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This group, which is concerned with the applications of mathematics to agricultural science, was formed in
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PLENARY LECTURE
Agricultural modelling: a possible road map

JJH. M. THORNLEY*
Centre for Ecology & Hydrology, Penicuik, EH26 0QB UK

SUMMARY

In this contribution a view is given of the current state of agricultural modelling in the UK. I begin
with the ontogeny of this group. A brief description of modelling is presented to define the conceptual
framework. The importance of modelling objectives is stressed. The possible significance of the
avalanche of data now coming from the high-through-put techniques in the ‘-omics’ research areas
(genomics, proteomics and metabolomics) is discussed.

The 103 contributions given at these meetings since 1998 are categorized in terms of topic, type of
model, and type of research. The results are considered. At the topic (submodel) level, there are few
biological themes where improved submodels would not be appreciated, although some submodels
do seem to be ‘good enough’. In animals as well as plants, better treatments for development and
allocation might be singled out for attention. Although most work is now mechanistic, there is little
basic work at submodel level; applied work may suffer from this imbalance. Few contributions on
forest models, at any level, have been presented in this forum. Crop modelling especially might benefit
from greater interaction with forest modelling, as might forest modelling from crop modelling.
There have been no mechanistic contributions at the ecosystem level. It seems likely that, taking a
20-year view, mechanistic ecosystem models of engineering strength will be much needed. The lack
of competence in this area, in the UK and worldwide, is due, in part, to the level of maturity of this
area of science, but this is possibly accentuated by fragmentation of effort and the current vogue for
short-termism.

There is now a broad consensus that a model is de rigeur for any agricultural or ecological research
programme which aims to take a firm grasp of the responses of such systems, which can be complex.
Mechanistic models are required to provide the understanding needed for intelligent and flexible
management, given the near certainty of changing environmental and economic conditions. The
-omics data avalanche increases the importance of connecting to the molecular level, but does not
change matters qualitatively. Large mechanistic models, of animals, crops and ecosystems, present
two challenges, neither of which is being adequately addressed: first the sheer scale of the model and
the scope of the science which must be represented poses organizational problems; second, making
the connections from the higher levels down to the molecular level of the protein and gene is
hampered by lack of work at intermediate (often physiological) levels.

Key words: agriculture, ecosystem, model

INTRODUCTION the near future. Crystal-ball gazing is always a
dubious exercise, but it is as well to consider first
where we have come from and where we are now,
before speculating about future directions.

This group held its first meeting in the spring of
1970 at the headquarters offices of the (then) Agri-
cultural Research Council in Great Portland Street.
We dubbed ourselves the ‘Crop Science Model-

When asked to contribute to this meeting, it was
suggested that I might take a forward look, and
attempt to define some of the challenges for the
modelling community in agriculture and ecology in

* Correspondence to: Dr J. H. M. Thornley, 6 Makins

Road, Henley-on-Thames, Oxfordshire RG9 1PP, UK.
Email: johnthornley@care4free.net

Builders” Working Party’, using the initials CSMP,
after the eponymous IBM software, the Continuous

https://doi.org/10.1017/50021859606006290 Published online by Cambridge University Press


https://doi.org/10.1017/S0021859606006290

Agricultural modelling : a possible road map 451

System Modelling Program, successor of DYNAMO
and precursor of ACSL (Advanced Continuous
Simulation Language, ACSL 2000). Since this
first meeting, which I initiated with the help of col-
leagues at the Glasshouse Crops Research Institute
(GCRI), the group has met usually annually. We
have now arrived at our thirty-eighth meeting, just
a few months after I arrived at a significant anni-
versary.

The format of the meetings has changed little since
our beginnings. However, in 1980 I moved from
GCRI to the Grassland Research Institute (GRI),
where my research interests now included ruminants
and I acquired new colleagues, one of whom was
Jim France. The scope of the meetings was
broadened to include animals and other parts of the
agricultural scene. In the early eighties, Kenneth
Blaxter and Jim France arranged for the abstracts
of our papers to be published in the Journal of Agri-
cultural Science, Cambridge, which led to a notable
increase in quality and quantity of contributions to
the forum. The organization of the meeting moved
to the University of Reading with Jim France when
he moved there from GRI (subsequently renamed
IGAP, then IGER), where it has remained since Jim
France’s departure for Canada. Numbers attending
have increased by some 50-100%, not a great deal
over 36 years. There is, thank heaven, no compari-
son with the dotcom boom. Clearly, however, the
meetings have a modest but continuing appeal.
Those of us who believe that, in science as well as
in other areas of human affairs, ‘slow’ is better
than ‘whizz-bang’, may be quietly pleased with this
ontogeny.

Over the years, I have, from the beginning, given
quite a few talks at our meetings. Until today, I have
already talked about something specific: with a dia-
gram, a few equations, and some simulations; an
easy formula. Therefore today, talking about gener-
alities, I risk being out of my depth, banal and trivial.
Since I have worked mostly at home over the past
ten years, I may also be out-of-touch and out-of-date.

Forty years ago I very definitely had my own
science agenda. I followed it, often rather pig-
headedly, but that worked out well for me. If I had
attended a meeting at which an old-timer had
spoken about the current state of things, lamentable
or otherwise, and then made statements about what
we need to get on with, I hope my reaction would
have been one of kindly tolerance, listening, but
thinking quietly to myself things like: predicting
the future is always wrong, past his sell-by date, old
scientists do more harm than good, etc.

Thus, I feel somewhat diffident about what I am
going to say to you. No doubt most of my thoughts
on the topic will be wrong. I hope very much that
you all have your own science agendas, to which you
will adhere stubbornly, as that is the only way to

get worthwhile work done. But I also believe that a
personal science agenda, essential for each of us, has
the status of a model, a working hypothesis, to
motivate and allow us to get on with things. Thus it
needs continual re-assessment against any inputs
which come along.

MODELLING

Here I discuss briefly some of the general principles
of modelling in biology and agriculture in order to
define our conceptual framework. The ‘modelling
project’ in our corner of science may be summarized
as theoretical research aiming to predict quanti-
tatively the properties and dynamics of biological
systems relevant to our interests, and at the same time
provide a useful degree of understanding (defined
by the modeller’s objectives). These systems include
animals, crops, ecosystems, and components (sub-
systems) of these systems. The methods and ideas
include analysis (reductionism), synthesis (holism)
and ‘emergent’ properties. Many of the concepts
can be traced back to De Wit (1970) who largely
pioneered crop simulation. To simplify and permit
later categorization, we make binary classifications
(e.g. empirical or mechanistic; basic research or de-
velopment), in what is in reality a continuum.

Objectives or why build models?

What do we hope to achieve by building a model?
Kant (1724-1804) said ‘There is nothing so practical
as a good theory’. There are several possible reasons
for building models.

1. To describe/summarize data.

2. To integrate (subsystem) knowledge leading to an
understanding of a complex system.

3. To make predictions.

Answering the ‘Why build models?’ question defines
objectives. Objectives determine the sort of model
constructed and its (biological) scope.

