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Abstract

Gerber and Shiu (1997) have studied the joint density of the time of ruin, the surplus
immediately before ruin, and the deficit at ruin in the classical model of collective
risk theory. More recently, their results have been generalised for risk models where
the interarrival density for claims is nonexponential, but belongs to the Erlang family.
Here we obtain generalisations of the Gerber–Shiu (1997) results that are valid in
a general Sparre Andersen model, i.e. for any interclaim density. In particular, we
obtain a generalisation of the key formula in that paper. Our results are made more
concrete for the case where the distribution between claim arrivals is phase-type or the
integrated tail distribution associated with the claim size distribution belongs to the class
of subexponential distributions. Furthermore, we obtain conditions for finiteness of the
joint moments of the surplus before ruin and the deficit at ruin in the Sparre Andersen
model.

Keywords: Sparre Andersen model; surplus prior to ruin; deficit at ruin; ladder height;
Wiener–Hopf factors; phase-type distribution; subexponential distribution

2000 Mathematics Subject Classification: Primary 60K10; 91B30
Secondary 60K05

1. Introduction

For the classical model of actuarial risk theory, Dufresne and Gerber (1988) studied the
joint density function of the surplus immediately prior to ruin and the deficit at ruin. More
recently, Gerber and Shiu (1997) added a third quantity, namely the time of ruin, and studied
the joint distribution of these three random variables. Their results have motivated extensive
research on this topic; one avenue for generalising the results of that paper that has turned out
to be popular in recent years is to relax the exponential assumption for the distribution of the
interarrival times in the model. Thus, we are led to consider the more general Sparre Andersen
model of risk theory and the obvious next step from the exponential assumption is to allow the
distribution, K , of interclaim times to belong to the Erlang (or generalised Erlang) family of
distributions. For recent results in this area under that, more general, assumption, we refer the
reader to Dickson and Hipp (2000), (2001), Cheng and Tang (2003), and the accompanying
discussion in Gerber and Shiu (2003a), (2003b), Li and Garrido (2004), (2005), and Gerber and
Shiu (2005). The main purpose of the present paper is to obtain a formula for the density of
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696 S. M. PITTS AND K. POLITIS

the surplus prior to ruin and the deficit at ruin that is valid for any distribution K in the Sparre
Andersen model.

More precisely, our model of consideration is defined (in usual terms) as follows. Let
X1, X2, . . . be the sizes of the claims arriving at an insurer. These claims are assumed to
be independent and identically distributed (i.i.d.) with a distribution P on (0,∞). Also, let
T1, T2, . . . be the times between successive claim arrivals, where we assume that the Ti are
again i.i.d. with distribution K and independent of the Xi . We assume that the distributions K
and P have densities k and p, respectively, such that k is bounded on finite intervals.

The insurer’s surplus at time t is then given by

U(t) = u+ ct −
Nt∑
i=1

Xi,

where u is the initial surplus, c is the premium income rate, Nt is the number of claims that
have arrived up to time t , so that, under the above assumptions {Nt : t ≥ 0} constitutes a
renewal process, and the summation above is defined to be 0 if Nt = 0. The time of ruin, T , is
accordingly defined by

T = inf{t : U(t) < 0},
while the surplus prior to ruin and the deficit at ruin areU(T−) and, respectively, |U(T )|; here,
the infimum of an empty set is taken to be infinite. With this convention, the probability of ruin
is then defined by

ψ(u) = P(T < ∞ | U(0) = u).

We assume throughout that E(X1) < c E(T1), so that ruin is not certain to occur.
Now let f (x, y, z) denote the joint density of U(T−), |U(T )|, and T . For a given δ > 0,

Gerber and Shiu (1997) introduced the following functions:

f (x, y | u) =
∫ ∞

0
e−δtf (x, y, t | u) dt (1)

and

f (x | u) =
∫ ∞

0
f (x, y | u) dy.

Then, for δ = 0, f (x, y | u) is simply the joint density between U(T−) and |U(T )|, and
f (x | u) is the marginal density of the surplus prior to ruin.

For the classical risk model, the ‘key formula’ in Gerber and Shiu (1997) is

f (x, y | 0) = λc−1p(x + y)e−ρx, x > 0,

whereλ is the Poisson rate for arrivals andρ is the nonnegative root of the ‘generalised Lundberg
equation’,

cρ + λ[p̂(ρ)− 1] = δ,

where p̂ here is the Laplace transform of the function p. For δ = 0, we see that ρ = 0, and the
key formula becomes

f (x, y | 0) = λc−1p(x + y), x, y > 0. (2)

Large deviation results for the joint distribution of U(T−) and |U(T )| have been obtained by
Asmussen and Klüppelberg (1996). Here, one of the main aims of this paper is to obtain an
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exact formula which parallels (2) or the more general formula (17), below, and is valid for the
Sparre Andersen model. Our main results give an expression for f (x, y | 0) in Theorem 1
and expressions for f (x, y | u) and f (x | u), for u > 0, in Theorem 2. Section 2 contains
Theorem 1 together with its proof and some discussion. Simplifications in the case of phase-
type interclaim arrival times are given in Proposition 1 in Section 2.1. Theorem 2 is stated
and proved in Section 3. In Section 4 we consider the case where the claim-size distribution is
heavy-tailed, while in Section 5 we establish conditions for the joint moments of U(T−) and
|U(T )| to be finite. Finally, Section 6 contains some concluding remarks.

