(K,φ) includes
into K as a dense subspace, through the map x �→ x(1). Using the canonical isomorphism p′φ :
HomA2−(L2

φ(A2), L2
φ(A2)) → A2 we define sesquilinear forms on H ⊗D′(K,φ) and on D(H,φ) ⊗

D′(K,φ), respectively,

〈(v ⊗ x′), (w ⊗ y′)〉′φ = 〈v � p′φ((y′)∗x′), w〉H , v, w ∈ H, x′, y′ ∈ D′(K,φ),
〈(x⊗ x′), (y ⊗ y′)〉′′φ = 〈pφ(y∗x) � 1 � p′φ((y′)∗x′),1〉L2

φ(A2) x, y ∈ D(H,φ) x′, y′ ∈ D′(K,φ).

In [Tho11, § 5.2] or [Tak10, Proposition 3.15 and Definition 3.16] the following is proved.
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Lemma A.2.2. The spaces H ⊗D′(K,φ)/ ker〈·, ·〉′φ and D(H,φ) ⊗D′(K,φ)/ ker〈·, ·〉′′φ are dense
in H �φ K.

Lemma A.2.2 allows us to identify H �φ K with the completion of H ⊗D′(K,φ)/ ker〈·, ·〉′φ,
which will be used in Proposition A.2.5 in order to write down the associator for the Connes
fusion product in a nice way.

Next is the functoriality of the Connes fusion product. Since we have not seen this writ-
ten up in the way we need it, we will discuss this in detail. Let B1,B2 and B3 be further
von Neumann algebras. Let H ′ be a B1–B2-bimodule and let K ′ be a B2–B3-bimodule, let
νi : Ai → Bi, for i = 1, 2, 3, be isomorphisms of von Neumann algebras, and let νH : H → H ′

and νK : K → K ′ be unitary maps, such that (ν1, ν2, νH) and (ν2, ν3, νK) are intertwiners. Let
φ′ : B2 → C be a faithful and normal state. Finally, denote by ψ : A2 → C the faithful and normal
state φ′ ◦ ν2. Let u : L2

φ(A2) → L2
ψ(A2) be the unitary given by Theorem A.1.2, with π = 1.

Proposition A.2.3. Connes fusion is a functor. Explicitly, the homomorphism ν2 : A2 → B2

extends to a unitary map ν2 : L2
ψ(A2) → L2

φ′(B2) such that (ν2, ν2, ν2) is an intertwiner. Then,
the map

D(H,φ) ⊗K → D(H ′, φ′) ⊗K ′, x⊗ v �→ νHxu
∗ν∗2 ⊗ νK(v), (A.1)

induces a unitary map

νH � νK : H �φ K → H ′ �φ′ K
′,

such that (ν1, ν3, νH � νK) is an intertwiner. Moreover, the construction of this intertwiner is
compatible with composition.

Here, compatibility with composition means the following. Suppose we are given the follow-
ing further data: von Neumann algebras Ci and von Neumann algebra isomorphisms ν ′i : Bi → Ci
for i = 1, 2, 3, a C1–C2-bimodule H ′′ and a C2–C3-bimodule K ′′, a faithful and normal state φ′′ :
C2 → C, and unitary maps νH′ : H ′ → H ′′ and νK′ : K ′ → K ′′ such that (ν ′1, ν ′2, νH′) and
(ν ′2, ν ′3, νK′) are intertwiners. Then the following diagram commutes.

(A.2)

Proof of Proposition A.2.3. That ν2 extends to a unitary map follows from the fact that it
intertwines the inner product A2 ×A2 → C, (a1, a2) �→ ψ(a∗2a1) with the inner product B2 ×
B2 → C, (a1, a2) �→ φ′(a∗2a1). That (ν2, ν2, ν2) is an intertwiner follows from the fact that ν2 is a
isomorphism, which implies that Jφ′ = ν2Jφν

∗
2.

