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ABSTRACT. Topology of the universe is the remains of quantum cosmology. 

The theoretical and observational aspects for the topology of the uni-

verse are discussed to show that the significances of topology of the 

universe in present observations can shed some light on the properties 

of the universe in the quantum cosmological era. 

1. INTRODUCTION 

"Is the Earth flat or spherical?" was a vexed question for ancient 

scholars. Today cosmologists face a similar vexation: what is the 

shape of the universe? 

The difficulty of determining the shape of the Earth in the ancient 

days was due to that the observable area was much smaller than the 

whole surface of the Earth. Even in that time, several ancient scholars 

justfied the spherical shape of the Earth. This conclusion was obtained 

from the following two reasons: 

a) The curvature is locally observable. It was found that the 

curvature radius of the Earth is finite. 

b)The surface of the Earth is homogeneous, namely, the curvature 

is the same everywhere. 

Similarly two points can also be found in modern cosmology: 

a) spacetime curvature of the universe is locally observable; 

b) cosmological principle, i.e. the space time curvature is the 

same everyzwhere in the universe. However, from the above-

mentioned two points we would not be able to find definite conclusion 

on the shape of the universe, because the metric do not determine 

the topology of the spacetime as a whole. 

For instance, the metric of a flat universe(k=0) is given by 

ds 2 , = - c 2 ' d t 2 + R Z (t ) (dx^+dy^+dz 1 ) . The spacelike section of t=const. 

is an infinite 3-dimensional Euclidean geometry, -<*o<x,y,z<^*d. 

If we do the identification of points (x,y,z,t) with (x+la x , y + m a y , z + n a 2 ) 

for all integers l,m,n, the spacial section becomes then 3-dimensional 

torus T 5 , in which the spacial volume is finite. Different topologies 

can be formed from a metric by different identifications. T^ is one of 

18 topologically different types of identifications in the case of flat 
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universe 

The following statement can ofen be found in text books: the spacial 

volume of open(k=-l) and flat universe are infinite, close universe(k=l) 

is finite. In fact, this statement implies that the topology of the 

universe is simply connected. But there is no reason, both observatioal 

and theoretical, to show that the topology of the universe must be 

simply connected. Therefore, a fundamental question in cosmology is: 

what is the topology of the universe? 

The topology of the universe is not important in many cosmological 

topicsr such as the origin of microwave background radiation, nuclear 

synthesis, formation of galaxies, etc.. In discussing these problems, we 

only need the cosmological principle as boundary conditions, while the 

topology is neglegible. 

The development of quantum cosmology has made that the topology of 

the universe would not be neglectable. The aim of quantum cosmology is 

to study the universe in the Planck era, in which the main process was 

the formation of spacetime itself, i.e. spacetime as a whole becomes 

dynamical variable in quantum cosmology. 

On the other hand, the theory of the topology of the universe is 

testable Since Einstein's equations of general relativity determine 

only the metric of spacetime, but not the topology, it means that the 

topology of spacetime is invariant in the period described by classical 

gravitation. Therefore, after the Planck time, i.e., the era of the 

formation of spacetime topology, the topology never changes; the topology 

observed in present universe is the same as that in Planck era, i.e., 

the era of cosmological age r\> 1 0 sec. . In other words, cosmological 

topology is the remains of Planck era. 

The significance of cosmological topology can be expressed by 

Table 1, in which we list all the important remains and eras of their 

formation. Cosmology studies the evolution of the universe from the 

TABLE I. Cosmic Remains of Various Eras 

Remains Age of the universe 

Topology of spacetime 

Matter-antimatter asymmtry 

Abundances of elements 

Microwave background radiation 

Objects with large red-shift 

1 0 seconds 
-34 

1 0 seconds 

3 minutes 

1 0 r years 

Λ / 1 0 1 0 years ago 

remains left over various cosmic eras. Therefore, the topology problem 

may be the key of studying the universe at the earliest era, i.e. the era 

of creation of the universe. From Table 1 one can also find a systematic 

property: the earlier the remains, the stronger(or harder) the associated 

interaction; the chronological order of the remains is particle-nuclear-

radiation-galaxy, which corresponds to the order of interaction intensity. 
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strong-electroweak-gravitation. Spacetime is the hardest. In most 

problems of physics, spacetime is considered as a fixed plateform on 

which all physical processes take place. This is the same as to assume 

that spacetime is the hardest among all physical entities. We should 

therefore search for the remains of Genesis in the properties of space-

time. This is just the topology of the universe. 

2 . POSSIBLE TOPOLOGIES OF THE UNIVERSE 

Immediately after Einstein gave the cosmological model which has S 5 as 

the configuration of the space, Klein noticed that it is equally possible 

for the space to have Ρ 5 , the 3-dimensional projective space as the 

configuration. But the fact is that models with S 3 topology have 

received far more considerations than those with P 3 topology. The reason 

for this comes more from human's prejudice than from physical conside-

rations. This preference eliminates from our interests many models that 

are as possible to be a cosmological model as the ones we prefered. 

The number of the candidates is very large, as matter of fact, 

mathematicians have given an almost complete classification of the 

topologies for 3-dimensional spaces(Scott 1 9 8 3 ) , before physical consi-

derations, they are all possible candidates for the 3-dimensional space-

like hypersurfaces of spacetime, so we in fact have an infinite number 

of candidates. 