2. The joint density for zero initial surplus

Our approach for obtaining the joint density of U(T−) and |U(T )| when u is 0 is via the
random walk associated with the surplus process {U(t) : t ≥ 0}. To simplify the notation,
we assume, from now on and without loss of generality, that c = 1 in the model. Then, for
i = 1, 2, 3, . . . , let Yi = Ti −Xi and, for n ∈ N,

Sn =
n∑
i=1

Yi.

The link between the continuous-time process and the random walk is provided by the obser-
vation that ruin may occur only at claim instants, so that, for instance, the probability of ruin
can be expressed as ψ(u) = P(inf Sn < −u : n = 1, 2, . . . ).

Now let G+ and G− be the distributions of the (strict) ascending ladder height and the
(weak) descending ladder height, respectively, of the random walk {Sn : n = 1, 2, . . . }. For
definitions of these, as well as various other aspects of random walk theory and its connection
to risk theory, we refer the reader to the books by Feller (1971, Chapter XII), Asmussen (1987,
Chapter VII), and Embrechts et al. (1997, Chapter 8). We note, in particular, that, provided that
the step distribution of the random walk has a nonzero finite first moment, one of G+ and G−
is a proper probability distribution and the other is defective. Here, we assume, throughout,
that

0 < E(Y1) < ∞,

on noting that if E(Y1) ≤ 0, ruin is certain to occur. Under this assumption, the ascending
ladder height distribution G+ is proper, while G− is defective. Note that G+ is concentrated
on (0,∞) and G− on (−∞, 0] and that they are related via the Wiener–Hopf equation; see,
e.g. Feller (1971, Chapter XII). In our first main result, below, we obtain the joint density
f (x, y | 0) for the Sparre Andersen model. It is worth noting that, for any value u of the initial
surplus, the following important formula holds:

f (x, y | u) = f (x | u)p(x + y)

1 − P(x)
. (3)

For the classical model, this was derived by Dufresne and Gerber (1988). It is easy to see that
the formula also holds for the Sparre Andersen model that we consider here. Letting u = 0 in
(3), we see that in order to obtain f (x, y | 0), it is sufficient to find f (x | 0).

When we consider the probability of ruin and the deficit at ruin, it is a well-known fact that
the descending ladder height distribution of the random walk plays a key role. For instance, let
µ− be the measure associated with the distribution G− on (−∞, 0] and define a new measure
µ̌− by

µ̌−{A} = µ−{x : −x ∈ A}
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698 S. M. PITTS AND K. POLITIS

for any measurable set A ⊂ [0,∞). Let Ǧ−(x) = µ̌−([0, x]) be the distribution function
associated with µ̌−. Then it holds that

1 − ψ(u) = (1 − ψ(0))
∞∑
m=0

Ǧ�m− (u), (4)

where Ǧ�m− denotes the m-fold Lebesgue–Stieltjes convolution power of Ǧ−. In the sequel,
we shall consider convolution as a more general operator, defined between a function q, which
is bounded on finite intervals, and a nondecreasing, right continuous function F . Then their
convolution, denoted by q � F is defined by

(q � F )(x) =
∫
q(x − t) dF(t).

Note that, for m = 0 in (4), Ǧ�0− (x) = 1[0,∞)(x), the indicator function on the nonnegative
half-axis.

Furthermore, let
F1(u, y) = P(|UT | ≤ y | U0 = u)

be the distribution function of the deficit at ruin; see Gerber et al. (1987). Then, for u = 0, it
is well known (see, e.g. Willmot (2002)) that

F1(0, y) = Ǧ−(y). (5)

The next theorem, which generalises the key formula, (2), for δ = 0, shows that when we
consider the surplus prior to ruin, the role played by the descending ladder height is now
undertaken by the ascending ladder height of the random walk {Sn : n = 1, 2, . . . }.
Theorem 1. For x ≥ 0, let

U+(x) =
∞∑
k=0

G�k+ (x)

be the renewal function associated with the ascending ladder height of the random walk
{Sn : n = 1, 2, . . . }. Then the joint density of the surplus before ruin and the deficit at ruin for
zero initial surplus in the Sparre Andersen model is given by

f (x, y | 0) = p(x + y)

∫
[0,x]

k(x − z) dU+(z). (6)

Proof. As noted above, it suffices to concentrate on the density f (x | 0) of the surplus prior
to ruin for zero initial surplus and this is what we do next.

First, for x > 0 and n = 1, 2, . . . , let

Hn(x) = P(S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn ∈ (0, x]) (7)

and define

H(x) =
∞∑
n=1

Hn(x).

Recall that T is the time to ruin in the model, and let κ be the time of the claim prior to ruin.
We note that κ could be 0, if ruin occurs with the first claim. Considering this separately and,
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if this is not the case, asking how many claims there will be until ruin and how long is the time
interval between κ and T , we obtain

f (x | 0) = k(x)[1 − P(x)] +
∞∑
n=1

∫ x

0
k(x − t)[1 − P(x)] dHn(t) (8)

= [1 − P(x)]
(
k(x)+

∫
[0,x]

k(x − t) dH(t)

)
. (9)

The factor [1 −P(x)] arises since we ask that, as soon as the surplus reaches x, there is a claim
causing ruin, and this is independent of anything prior to that.