At the outset of any modelling project, the
most important initial exercise is to develop a clearly
thought-through and consistent set of objectives.
People build models for many different reasons, and
with many different goals in mind. Much of the
controversy which sometimes emerges in modelling
discussions is rooted in differing objectives. The size
and scope of models can also vary widely: modelling
the mammary gland, or photosynthesis is a rather
different exercise from modelling a whole animal or a
plant ecosystem. The former could be a short-term
project and is hardly multidisciplinary; the latter is
essentially a long-term commitment of arguably at
least ten years and requires detailed knowledge of
large areas of biology, needing team-work and

https://doi.org/10.1017/50021859606006290 Published online by Cambridge University Press


https://doi.org/10.1017/S0021859606006290

452

collaboration. An agreed and coherent set of
objectives provides motivation and direction to
researchers.

Types of model

There are two principal types of model, empirical and
mechanistic, and depending on objectives (above), we
can choose to build one or the other.

1. To describe/summarize
data.

2. To understand a system.

3. To make predictions.

An empirical model.

A mechanistic model.
Either sort of model.

An empirical model simply re-describes the data to
which it is applied. Usually, an empirical model has
no scientific content, reflecting neither conservation
of matter nor the laws of thermodynamics. Examples
of empirical models are: feeding response of an
animal with weight gain regressed on feed input; crop
response to fertilizer with yield regressed on fertilizer
application.

A mechanistic model is integrative, based on
analysis of the system into components. It is ordinary
reductionist science. ‘ Understanding’ means grasping
the relationship between empirical data on one level
and empirical data on lower levels. The components
of a mechanistic model are empirical, although they
may have some theoretical basis. Examples of mech-
anistic approaches are: feeding response of an animal
in terms of rumen function and processes of nutrition
and metabolism, driven by feed input; crop response
to fertilizer in terms of plant-soil processes, nutrient
uptake, soil water and photosynthesis.

For making predictions, any sort of model that
works will do. It isn’t necessary to understand how
something works in order to be able to predict
behaviour. In many areas it has been common for
man to be able to make predictions before an under-
standing is achieved, for example, planetary move-
ments before Newton and the day length response
of plants. However, prediction with understanding —
that is using a mechanistic model —always offers
more options than empirical prediction alone.
And the deeper the understanding extends towards
the molecular level, the more options become
available.

Although some agricultural scientists and ecol-
ogists are wary of modelling, it has to be emphasized
that modelling and mathematics are the servants of
science. The hypotheses expressed in mathematics
and computer programs are derived from biological
concepts. It is essential to make suitable biological
assumptions and then use appropriate but often
simple mathematics. The model and computer pro-
gram provide a powerful framework for representing,
exploring and applying ideas about how it is thought
that the system works.

JJH .M. THORNLEY

Empirical and mechanistic models can be further
categorized as: deterministic or stochastic, and dy-
namic or static, with obvious meaning.

Complexity in biological models

It is sometimes said, particularly of models of ani-
mals, crops and ecosystems, that the model is ‘too
complex’. However, even large models are essentially
simple — their ‘complexity’ is usually due to there
being many simple elements. In dynamic determin-
istic mechanistic models (the type of most relevance
to biology), each element of the model consists of a
state variable, Y, generally denoting the quantity of
a substance. The differential equation defines the
rate of change of quantity as being the inputs (the
positive fluxes arising from chemical synthesis or
transport) less than the outputs (the negative fluxes
arising from degradation or transport). That is:
dY/dt=inputs — outputs. Large models consist of
many such elements, where fluxes from one substance
(or pool) become inputs to other substances (or
pools).

A further simplification is that chemical conversion
and transport are the only significant processes
occurring in biology. The mathematics of chemical
(or biochemical) conversions and transport (dif-
fusion, convection) provide the tools for building a
wide range of biological models.

All mechanistic models are wrong

Mechanistic models are reductionist. Reduction must
stop somewhere. Therefore mechanistic models are
always incomplete. Mechanistic models are always
in some sense wrong but, of course, some are more
wrong than others. They provide a limited but
valuable view of reality. Hopefully, the limitations
do not lead to serious errors, but that can never be
guaranteed. Because all models are wrong, they are
easily criticized. As human beings, we tend to defend
our modelling creations, sometimes unwisely. Most
models do some things well, others poorly or not
at all. A model which does a few things well, perhaps
breaking new ground, can be of great value, and
should not be discarded just because of the dubious
bits which have to be tacked on to make it all work.

Basic research and development

Another distinction we make below is to categorize
models as ‘basic’, or ‘applied’. Basic research con-
tributes to basic knowledge or what the economists
may call intellectual capital. Applied work or devel-
opment is the process of combining elements of
basic knowledge to provide tools which can be used
for other objectives, for instance, in agricultural
production (Doyle & Thornley 1982). Allocation of
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resources between basic and applied work can affect
(at least theoretically) the growth rate of the knowl-
edge-application complex as a whole.

Evaluation and validation of models

Evaluation is a process which includes all methods
of critiquing a model. It is not a wholly objective
process. It incorporates properties such as simplicity,
plausibility, elegance, generality and applicability.
It should always begin with the modeller’s objectives
in mind, before proceeding to wider issues. A mech-
anistic model can and should be evaluated at two
levels: that of the whole system via its predictions;
and that of the subsystems via the biological
assumptions.

Validation is an issue that is sometimes misunder-
stood. To validate means to demonstrate, over a
specified domain of application, that a model has
acceptable predictive accuracy. First, validity is not a
property of the model alone. It depends on environ-
ment and management for the application in mind. A
model might be valid for use in south-east Britain, but
quite useless in the north-west of the country. Validity
is not an all-or-nothing concept, but rather continu-
ous, between (say) zero and unity. The statement,
“This model has been validated’ is almost meaning-
less.

THE ‘-OMICS” DATA AVALANCHE

The development of high-through-put measuring
techniques in the ‘-omics’ research areas (genomics,
proteomics and metabolomics) is now producing
large quantities of data at the molecular level. The
data are very extensive and also very expensive. How
to make best use of these data is becoming a pressing
problem, not least for those producing the data.
Suggestions cover a wide spectrum, from sober
realism to unbridled hype, although happily the
former appears to be gaining ascendancy.

In some quarters (O’Malley & Dupré 2005), there
has been talk about ‘the emerging postgenomic
discipline of systems biology’, ‘going beyond re-
ductionism’ and ‘The developing anti-reductionist
consensus’. Possibly to most of us at these meetings,
and to many others, this is amazing nonsense, as spelt
out for instance by Bothwell (2006). However, the
serious question which needs addressing is this. Does
the massive amount of data now being produced
by genomics, proteomics and metabolomics change
fundamentally the ‘modelling project’ (defined
above)?

The short answer to this question is no, but the
emphasis and possibilities of some modelling work
may be changed. Nothing has changed qualitatively.
The biology is essentially the same. We still operate
within the ‘normal’ science loop of hypothesis,

453

analysis, synthesis, prediction, test against real-world
data, and back to hypothesis (Popper 1958).