In cosmology, model chooing must rely on physical considerations 

and observations. There are many physical considerations, such as the 

orientability and the differentiability of the spacetime, etc., we will 

give here physical considerations related to the operations of identi-

fications to give various topologies. In static spacetime, the identi-

fications can be made at any time, because the geometry as well as the 

topology does not change with time. But for a model with expanding as 

our universe is, in order that the identification at one time be the 

same as that at another time, the universe must be expanding conformally 

or the identification is made in some special way. Three classes of 

models of this kind is of special interest they are the ones with 

constant curvature. The one with positive curvature k=l(class I) is 

locally diffeomorphic to S 3 , the one with null curvature k=0(class II) 

is locally difeomorphic to E 5 and the one with negative curvature k=-l 

(class III) is locally difeomorphic to H 3 . They correspond to the 

density parameters of > 1,=1,<1 respectively, the metrices for these 

three classes are given by 

ά1λ = d r 2 + f * ( r ) (dô 2* + s i n 2 ö d j * ) (1) 

where 

2 (class I) 

(class II) 

(class III) 

As is the mathematical result, all spaces of the three classes can 
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b e c l a s s i f i e d ( n o t c o m p l e t e l y ) t o p o l o g i c a l l y a c c o r d i n g t o t h e d i s c r e t e 

s u b g r o u p s o f t h e i s o m e t r y g r o u p s o f S 3 , E 3 , r e s p e c t i v e l y ; t h e y a r e 

t h e q u o t i e n t s p a c e s o f t h e k i n d s S 3 / p , E 3 / p r H 3 / p r e s p e c t i v e l y 

w i t h Ρ t h e d i s c r e t e s u b g r o u p s a c t i n g w i t h o u t f i x e d p o i n t s , i t i s e q u a l l y 

t o s a y t h a t t h e y c a n b e o b t a i n e d f r o m p r o p e r l y i d e n t i f y i n g p o i n t s i n S 3 

Ε 3 a n d Η 3 . 

C l a s s I . T h i s c l a s s i s o b t a i n e d f r o m p r o p e r l y i d e n t i f y i n g p o i n t s 

i n S , s o o n e c a n w r i t e c o m p a c t l y t h e c l a s s a s 2 | ^ S 3 / T~\ w h e r e V\ 

i s t h e d i s c r e t e s u b g r o u p o f t h e i s o m e t r y g r o u p S 0 ( 4 ) a c t i n g w i t h o u t 

f i x e d p o i n t s . N o t i c i n g t h a t S 0 ( 4 ) i s d i f f e o m o r p h i c t o S O ( 3 ) X S 0 ( 3 ) / Ζ χ 

S o i f we h a v e t h e d i s c r e t e s u b g r o u p s f o r S 0 ( 3 ) , we c a n f i n d 2.\by 

b i n a r y i d e n t i f i c a t i o n s i n b o t h S 0 ( 3 ) g r o u p m a n i f o l d s . I t i s w e l l k n o w n 

t h a t t h e r e a r e 7 k i n d s o f s u c h d i s c r e t e s u b g r o u p s f o r S 0 ( 3 ) , t h e y 

a r e , Z ^ , t h e 2 - c y c l i c g r o u p ; Z n ( n > 2 ) , t h e η - c y c l i c g r o u p s ; ( m > 2 ) , t h e 

d i h e d r a l g r o u p s ; T , t h e r e g u l a r t e t r a h e d r o n g r o u p s ; 0 , t h e r e g u l a r 

o c t a h e d r o n g r o u p ; I , t h e r e g u l a r i c o s a h e d r o n g r o u p . S o t h e r e a r e i n f i n i t e 

n u m b e r t o p o l o g i e s f o r Σ.\ · T o s e e t h e i d e n t i f i c a t i o n s m o r e c l e a r l y , o n e c a n 

r e p r e s e n t S 0 ( 3 ) m a n i f o l d d i a g r a m m a t i c a l l y a s f o l l o w s : c h o o s i n g t w o 

b a l l s S j , S-2 o f r a d i u s i r w i t h a n t i p o d a l p o i n t s o n e a c h s u r f a c e i d e n t i f i e d . 

R o t a t i o n i n t h e d i r e c t i o n ( Ö, ψ ) b y < * < 2 T T i s g i v e n b y a p o i n t w i t h r a d i c a l 

c o o r d i n a t e « a n d a z i m u t h a l c o o r d i n a t e s ( 0 , ^ ) i n S j , w h i l e r o t a t i o n s i n 

t h e d i r e c t i o n o f ( d, ) b y 2 Τ Γ ^ < * < 4 Τ Γ i s g i v e n b y a s a m e p o i n t i n S^ · 

R o t a t i o n w i t h ο<=4ΤΓ w i l l r e t u r n t o t h e o r i g i n a l p o i n t . I f o n e i d e n t i f i e s 

t o w p o i n t s o n Sx a n d S^ w i t h o < - c o o r d i n a t e s d i f f e r b y 2ττ , o n e t h u s 

o b t a i n s P*5 w h i c h i s d i f f e o m o r p h i c t o S 0 ( 3 ) m a n i f o l d . S o t h e t w o b a l l s 

t h u s c o n s t r u c t e d i s d i f f e o m o r p h i c t o S* 3 , t h e i d e n t i f i c a t i o n s i n S 3 c a n 

b e a c h i e v e d ( t o p o l o g i c a l l y ) b y b i n a r y i d e n t i f i c a t i o n o f p o i n t s i n t h e t w o 

b a l l s . 