Furthermore, using the duality lemma for random walks (Feller 1971, Chapter XII), we
obtain

H(x) =
∞∑
n=1

P(S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn ∈ (0, x])

=
∞∑
n=1

P(Sn > S1, Sn > S2, . . . , Sn > Sn−1, Sn ∈ (0, x]).

So, inside the bracket on the right-hand side we have the probability that Sn is an ascending
ladder height for the random walk and lies inside (0, x]. Therefore, summing over all n, we
obtain the expected number of ladder heights in that interval. Since the distribution of the
ascending ladder height is G+, we have therefore shown that

H(x) =
∞∑
n=1

G�k+ (x). (10)

From this we see that H(x) = U+(x) − 1[0,∞)(x), i.e. the measure associated with H is the
restriction of the renewal measure U+ on (0,∞). In view of this, (9) yields

f (x | 0) = [1 − P(x)]
∫

[0,x]
k(x − z) dU+(z), (11)

and the result of Theorem 1 now follows from (3).

Note that the only potential difficulty in the above formula concerns U+, which may not
be available analytically. In Section 2.1 we derive some explicit expressions for the density
f (x, y | 0) when the distribution K belongs to the phase-type family.

We now make a few remarks on the implications of Theorem 1. First, we note that, since
we assume that the distribution of times between claims,K , has a density, the ascending ladder
height distribution is also absolutely continuous and from (10) it follows that H has a density,
say h, which is also a density for U+ on (0,∞). Therefore, we see that the result of Theorem 1
can be written in terms of this density as follows:

f (x | 0) = [1 − P(x)]
(
k(x)+

∫ x

0
k(x − t)h(t) dt

)
. (12)

Another simple observation is that in the classical risk model, when Ti is exponential with
parameter λ, it is well known that G+ also has an exponential distribution. This implies that
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h(x) = λ for all x ≥ 0. Then (12) yields

f (x | 0) = [1 − P(x)]
(
λe−λx + λ

∫ x

0
λe−λt dt

)
= λ[1 − P(x)],

which, when scaling back for c and using (3), agrees with the key formula, (2), of Gerber and
Shiu (1997).

Next, Dufresne and Gerber (1988) have proved that for the classical model it holds that

f (x, y | 0) = f (y, x | 0),

a symmetry which is obvious from (2); see also Dickson (1992) for a discussion on this. This
symmetry, as can be seen from Theorem 1, is no longer valid in the Sparre Andersen model.

2.1. Explicit expressions for phase-type distributions

Phase-type distributions have a central position in a variety of applied probability models.
Following the pioneering work of Neuts (1981), recent work by Asmussen and coauthors,
most of which is contained in Asmussen (2000, Chapter VIII), has demonstrated that, if the
solution to a particular problem can be found explicitly in the exponential case, then an explicit
solution in matrix form can be found if the underlying distribution belongs to the phase-type
(PH) family. For details and the main properties of distributions in that family we refer the
reader to the books mentioned above; here we merely note that a distribution B is said to be of
phase-type if it represents the time until absorption in a terminating Markov process with state
space {0} ∪ E, where 0 is the absorbing state and E is a finite set of transient states, and with
time-homogeneous transition rates. We write (π,T) for the PH representation of B, where the
row vector π and the square matrix T are such that B(x) = 1 − πeTxe0, where e0 is a column
vector of 1s. Furthermore, if B has density b, then b(x) = πeTxt0, where t0 = −Te0 is the
vector of exit rates in the associated Markov jump process; see, for example, Asmussen (2000,
Chapter VIII).

Drekic et al. (2004) proved that in the Sparre Andersen model the distribution of the deficit
at ruin is phase-type provided that the claim size distribution is phase-type. To parallel this,
we obtain a PH representation for the surplus prior to ruin when the interclaim times have a
PH distribution K . Our present setup generalises that of Gerber and Shiu (2005), in which
they consider the case where interclaim times are distributed as a finite sum of independent
exponential random variables with possibly different parameters, i.e.K belongs to a particular
subclass of phase-type distributions. In contrast, our result below applies whenK has a general
phase-type distribution.

Before stating our result, note that in the remainder of this paper, we shall often make use
of the following conditions on the distributions K and P of the model.

(i) The distribution K of interclaim times has a density k which is bounded and such that
limx→∞ k(x) = 0.

(ii) The distribution P of claim sizes has unbounded support.

In the sequel, we refer to these as conditions (i) and (ii), respectively. Under condition (ii),
P(x) < 1 for all x and we may define the function v(x) by

v(x) = f (x | 0)

1 − P(x)
. (13)
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Sparre Andersen model 701

We see from Theorem 1 that

v(x) =
∫

[0,x]
k(x − z) dU+(z). (14)

Proposition 1. Assume that in the Sparre Andersen model the distribution K of interclaim
times is a phase-type distribution with representation (π,T) and state space E0, while the
distribution P of claims is an arbitrary distribution with an infinite right-end point (so that
condition (ii) is satisfied). Then, the function v(x) in (13) can be expressed as

v(x) = π exp((T + t0π+)x)t0,

where t0 = −Te0 and π+ is a row vector satisfying

π+ = πp̂[−(T + t0π+)]. (15)

Proof. Applying Theorem 2.1 of Asmussen (1992) with U , T , and X there replaced by our
T1,X1, andY1, respectively, we see that, under the assumptions of the proposition, the ascending
ladder height distribution G+ has PH representation (π+,T + t0π+), where π+ satisfies (15).
From (2.6) of Asmussen (1992) the renewal density associated with G+ is given by

u+(x) = π+ exp((T + t0π+)x)t0.