What has changed is that there is now a greatly
increased opportunity for relating predictions to
properties defined at the protein/genome level, with
all the possibilities that such knowledge may provide.
It still seems not to be viable to try to construct
models going from ecosystem (or animal or plant) to
molecule in one bound. However, surely it is more
important than ever to join top and bottom, step-by-
step, to all the intermediate levels, of organ, tissue,
cell and sub-cellular. When these connections are
firmly made, then both our understanding and our
ability to intervene will be maximized.

CONTENT OF OUR RECENT
MEETINGS

Having defined some terms, now let us look at the
contributions at these meetings over the last 8 years,
and see if they tell us anything. In Table 1, the 103
contributions given at these meetings since 1998 are
placed in 16 topic categories (a number which fits
comfortably across an A4 landscape page). Then
each contribution is assigned two attributes. The first
attribute for type of model has five flavours: (mech-
anistic + empirical) x (deterministic + stochastic) +
unclassified. The second attribute for type of research
has two flavours: basic + development.

Looking at the bottom right corner of Table 1,
where the sums over years and topics are given, it is
seen that, of the 103 papers, there are: 56 mechanistic
deterministic, 30 empirical deterministic, 9 mechan-
istic stochastic, 1 empirical stochastic, and 7 un-
classified. There have been 11 basic contributions.

Most work is now mechanistic. This is very differ-
ent from and much to be preferred to the situation 30
years ago when what might be called the statistical
paradigm dominated agricultural research. I remem-
ber an early talk I gave at a meeting (not of this
group), suggesting a mechanistic approach to the
problem of carbon allocation in plants. A fairly
senior scientist stood up and said he couldn’t see the
point — a regression equation with fewer parameters
would fit the data well enough. Such attitudes were
a great impediment to modellers trying to publish
modelling papers.

However, there is comparatively little basic work.
Because applied research and development (ARD)
uses basic building blocks, it seems possible that
ARD efforts are suffering from this imbalance. One
wonders if this is due to the short-term nature of
much present funding, the competitive peer-review
system which surely must level down rather than
levelling up, or the type of person who is attracted
into agricultural modelling preferring applied work.

At the topic or sub-model level, there are a few
notable features. Some topics have scored two or
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Table 1. Categorization of contributions to the 1998/2005 meetings. For example, ‘0s’ denotes ‘ Osborne’, the first author of the Abstract. First attribute,
with five flavours, indicated by font: (1) mechanistic deterministic; (ii) empirical deterministic; (iii) mechanistic stochastic, (iv) empirical stochastic, (v)

unclassified — normal font. Second attribute, indicated by case . upper-case (XY) — basic research; lower-case (xy) — applied work or development. Abstracts
can be found in Crompton & Wheeler (2005), France & Crompton (1999, 2000, 2001, 2002, 2003, 2004), and France (1998). Abbreviations: env. denotes
environment, biochem. denotes biochemistry; B denotes basic research.

Crops Fruit; Gene/
Plant Grass- Roots/ Post- Pol- Env. Animal biochem; Land
Year  processes land Forests soil Weeds  harvest  lution Climate Pests Diseases  processes Animals genetics Farm use General
2005 0s RO to, po Pe la pa, mi TE co 6,1,2,
(10) 1,2B
2004 zh, we ba me, pr - wi, sh,th  na, C7H PA, ho er au 7,4,2,1,
(14 2B
2003 la, be ch, wa me, ph ke, co fi NA sc st CL fe 10,3, 1,
(14) 2B
2002 TH Ch CH, ad Xa Mi ri pa, BE zu, ke ye sa hi 8, 41,1,
(14) 3B ~
2001 MA st, po, ba Bi pi cr, 10, zu, ya ro cr 6,6,2,
(14) hi ke 1B
2000 di, ma mi, ca RO ki Ma ri br pa zu mi o 7,5, 1
(13) 1B
1999 th, mu ma, ya, fa,la, sk zu, fr, ma al 7,6,1,
(14) gi, ke mo 0B
1998 be, ba, mo co cr 1o ad, br 5.4,1,
(10) li, ya 0B
103 5,3(2B) 8.10.1 2 7,1 3,2 2 3,4 4,31 1,3 6,1(3B) 8.4 53,1 2(2B) 1,1 1 11,5 56, 30, 9,
(3B) (1B) - 1,7
Total 8 19 2 8 5 2 7 8 4 7 12 9 2 2 1 7 11B/103

149%
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fewer contributions: forests (2); fruit, post-harvest
(2); gene level (2); farm (2); land use (1); and eco-
system (0). I return to the zero score for ecosystems
below. Although improved submodels are always
appreciated, there are topics where our submodels
appear to be good enough for the purposes of agri-
culture and ecology. For example, in crop modelling,
this includes photosynthesis, respiration and water
relations. In animals as well as plants, organism
development and allocation might be singled out as
worth attention. Pest models tend to be stochastic,
which may or may not be necessary; I take the
position that one always builds the simpler model, i.e.
the deterministic one, and only moves towards the
more complex stochastic model when the determin-
istic model fails. From an ecosystem viewpoint, be-
cause now many sub-models are ‘good enough’, the
difficulties are more concerned with handling large
programs and complex responses.

Possibly some of our animal and crop models are
also ‘good enough’ for certain purposes, although the
fact that they do not reach down to molecular levels
suggests that much remains to be done.

Our meetings have attracted few contributions on
forests, although forest modelling has a great deal in
common with crop and grassland modelling. Possibly
this is because forests are not perceived as very
important in the context of the UK. However, my
feeling is that there could be valuable interaction
and interchange between crop and forest modellers.
Perhaps the title of these meetings could be
broadened and invitations specifically extended to
UK forestry departments.

It may be serious that there has been so little work
at the ecosystem level, either at these meetings or
in actuality in the UK. The climate of the planet
depends to a significant degree on how the principal
ecosystems respond to change. Ecosystem models will
surely be much needed. Such models present two
challenges. The first is that posed by the sheer size of
the model required and the breadth of science
encompassed. This reflects the complexity of the real
system, and, in a sense, the models required are big
science. The second challenge is to build models
which reach down to the molecular level, single
proteins and genes. This requires rebuilding those
intermediate levels of research, often physiology at
the cell, tissue and organ levels, which were allowed
to wither in the polarization of research towards
the gene and towards very short-term applied re-
search. Both challenges must be met in order to
develop ecosystem models of engineering strength.
This requires an appropriate research environment,
which should be reasonably stable, multidisci-
plinary, well-connected to experimental programmes.
It should also permit adequate support for the four
essential legs of large models: research at the sub-
model level, development of the ecosystem model,
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application to data and documentation. Some mod-
elling researchers are dismayed by the wasteful frag-
mentation of many modelling research programmes.
The UK Meteorological Office may provide perhaps
an example of how ‘big’ models can be organized
and implemented, although the basic science in this
area is relatively well-established and agreed. Some
of you might have a feeling of déjd vu, as some scien-
tists have been quietly saying these things for many
years.

CONCLUSIONS

1. It is now quite generally accepted in agriculture
and ecology that a model is de rigeur for research
programmes aiming to take a firm grasp of
system responses.