B e c a u s e o f t h e t o p o l o g y c o m p l e x i t y , i t i s v e r y d i f f i c u l t t o f i n d 

f o r a l l c a s e s t h e c o o r d i n a t e s o f t h e i d e n t i f i e d p o i n t s i n t e r m s o f 

(r,d,$) i n e q u . ( l ) . B u t f o r t h e s i m p l e s t c a s e w i t h P 3 c o n f i g u r a t i o n , 

w h i c h i s t h e o n l y o n e i n t h i s c l a s s t h a t h a s t h e s a m e s y m m e t r y a s S 3 , 

t h e i d e n t i f i c a t i o n c a n b e f o u n d . I f o n e c o n s i d e r s S 3 a s t h e 3 - s p h e r e i n 

4 - d i m e n s i o n a l s p a c e w i t h e q u a t i o n x 1 + y 2 + z 2 + w i = 1 , t h e n P 3 i s t h e i d e n t i -

f i c a t i o n ( x , y , z , w ) S ( - x , - y , - z , - w ) o n S 3 , o r , i n t e r m s o f i n t r i n s i c 

c o o r d i n a t e s , t h e i d e n t i f i c a t i o n o f ( r , ) Ξ (TT-r , Τ Τ - Ô , ΤΓ+ 9 (mod2TT ) ) o n 

S 3 . 
B e c a u s e o f t h e c o m p a c t n e s s o f t h e s p a c e i n t h i s c l a s s , m u l t i p l e 

i m a g e s c a n e v e n o c c u r i n S 3 c a s e . A s m a t t e r o f f a c t , b e c a u s e t h e g e o d e s i c 

f o r l i g h t i s t h e g r e a t c y c l e o n S 3 , i t w o u l d b e p o s s i b l e t o f i n d a 

c o n t e r i m a g e i n t h e o p p o s i t e d i r e c t i o n t o t h e o b j e c t s . B u t i t h a s b e e n 

p r o v e d t h a t f o r a n e x p a n d i n g u n i v e r s e , i s i s i m p o s s i b l e f o r s u c h a c o n t e r -

i m a g e t o o c c u r i n S 3 c a s e , b e c a u s e i n t h i s c a s e t h e h o r i z o n s i z e w i l l b e 

s m a l l e r t h a n t h e l e n g t h o f t h e s e m i c y c l e s . B u t i t i s p o s s i b l e f o r P 5 

c a s e , i f t h e d e c e l e r a t i o n p a r a m e t e r q 0 a t p r e s e n t t i m e w e r e g r e a t e r 

t h a n 1 , t h e r e w o u l d b e o n e o r m o r e i m a g e s f o r o n e o b j e c t ( N a r l i k a r a n d 

S e s h a d r i 1 9 8 5 ) . 

C l a s s I I . T h i s c l a s s i s o b t a i n e d b y p r o p e r l y i d e n t i f y i n g p o i n t s 

i n E 3 . T h e s p a c e s i n t h i s c l a s s c a n b e w r i t t e n a s ^ ~ Ε 3 / Γ Ζ w h e r e l~i 

i s t h e d i s c r e t e s u b g r o u p s o f t h e i s o m e t r y g r o u p f o r Ε * , t h a t i s R * x S 0 ( 3 ) 

a c t i n g w i t h o u t f i x e d p o i n t s . S o i f Ε 3 i s c o n s i d e r e d t o b e a n i n f i n i t e 
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crystal constituted of lattice cells, then class II can be obtained as 

identifications of points on the opposite faces of each cell(sometimes 

with a s c r e w ) . The classification of this class is complete, there are 

18 kinds of Y2 . s o w e c a n have 18 different kinds of topologies. The 

first group consists of six compact, orientable members- They are the 

ones obtained by proper identifications of points on the opposite faces 

of rectengular lattice that is (i) identification of opposite surfaces 

that gives Τ * , the 3 torus, (ii) identification of opposite faces, 

with one pair screwed by an angle ΤΓ, (iii) identification opposite faces 

with one pair scewed by an angle ΤΓ/2, (iv) identification opposite faces 

with all pairs screwed by an a n g l e τ τ a n d those obtained from the identi-

fications of points on the lattice made by translating a hexagonal lattice 

plane a certain distance perpendicular to the plane, that is (v) iden-

tification of the two hexagonal faces with one screwed by an angle 2TT/3 

with respect to the other (vi) identification the two hexagonal faces 

with one screwed IT/3 with respect to the other The second group consists 

of four compact, nonorientale members they can be obtained in the same 

way as in cases (i)-(iv) but with some reflections. The third group 

consists of four orientable but noncompact members, it is obtained from 

identifications(with screws) in less than three pairs of lattice faces. 

