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SUMMARY

The risk ratio quantifies the risk of disease in a study population relative to a reference population.
Standard methods of estimation and testing assume a perfect diagnostic test having sensitivity and
specificity of 100%. However, this assumption typically does not hold, and this may invalidate naive
estimation and testing for the risk ratio. We propose procedures that control for sensitivity and
specificity of the diagnostic test, given the risks are measured by proportions, as it is in cross-
sectional studies or studies with fixed follow-up times. These procedures provide an exact
unconditional test and confidence interval for the true risk ratio. The methods also cover the case
when sensitivity and specificity differ in the two groups (differential misclassification). The resulting
test and confidence interval may be useful in epidemiological studies as well as in clinical and vaccine
trials. We illustrate the method with real-life examples which demonstrate that ignoring sensitivity
and specificity of the diagnostic test may lead to considerable bias in the estimated risk ratio.

Key words: Exact confidence interval, exact unconditional test, misclassification, prevalence ratio,
relative risk.

INTRODUCTION

The risk ratio or relative risk (RR) quantifies the risk
in a study population (say, in those exposed to a risk
factor) relative to a reference population. Naive infer-
ence assumes that the applied diagnostic procedure is
perfect (its sensitivity and specificity is 100%), i.e. no
misclassification occurs. Unfortunately, this assump-
tion usually does not hold, and ignoring this may re-
sult in misleading conclusions. Our aim is to present
an exact unconditional test and confidence interval
for RR controlling for sensitivity and specificity of
the diagnostic test.

We address the situation, in which

. risks are quantified by the proportion of those hav-
ing the condition (disease, recovery, etc.), which is
typical in cross-sectional epidemiological studies
but may also occur in other study designs;

. two independent random samples are drawn from
the two populations;

. there is no classification error in the group defini-
tion (i.e. in the exposure);

. sensitivity and specificity of the diagnostic proced-
ure are known (rather than estimated in the same
or in another study).

In this case RR is defined as the ratio of two pro-
portions, RR = p2/p1, where p2 is the proportion of
diseased in the study group and p1 is that in the refer-
ence group. Many authors use the term ‘prevalence
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ratio’ (PR) for this measure preserving the term ‘risk
ratio’ for the incidence ratio [1–3], while others call
it ‘prevalence risk ratio’ (PRR) [4, 5]. In the following
text we will use the term risk ratio (RR). In cross-
sectional studies and in therapeutic or vaccine trials
with fixed-length follow-up this is the most natural
measure to compare the groups. Guidelines for vac-
cine studies define vaccine efficacy as 1 − RR, where
the reference group is placebo. Despite this, in many
studies odds ratios (OR) are calculated just because lo-
gistic regression has become a standard analysis tool
readily available in most statistical software systems,
although using OR instead of RR is repeatedly criti-
cized by statisticians [1, 6–8].

While the impact of misclassification on the results
of statistical analyses has been studied since the 1950s
in the biomedical as well as in the social sciences
[9–16], no exact test or confidence interval for the
true PR has been proposed. In the next section we de-
scribe the proposed procedures, then we present two
applications, finally we summarize the properties of
the method. R code for the procedures is available
at www2.univet.hu/users/jreiczig/RR_SeSp.

METHODS

Let us denote for population i (i = 1, 2) the true preva-
lence by pi, the sensitivity by Sei, and the specificity by
Spi. Then the probability of a positive diagnosis (also
called observed or apparent prevalence) in the ith
population is pia= pi·Sei + (1 − pi)·(1 − Spi). This im-
plies that taking independent samples of sizes n1 and
n2 from the two populations, the number of test posi-
tives x1 and x2 follow the binomial distribution with
parameters n1, p1a and n2, p2a. Thus, the relative fre-
quencies x1/n1 and x2/n2 are estimates of p1a and p2a,
therefore we will denote them by p̂1a and p̂2a. What
we will make use of in the following text is that the
parameters p1a and p2a are in a one-to-one relation-
ship with the true prevalences p1 and p2, i.e. a hy-
pothesis about p1 and p2 can be mapped onto a
corresponding hypothesis about p1a and p2a, and
tested using their estimates p̂1a and p̂2a. The general
equation, which describes the relationship between
the parameters pi and pia, and allows for Se1≠Se2
and/or Sp1≠Sp2 is

p2a = p1aRR
(Se2 + Sp2 − 1)
(Se1 + Sp1 − 1)