2. Most work is now mechanistic. Mechanistic
models are required to provide the understanding
needed for intelligent and flexible management,
given the near certainty of changing environ-
mental and economic conditions.

3. Models can contribute quantitative prediction,
understanding, integration of complexity and
clarity.

4. Objectives determine the level of reduction
applied and the type of understanding obtained.

5. The large quantity of data now coming from
genomics, proteomics and metabolomics under-
lines the importance of extending models, step-
by-step through the intermediate levels of organ,
tissue and cell, to the molecular level. Models
connected to the molecular level maximize
understanding and possibilities for intervention.
However, the ‘-omic’ data avalanche has not
brought anything qualitatively new to the table.
‘Traditional” modelling techniques appear, at
least in principle, to be up to the task.

6. Little basic work at the sub-model level now
takes place. This could hamper applied research
and development.

7. In animals and plants, organism development
and allocation might merit attention.

8. Agricultural modelling, particularly of crops,
could benefit from better contacts with the forest
modelling community. Worldwide, forests are
an important ecosystem, and are increasingly
managed sustainably, for biodiversity, recreation
and as a local resource.

9. There is virtually nothing mechanistic going on
at the ecosystem level —a hiatus which could be
important. This may be due to the short-term
and fragmented nature of much modelling re-
search, as well as the level of maturity of parts of
biology. Perhaps a long-term major initiative is
needed: to construct ecosystem-level models of
engineering strength reaching down to molecular
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levels (although perhaps in two or more steps).
There are four essential legs of large-model work
which need to be nurtured: (i) research at the
sub-model level, (i) model construction and de-
velopment, (iii) application to data and (iv)
documentation. Current techniques and concepts
appear sufficient for this task; current research
arrangements are not.

10. Suggestions and questions for the future of this
group:

(a) Widen the title, to include ecology and en-
vironment.

JJH .M. THORNLEY

(b) Perhaps the group is growing out of the an-
nual one-day meeting format, and would be
well served by a two- or three-day residential
meeting, possibly every third year.

(c) How are items 5 and 9 to be progressed? Can
this group help? Is there a role for network-
ing subgroups, specializing in particular
areas, with agreed complimentary objectives?
Or are such matters left to spontaneity? A
strength of the group has been its openness,
informality and diversity, as well as its
friendliness and warmth; these require pre-
serving and enhancing.
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ABSTRACTS OF COMMUNICATIONS

Empirical models of standing biomass for short
rotation coppice. M.E. BALDWIN, G.M.
MORGAN anD E. J. POOLE. Biometrics Division,
Forest Research, Alice Holt Research Station,
Wrecclesham, Surrey GU10 4LH, UK

Increasing concerns over the role of fossil fuel use

in climate change has driven research into ‘carbon

neutral’ alternative energy sources. Early research
identified closely spaced poplar and willow coppice
as a suitable system for producing wood fuels. This
system became known as ‘Short Rotation Coppice’

(SRC) due to the short (2-5 years) interval between

harvests.

No tools were available for predicting SRC yield
in the UK. In order to provide data for developing
SRC yield models, 49 trial sites containing poplar
and willow varieties were established on agricultural
land throughout the UK according to a commercial
planting design and managed for two 3-year ro-
tations.

Models were fitted using GenStat (VSN
International Ltd., Hertfordshire, UK). In particular,
linear regression models, generalized linear models
and mixed models using the REML functionality
were used. Multivariate methods such as cluster
analysis and principal co-ordinate analysis were also
used to explore the structure of the data. Soil texture
(grouped as clay, loam or sand), extractable phos-
phorus, extractable potassium, extractable nitrate,
frost days, growing degree days, annual rainfall,
seasonal rainfall, D100 (shoot diameter in mm, at
1 m perpendicular to the ground), soil pH, latitude,
longitude, crop age and variety were identified as
having a significant impact on the biomass. Using
these variables, two models were created. The first
model estimates the amount of standing biomass
within an existing SRC plantation using observed
D100 measurements and the second model predicts
the potential amount of biomass produced by com-
binations of site and SRC variety. The second model
also warns the user if their chosen combination of site
location and SRC variety is likely to suffer from
Melampsora spp. rust fungus, a pathogen that can
cause serious damage to some SRC varieties and sig-
nificantly reduce yield. The two models have been
converted into software which was written using
C++.

Each model produces yield estimates for 16 willow
varieties and 13 poplar varieties grown in England,
Scotland, Wales and Northern Ireland (Tubby et al.
2006). Validation of models through the comparison
with data from commercial growers indicates these

models are predicting biomass (oven-dried tonnes per
hectare per year) within an acceptable range.

TusBy, 1., MorGAN, G., MATTHEWS, R. W., Evans, S.P.,
HensHALL, P., BALpwiN, M. E., TayLor, P. & PootLk, J.
(2006). Yield models for short rotation coppice of
poplar and willow. In Forest Research Annual Report
and Accounts, 2004-2005, pp. 46-53. Edinburgh: The
Stationery Office.

Establishing the risk of introgression of insecticide
resistance for Bemisia tabaci. 1. DEMON?
F. VAN DEN BOSCH! axo M. JEGERZ.
YRothamsted Research, Harpenden, Hertfordshire
AL5 2JQ, UK, 2Imperial College London, Wye
Campus, Ashford, Kent TN25 5AH, UK

Introgression is defined as the introduction of a new

gene or genes into a population by crossings between

two populations. Sometimes introgression is planned,
for instance in agriculture it is used as a method of
improving the quality of cultivated crops (Ahoton
et al. 2003). In cases where conservation of a species
is sought after, introgression is most undesirable. The
focus of the present paper is on the introgression of
insecticide resistance between resistant and suscep-
tible biotypes of Bemisia tabaci. Bemisia tabaci is a
species complex consisting of a range of biotypes,
known to have a high degree of inter-biotype repro-
ductive isolation. This whitefly has the tendency
to develop insecticide resistance and this is well
documented in literature (Cahill et al. 1996). Less is
known about the distribution of such resistance
and how it is influenced by differences in life histories
between biotypes. Crosses between fully compatible
biotypes are more successful than crosses between
partially compatible biotypes, but even so some hy-
bridization occurs (Byrne et al. 1994). In areas where
insecticide resistant and sensitive biotypes of Bemisia
tabaci coexist, introgression of the resistance gene
will have considerable consequences for whitefly
management. To determine the risk of introgression
of insecticide resistance into a population of suscep-
tible biotypes, given that a hybridization event has
occurred and to assay the relative importance of
different life history parameters on the probability
of introgression we use a stochastic branching pro-
cess model. Based on the model explicit extinction
equations are derived from which the probability of
introgression is calculated. It is shown that a fitness
cost expressed through the average number of eggs
laid, has the largest effect on the introgression
probability as compared to when the fitness cost is
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expressed through other life history characteristics.
The results change when a reproductive isolation
mechanism is considered, for which it is shown that
the fitness cost expressed through the male survival
and mating probability have the highest effect on the
probability of introgression.

AnoTON, L., LACAPE, J. M., BAuDION, J. P. & MERGEAI, G.
(2003). Introduction of Australian diploid cotton
genetic variety into upland cotton. Crop Science 43,
1997-2005.