They are (i) type £ = E 3 , with no identification at all, (ii) type , 

with Π generated by a translation and a screw motion of an angle φ , 

(iii) type Ĵ", , with f"i generated by two independent translations and (iv) 

type 9τ , with Γ\ generated by a translation and a screw motion of an 

angle ιγ in the direction perpendicular to the translation. The four non-

orientable, noncompact manifolds can be obtained in the same way. It 

should be pointed out that the only one which preserves the maximal 

symmetry R 3 x S0(3) is itself, others are homogeneous but anisotropy 

because all identifications can not commute with the rotational group 

S 0 ( 3 ) . 

The coordinates of the identified points in for some cases can 

be found without great difficulty. For example, in Order to get T 3 -

topology, one can identify point (x,y,z) in E 3 with points (x+nLi ,y4-mL2 / 

Z+IL3 ) with (n,m,l) the lattice numbers and (L\ , Li , L 3 ) the lengthes of 

the rectangular lattice. 

One reason for considering models in this class is that the infla-

tion in the very early universe gave a flat spacetime, and, as will be 

discussed in the next section, compactness of the 3-space is prefered 

by quantum cosmology. If such is the case, we will inevitably have one 

of the six manifolds in the first group as our candidates. But they are 

anisotropic, so one must be very careful about the effects of such an 

anisotropy, when one considers an inhomogeneous model. 

Whether or not one or more images will be observed for an object 

depends on whether or not the present horizon is larger than the smallest 

length of the lattice. But theoretically, one can choose so small a 

length scale for the universe as to have one or more images for one 

object, we do not face the problem as in class I. 

Class III. This class can be obtained by properly identifying 

points in H 3 . But the classification has not been completed in m a t h e -

m a t i c s . There are three ways to proceed. The first is given by Löbell, 

Löbell(1931) found that Η 3 can be fitted just once by the fundamental 
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region formed by 14-sided figure with two sides are regular rectangular 

hexagons and the rest twelve rectangular pentagons. So we can find non-

trivial topologies by properly identifying points in these fundamental 

regions. The second is given by noticing that the metric of 3-space 

with constant negative curvature can locally be written as(Ellis 1967) 

dtf 2 = d r a + c h z r d t * (2) 

where dTJ2" is the metric on the 2-surf ace H 2 with constant negative 

curvature. So the total 3-space can be written as M 3 Ä R X H 2 . N O W the 

identification on Η 2 · can be obtained, for example, by attaching hundles 

on the surface, we thus have a group of 3-space with constant negative 

curvature in the form of direct product. The final way is given by the 

"translation" or "translation plus screw motion" on H 3 . As matter of 

fact, can be globally imbedded in Minkowski space F^~ ; it is in-

variant under a simply transitive group of Bianchi type V and a 1-

parameter family of simply transitive group of Bianchi type V I I ^ . So one 

can find the discrete subgroups of these isometry groups and obtain the 

quotient space by these discrete subgroups. There are infinite number of 

3-space in this class. 

Astronomical observations made so far gives an open universe( -TL^ 1 ) , 

this plus the compactness of the three space required by quantum cosmology 

(as is mentioned before) lead inevitably to a space with nontrivial 

topology, this is one reason to study models in this class. The deter-

minations of the coordinates for the identified points are extremely 

difficult. As a simple example, Fagundes(1985a) considered an unrealistic 

model with topology H ^ X Ε , and found the images in the 2-dimensional 

hyperbolic geometry H Z . As for the identification in Η 3 , so far as we 

know, researches are remaining to be done. 

We have just given a relatively detail list of 3-spaces which are 

made from properly identifying points in the maximally symmetrical 

spaces , E 5 , H 3 . The list is far from complete. There are many other 

alternatives which can not be excluded from our candidates(for a more 

complete list, see F a g u n d e s ( 1 9 8 5 b ) ) . The list given above only provides 

an illustration of how the constructions of models with different 

topologies proceeds and of how many alternatives we can have for the 

models of the universe. 

3. CONSTRAINTS ON TOPOLOGY BY QUANTUM COSMOLOGY 

We have seen in the last section how large a number of variants can be 

for the candidates of the models of the universe. But we believe that 

our universe exists with a certain specific topology. Now one question 

is why our universe has such a topology not the other. To answer this 

question, we therefore first turn to the observational results. That is 

the candidates chosen must be consistent with the observations we have 

for the universe today. The observational significances of topology of 

the universe, or reversely speaking, the constraints on the possible 

topologies of the universe by observations will be our main concern for 

our latter sections. In this section we will consider the problem theo-
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retically, that is the constraints on topology by quantum cosmology. 

If we speak quantum cosmology in the sense of quantum events on a 

background spacetime, the constraints come from the instability of some 

background spacetimes. For example, some authors have considered the 

instability of de Sitter space, they found that quantum corrections of 

the energy-momentum tensor causes an instable de Sitter space; only a n t i -

de Sitter space is stable under the quantum correction. Although the 

constraint on the topology(especially the multiply connectedness) of the 

space is very loose, it indeed sheds light on the problem. Remember that 

in the nontrivial topology, there is a nontrivial constraint to the 

energy-momentum tensor of the fields from the gravitational casemir 

effect. The instability is thus related to the global properties of the 

spacetime. 

