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MEASURING RESISTANCE TO VIRUS INFECTION

P. A. P. MORAN

Australian National University, Canberra, A.C.T.

Dilution series of viruses often do not fit the exponential curve which they should
fit if the usual assumptions of the theory of dilution series were true. Suppose the
density of the virus suspension is A, the average number of virus particles per unit
volume of the inoculum (we suppose that unit volume is the amount actually used
in inoculating the egg or other test material). Let C' be the proportion of infective
virus so that CA is the effective density of virus particles, and X is a factor
depending on the dilution used such that CAX is the expected number of infective
particles in the inoculum. Then the probability of there being no infective virus in
the inoculum is g—CAX

Let p be the probability of a particle of infective virus infecting the egg if the
particle is present. If p does not vary from egg to egg, the probability of the egg

remaining uninfected is therefore
e—pO/\X ,

and the expected values in the dilution series will follow an exponential curve
when plotted against X. In many cases, however, p varies from egg to egg with a
probability distribution f(p). Then the probability of the egg remaining uninfected

18 1
P(X)= f f@emrerxap. (1)

The curve P(X) is flatter than an exponential curve, and this will be true unless,
and only unless, f(p) is a distribution concentrated at a single point.* A test for
this has been given in two previous notes (Moran, 1954a, b).

What we now want to do is to estimate the mean value of p in the distribution
f(p) or some quantity closely related to this mean. But if we do not know CA, the
density of infective virus, even an exact knowledge of the curve P(X) does not
provide any such information about the distribution of p but only about the dis-
tribution of CAp. In other words, CA has become confounded with p and the mean
of p is ‘unidentifiable’.

To make any further progress we have to know CA, and this can only be found
by some other method. We might know what proportion of virus particles are
infective and have some physical method for finding the absolute number of par-
ticles. Alternatively, the eggs might be treated in such a way that they are com-
pletely susceptible to infection by the particles so that if a single particle is present,
the egg will become infected. We can then carry out a dilution assay in the ordinary
way and estimate the density of complete virus particles.

* Tt should be emphasized that it is not the host resistance, but the variation in the host
resistance which flattens the curve.
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We now assume that we know CA with some accuracy. Given a batch of eggs
which have not been treated to make them susceptible we suppose as before that
f(p) is the distribution, amongst eggs, of the probability, p, that a single particle,
if present, will infect the egg. The mean value of p is

1
p= f o (p)ip, @)
0

and this is what we would like to estimate. Unfortunately it does not seem possible
to construct an exact method of estimating p because f(p) is unknown.
Consider, however, for what purposes such an estimator is required. The primary
purpose is to be able to compare different methods of treating eggs so that it is
possible to say that one treatment makes eggs more susceptible than another. We
therefore try to estimate a property of the distribution f(p) which, although not
the mean, provides some sort of measure of where f(p) is concentrated in the
interval (0, 1). Suppose, for example, that we make up a suspension such that
CA=1. If we inject unit volume of this suspension into an egg, the expected pro-
portion of uninfected eggs is

f e (p)ip. 3)

0

If r is the number of uninfected eggs out of n, it follows that 1 — (r/n) is an unbiased
estimator of

1
A= a-en @ ap. (4)
0

1—e? is a function of p which increases steadily from 0 to 0-6321. Although A4
can therefore deviate from the mean of p by as much as 0-3679 we can expect
that it will provide a useful measure for the comparison of two different treat-
ments.

When f(p) is concentrated at the lower values of p, the difference between 4 and
P will be small. For example, if p cannot rise above 0-2, the maximum difference
between p and 1 —e? is 0-0187 and the difference between 4 and p cannot exceed
0-0187. In practice, the difference will be smaller if p is spread out on the interval
(0, 0-2). On the other hand, when f(p) is concentrated near 1 the difference between
the means of p’s for two different treatments will be reflected in a somewhat
smaller difference in the corresponding 4’s.

A numerical example will illustrate the method. Suppose a suspension is made
up for which CA=1 and 100 eggs are inoculated. 4 must lie in the interval
(0, 0-6321). Suppose 4 is 0-4. Then 1—(r/n) will be distributed as a binomial
proportion with this probability, thus:

& (1—5) =0-4.
n

S.E. (1 _%) = /{(0-4)(0-6)/100} = 0-049.

This shows that even with 100 eggs, the standard error is fairly large. If we wish
t0 make comparisons between groups of eggs for which the values of p (or 4) differ
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slightly, large numbers of eggs are required. This fact is intrinsic to the problem,
and no development of mathematical theory can eliminate it.

Suppose now that we have used the above method to compare two treatments,
and we have found that the two A4’s are very small and possibly zero. Then,
although the standard errors of estimate of the A’s will be small considered abso-
lutely, they will be very large when compared with the difference between the 4’s.
Although the experiment may then provide fairly accurate estimators of the two
P’s (since the 4’s will be very near to the »’s) it will be of no value in comparing
the relative effects of the treatments, i.e. the error may be small absolutely but
large compared with the p’s.