BYRNE, F. J., CaAHILL, M., DENHOLM, 1. & DEVONSHIRE, A. L.
(1994). Biochemical identification of interbreeding be-
tween B-type and non B-type strains of the tobacco
whitefly Bemisia tabaci. Biochemical Genetics 33, 13-23.

CAHILL, M., JArviS, W., GormAN, K. & DENHOLM, 1. (1996).
Resolution of baseline responses and documentation of
resistance to buprofezin in Bemisia tabaci (Homoptera:
Aleyrodidae). Bulletin of Entomological Research 86,
117-122.

Quantifying uncertainty in the simulation of crop-
climate processes. A. CHALLINOR! AND
T. WHEELER?. Department of Meteorology' and
Department of Agriculture® University of Reading,
Whiteknights, Reading, Berkshire RG6 6BB, UK

Recent advances in the integration of process-based

crop and climate simulation models have enabled

quantitative estimates of the impacts of climate on
crop productivity across seasonal to multi-decadal
timescales (Challinor et al. 2006). Fully-coupled crop-
climate modelling that simulates crop growth and
surface fluxes of heat and moisture, together with
land use information, can create a consistent rep-
resentation of the crop-climate system (Osborne
2005). With the exception of some studies that have
used probabilistic seasonal forecasts, most studies
of this kind have simulated bio-physical processes
deterministically. However, estimates of the impact
of climate variability and change on crops are subject
to uncertainty in both climate and crop simulations.
Climate modelling studies have begun to quantify
this uncertainty, by varying the value of parameters
within the climate model within a range informed by
expert judgement (Murphy et al. 2004). The present
authors have extended this technique in order to
quantify the uncertainty associated with simulations
of groundnut (Arachis hypogaea L.) yield across India
in both the current climate and under climate change

(doubled CO).

The impacts of physical (climate model) and bio-
logical (crop model) uncertainty on mean yields were
generally comparable in magnitude. Uncertainty in
the temporal variability of yield, however, was domi-
nated by physical uncertainty. The impact of bio-
logical uncertainty was more systematic across space
than that of physical uncertainty. As a result, the
relative importance of the two sources of uncertainty
varied spatially. Physical uncertainty increased under
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climate change. Biological uncertainty increased
only for the crop model parameters that control the
response of the crop to CO, and to the mean and
variability of temperature.

The methods used in the present study can improve
model estimates of the impacts of climate variability
and change by quantifying uncertainty more objec-
tively, and by identifying key processes and par-
ameters which can be further constrained by
observations.

CHALLINOR, A.J., WHEELER, T.R., OsBorNE, T.M. &
SLiNGo, J. M. (2006). Assessing the vulnerability of
crop productivity to climate change thresholds using
an integrated crop-climate model. In Avoiding Dangerous
Climate Change (Eds J. W. Schellnhuber, N. Cramer,
G. Nakicenovic, T. Yohe & T.M.L. Wigley),
pp. 187-194. Cambridge: Cambridge University Press.

OsBoRNE, T. M. (2005). Towards an integrated approach to
simulating crop-climate interactions. Ph.D. thesis, The
University of Reading.

Murrny, J. M., SExToN, D. M. H., BARNETT, D. N., JONES,
G. S., WEeBB, M. J., CoLLINS, M. & STAINFORTH, D. A.
(2004). Quantification of modelling uncertainties in a
large ensemble of climate change simulations. Nature
430, 768-772.

Optimizing shrimp performance testing with a
mechanistic growth model. A.B. DOESCHL-
WILSON!?, D. JIANG?, B. KINGHORN?? AnD
H. VAN DER STEEN!. 4nimal Health and
Nutrition  Department,  Scottish — Agricultural
College, Bush Estates, Penicuik, EH26 0PH, UK,
2SyAqua, 3033 Nashville Road, PO Box 348,
Franklin, KY 42134, USA, 3School of Rural Science
and Agriculture, University of New England,
Armidale, New South Wales 2351, Australia,
4StoneBridge Genetics, 1284 Sydney Court, Bowling
Green, KY 42103, USA

Compared with the sophisticated breeding pro-
grammes of established livestock species, the current
breeding programmes for shrimp are under-
developed, lacking amongst other components well-
designed performance test strategies that maximize
response to selection.

The present work demonstrates how mechanistic
growth models coupled with optimization methods
and other mathematical tools used in the breeding
industry can assist in the design of performance test
regimes. A shrimp model was developed to simulate
growth and survival for various shrimp genotypes
under diverse environmental conditions (Jiang 1999).
The model was integrated into a computational
framework, which calibrates the model parameters
based on real data, calculates expected accuracies for
the predicted genetic merits, both for these par-
ameters and the resulting trait predictions, and applies
optimization routines to determine the performance
test regimes corresponding to maximal prediction
accuracies.
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In the case study presented here, the impact of
various performance test periods and methods
of sampling body weight on achieving the breeding
objective of harvest weight were assessed. It was
found that the accuracy of predicting genetic merit
increases non-linearly as the body weight measured
approaches the targeted harvest weight, with moder-
ate increase after body weight reaches approximately
0-80 of the harvest weight. This suggests that the
performance test period could be shortened with-
out compromising prediction. Additional sampling
points, when spaced sufficiently apart, generally im-
prove the accuracies. Further, repeated measure-
ments in a shorter performance test period provide
similar or higher accuracies than single measurements
taken close to harvesting, indicating that the loss
of prediction power associated with selection at an
earlier growth stage could be compensated by more
frequent measurements. Finally, individual measure-
ments, which are at present difficult to obtain in
shrimp, can be added to family means in a selection
index. However, this results in only about 10 % more
genetic gain compared to selection on family means
alone.

This work was partly funded by the Advanced
Technology Program at the National Institute of Standards
and Technology, USA.

JiIaNG, D. (1999). Observed and modelled effect of salinity,
temperature and dietary proteinjenergy on growth of
Juvenile Litopenaeus vannamei and nitrogen dynamics in
static aquaculture systems. Ph.D. thesis, Texas A&M
University, USA.

Crop rotations and weed population dynamics: effects
of cyclic permutations and initial conditions. S. K.
MERTENS. Biomathematics and Bioinformatics
Division, Rothamsted Research, Harpenden, Hert-
Sfordshire AL5 2JQ, UK

Periodic matrix models use separate projection

matrices to project a class-structured population

through a particular environment (Caswell &

Trevisan 1994). These are very useful for examining

the effects of crop rotations on weed population

dynamics as the dynamics within each crop can be
represented by a separate projection matrix and the
seed population can be classed by depth in the soil.

Analysis of matrix population models commonly

focuses on asymptotic behaviour, which is achieved

when populations are in their stable structure. In
non-periodic matrix models, though, it has been
shown that long-term results may be misleading as
conditions rarely remain constant long enough for
the stable structure to be reached (Fox & Gurevitch

2000; Yearsley 2004).