If one considers quantum cosmology in the sense of quantum creation 

of the universe, interesting constraints can be found. 

First we discuss the problem in a broad sense, that is, we admit 

that the state of the universe is given by a wavefunction(cosmic wave-

function) which gives the probability amplitude for the universe to 

distribute with respect to some characteristic parameters. Topology 

being a very important property of the universe, so quantum cosmology, 

intuitively speaking, will give a choice of the topology. The dynamics 

of the wavefunction is given by Wheeler-DeWitt equation, the quantum 

cosmological analog of the Schrodinger equation. So one can find the 

possibility for the universe to transite from the quantum euclidean era 

(motions with imaginary time) to the classical lorentzian era. The 

amplitude for such transition is given by the WKB wavefunction exp(-|l cj]) 

where I c l is the euclidean action on the classical trajectories. Then 

if one wants to find the possibility of a universe with a certain topo-

logy, one must know how the topological effects can enter the action I t i . 

Since I c ( is the integral of lagrangian density over the spacetime 

manifold, global properties of the spacetime that is implied in the 

action is the volume of the universe. For pure gravitational field, 

I tj <x V V 3 where V is the volume of the universe ( t = c o n s t . ) . One immediately 

find that the wavefunction is zero for V-*°o, that means that the universe 

with infinite large volume can not occur from the quantum tuneling. One 

result of this is that, universe with null c u r v a t u r e ( k = 0 ) and negative 

curvature(k=-l) can occur with nonzero possibility only if it exists 

with nontrivial topology so that the space is compact. As mentioned 

before, models with k = 0 , - l are prefened by both observations and infla-

tionary theory, therefore nontrivial topology seems to be inevitable 

in this sense. 

In the consideration of the transition, one must have in the field 

configuration a spacelike hypersurface which separates the field confi-

guration into euclidean and lorentzian sections. This gives strigent 

constraints on the form of classical solutions of the m o d e l , this in 

turn gives some constraints on the topology. For example, if one con-

siders the isotropic expanding universe E*, if the effective cosmological 

constant Λ is positive, the expanding factor will be proportional to 

exp(Ht) with Η * = Λ / 3 . Although t - 0 0 is a singularity, there is no 

point in the scale factor that can separate the euclidean region and 

lorentzian region, the universe could then create from the classical 
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singularity at t—>-°o. If one considers such a model with Τ -topology, 

the space will be geodesically complete, so there is no singularity at 

t — . In these cases, there is no sense for the quantum creation. But 

if one takes into account the gravitational casemir effect of the matter 

fields due to the nontrivial topology, the situation will change. For 

example, in the T*-topology, the contribution of the casemir effect to 

the energy-momentum tensor will lead to a classical trajectory with the 

form a ( t ) •*( c h 2 H t )/z ( Zeldovich, et al. 1 9 8 4 ) , there indeed exists a minimum 

for a, in this case the region 0 < a < a m j n corresponds to the 

euclidean era and the region a > corresponds to the lorentzian 

region. There is no problem for the interpretation of the quantum 

creation of the universe. It concludes that if one insists on the 

quantum creation of the universe, there are some constraints on the 

topology. 

Now we turn to a specific quantum cosmology theory which is invented 

by Hawking and his colleagues. The corner stone in this theory lies in 

the ground state proposal of Hartle and H a w k i n g ( 1 9 8 3 ) which states that 

the ground state wavefunction for the universe ( Z,h- Ij / § ) is given by 

the path integral over all compact manifolds M(compact euclidean space 

after continuation) which has 2 a s i t s boundary with metric h g and 

matter field φ on it. One can see that the compactness of M poses very 

strigent constraints on the forms of the classical solution for the 

models chosen, these constraints are the same as that posed by the 

existences of the barrier separating the euclidean and lorentzian regions, 

so the early discussion still holes in this case. There are other two 

questions in this proposal: 

(i) for a given 2 , does M always exist with £ as its boundary? 

(ii) For a field on Ζ : φ : 3L~> $ , can the field be extended to 

all of M such that there exists an induced mapping "ψ :M—> J ? 

The answer to the first question is positive if one considers a 

4-dimensional spacetime, since for any 3-dimensional closed manifold HJ , 

there exists a 4-dimensional manifold M with its boundary diffeomorphic 

to . But if one considers high-dimensional m o d e l s , one can find 

manifolds which are not boundaries of any manifold. These cades should 

be excluded by the qantum cosmology. 

The answer to the second question is not certain. For example, the 

conjectures made by M k r t c h y a n ( 1 9 8 6 ) ( p r o v e d for some cases by L i ( 1 9 8 6 ) ) 

shows that if the topology of 21 is S ^ and the matter field assumes 

values on the group G, then the mapping ψ : M — > G which satisfies the 

conditions implied in Hartle-Hawking 1 s proposal exists if and only if 

the solitonic charge of the mapping S 3 — > G is zero. But this solitonic 

charge corresponds to the baryonic number in the m o d e l . So being zero is 

a contradiction. One way out of this may be the considering of spacetime 

manifolds with complicated topologies, but whether or not they can give 

nonzero baryonic number remains to be proved. The discussion here only 

serves to illustrate how quantum cosmology can give constraints on the 

topology of the universe. 