From (14), we see that v(x) is a density of K � U+. Asmussen (1992) obtained an expression
for the density ofK �U+ in the proof of his Corollary 2.3. We follow Asmussen and argue as in
the proof of Corollary 2.2 of Asmussen (1992). We think of K � U+ as being represented by a
particle which initially (theK part) starts according to π , moves according to T, and then exits
according to t0, to be restarted (the renewal part) according to π+ and then moved according
to T + t0π+, i.e. in exactly the same way as is described for the first part. Thus, we find that
K � U+ is represented by the density

π exp((T + t0π+)x)t0,

which is what Asmussen (1992) obtained in the proof of his Corollary 2.3.

Now we compare our results with those of Badescu et al. (2005b), who used techniques
from fluid queues to analyse risk processes with claims arriving in a Markovian arrival process
and with claim sizes having a phase-type distribution. Both their model and ours include as a
special case the Sparre Andersen model with phase-type interclaim and claim size distributions.
We show that for this PH/PH model, the expressions for f (x | 0) in their paper and here are the
same. In Proposition 2, suppose that K is of order m and, in addition, assume that the claims
are PH of order n with representation (γ,M). Let g0 = −Me0. In this setup, equation (4) of
Badescu et al. (2005b) can be written in our notation as

f (x | 0) = πeSxt0γ eMxe0 = πeSxt0(1 − P(x)),

where eSx is them×mmatrix whose (i, j)th element is equal to the expected number of visits
of the surplus process to level x, phase j , before the first return to 0, given that the initial
interclaim time starts in phase i. Comparing this with (14), we aim to show that our v(x) is the
same as πeSxt0.
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Let Jt be the phase at time t in the fluid process corresponding to the surplus process (see
Badescu et al. (2005a)), and define

Hn,i(x) = P(S1 > 0, . . . , Sn−1 > 0, Sn ∈ (0, x] | J0 = i),

so that
m∑
i=1

Hn,i(x)πi = Hn(x)

(see (7)). Let {J (T )x }x≥0 be the (terminating) Markov phase process for an interclaim time, so
that J (T1)

x = j means that T1 > x and that the phase is j when T1 = x. For i, j ∈ {1, . . . , m},
we have

(eSx)ij = E(1(J (T1)
x = j) | J0 = i)

+ E

( ∞∑
n=2

1
(
S1 > 0, . . . , Sn−2 > 0, Sn−1 ∈ (0, x], J (Tn)x−Sn−1

= j
) ∣∣∣∣ J0 = i

)
,

where we write 1(A) for the indicator function of the event A. The first term on the right-hand
side is (eTx)ij . By considering the phase with which Tn starts, the second term can be seen to
be ∞∑

n=2

m∑
k=1

∫
(0,x]

πk(e
T(x−y))kjHn−1,i (dy).

This means that the Badescu et al. (2005b) expression is

πeSxt0 = πeTxt0 +
∞∑
n=2

m∑
i=1

m∑
j=1

m∑
k=1

∫
(0,x]

πk(e
T(x−y))kj (t0)jπiHn−1,i (dy)

= k(x)+
∞∑
n=2

m∑
i=1

∫
(0,x]

k(x − y)πiHn−1,i (dy)

= k(x)+
∞∑
n=2

∫
(0,x]

k(x − y)Hn−1(dy).

This yields the same expression for f (x | 0) as we obtained above in (8), so our results coincide
with those of Badescu et al. (2005b) for the special case of the PH/PH Sparre Andersen model.

Note that Badescu et al. (2005b) considered a different model in general from the model we
consider in this paper. We consider the Sparre Andersen model with general interclaim time
distribution and general claim size distribution, but with the strict independence assumptions of
the SparreAndersen model, while Badescu et al. (2005b) considered only phase-type claim sizes
throughout, with a Markovian claim arrival process, which allowed for dependency between
interclaim times and claims.

The condition for the interclaim time distribution K to be phase-type is not necessary if
we are to obtain an explicit expression for the ascending ladder height distribution G+. As an
example, assume that the distribution P of claim sizes is exponential with parameter θ , while
K is arbitrary. LetG be the distribution of the variable Yi = Ti −Xi and g be a density forG.
Since

G(x) =
∫

[0,∞)

K(x + y) dP(y), (16)
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it follows thatG(x) = aeθx for x < 0 and for some a > 0. Furthermore, it is well known that in
this caseG− has a (defective) density g−(x) = b0eθx for x < 0. Then, arguing as in Asmussen
(1987, p. 203), but interchanging the role of the axes sinceAsmussen (1987) considers a random
walk with negative drift, we find that the ascending ladder height distribution G+ is given by

G+(x) = 1 − 1

1 − r0

(
Ḡ(x)− r0eηx

∫
[x,∞)

e−ηz dG(z)

)
, x ≥ 0.