Analytic methods are therefore developed to
calculate the effects of perturbations on population
size at any time, for periodic matrix models. This
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involves differentiating population size with respect
to an element of the matrix projecting the population
through a particular environment. As the derivative is
of population size, all eigenvalues and eigenvectors
are involved, as well as time. For full details of the
method see Mertens ez al. (in press). In particular,
methods of calculating the effects of perturbations
on population size both within and at the end of
environmental cycles are shown. This is an advantage
over asymptotic perturbation analysis where the ef-
fect is calculated over an entire cycle of environments.
Being able to examine effects within the cycle is
useful when one wants to compare predictions with
the effects of actual perturbations to an experimental
system.

Population projections and new methods are used
to explore how cyclic permutations of a 2-year crop
rotation affect weed population size and its sensi-
tivity to perturbations (Mertens er al. in press).
For example, for a rotation made of carrots and
minimum-tilled wheat, where both are managed
without herbicides, when most seeds are concentrated
in the upper layer, starting with a wheat crop will
lead to a population size that is nearly an order of
magnitude greater than if the rotation had been
started with a carrot rotation. The long-term popu-
lation growth rate, though, would have been the same
regardless of the starting crop (Mertens et al. 2002).
In the long-term, perturbations in the carrot crop of
the transition governing the contribution of seeds
in the second soil layer to the population in the top
layer (c12) Will have the greatest effect on population
size. However, when the population is concentrated
in the top layer, in the first four cycles of a carrot-
wheat rotation, perturbation of ¢;; (contribution of
top layer seeds to the next top layer population)
will have the greatest effect, but in a wheat-carrot
permutation with the same initial conditions, the
greatest effect will be achieved by perturbing the
transition ¢4 (contribution of seeds in deepest layer
back to the deepest layer). A different set of initial
conditions will result in a different set of patterns. The
different patterns can be explained by examining how
the starting environment interacts with the initial
conditions.

By examining the transient dynamics, it has been
shown that cyclic permutations of crops, and not
just non-cyclic permutations (Mertens et al. 2002),
can also play an important role in the management
of weed populations. This is particularly important
when a grower is considering a change to a new crop
rotation, but is wondering which crop to start with,
or once a new rotation has been established, where
interventions to lower population size would be
most effective. Finally, the methods are not limited
to weeds and crop rotations, but can be usefully
applied to other populations subject to periodically
recurring environments, such as periodic fires.
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The genetic population structure of plant pathogen
fungi due to different types of dispersal. L. U.
WINGEN!, J.K.M. BROWN! axp M. W.
SHAW?. Department of Disease and Stress
Biology, John Innes Centre, Norwich NR4 7UH,
UK, 2School of Biological Sciences, Plant Science
Laboratories, University of Reading, Whiteknights,
Reading, Berkshire RG7 6AS, UK

Several plant pathogenic fungi, e.g. Puccinia strii-
formis (wheat yellow rust), can be dispersed by wind
over long distances and infect host plants at the new
location hundreds or thousands of kilometres away
(Brown & Hovmeller 2002). Long-distance dispersal
can play a major role in the onset, range and duration
of epidemics. This is especially true as modern crop
plants often cover huge areas with only limited
numbers of different cultivars. Many population
genetic models simulate dispersal by using exponen-
tially bounded dispersal functions. In contrast, long-
distance dispersal is better described by negative
power-law functions (Kot ez al. 1996). This may be
the consequence of atmospheric turbulence, which
are major forces of the dispersal by wind, following
power-laws as well.

With an individual based computer simulation
developed from that of Shaw (1995), the present
authors have investigated the influence of the type
of dispersal on the population genetic structure.
Individuals are haploid asexual organisms with sim-
ple genomes (32 bit) which get mutated to produce
genetic diversity.

Populations of nearly stable population size gen-
erated by power-law distribution functions are
compared to those that were generated by using
exponential bounded distributions. The virtual
populations are analysed statistically with common
population genetic measurements like Ggr and
with a measure capturing self-similarity, named
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‘Conditional Incidence’ (CI) both used at different
spatial scales.

It is shown that the population structure which
arises from fat-tailed distribution (power-law) is
distinctly different from that one generated by
exponential bounded dispersal functions. The Ggsr,
measurement is poorly suited to differentiate these
population genetic structures especially at lower
scales. The CI self-similarity analysis discriminates
the population structures better as differences are
noticeable at large and at small scales. For negative
power-law functions with small exponents (f(x)
proportional to x~% and smaller) the self-similar
structure of the generated populations is evident at
these scales.

It is planned to be able to improve and define the
new statistics further, so that they can be applied to
data from real population genetic studies.

Brown, J. K. M & HovMmeLLER, M. S. (2002). Aerial disper-
sal of pathogens on the global and continental scales and
its impact on plant disease. Science 297, 537-541.

Kor, M., Lewis, M. A. & VAN DEN DRIEsscHE, P. (1996).
Dispersal data and the spread of invading organisms.
Ecology 77, 2027-2042.

Suaw, M. W. (1995). Simulation of population expansion
and spatial pattern when individual dispersal distri-
butions do not decline exponentially with distance.
Proceedings of the Royal Society London B 259, 243-248.

The roles of orthogonal and diagonal interactions
in grid-based spatial simulations. C. P. D. BIRCH.
Centre for Epidemiology and Risk Analysis,
Veterinary Laboratories Agency Weybridge, New
Haw, Addlestone, Surrey KT15 3NB, UK

The rectangular grid is established as the usual

framework for applied spatial modelling, either

through cellular automata or more complicated
models. One potential advantage of grids is the com-
putational efficiency of nearest neighbourhoods.

However, the nearest neighbourhood in a rectangular

grid is ambiguous, because each cell has four orthog-

onal neighbours with which it shares an edge and
four diagonal neighbours with which it shares
nodes. There has been little discussion of the relative
weighting of diagonal and orthogonal interactions.

Most simulations using nearest neighbourhoods

either weight diagonal interactions equal to orthog-

onal interactions, or set them at zero.

A very simple abstract simulation of biological
spread, including a trade off between orthogonal
and diagonal spread, demonstrated quantitative and
qualitative differences between equivalent simu-
lations, differing only in the relative strength of
orthogonal and diagonal spread (Birch 2006).
Simulations with strong diagonal interactions had
the property that clusters of colonized cells could
generate continued spread in conditions which pre-
vented the spread of isolated cells, increasing by up to
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50 % the range of values of a resistance parameter at
which spread could continue. In contrast, when there
were no diagonal interactions, isolated cells could
spread whenever any cluster of cells could spread: in
some examples, simulations focused on only orthog-
onal spread achieved complete occupation in less
than half the time required for equivalent simulations
with spread equally distributed among orthogonal
and diagonal neighbours. The explanation for these
results is that diagonal interactions (and more distant
interactions) link the neighbourhood interactions
of adjacent cells, so that spatial dynamics become
sensitive to clustering. This result is the underlying
explanation for related dynamics seen in some more
elaborate simulations of biological invasion (Birch
et al. 2000).