−RR(1− Sp1) (Se2 + Sp2 − 1)
(Se1 + Sp1 − 1) + (1− Sp2). (1)

If Se1 = Se2 and Sp1 = Sp2, which can often be
assumed in real-life applications, the equation sim-
plifies to

p2a = p1aRR+ 1− Sp
( )

1−RR( ), (2)
where Sp denotes the common specificity; and for a per-
fect diagnostic test, i.e. for Se1 = Se2 = Sp1 = Sp2 = 1, it
reduces to

p2a = p1aRR. (3)

Solving the equations (1)–(3) for RR, the following
expressions are obtained:

RR = ( p2a + Sp2 − 1)(Se1 + Sp1 − 1)
( p1a + Sp1 − 1)(Se2 + Sp2 − 1) , (4)

RR = p2a + Sp− 1
( )

/ p1a + Sp− 1
( )

, (5)

RR = p2a/p1a. (6)

The point estimates for RR can be obtained by re-
placing p1a and p2a by p̂1a and p̂2a in equations (4)–(6).
Note that the parameter space for the true prevalences
(p1, p2) is the unit square, whereas that for (p1a, p2a) is
a rectangle within the unit square, namely [1 − Sp1,
Se1] × [1 − Sp2, Se2]. Note also that the estimates
(p̂1a, p̂2a) form a point in the sample space (which is
actually a grid of points), rather than in the parameter
space. In formula

(p̂1a, p̂2a)[ 0,1/n1,2/n1, . ..,1
{ }× 0,1/n2,2/n2, . ..,1

{ }
.

Assume now that we want to test for H0: RR =
RR0, where RR= p2/p1 is the true risk ratio. This
H0 is a composite hypothesis, corresponding to a
line segment in the parameter space of the true preva-
lences p1 and p2, namely the set of points in the unit
square satisfying the equation p2 = p1RR0. If we
map this onto the parameter space of the observed
binomials p1a and p2a, it will form another line seg-
ment. Its position depends on RR0 as well as on the
sensitivities and specificities according to equations
(1)–(3), but it is always located within the rectangle
[1 − Sp1, Se1] × [1 − Sp2, Se2]. Figure 1 illustrates
the position of this line segment for H0: RR = 2 de-
pending on the sensitivities Se1, Se2, and specificities
Sp1, Sp2.

Testing for H0 is equivalent to testing whether the
parameters p1a and p2a of the observed independent
binomial variables are located on the line segment cor-
responding to H0. As this is also a composite hypoth-
esis, it can be tested applying the intersection-union
principle [17], which means that a critical (or
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rejection) region for a composite H0 can be obtained
by constructing an appropriate critical region for
each element of H0, and taking the intersection of
these regions. The steps of constructing this critical re-
gion follow the logic of Reiczigel et al. [18].

(1) For each simple hypothesis h0 ∈H0, i.e. for each
point (p1a, p2a) on the line segment representing
H0, we construct a critical region (rejection region)
Ch0 in the sample space, consisting of those points,
which have probability under h0 less than or equal
to the probability of the observed point (p̂1a, p̂2a).
In formula

Ch0 ={ i/n1, j/n2
( )

: i[ 0, . . . ,n1{ }, j[
0, . . . ,n2{ },Ph0 i/n1, j/n2

( )
4 Ph0(p̂1a, p̂2a)},

where Ph0() denotes the probability of a point (or
a set of points) in the sample space, given h0 is true.
Ch0 can be considered as the two-dimensional
generalization of that proposed by Sterne [19]
for a single binomial proportion. Let Ph0(Ch0)
denote the probability of Ch0 under h0, and let
M=max{Ph0(Ch0), h0∈H0}.

(2) Next, for each h0∈H0 we determine the subset
Sh0 of the sample space consisting of the points
with the smallest probability under h0 so that
Ph0(Sh0)4M but adding any further point to Sh0

would result in Ph0(Sh0) >M. Let CH0 denote

the intersection of all these subsets, i.e. CH0 =
>h0[H0Sh0. It is easy to see that CH0 contains
(p̂1a, p̂2a) on its boundary.

(3) Finally, the P value is defined as the highest prob-
ability of CH0 under H0 (i.e. for all simple hypoth-
eses h0 in H0). In formula, the P value is equal to
max{Ph0(CH0), h0 ∈H0}.