We have seen that quantum cosmology indeed gives some interesting 

constraints(although very loosely) on the topology of the, universe. The 

purpose of writing this section is not so ambitious as to give an affir-

mative answer to the question, but rather to show that, as to the choice 
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of topology of the universe, we can no longer rely on our costums or 

prejudice, there are theories(the quantum cosmology) by our hands. 

4 . OBSERVATIONS OF THE COSMOLOGICAL TOPOLOGY 

As mentioned in the introduction, the spacetime topology is not a 

dynamical variable in classical gravity. Topology is an invariant after 

the Planck era. Therefore, the topology of the present universe is the 

same as that formed by the event of the birth of the universe. The 

prediction on the topology given by quantum cosmology may then be test-

able by observations. 

Up to now quantum cosmology would not be able to predict the detail 

of the topological type, but only on whether or not the universe is 

multiply connected. So we limit the discussion on the observable proper-

ties which can be used to distinguish simple and multiple connecticity 

of the cosmological space. In a simply connected space, the geodesic 

between any two points is unique, namely, each object can be observed 

only in one direction. While in a multiply connected space, the geodesies 

between two points are sometimes multiple, namely, each object can be 

observed simutaneously in several different directions. Let uz consider 

a two-dimensional torus which can be constructed from a plane by iden-

tifying point (x,y) with points (x+la,y+mb) with all integers 1 and m. 

An observer in such a torus will find that the observed picture is the 

same as a plane, but the distribution of matter is periodic with "wave-

length" a in the x-direction and b in the y-direction, and the picture 

is like a plane lattice. 

Is the above-mentioned periodicity in the distribution of matter 

observable? It depends on the length scale of the horizon and of the 

size of the universe. In a compactified space, the size of the universe 

is given by the distance L between the most widely separated points. In 

Τ 3 universe, L ~ R ( t ) a x , R ( t ) a y , R ( t ) a 2 . Therefore, global properties which 

are due to the effect of topology should have a length scale larger 

than L. On the other hand, the scales of all observable properties 

should be smaller than the horizon L^. So the necessary condition for 

the topological effects to be observed is 

L H > L ( 3 ) 

Since L ^ ^ c H ^ * 1 , we have 

L < c H o ' ( 4 ) 

This condition can also be obtained in the field theoretic regime. 

Let Zt be subspace of synchonous space · Let and <§ 2 be two fields 

defined on 2 ^ and identified on 2/t : 

J§,(x) = $ 2 ( x ) , f o r ï é fct (5) 

But they can differ with each other on Σλ~ £ t · I f t n e observer can 

determine the properties of S i and $ 2 only through interactions on 
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Then there is no way to distinguish $ t and 3>2 ·
 T n e question is whether 

and <£z can be defined on spaces with different topologies. If it is 

the case, the observer can not rely on the <j>i ' ï 2 interactions on £t to 
determine the topology. It has been shown that, in general, Qx , ~φζ can 

be defined with different topologies(Unwin 1982), hence for one to 

determine the topology through interactions of §>t , § 2 , the interacting 

region £^ must be equal or larger than £ t · Et i s nothing but the 

horizon, so the condition is the same as eq .(3). 

In the case of eq .(4), the light rays cross the whole volume of 

the universe more than one time, an object can be seen in more than one 

directions. 

An important result in observational cosmology is that eq .(4) can 

not be ruled out by observations. The lower limit of L can be obtained 

from the fact of no image twins in some surveys of galaxies,such as 

Shane-Wirtanen sample(Shane and Wirtanen 1967) which gives L £/200h0'Mpc, 

where h 0 is the Hubble constant in unit of 100 km/s.Mpc. This lower 

limit is smaller than the present horizon L M , which is about 3000h oMpc. 

It concludes that present observations do not exclude the possibility of 

the multiply connecticity of the cosmological topology. 

5. POSSIBLE EVIDENCES FOR MULTIPLY CONNECTED TOPOLOGY 

The lower limit of the cosmic size given in last section is even smaller 

than the distance of objects with high redshifts, such as quasars. 

Therefore, from the distribution of quasars one can already find some 

evidences which seems to show the multiple connecticity of the cosmic 

space. 

5.1. Periodicity in the Distribution of Quasar Redshifts 

Resently, it has been demonstrated from the statistical analysis of the 

observational data that the distribution of the emission line red shifts 

of quasars have a periodic feature with respect to the argument xsF(ζ, q 0 ) 

defined by(Fang 1982) 

F ( z ' q ' ) = J 0 ( i + 2 ) a + 2 q o 2 ) ' * ( 6 ) 

where q 0 denotes the deceleration parameter. In the distribution of the 

red shifts there exists a set of peaks at z n given by 

F(z n,q 0)=An+B (7) 

where η is zero or positive integer and A and Β are constants. 

This above periodicity might be interpreted as the existence of a 

large scale periodic perturbation in the density distribution of cosmic 

matter. According to this interpretation, A is related to the "wave-

length" of such periodic perturbation as(Fang 1982) 

A= H o X o/c (8) 
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the subscript 0 denoting the present value. From the statistical analysis, 

λ 0 has been estimated as 

2 0 0 η ^ Μ ρ ο * \ 0<600h" 0

!Mpc (9) 

The constant Β in eq .(7) is related to our position relative to the 

perturbation waves. However, it is very difficult to explain why Β is 

not random depending on direction. If we were located in a preferred 

position near center of the large-scale spherical wave perturbation, the 

above relation would be explained but such interpretation would be not 

acceptable from the point of view of the cosmological principle. 