The relative strength of diagonal versus orthogonal
interactions can be calculated by simple and long-
established methods, from basic information about
spatial dynamics (Birch 2006). Predominantly orthog-
onal interactions would be typical of large numbers
of short range or contact events, such as in many
physical processes and populations of some soil flora
and fauna. Diagonal interactions indicate processes
with significant range, including many biological
processes, ranging from translocation along rhizomes
of bracken (Birch et al. 2000) to distant seed dispersal,
or animal migration. Critics may argue that models
in continuous space avoid the distinction between
diagonal and orthogonal interactions, but their
argument is only valid if the models are also in con-
tinuous time. Moreover, once understood the differ-
ences between diagonal and orthogonal interactions
can be exploited to simulate thresholds and clustering
characteristic of the systems being modelled.

BircH, C. P. D. (2006). Diagonal and orthogonal neighbours
in grid-based simulations: Buffon’s stick after 200 years.
Ecological Modelling 192, 637-644.

BircH, C. P. D., VuicHARD, N. & WERKMAN, B. R. (2000).
Modelling the effects of patch size on vegetation dy-
namics: bracken (Pteridium aquilinum (L.) Kuhn) under
grazing. Annals of Botany 85 (Supplement B), 63-76.

Modelling the structural diversity and interactions
of agriculture within a life cycle assessment frame-
work. D. L. SANDARS, A. G. WILLIAMS anDp
E. AUDSLEY. Institute of Water and Environment,
Cranfield University, Silsoe, Bedford MK45 4DT,
UK

Environmental Life Cycle Assessment (LCA) calcu-

lates the environmental burdens associated with a

product, service or process. This was applied to 10

agricultural commodities to produce an inventory

(LCD), illustrated below by lamb meat.

LCI models typically deal with production line
systems where something is manufactured in linear
steps. Agriculture is more complex and outputs arise
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at multiple stages and from co-existent systems.
Lamb comes from finished lamb systems and as a
by-product from producing breeding stock. Several
organic and non-organic systems co-exist. These are
best modelled as networks.

The system was modelled as a set of animal pro-
duction activities linked by flows of animals. The
solution is the amount, X, of each activity (e.g. upland
cross breeding flocks), i, that produces the desired
mass of output Z (e.g. prime lamb meat),

7= ZIZ,'X,' (1)

where z; is the output of activity 7, and also satisfies
the set of flows between activities:

ZC!‘/‘X[ZO, ]=1p (2)
i=1

where ¢;; is constraint j on activity i. Demands are
negative and supplies are positive and supply must
equal demand (equation 2). For example, purebred
lowland flocks produce rams, which are, in turn,
demanded as terminal sires by lowland finishing
flocks.

The total amount of material k£ (e.g. ammonium
nitrate) flowing into the system is

M= muXi. k=1...q (3)

i=1

where my;, is the flow of material k into activity i.
The LCI for the system is the total of each burden /
(e.g. nitrate leaching to water)

P
B[I ZM}J?/([, I=1...r (4)
k=1
where by, is the amount of burden / produced by the
use or disposal of material £ and M, is the total
amount of material.

The LCI identifies the contribution of each
material
Biy=Mby Q)
or activity
q
By=X; Z micbyy (6)
k=1

and thus identifies particular hotspots. The model is
solved by Gaussian elimination.

At the commodity level, 1 t of lamb meat required
44 GJ of non-renewable energy and involved 67,
20 and 18 non-organic ewes in various hill, upland
and lowland systems respectively, as well as 26
organic ewes in both the uplands and lowlands. The
system also produced 156 kg of wool and 411 kg
of mutton.
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Solubilization and uptake of strongly-sorbed solutes
by plant roots. A. POTOTSKY!, T. ROOSE,
G.J.D. KIRK? D. L. JONES? anp D. TOMOS*.
YMathematical Institute, University of Oxford,
24-29 St Giles’, Oxford OX1 3LB, UK, 2National
Soil Resources Institute, Cranfield University,
Silsoe, Bedford MK454DT, UK, 3School of
Agricultural & Forest Sciences, University of Wales
Bangor, Gwynedd LL57 2UW, UK, *Department of
Biological Sciences, University of Wales Bangor,
Gwynedd LL57 2UW, UK

Plants are known to enhance their uptake of strongly

sorbed solutes from soils by excreting solubilizing

agents from their roots. An example is the mobiliz-
ation of soil phosphate by excretion of particular
organic anions. Preliminary work is reported to
extend a model of this phenomenon developed by
Kirk (1999) for the scale of the individual root, to
the scale of complex branching root systems and the
whole plant, so as to allow for interactions within
and between root systems and regulation of uptake
by the whole plant. Roose & Fowler (2004) have
shown how analytical solutions of equations for
uptake by individual roots can be used to calculate
uptake by a branching root system. As a first step
toward deriving analytical solutions of the coupled
equations for phosphate solubilization by organic
anions for this purpose, Kirk’s model has been
analysed to find out which processes are important
at particular time scales and how sensitive the model
is to changes in different parameter values. An
asymptotic solution of the equation has been derived
for organic anion transport, reaction and decom-
position, in the limit in which the root radius is small
compared to the transport length, using the ‘point-
source’ approximation of the corresponding Green’s
function. The solution is valid for times greater than
1 hr. A solution of the organic anion equation has
also been derived for smaller times using the method
of the Laplace transform. Further, the small-time
asymptotic solutions of the organic anion equation
have been used to solve the phosphate equation
allowing for solubilization in the corresponding time
limit. Using this analytic solution it has been found
that the ‘zero-sink’ model of phosphate uptake
breaks down at small values of the initial phosphate
concentration. The analytical results have been com-
pared against numerical solutions of the full set of
model equations and conducted a rigorous sensitivity
analysis of the whole model using the analytical
solutions. The sensitivity analysis shows that the
model results are most sensitive to the root radius,
diffusion coefficient, water content, and flux of or-
ganic anion across the root surface. In continuing
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research, this information is being used to derive an
analytical solution to the coupled phosphate-organic
anion equations for long times.

This research is funded by BBSRC (BB/C518014).

Kirk, G.J. D. (1999). A model of phosphate solubilization
by organic anion excretion from plant roots. European
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Rooskg, T. & FowLer, A. C. (2004). A mathematical model
for water and nutrient uptake by roots. Journal of
Theoretical Biology 228, 173—184.

Applying Bayesian Model Averaging to mechanistic
models. J. M. GIBBONS!, G. M. COX!, A.T. A.
WOOD?, J. CRAIGONY, S.J. RAMSDEN! AnD
N. M. J. CROUT". "Division of Agricultural and
Environmental Sciences, School of Biosciences,
University of Nottingham, Sutton Bonington,
Loughborough, Leicestershire LEI25RD, UK,
2Division of Statistics, School of Mathematical
Sciences, University of Nottingham, University
Park, Nottingham NG7 2RD, UK

Model averaging and Bayesian Model Averaging

(BMA) in a mechanistic model context are inves-

tigated. Model averaging is a group of methods for

combining predictions from several models into a

single set of predictions. The methods are especially

useful when there is a set of similarly performing
models, which differ in their predictions. The strength
of the approach is that it considers model in addition
to parameter uncertainty. Predictions are combined
by weighting with factors related to model perform-
ance, resulting in ensemble predictions. BMA is
model averaging in a Bayesian framework where the
model weights are Posterior Model Probabilities

(Hoeting et al. 1999). BMA was applied to a model

that predicts the plant uptake of radio-caesium from

contaminated soils (Absalom et al. 2001). Using five
model selection criteria (AIC, BIC, Residual Sum of

Squares (RSS), MDL and ICOMP), ten models, in-

cluding the full model, were selected for averaging.