Figure 2 illustrates how the resulting critical region
for H0: RR = 2 depends on sensitivities and specifici-
ties, given the two observed prevalences are p̂1a =
0·575 (n1 = 40) and p̂2a = 0·667 (n2 = 36).

Confidence intervals for the true RR can be con-
structed by inverting the above test. That is, lower
and upper confidence limits to a given confidence
level (1 − α) are defined as the smallest and largest
true RR0 not rejected by the test, i.e.

L= inf{RR0: pRR0 . α}andU = sup{RR0: pRR0 . α},

where pRR0
denotes the P value from testing for H0:

RR =RR0. Computationally, L and U are determined
by increasing RR0 in small steps and performing the
test. Step size may depend on the required precision.
In our implementation of the algorithm the default is
a multiplicative increment with step size 0·001, i.e.
RR0 is increased or decreased as RR0,next = 1·001*RR0

or 0·999*RR0. Figure 3 illustrates the procedure for
observed proportions p̂1a = 0·575 (n1= 40), p̂2a = 0·667
(n2= 36), and Se1 = Se2 = 0·91, Sp1 = Sp2 = 0·8.

One-tailed testing, i.e. H0: RR =RR0 against H1:
RR >RR0 (or H1: RR <RR0) is also possible, al-
though there are different options to define this.
Perhaps the simplest method is that one side of the
line representing H0 (i.e. the intersection of the critical
region with that half-plane) is removed from the crit-
ical region. One-sided confidence intervals (CI) can be
derived by inverting this one-sided test.

APPLICATIONS

Example 1

Everhart et al. [20] studied the seroprevalence of
Helicobacter pylori infection in adults in the United
States. The analysis was carried out stratified by age
and ethnic group. The infection status was determined
by an IgG ELISA assay having 91% sensitivity and
96% specificity in all groups. For illustration we now
compare the group of the youngest (20–29 years)
and the oldest (570 years), in which the observed
seroprevalence was 16·7% and 56·9%, respectively.
For these groups, the ratio of observed prevalences

Fig. 1. Lines corresponding to the hypothesis H0: RR= 2
in the two-dimensional space of the parameters p1a and p2a
of the observed binomial variables. The position of the
line depends on sensitivity (Se1 and Se2) and specificity
(Sp1 and Sp2) of the test in the two populations.

Inference for RR with an imperfect diagnostic test 189

https://doi.org/10.1017/S0950268816002028 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816002028


is 56·9/16·7 = 3·41 (95% CI 3·00–3·88), whereas the
correction for sensitivity and specificity results in the
true PR of 4·17 (95% CI 3·58–4·96).

Example 2

Suwancharoen et al. [21] conducted a serological sur-
vey of leptospirosis in livestock in Thailand using the

microscopic agglutination test (MAT) to determine
serostatus of the examined animals. Five animal spe-
cies were included in the study: cattle, buffaloes,
pigs, sheep and goats. Infection status of each species
was measured by seroprevalence, and all other species
were compared to cattle as the reference group by cal-
culating the PRs (which are same as risk ratios). In
this study the MAT test was assumed to be perfect,

Fig. 2. Critical regions in the sample space for H0: RR= 2 with observed proportions p̂1a = 0·575 (n1 = 40) and p̂2a = 0·667
(n2 = 36), depending on the sensitivities and specificities. Black dots form the critical region, the black square represents
the observed data. The line shows the location of H0 in the parameter space.

Fig. 3. Illustration of the confidence interval construction for observed proportions p̂1a = 0·575 (n1 = 40), p̂2a = 0·667 (n2 = 36),
and Se1 = Se2 = 0·91, Sp1 = Sp2 = 0·8. The confidence limits represent the smallest and largest true risk ratio (RR) not
rejected by the test.
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as this test is usually regarded to be the gold standard
test. However, other studies found that the sensitivity
of the MAT test is far below 100% [22–25].
Cumberland et al. [22] found the sensitivity to be
30% for first acute-phase specimens, 63% for second
acute-phase specimens, and 76% for convalescent spe-
cimens. At the same time specificity was 99%, 98%,
and 97%, respectively. Limmathurotsakul et al. [25]
estimated the sensitivity of MAT by a Bayesian ana-
lysis and found it to be 49·8%. These findings indicate
the need for an adjustment of the PR estimates.