To prove that the map x⊗ v �→ νHxu
∗ν∗2 ⊗ νK(v) induces an isomorphism it suffices to show

that it intertwines the inner products. Explicitly, we need to prove that for all x⊗ v and y ⊗ w
in D(H,φ) ⊗K we have

〈νHxu∗ν∗2 ⊗ νK(v), νHyu∗ν∗2 ⊗ νK(w)〉 = 〈x⊗ v, y ⊗ w〉.
We start from the left-hand side

〈νHxu∗ν∗2 ⊗ νK(v), νHyu∗ν∗2 ⊗ νK(w)〉 = 〈pφ′(ν2uy
∗xu∗ν∗2)νK(v), νK(w)〉

= 〈ν∗Kpφ′(ν2uy
∗xu∗ν∗2)νK(v), w〉.
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Hence, it suffices to show that

ν∗Kpφ′(ν2uy
∗xu∗ν∗2)νK(v) = pφ(y∗x)v. (A.3)

Using the fact that νK is an intertwiner along ν2 we obtain

ν∗Kpφ′
(
ν2uy

∗xu∗ν∗2
)
νK = ν∗2

(
pφ′(ν2uy

∗xu∗ν∗2)
)
. (A.4)

Now, we compute the action of the right-hand side of (A.4) on an element a ∈ L2
ψ(B2), using the

definitions of pφ′ and pφ:

ν∗2(pφ′(ν2uy
∗xu∗ν∗2))a = ν∗2(pφ′(ν2uy

∗xu∗ν∗2)ν2(a)) = uy∗xu∗a = upφ(y∗x)u∗(a) = pφ(y∗x)a,

since this holds for all a in L2
ψ(B2) we obtain ν∗2(pφ′(ν2uy

∗xu∗ν∗2)) = pφ(y∗x). Together with
(A.4), this implies (A.3).

Finally, to prove that the diagram (A.2) commutes we shall prove that the following diagram
commutes.

The composition of the arrows on top is the map

x⊗ v �→ νH′νHxu
∗ν∗2(u

′)∗(ν ′2)
∗ ⊗ νK′νK(v), (A.5)

where u′ : L2
φ′(B2) → L2

φ′′ν′2
(B2) is the unitary given by Theorem A.1.2, with π = 1. On the other

hand, the bottom map is given by

x⊗ v �→ νH′νHx(u′′)∗ν∗2(ν
′
2)

∗ ⊗ νK′νK(v), (A.6)

where u′′ : L2
φ(A2) → L2

φ′′ν′2ν2
(A2) is the unitary given by Theorem A.1.2, with π = 1. Note that

in this expression, ν2 is viewed as an isomorphism from L2
φ′′ν′2ν2

(A2) into L2
φ′′ν′2

(B2) (instead of
from L2

φ′ν2(B2) into L2
φ′(B2) as before). Comparing (A.5) with (A.6), we see that it is sufficient

to prove that
u∗ν∗2(u

′)∗(ν ′2)
∗ = (u′′)∗ν∗2(ν

′
2)

∗.

Taking the adjoint on both sides of the equation and cancelling ν′2, we see that this is
equivalent to

u′ν2u = ν2u
′′.

One checks that both u′ν2u and ν2u
′′ are isomorphisms from L2

φ(A2) into L2
φ′′ν′2

(B2). We claim
that they both satisfy properties (i)–(iii) from Theorem A.1.2, hence that by the uniqueness
statement in that theorem we conclude they must be equal. Let us check that they do, in fact,
satisfy properties (i)–(iii).

(i) Both maps intertwine the left action along ν2.
(ii) By construction we have ν2u

′′Jφ(u′′)∗ν2
∗ = Jφ′′ν′2 = u′ν2uJφu

∗ν∗2(u′)∗.
(iii) From Theorem A.1.2 we have that uPφ = Pφ′ν2 . Now we argue that ν2Pφ′ν2 = Pφ′ . Let

Jφ′ν2aJφ′ν2a ∈ Pφ′ν2 be arbitrary. Then we compute

ν2Jφ′ν2aJφ′ν2a = ν2Jφ′ν2ν
∗
2ν2aν

∗
2ν2Jφ′ν2ν

∗
2ν2a = Jφ′ν2(a)Jφ′ν2a,

from which the claim follows. Then, another application of Theorem A.1.2 yields u′Pφ′ =
Pφ′′ν′2 , hence u′ν2uPφ = Pφ′′ν′2 . A similar argument then shows that ν2u

′′Pφ = Pφ′′ν′2 .