Here Ḡ(x) = 1 −G(x), r0 = b0θ
−1, and η = θ − b0. By differentiating the distribution G+,

above, we also obtain its density, g+(x), which is given by

g+(x) = g(x)+ r0(1 − r0)
−1ηeηx

∫
[x,∞)

e−ηz dG(z).

3. The joint density for arbitrary initial surplus

Next, we look for an expression of the joint density for arbitrary initial surplus u. For the
classical risk model it is known that the following is true:

f (x, y | u) =

⎧⎪⎪⎨
⎪⎪⎩
f (x, y | 0)

1 − ψ(u)

1 − ψ(0)
, x > u > 0,

f (x, y | 0)
ψ(u− x)− ψ(u)

1 − ψ(0)
, 0 < x ≤ u;

(17)

see Dickson (1992) and Gerber and Shiu (1998). This does not hold for the Sparre Andersen
model. Instead, for this model, Dickson and Drekic (2004) have argued that the joint density
f (x, y | u) is readily available if f (x, y | 0) is known. To support this argument, they have
shown that the following holds:

f (x, y | u) = p(x + y)

ζ(0)

∫
[(u−x)+,u]

f (x − u+ z | 0)

P̄ (x − u+ z)
dζ(z), (18)

where ζ(u) = 1 − ψ(u) denotes the probability of nonruin in the Sparre Andersen model,
P̄ (x) = 1 − P(x), and (u− x)+ = max{0, u− x}.

The first part of the next result is an easy consequence of Theorem 1, while the second part
shows that (17) is asymptotically correct for the Sparre Andersen model.

Theorem 2. (i) In the Sparre Andersen model, the joint density of the surplus before and after
ruin is given by

f (x, y | u) = p(x + y)

ζ(0)

∫
[(u−x)+,u]

(k � U+)(x − u+ z) dζ(z), (19)

while the density of the surplus before ruin for initial surplus u is given by

f (x | u) = 1 − P(x)

ζ(0)

∫
[(u−x)+,u]

(k � U+)(x − u+ z) dζ(z). (20)

(ii) Assume that conditions (i) and (ii) hold. Then, as x → ∞, and for all values of u, it holds
that

lim
x→∞

f (x | u)
1 − P(x)

= 1 − ψ(u)

E(Y1)
. (21)
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Proof. Substituting (11) into (18) immediately yields (19) and then (20) follows from (3).
This establishes the first part of Theorem 2.

For the second part, we first obtain the asymptotic behaviour of f (x | 0) for large x.
Theorem 1 shows that v(x) (defined in (13)) is given by (14), which in turn shows that v
satisfies the following proper (i.e. nondefective) renewal equation:

v(x) = k(x)+
∫

[0,x]
v(x − z) dG+(z). (22)

Note that, since K has a density, this implies that the step distribution of the random walk Sn,
i.e. the distribution of the random variable Y1, has a density. This, in turn, implies that the
distribution G+ is absolutely continuous; see Feller (1971, Chapter XII). Now employing a
version of the key renewal theorem, which is Corollary 1.3 in Chapter VI of Asmussen (1987),
we deduce, from (22), that

lim
x→∞ v(x) = 1

µ0
, (23)

where

µ0 =
∫
x dG+(x).

However, since E(Y1) denotes the mean step size for the random walk {Sn : n = 1, 2, . . . }, it is
well known (see, for instance, Asmussen (1987, Chapter VII)) that

∫
x dG+(x) = (1 −G−(∞))−1 E(Y1)

and, since G−(∞) = ψ(0), we obtain

lim
x→∞

f (x | 0)

1 − P(x)
= 1 − ψ(0)

E(Y1)
,

which gives the asymptotic behaviour for large x.
Next, we note that the distribution function ζ , which corresponds to the distribution of the

maximal aggregate loss in the model, has a density, say q, on (0,∞).
For u ≤ x, (20) then gives

f (x | u) = (1 − P(x))(k � U+)(x − u)+ 1 − P(x)

ζ(0)

∫ u

0
(k � U+)(x − u+ z)q(z) dz. (24)

Dividing both sides by 1 −P(x), and noting the definition of the function v(x), we thus obtain

f (x | u)
1 − P(x)

= v(x − u)+ 1

ζ(0)

∫ u

0
v(x − u+ z)q(z) dz.

From (23), we see that the first term above tends to µ−1
0 , while for the second term we use the

dominated convergence to deduce that this converges to

ζ(u)− ζ(0)

µ0ζ(0)
.

Putting these two results together, and using the fact that µ0 = E(Y1)/ζ(0), completes the
proof of the theorem.
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Remarks. (i) If the distribution P of claim sizes is concentrated on a compact set, then the
asymptotic behaviour of f (x | 0) is trivial. For in this case, there is an m > 0 such that
P(m) = 1. It is then probabilistically obvious that f (x | u) = 0 for all x > m and for any
value u of the initial surplus.

(ii) In the standard version of the key renewal theorem (see, e.g. Feller (1971, Chapter XI)
or Asmussen (1987, Chapter IV)), a key role is played by direct Riemann integrability. We have
used an alternative version merely to avoid reference to this; however, we note that necessary
and sufficient conditions for a function to be directly Riemann integrable (d.R.i.) are given
in Asmussen (1987, Section IV.4). For instance, since k is a probability density, if it is a
nonincreasing function then it is automatically d.R.i., so that the key renewal theorem applies
again.