If we insist on the simply connected universe, it will be very 

difficult to overcome this difficulty. But such a type of result can 

be obtained natually if we assume the multiply connected universe. 

Let us consider the flat universe with topology T*5 for a simple 

example(Fang and Sato 1 9 8 3 ) . The redshifts of the multiple images of the 

source located at x 5 in the x-direction is given from 

• ~ d t _ _ R(tcO 
x c + n a y = j —-—- and z n + l = 

R(t) " R(t f t ) 

4 . 1 Γι Rtt«)*s R(to)gx_ ι 2 

z » + 1 = [i-JwHj-i&rT j ( 1 0 ) 

From eq .(7) for q = 1 / 2 , A = R ( t D ) a x / ( c / H 0 ) and B = R (t 0)x s/(c/H 0). Consi-

dering the R( t 0 )a x/2'v400Mpc and R ( t 0 )x% < ax/2, the quasars with z < 3 are 

the original image(n=0) or the ghosts of n=l or n = 2 . 

In the case of the whole-sky correlation, however, the situation is 

more complicated. For example, in the case of a x = a y = a 2 = a , the units of 

space periodicities are Ra, /2Ra, J~3Ra,..., depending on the observed 

directions. Then, the superposition of the two periodicities of Ra and 

/"2Ra produces an approximate periodicity of 0.5Ra. In the actual situ-

ation, the observed periodicity may be the superposition of a few 

fundamental space periodicities. 

In spite of the above ambiguity, we can predict as a general ten-

dency that the "wavelength" of periodicity for the quasars in the given 

direction should be larger than the "wavelength" estimated from the 

whole-sky data. This result might be used to interpret the following 

observational evidence: the wavelength of the whole-sky data is about 

a half of the wavelength estimated from the quasars listed by Savage 

and B o l t o n ( 1 9 7 9 ) , which are the quasars in the two given directions of 

the south Galactic Polar region of 02*00^,-50° Of/ and 2 2 A O 4 W , - 1 8 ° 55' . 

5.2. Periodicity in the Distribution of Absorption Line Redshifts 

of Quasars 

If the absorption lines in the quasar spectrum are due to absorptions 

of intervening objects, the distribution of absorption line redshifts 

should also show periodicity in a multiply connected universe. 
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It has been found(Chu, Fang and Liu 1 9 8 4 ) that there are several 

peaks in the number distribution of absorption lines with respect to 

ρ given by 

g (1 + z« , , ) 1 - < l + z > h )* 
1 <l + z e m ) * + < l + Z a t ) ) * 

where z<ÄM and ζ α ^ are the redshifts of emission and absorption, 

respectively. The peaks in β distribution were explained by so called 

"line-locking" mechanism. But to us, the meaning of such peaks is to 

provide more possibility of finding evidence of multiple connecticity. 

Indeed, the distribution of the peaks seems to be periodic. From the 

locations of the peaks, one can find the size of the universe L by the 

same way as that in the emission line case. An interesting result is 

that the size of the universe determined by ß-distribution is about the 

same as that determined by emission line distribution. 

5 . 3 . Close Pairs of Quasars 

It has been shown(Burbidge,Narlikar and Hewitt 1 9 8 5 ) that the possibility 

of finding so many close pairs of quasars with different redshifts by 

chance projection is as small as ^ 1 0 " " ^ . It seems too low to support 

the belief of cosmological origin of the redshifts. However, in a m u l t i -

ply connected universe, original images and its ghost images can locate 

in about the same direction. Considering this mechanism, one can show, 

close pairs of quasars do not contradict with cosmological hypothesis, 

it may be an evidence for multiply connected topology of the cosmological 

space. 

In a simply connected universe, the probability of finding pairs 

with angular separation < θ by chance projection is given by 

< s> c = 2 . 4 X 1 0 " " 7 Γ ( « c n O N ^ Ö 2 ( 1 2 ) 

where < s > c is the expected number of close pairs with angular separation 

less t h a n © , T ( < m ) is the sky density of quasars brighter than magnitude 

m, expressed in units of ( a r c d e g p 2 , Ν is the total number of quasars 

listed in catalogues which are brighter than m, f indicates the fraction 

of such quasars whose fields have been searched for close companions out 

to 0 · 
In a multiply connected universe, the probability < s > c should be 

enhanced by a factor 

^ = ( 1 + 8 ) U ( 1 3 ) 

where S is t n e amplitude of inhomogeneity in quasar distribution, l m is 

the the maximum order of ghost images. For weak clustering of quasars, 

1 + S ~ 1 . 3 - 1 . 5 . For the λ 0 g i v e n in eq . ( 9 ) , l m ~ 3 - 5 . Therefore, the 

enhancement factor is about four, which relax strongly the contra-

diction of the observed number of close quasar pairs with the expect 

number of eq . ( 1 2 ) . 
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5.4. Association between Quasars and Galaxies 

Since 1971, after the first finding of bright galaxies associated with 

3CQS0, many statitical analyses have been done to check a significance 

level of association between quasars and galaxies. Some analyses show 

a positive correlation(Chu and Zhu 1983; Seldner and Peebles 1 9 7 9 ) . It 

is very difficult to explain why the objects with such different red-

shifts are correlated in their positions. A possible way out of this 

problem also lies in the assumption of multiple connecticity. In the 

multiply connected universe, we can sometimes see the original image 

and its ghost images in the same direction. If we see some clump where 

the formation of quasar and galaxy were active, the association in 

appearance between the small redshifts galaxies of the original image 

and the large redshift quasars of the ghost images will result naturally. 