This completes the proof. �
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Remark A.2.4. In [BDH14, Theorem 6.23] a statement more general than Proposition A.2.3 is
given, where none of the maps νi, νH , or νK is assumed to be an isomorphism. However, in this
more general setting (A.1) does not make sense, and it is this explicit form that we make use of
in the main text.

We may specialize Proposition A.2.3 to the case that all isomorphisms ν are identities,
to conclude that for any two faithful and normal states φ, φ′ on B2, there exists a natural
isomorphism

H �φ K → H �φ′ K.

The fact that the diagram (A.2) commutes then tells us that these isomorphisms are coherent,
which allows to define the Connes fusion product H �A2 K as the colimit of H �φ K, where φ
ranges over all faithful and normal states of A2. If no state is preferred, then we always refer
to this limit, and if later a state is picked, then we have a unique isomorphism. In [Tak10,
Exercise IX.3.8 (p. 210)] another approach to defining a tensor product of bimodules without
reference to a state is given.

Proposition A.2.5. Connes fusion is associative. Explicitly, if H is an A1–A2-bimodule, K is
an A2–A3-bimodule, and L is an A3–A4-bimodule, φ is a faithful and normal state on A2, and
ψ is a faithful and normal state on A3, then the map

(D(H,φ) ⊗K) ⊗D′(L,ψ) → D(H,φ) ⊗ (K ⊗D′(L,ψ))

((x⊗ v) ⊗ y) �→ (x⊗ (v ⊗ y)),

induces a unitary intertwiner

αH,K,L : (H �φ K) �ψ L→ H �φ (K �ψ L)

of A1–A4-bimodules. Moreover, these intertwiners are natural and satisfy the pentagon identity.

Here, naturality means the following. Let H,K,L be A1–A2-, A2–A3-, and A3–A4-bimodules
respectively, and we let H ′,K ′, L′ be B1–B2-, B2–B3-, and B3–B4-bimodules, respectively.
Moreover, we consider isomorphisms νi : Ai → Bi for i = 1, 2, 3, 4, and unitary maps νH :
H → H ′, νK : K → K ′ and νL : L→ L′ such that (ν1, ν2, νH), (ν2, ν3, νK), and (ν3, ν4, νL) are
intertwiners. Finally, let φ, ψ, φ′, ψ′ be faithful and normal states on A2, A3, B2, and B3,
respectively. Then, naturality means the commutativity of the following diagram.

Proof of Proposition A.2.5. That the above map indeed induces an isomorphism of bimodules
is [Tak10, Theorem 3.20]. A proof of the pentagon identity can be found in [Bro03]. Naturality
can be proved by a straightforward computation using the explicit forms of the isomorphisms
on the appropriate dense subspaces from Propositions A.2.3 and A.2.5 �

Finally, we discuss the fact that the standard form of a von Neumann algebra is neutral with
respect to Connes fusion.
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Proposition A.2.6. The A2–A2-bimodule L2
φ(A2) is neutral with respect to Connes fusion.

Explicitly, for every A2–A3-module K the map

D(L2
φ(A2), φ) ⊗K → K, x⊗ v �→ pφ(x) � v,

induces a unitary intertwiner

λK : L2
φ(A2) �φ K → K

of A2–A3-bimodules. Likewise, for every A1–A2-bimodule H, the map

H ⊗D′(L2
φ(A2), φ) → H, w ⊗ y �→ w � p′φ(y),

induces a unitary intertwiner

ρH : H �φ L
2
φ(A2) → H

of A1–A2-bimodules. Moreover, these maps are natural, and compatible with the associator in
the sense that

ρH � 1K = (1H � λK) ◦ αH,L2
φ(A2),K .