(iii) Furthermore, note that in the proof of Theorems 1 and 2, we made no assumption that
the distribution P of claims has a density. It is worth noting that (11), for instance, is valid
for any claim size distribution. The results of Theorems 1 and 2, however, do not hold as they
stand, but need a slight modification if P is not absolutely continuous. The most important
case then is when P is discrete, and assume, for simplicity, that it is concentrated on the set of
positive integers; see, e.g. Picard and Lefèvre (1998), (2003) for various aspects of the classical
risk model under this assumption. When we consider the joint density, f (x, y | 0), it is clear
that this equals 0 unless (x + y) ∈ N. For such values of x and y, it is easy to see that (6) still
holds provided that we interpret p(x + y) in (6) as the probability that a claim equals x + y.

When x < u, the density of the surplus before ruin in (20) becomes

f (x | u) = 1 − P(x)

ζ(0)

∫
[u−x,u]

(k � U+)(x − u+ z) dζ(z),

and if q is a density for the measure ζ , as above, this reduces to

f (x | u) = 1 − P(x)

ζ(0)

∫ u

u−x
(k � U+)(x − u+ z)q(z) dz.

Setting w = u− z, we obtain

f (x | u) = 1 − P(x)

ζ(0)

∫ x

0
(k � U+)(x − w)q(u− w) dw.

Now, for u ≥ 0, let a function qu be defined by qu(w) = q(u − w) for 0 ≤ w < u and
qu(w) = 0 otherwise. Then the last expression takes the following simpler form:

f (x | u) = 1 − P(x)

ζ(0)

∫ x

0
(k � U+)(x − w)qu(w) dw,

which expresses the surplus prior to ruin as the product of a function of x and the convolution
between two quantities which are in many cases (e.g. in the phase-type case) easy to obtain.

Furthermore, note that, from (3) and Theorem 2(ii) it easily follows that

lim
x→∞

f (x, y | u)
f (x, y | 0)

= 1 − ψ(u)

1 − ψ(0)
.

This shows that (17) holds asymptotically for the Sparre Andersen model.
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4. Subexponential distributions

An important class of distributions for modelling claim size distributions with a heavy tail
is the class of subexponential distributions; see e.g. Embrechts et al. (1997). A classical result
in this area is due to Embrechts and Veraverbeke (1982); more precisely, let

Pe(x) = 1

E(X1)

∫ x

0
(1 − P(t)) dt

be the integrated tail distribution associated with the claim size distribution P in the Sparre
Andersen model and ρ = ‖G−‖ be the total mass of the defective distribution G−, the
descending ladder height distribution associated with the random walk {Sn : n = 1, 2 . . . }.
Then, under the assumption that Pe is subexponential, it holds that

ψ(x) ∼ ρ(1 − Pe(x))

1 − ρ
.

Note that the symbol ∼ here, and in the sequel, means that the ratio of the two functions tends
to 1 as x → ∞.

Based on Theorem 2, our next result establishes a condition for the distribution function of
the surplus prior to ruin to belong to the class of subexponential distributions, which we denote
by S. First note that, if F(x | u) denotes the distribution function of the surplus prior to ruin,

F(x | u) = P(U(T−) ≤ x | U(0) = u),

so that F(· | u) has density f (· | u), then F is a defective distribution. To this end, we consider
the conditional distribution of the surplus prior to ruin, given that ruin occurs, namely

F2(x | u) = P(U(T−) ≤ x | T < ∞, U(0) = u),

which is a proper cumulative distribution function (CDF) for any value of the initial surplus u.
Furthermore, F2 is related to F by

F2(x | u) = F(x | u)
ψ(u)

for x, u ≥ 0. (25)

Then we have the following proposition.

Proposition 2. Assume that in the Sparre Andersen model condition (i) holds and that the
distribution Pe is in S. Then F2(x | u) also belongs to S.

Proof. For x ≥ 0, let pe(x) = [1 − P(x)]/E(X1), so that pe is a density for the integrated
tail distribution Pe and let θ0 = E(Y1)/E(X1). Then we observe that (21) can be written as

lim
x→∞

f (x | u)
pe(x)

= 1 − ψ(u)

θ0
. (26)

This shows that f (x | u) ∼ Ape(x), where A = A(u) = (1 − ψ(u))/θ0. By a simple
integration of (26) and using (25) it is then easy to see that

1 − F2(x | u) ∼ A

ψ(u)
(1 − Pe(x)), (27)

i.e. the distributions F2(· | u) and Pe are tail-equivalent for every fixed u ≥ 0. The result now
follows from Corollary 1.10 in Chapter IX of Asmussen (2000).
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Remarks. (i) Note that in the proof of Proposition 2 we have used (21), which in turn requires
both conditions (i) and (ii) to hold. However, it is immediate that the condition for Pe to be in
S is stronger than condition (ii); therefore, condition (ii) is not needed in the statement of the
proposition.

(ii) We note that if the claim size distribution P itself is in S, then under some further mild
conditions (see Klüppelberg (1988)), Pe is in S, so that Proposition 2 applies.