Since the quasar is thought to be a short-lived phenomena lasting only 

a few million years, we will see only one image of the quasar if R^iv/ 

400Mpc and z < 3 . According to this interpretation, the associated 

regions may provide us a good sample for studying the evolutionary 

relationship between galaxy and quasar: the remnents of the quasars 

should belong to the same clump of the associated galaxies. 

5.5. Length Scale of Clustering 

In a simply connected topology, the length scale of clustering is admis-

sible, in principle, up to t ö , the size of the horizon cH* 1 ^ 3 0 0 0 h ^ M p c . 

However, in a compactified universe, the upper limit of length scale of 

clustering is given by the size of the universe. Namely, if the result 

of eq .(9) is correct, we can then predict that no clustering has scale 

larger than r^400h",] Mpc . 

The largest clustering found today is superclusters which have the 

length scale of about l O O h ^ M p c The scale of voids is also less than 

lOOh^Mpc. It has been found from the distribution of quasars that the 

clustering of quasars is much weaker than galaxies. All these seem to 

show that the prediction on the evidence of a cut-off in the clustering 

scale can be accepted by present observations. More conclusive result 

could be obtained in the near future from the Space Telescope. 

5.6. Isotropy in a Multiply Connected Universe 

The identification of finding multiply connected topology from Robertson-

Walker metric will, in general, destroy the isotropy of the universe as 

a whole. For instance, a T 3 universe of a^-ay=a^ is anisotropic, but 

with a symmetry of a cubic lattice. Since, even in this case, the 

expansion of the universe can be isotropic, the small scale isotropy 

of microwave background radiation is still ensured, as in the simply 

connected case. 

Multipole component of the background radiation is sensitive to the 

global anisotropy. Therefore, we should discuss whether or not the 

present observations on quadrupole component of background radiation is 

inconsistent with the multiply connected m o d e l . It has been shown 

(Fang and Mo 1986) that, at least in the case of L H > L , the anisotropi-
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cally multiply connected universe can not be ruled out by the obser-

vation of quadrupole component. 

The large scale fluctuation in the background radiation temperature 

T( 8 f ^ ) can be described by multipole expansion, i.e., spherical 

harmonic expansion: 

= ι + Σ a ^ d S , * ? ) (14) 

In a simply connected universe, the multipole component a^ is given 

by(Peebles 1982) 

,a2 3TT(21 + 1) z 

< a i y 21(1 + 1) 0 U b ) 

where ^ is the density fluctuation at small k. From eq .(15) one finds 

a l ~ 8 
τ » - m -; „ ~ -c . _ _ _ 
In a T^ universe of a x = a y = a 2 = a , we have(Fang and Mo 1986) 

y a v 4ÏÏ (21 + 1) C 2 . 

Therefore, in the case of \ 0 < cE^ {i.. e . r L H > L ) one have a L < S , namely, 

in multiply connected universe, the multipole component of the back-

ground temperature will even be smaller than that in simply connected 

case. 

6. CONCLUSIONS 

All the evidences mentioned in section 5 are only very tentative. Anyhow 

the further statistical analyses of quasar redshift will be important 

to check the "positive" evidence of the compactified universe or to 

improve the lower limit on its size. All these results will be important 

for quantum cosmology regargingless whether or not there are positive 

or negative evidences for multiple connecticity. 

The significance of this research is, more importantly, in the 

aspect of methodology. It teaches us that the birth of the universe can 

also be studied by the following m e t h o d s : 

(i) in observational cosmology, to determine the spacetime topology 

of the universe as a whole by means of the distributions of objects, 

such as quasars and galaxies; 

(ii) in theoretical cosmology, to find the model of the birth of 

the universe, which can explain why the spacetime topology is just as 

it is. 
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DISCUSSION 

NARLIKAR: In 1984 Seshadri and I discussed elliptical topology of 
closed Friedmann models. We found that a QS0 could have two images in 
diametrically opposite directions. However, the effect could operate 
only for q > l and for redshifts under certain limits. Do you have any 
such theoretical constraints in your models? 

FANG: For Τ topology must be equal to 0.5, namely only that 
universe admits torus topology. In this case, there is no constraint 
on redshift for the formation of images with opposite directions. 
However different images are related in general, to different times of 
the sources. 

LOH: In a torus universe, does volume increase approximately as ζ 
even if cz/H > L, where L is the "period11 of the universe? 

FANG: Yes, the geometrical properties of a torus universe are the 
same as those of the simply connected Κ = 0 universe. 
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