In this case let us use a suspension M times as concentrated as the above one.
Then 1—r/n will be an unbiased estimator of

1
A= f (1= e f(p) dp

M-t
- t=ern pwip+ B, (5)

1
where E< f(p)p.
M-
If we can be sure that £ is small enough to be neglected, 4,, will be a substitute
for Mp which will be close to the latter if f(p) is concentrated at the bottom end
of the interval (0, M-1). In fact, neglecting £,

Ay
0-6321 < W5 <L

Thus we must choose M sufficiently small for £ to be small and for the distribu-
tion f(p) to be well covered by the interval (0, M—1). On the other hand, the larger
M is chosen, the lower will be the relative sampling variance.

It is not possible to choose M with any great confidence about the smallness of K.
It is true that (n —7)/n can be used to provide an upper confidence limit for  and
then, given M, an upper bound for £ by using an inequality of Tchebycheff type.
This does not work well in practice because the resulting lower bound for M is too
small.

An artificially constructed example will help to make the process clear. Suppose
that p is, in fact, uniformly distributed over the interval 0-00-0-02 so that its mean
is 0-01. Then with unit dilution the probability of an egg being infected is

002
1-P=1-— 5OfO e~ dx=0-009950.
Suppose that in our first attempt to estimate 7 we use a unit dilution on 50 eggs
and that one is infected. Then our estimate of p is 0-02 and an upper 5 %, confidence
limit for 7 is 0-11 (Snedecor, 1946; Clopper & Pearson, 1934). We may consider it
unlikely that p then has any non-negligible probability of being greater than 0-25.
10 Hyg. 53, 2
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We therefore put M =4 and try again. 1 - (r/r) will then be an unbiased estimator
of

i
A= [ - f@)ap+ B

0-08

=§£f0 (1—e2)dx

=125 (0-003116) = 0-03895
and we take
t(n—r)n?

as an estimator of p. The probability of an egg being infected is 0-03895. This time,
out of 50 eggs, 3 (say) are observed to be infected. Then we estimate p as 0-015 and
the 59/, confidence interval for 4p is (0-02, 0-34). It now seems unlikely that p is
greater than } (0-34)=0-085 and we might choose a somewhat higher value of M.

There is another way of approaching the problem of finding p. The quantity we
want to find is P, given by (2), whilst we can find easily P(X), given by (1), for any
given value of X. This suggests that we approximate to the function p by a series
of exponentials. Consider, for example,

L; (p)=2-6431 —1-5047 e~P _ 2.-6682 P
+1:8872 ¢—2P —()-3587 e4P,

In the range (0, 1) this never diverges from p by more than 0-0025. It follows that
the difference between p and

1
I= f Ly(p) f(p) dp
0

never exceeds 0-0025. [ can be easily estimated. Choose dilutions such that
CAX =1,1, 2 and 4 and let n,, ny, 75, and n, be the number of eggs tested at these
dilutions, and r,, 7,, 3 and r, be the number uninfected. Then

[y =2-6431 — 1-5047 (r,/n;) — 2-6682 (ry/ny) + 1-8872 (ry/ng) — 0-3587 (r,/n,)

is an unbiased estimator of /.

The variance of this estimator depends not only on  but also on other charac-
teristics of the distribution f(p). However, it is possible to get, from the experiment
itself, an unbiased estimator of this variance. Suppose X is a binomial variate with
parameters n, p. Then & (X/n)=p, & (X(1-X/n)n)=n—-1)n1p(1—p). It
follows that an unbiased estimator of the variance of r;/n; is

r

R (l_r_i)
n; (n;—1) n;)’

. S .
and so an unbiased estimator of the variance of [, is

A ry{(ng—ry) 1o (Mg —T7g) 74 (Mg —173) ry(ng—1ry)
V=226511 "1/, 7,118 Lu_+ 3.561-31Y3 '8 (.199-41 ¢ 47
nf (n;—1) n3 (ny—1) n (ng—1) ng(nyg—1)
It should be noticed, however, that the distribution of ¥ is not independent of that

of 1.
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The exact variance of I, has been calculated for a number of theoretical distribu-
tions f(p) and is considerably higher, for a given total number of eggs, than that
given by the previous method. By using only two exponentials instead of four
we can reduce this variance by a factor which is about three or four. Thus

Ly=1-2549 — 2:4243¢20 + 1:1975¢~4

diverges from p, in the range (0, 1), by a maximum error of about 0-05, and the
variance of the corresponding [, is smaller than that of I, although still larger than
previously.

The above methods, using two or more dilutions, have the sole advantage of
being approximately linear over the whole range (0, 1). With a given total number
of eggs they give substantially less statistical accuracy. It seems therefore that the
best thing to do is to use the first method outlined above. Even so it will be found
that to compare the host resistance of two lots of eggs which do not differ by a con-
siderable factor, quite a large number of eggs are necessary. This is due to the
nature of the problem and cannot be removed by mathematical dexterity.

That this is so may be seen by comparing the situation with an ideal experiment
in which individual virus particles could be used by themselves. In such an
experiment we would place one particle in each egg. The proportion of eggs in
which the virus developed would give a direct estimator of p, with binomial
variance which will not be very much smaller than the variance involved in the
first method above (where we are, in fact, estimating something slightly different
from p).
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