A class which generalises the class of subexponential distributions is the following. A
distribution functionF on [0,∞) belongs to the class S(γ ) for γ ≥ 0 if it satisfies the following
conditions:

(a) limx→∞ F�2(x)/F̄ (x) = 2F̃ (γ ) < ∞,

(b) limx→∞ F̄ (x − y)/F̄ (x) = eγy for all real y,

where F̃ is the moment generating function ofF . For γ = 0, it is well known (see, for example,
Klüppelberg (1988)) that (a) implies (b), so that S(0) coincides with S. For γ > 0, we have
the following proposition, which gives a condition for the CDF of the surplus prior to ruin to
be in the class S(γ ).

Proposition 3. Let γ > 0 and assume that P is the claim size distribution and F(· | u) is the
CDF of the surplus prior to ruin in the Sparre Andersen model. Then, for any u ≥ 0, P ∈ S(γ )
if and only if F2(x | u) is in S(γ ).

Proof. It follows from the results in Klüppelberg (1989), see also Cheng et al. (2002), that
P ∈ S(γ ) if and only if Pe ∈ S(γ ). The result now follows from (27) and the well-known fact
that the class S(γ ) is also closed under tail-equivalence; see, e.g. Teugels (1975).

5. Joint moments of the surplus prior to ruin and the deficit at ruin

In this section we establish conditions for finiteness of moments for the joint distribution of
the surplus prior to ruin, U(T−), and the deficit at ruin, |U(T )|. For the classical risk model,
Lin and Willmot (2000) have established explicit expressions for the joint moments of these
two quantities, which are, however, rather cumbersome as they depend on recursive formulae
for such moments and require knowledge of the ruin probability ψ(u).

Here, the following proposition gives conditions for the finiteness of these moments in the
Sparre Andersen model. As usual, we proceed by establishing the result for u = 0 first.

Proposition 4. Assume that in the Sparre Andersen model the claim-size distribution P has
finite moments of order r for some r > 1 and that the interclaim distribution K has a bounded
density k.

Let G be the distribution of the variable Yi = Ti − Xi , so that G is the step distribution of
the random walk {Sn : n = 1, 2, . . . } and assume that G has a finite first moment. Then, for
any nonnegative integers m and n such that m+ n < r − 1, it holds that

∫ ∞

0

∫ ∞

0
ynxmf (x, y | 0) dx dy < ∞. (28)

Proof. We first make the following claim: for allm and n such thatm+ n < r − 1, it holds
that

I0 :=
∫ ∞

0

∫ ∞

0
ynxmp(x + y) dx dy < ∞. (29)
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For m = 0, note that the claim is true in view of the moment conditions for the distribution P
in the statement. To prove the claim for positive m, we first calculate the inner integral of I0.
Using integration by parts, we have∫ ∞

0
ynxmp(x + y) dx = yn[−xmP̄ (x + y)]∞0 +myn

∫ ∞

0
xm−1P̄ (x + y) dx.

Since the distribution P has finite moments of order r , the first term on the right-hand side
is 0. Furthermore, it is readily checked that the associated tail, P̄ = 1 − P , satisfies, for all
nonnegative x and y,

P̄ (x + y) ≤ C0(1 + x + y)−r

for some positive constant C0. This gives∫ ∞

0
ynxmp(x + y) dx ≤ mC0y

n

∫ ∞

0
xm−1(1 + x + y)−r dx

≤ mC0y
n

∫ ∞

0
(1 + x + y)−r+m−1 dx

= m(r −m)−1C0y
n(1 + y)−r+m.

Then, integrating with respect to y, and since m+ n− r < −1, we immediately obtain∫ ∞

0
yn(1 + y)−r+m dy < ∞,

and this proves the claim in (29).
Now considering the joint moments of the density, f (x, y | 0), we use the expression for

f (x, y | 0) from Theorem 1 to deduce that∫ ∞

0

∫ ∞

0
ynxmf (x, y | 0) dx dy =

∫ ∞

0

∫ ∞

0
ynxmp(x + y)

∫ x

0
k(x − t) dU+(t) dx dy.

Next, we employ Stone’s decomposition theorem (see, for instance, Asmussen (1987, Chap-
ter VI)), which asserts that U+ can be written as U+ = U

(1)
+ + U

(2)
+ , where U(1)+ has a bounded

continuous density h1(t) → µ−1
0 and U(2)+ is a finite measure. Consequently, we obtain

∫ ∞

0

∫ ∞

0
ynxmf (x, y | 0) dx dy =

∫ ∞

0

∫ ∞

0
ynxmp(x + y)

∫ x

0
k(x − t)h1(t) dt dx dy

+
∫ ∞

0

∫ ∞

0
ynxmp(x + y)

∫ x

0
k(x − t) dU(2)+ (t) dx dy

=: I1 + I2.

The fact that the integral I2 is finite is obvious in view of the claim in (29) and the assumption
that k is bounded. For I1, let C1 be such that h1(t) ≤ C1 for all t . Then, observe that∫ x

0
k(x − t)h1(t) dt ≤ C1

and, upon using (29) again, this completes the proof.