Finally, we have ρL2
φ(A2) = λL2

φ(A2).

Proof. It is straightforward to see that the given maps induce the claimed intertwiners, and that
naturality and the compatibility condition is satisfied. For more detail, we refer to [Bro03], see
in particular Proposition 3.5.3 therein. To prove that ρL2

φ(A2) = λL2
φ(A2) it suffices to prove that

the diagram

D(L2
φ(A2), φ) ⊗D′(L2

φ(A2), φ) ��

��

D(L2
φ(A2), φ) ⊗ L2

φ(A2)

��

L2
φ(A2) ⊗D′(L2

φ(A2), φ) �� L2
φ(A2)

commutes, which follows from the computation

x(1) � p′φ(y) = pφ(x) � 1 � p′φ(y) = pφ(x) � y(1),

where x ∈ D(L2
φ(A2), φ), y ∈ D′(L2

φ(A2), φ) and 1 is the unit of A2. �
At the end, we want to transfer the results of Proposition A.2.6 from the canonical standard

form to other standard forms. Let I be a left A2-module, and let ξ ∈ I be a cyclic and separating
vector, so that I becomes a standard form of A2, see Proposition A.1.4. Let φ : A2 → C be
the faithful and normal state φ(a) = 〈a � ξ, ξ〉, and consider the corresponding standard form
L2
φ(A2). By Theorem A.1.2, both standard forms are isomorphic under a unique isomorphism u :

I → L2
φ(A2), which is by Lemma A.1.6 given by the extension of the map a � ξ �→ a. Further, we

recall from Remark A.1.5 that standard forms are A2–A2-bimodules, and that u is an intertwiner
of A2–A2-bimodules.

Corollary A.2.7. Let I be a left A2-module, and let ξ ∈ I be a cyclic and separating vector.
Then, I is neutral with respect to Connes fusion. More explicitly, for every A2–A3-bimodule K
and every A1–A2-bimodule H the unitary intertwiners

λIK : I �φ K → K, λIK
..= λK ◦ (u� 1K),

ρIH : H �φ I → H, ρIH
..= ρH ◦ (1H � u)

are natural and compatible with the associator. Moreover, we have λII = ρII .
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Proof. Compatibility with the associator follows from the definition of λIK and ρIH and the
naturality of the associator proved in Proposition A.2.5. Naturality and the coincidence λII = ρII
follow from the naturality of λK and ρH . �

References

Amb12 S. Ambler, A bundle gerbe construction of a spinor bundle from the smooth free loop of a vector
bundle, PhD, University of Notre Dame (2012).

Ara74 H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a
non-commutative Radon–Nikodym theorem with a chain rule, Pac. J. Math. 50 (1974), 309–354.

Ara87 H. Araki, Bogoliubov automorphisms and Fock representations of canonical anticommutation
relations, in Operator algebras and mathematical physics, Contemporary Mathematics, vol. 62
(American Mathematical Society, Providence, RI, 1987), 23–141.

Ati88 M. F. Atiyah, Topological quantum field theory, Publ. Math. Inst. Hautes Études Sci. 68 (1988),
175–186.

BH11 J. C. Baez and A. E. Hoffnung, Convenient categories of smooth spaces, Trans. Amer. Math.
Soc. 363 (2011), 5789–5825.

BS09 J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, in Algebraic topol-
ogy: the Abel Symposium 2007, Abel Symposia, vol. 4 (Springer, Berlin, Heidelberg, 2009),
1–31.

BSCS07 J. C. Baez, D. Stevenson, A. S. Crans and U. Schreiber, From loop groups to 2-groups, Homology
Homotopy Appl. 9 (2007), 101–135.

BDH14 A. Bartels, C. L. Douglas and A. Henriques, Dualizability and index of subfactors, Quantum
Topol. 5 (2014), 289–345.

Bro03 R. M. Brouwer, A bicategorical approach to Morita equivalence for von Neumann algebras,
J. Math. Phys. 44 (2003), 2206–2214.

Bry93 J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization (Birkhäuser,
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