If we consider the most optimistic scenario of these,
i.e. Se = 76% and Sp= 97% [22], we obtain the ad-
justed PRs shown in Table 1. The difference between
the unadjusted and adjusted PR is far from negligible,
for example in case of sheep the adjusted ratio is less
than half of the unadjusted one. In case of buffaloes,
adjusted and unadjusted 95% CIs do not even overlap.

DISCUSSION

If sensitivity and/or specificity of the diagnostic test is
<100%, the observed and true prevalence may differ
from each other, influencing also estimation and test-
ing of relative risk measured by the PR. We proposed
an exact unconditional test and CIs for the true PR.
The method can be applied even if the sensitivities
and specificities differ in the two groups, for example
if patients are diagnosed by different methods or some
sort of differential misclassification occurs.

Taking sensitivity and specificity into account may
either increase or decrease the P value compared to
the one obtained without considering sensitivity and
specificity. For instance, consider testing for H0:
RR= 2 with observed prevalences p̂1a = 0·48 (n1 = 50)
and p̂2a = 0·62 (n2 = 50). Assuming Se1 = Se2 = Sp1 =
Sp2 = 1 results in P = 0·0251, for Se1 = Se2 = 0·8 and
Sp1 = Sp2 = 1 the P value increases to P = 0·0474,

whereas for Se1 = Se2 = 0·6 and Sp1 = Sp2 = 1 a smal-
ler P value of 0·0155 is obtained.

It may occur that the observed data contradict the
given sensitivity and specificity. Let us assume, for ex-
ample, that a certain diagnostic test is known to have
Se = 0·8 and Sp= 1 and using this test we observe 90
positives out of 100. This observation is very unlikely
even if the true prevalence is 100%, since under these
conditions the observed variable has a binomial distri-
bution with n = 100, P= 0·8, and the probability that
it is 590 is as low as 0·0057. The same problem may
arise if the number of positives is much less than the
expected minimum assuming the given sensitivity
and specificity. In such cases one should consider the
possibility that sensitivity and/or specificity data are
incorrect.

The proposed method can be further developed in
several directions. First, one can take into account
misclassification also in the group definition, i.e. in
the exposure. Brenner et al. [26] investigated this for
the incidence ratio in a cohort study. Going further,
similar methods could be worked out for models
with several predictors, of which the categorical ones
may also be affected by misclassification. Some results
are known on correcting the OR obtained from
logistic regression [27, 28] but similar results still
lack for the PR.

There has been a long debate whether the PR or the
OR is more appropriate to quantify the risk in the
study group relative to the control group in a study
design in which both of them can be calculated [1, 7,
29, 30]. Savu et al. [8] stated that RR or PR is more
intuitively interpretable than the OR. In spite of
this, many studies report OR estimates, even if the de-
sign permits calculation of RR or PR. Petersen &
Deddens [31] emphasized that in cross-sectional stud-
ies, in particular when the disease is not rare, it is pref-
erable to use PR instead of OR. Anyway, it is worth
noting that our method can quite easily be adapted

Table 1. Prevalence ratios reported in Suwancharoen et al. [21] and adjusted prevalence ratios assuming sensitivity = 0·76
and specificity = 0·97 (same in all groups), as reported by Cumberland et al. [22]

Species N Observed prevalence Unadjusted PR (95% CI) True prevalence Adjusted PR (95% CI)

Cattle 9288 9·9% (reference group) 9·4% (reference group)
Buffaloes 1376 30·5% 3·08 (2·79–3·41) 37·6% 3·99 (3·45–4·60)
Pigs 1898 10·8% 1·09 (0·95–1·26) 10·7% 1·13 (0·90–1·42)
Sheep 1110 4·7% 0·47 (0·36–0·62) 2·3% 0·24 (0·06–0·49)
Goats 516 7·9% 0·80 (0·60–1·09) 6·8% 0·72 (0·37–1·17)

PR, Prevalence ratio; CI, confidence interval.

Inference for RR with an imperfect diagnostic test 191

https://doi.org/10.1017/S0950268816002028 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816002028


to testing the OR or the risk difference (RD), as the
hypotheses H0: OR =OR0 and H0: RD=RD0 also
correspond to a subset of the parameter space
[0,1] × [0,1].

Another direction of potential improvement of the
proposed methods is to extend them to the case
when sensitivity and specificity are not taken as
known but estimated from other samples, which
may increase the variance of the RR estimate. This
is analogous to the problem solved by Lang &
Reiczigel [32] for estimating prevalence.
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