Remarks. (i) Note that the condition
∫
x dG(x) < ∞ in the statement of Proposition 4 is

needed to ensure that the ascending ladder height distributionG+ has a finite first moment (Gut
(1987, p. 78)), so that Stone’s theorem applies for the associated renewal measure U+.
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(ii) It is obvious that by setting n = 0 and m = 0 in Proposition 4 we obtain finiteness of
the moments for the surplus prior to ruin and, respectively, for the deficit at ruin. Note that
the conditions for finiteness of moments for the deficit at ruin, |U(T )|, in the Sparre Andersen
model, have been given in Cheng et al. (2002).

(iii) It is easily seen from the steps of the proof above that Proposition 4 is also valid for
noninteger values of m and n provided that m ≥ 1.

Based on Proposition 4, we now prove the following more general result.

Theorem 3. Under the assumptions of Proposition 4, assume, in addition, that condition (i) is
satisfied. Then (28) holds when f (x, y | 0) is replaced by f (x, y | u) for an arbitrary value
of the surplus u > 0.

Proof. We have
∫ ∞

0

∫ ∞

0
ynxmf (x, y | u) dx dy

=
∫ u

0

∫ ∞

0
ynxmf (x, y | u) dy dx +

∫ ∞

u

∫ ∞

0
ynxmf (x, y | u) dy dx

=: I3 + I4.

Using the same arguments as in the proof of Proposition 4, it is easily checked that the integral
I3 is finite, so it suffices to consider the integral I4. Using (24) we obtain

I4 =
∫ ∞

u

∫ ∞

0
ynxmp(x + y)(k � U+)(x − u) dy dx

+
∫ ∞

u

∫ ∞

0
ynxm

p(x + y)

ζ(0)

∫ u

0
(k � U+)(x − u+ z)q(z) dz dy dx. (30)

Since k satisfies condition (i), the key renewal theorem applies so that

lim
x→∞(k � U+)(x) = µ−1

0 .

Furthermore, the function k �U+ is bounded on finite intervals, so we conclude that there exists
a constant C2 such that supx(k � U+)(x) = C2. This shows, by an appeal to (29) again, that
both integrals in (30) are finite and this concludes the proof of the theorem.

6. Concluding remarks

Remark 1. Integrating (6) with respect to x over (0,∞), we obtain

f1(0, y) =
∫ ∞

0
p(x + y)

∫
[0,x]

k(x − z) dU+(z) dx,

where we have put

f1(0, y) =
∫ ∞

0
f (x, y | 0) dx

and we note that this is a density for the deficit at ruin, when the initial surplus is 0, in (5). For
the integral on the right, we use the fact that U+ has a unit mass at 0 and a density h on (0,∞)
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to deduce that, for y ≥ 0,

f1(0, y) =
∫ ∞

0
p(x + y)k(x) dx +

∫ ∞

0
p(x + y)

∫ x

0
k(x − z)h(z) dz dx

= g(−y)+
∫ ∞

0
h(z)

∫ ∞

z

p(x + y)k(x − z) dx dz.

Making a simple change of variable and using (16), we obtain

f1(0, y) = g(−y)+
∫ ∞

0
h(z)g(−z− y) dz. (31)

But the Wiener–Hopf identity (Asmussen (1987, Section VII.3)) yields

G−(−y) =
∫

[0,∞)

G(−y − z) dU+(z) for any y > 0.

By differentiation, we obtain

g−(−y) =
∫

[0,∞)

g(−y − z) dU+(z) = g(−y)+
∫ ∞

0
g(−y − z)h(z) dz.

From this and (31) we deduce that, for all y > 0, it holds that f1(0, y) = ǧ−(y), where ǧ is a
density for Ǧ, and we thus recover (5).

Remark 2. Integrating (22) with respect to x and using Fubini’s theorem, it can be shown that
the following equation holds:

F(x | 0) =
∫ x

0
[1 − P(t)]k(t) dt +

∫
[0,x]

∫ x−z

0

1 − P(ξ + z)

1 − P(ξ)
f (ξ | 0) dξ dG+(z).

We note that this can also be obtained by conditioning on the value of the first descending ladder
epoch of the random walk {Sn : n = 1, 2, . . . } and then using arguments similar to those used
for the Wiener–Hopf factorisation for random walks; see Kennedy (1994) and Appendix A of
Asmussen (2000).

Remark 3. Apart from the surplus prior to ruin and the deficit at ruin, another quantity of
interest in the current setup is the amount of claim causing ruin. Let Z be this (defective)
random variable, which we note was introduced by Dufresne and Gerber (1988) and studied in
detail for the classical Poisson model in Dickson (1993); see also Cai (2004) for some recent
results in a more general framework. Assuming that the claim sizes are absolutely continuous
with a density p, and that the initial surplus is u, then Z has a density

gu(x) =
∫ x

0
f (z, x − z | u) dz for x > 0;

see Dufresne and Gerber (1988). Thus, the results of the previous sections can be applied,
without much difficulty, to establish analogous results for Z.

Remark 4. A more general problem to the one we have considered in the present paper concerns
the behaviour (exact and/or asymptotic) of the more general function defined in (1) for arbitrary
δ > 0. The results of Gerber and Shiu (1997) for the classical risk model refer to this more
general function and we aim to address the issue of generalising the Gerber–Shiu results for
the Sparre Andersen model (δ > 0) in the future.
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