These models were based on those of Cox et al. (in

press). The model predictions and averaged predic-

tions were compared using a calibration data set and
an independent data set. Several approximation
methods for calculating posterior model probabilities

were compared with a full Bayesian approach im-

plemented using a Markov Chain Monte Carlo

(MCMC) method and a Metropolis-Hastings algor-

ithm. A simplified BMA approach requiring only

the maximum likelihood parameter estimates and

Laplace approximation of the integrated likelihoods

is also described. The PMPs estimated using the

MCMC approach and the Laplace approximation

strongly weighted models with fewer parameters. The

BIC-based PMP estimates ranked the models in the

same order as the Laplace approximation, but gave
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more weight to the models with more parameters.
The AIC-based estimates of the PMPs differed
considerably from the other methods. However, in
terms of RSS all the methods produced similarly
performing predictions (range 17-3 to 19-4) for the
independent data set. Predictions of individual points
differed among models (e.g. the median prediction of
one point ranged from —2-0 to — 18 across models).
The model averaged predictions captured this uncer-
tainty. In terms of RSS and individual point variation
the simplified BMA approach performed as well as
the full approach. It is concluded that BMA is a
valuable approach in mechanistic model development
and suggest when it is appropriate to apply simplified
BMA.
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Formulating an early-warning model for Septoria
tritici. D. E. TE BEEST!, S. PIETRAVALLE?,
M. W. SHAW? anp F. VAN DEN BOSCH.
YRothamsted Research, Harpenden, Hertfordshire
AL5 2JQ, UK, *Central Science Laboratory, Sand
Hutton, York Y041 1LZ, UK, ®Department of
Agricultural Botany, School of Plant Sciences,
University of Reading, Reading RG6 64S, UK

Weather is known to be of great importance in the

development of pathogens such as Septoria tritici

(Mycosphaerella graminicola), causing Septoria leaf

blotch on wheat (Shaw & Royle 1993). By quantifying

the weather—disease relationships an early-warning
model to predict Septoria tritici epidemics can be
formulated.

An adapted version of window pane, an algorithm
that iteratively searches through a predefined time
period for a selection of weather factors, is used. It
identifies which weather variables in which window
are best able to predict a disease occurrence (Coakley
et al. 1985; Pietravalle et al. 2003). The effect of
cultivar resistance and the pre-sowing period are in-
cluded, and the use of replicate observations allowed.
The aim is to develop an early warning system and
therefore only the period preceding growth stage
thirty-one is searched.
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The predictive model combining rain roughly in
the period March and April and wind in January and
February has the best prediction accuracy (95%);
however, validation on unbiased data is required.
A model combining rain in March and April with
minimum temperature in January and February is
the second best model (89%). The final predictive
models predicts poorly for susceptible cultivars,
suggesting an infection on a susceptible cultivar is
less dependent on the variables incorporated in the
models, most importantly less dependent on rain.

With the early-warning predictive model an early
indication to disease risk can be given which informs
growers about disease risk, which can have economic
and environmental benefits. With the predictive
model and the identified weather variables the effect
of climate change on future disease risk can also be
assessed.
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A new method to estimate boundary models for bio-
logical datasets. A. E. MILNE anp R. M. LARK.
Biomathematics and  Bioinformatics  Division,
Rothamsted Research, Harpenden, Hertfordshire
AL5 2JQ, UK

Webb (1972) first proposed the boundary line as a
model for a biological dataset where one variable is a
biological response (e.g. crop yield) to an independent
variable (e.g. available water content of the soil). The
boundary line is some upper (or lower limit) on the
value of the response variable at any given value of
the independent variable.

The boundary line concept has been used to model
diverse biological responses, including crop yield
responses to soil factors (nutrients, water and pol-
lutants) and trace gas emissions from soil. However,
it has been subject to criticism (e.g. by Schmidt et al.
2000). A particular weakness is that the methods
that have been used to estimate the boundary are
somewhat ad hoc, with no statistical basis on which
the strength of evidence for the boundary line model
can be quantified.

In this paper a novel statistical procedure to esti-
mate the boundary line is presented. A censored
bivariate probability distribution is fitted to the data
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by maximum likelihood. The boundary line is the
censoring function. Consider a random variable
X(x, y) which is bounded (or censored) above by
y=p(x). If it is assumed that the standard deviation
of the measurement error is &, then the following
variable is observed:

Z(x, y)=min(X(x, y), ¥(x, )) M

where  X(x, y)~f(x,y) and  Y(x, p) ~g(y)=
N(@(x), 6), and min,(-) is the minimum value of the
y component.

This approach to estimation of the boundary line
has various advantages. First, it entails no arbitrary
procedures such as binning to define observations on
the boundary. The assumptions that are made are
formal ones about the statistical model. Second, the
statistical model is conceptually homologous with
the biological model that lies behind boundary line
analysis. Biologically the boundary is thought of as
an upper limit on possible values of y, given x, and
in circumstances where x is often limiting, many
observations are expected to be found near the
boundary. A further advantage is that confidence
intervals for the estimated parameters can be cal-
culated using the Fisher information matrix. Finally,
because the model is fitted to all of the data it can
be compared to a bivariate normal model using
Akaike’s information criterion (AIC) (Akaike 1973),
which allows comparison of model performance
based on a compromise of parsimony and close fit.

The method was demonstrated using simulated
and real datasets. The results from the simulated
data sets showed that theoretically the method
worked well. The results from real data sets were also
encouraging. For example, data from an experiment
looking at the relationship between the integral
over time of normalized difference vegetation index
(NDVI, a remotely sensed index of canopy density)
and yield of a wheat crop was considered. A linear
boundary line model with j(x)=ax+b was fitted
to the data. The AIC values showed that the bound-
ary line model was more suitable than a regression
model.
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A stochastic model for the spread of Mycobacterium
avium subsp. paratuberculosis in rabbit populations.
R.S. DAVIDSON®2, G. MARION? anp M. R.
HUTCHINGS!. Scottish Agricultural College,
West Mains Road, Edinburgh EH9 3JG, UK,
 Biomathematics and Statistics Scotland, James
Clerk Maxwell Building, King’s Buildings, Mayfield
Road, Edinburgh EHY 3JZ, UK

Rabbits have recently been identified as the key

wildlife source of Mycobacterium avium subsp. para-

tuberculosis (M.a.p.), the bacterium causing Johne’s
disease in cattle (Daniels et al. 2003; Judge et al.

2006). The main route of transmission is via ingestion

of contaminated faeces. The combination of high

disease prevalence and levels of infection in rabbits,
high levels of faecal contamination of pasture and
the lack of avoidance of rabbit faeces by grazing
cattle result in cattle ingesting potentially infective

doses of M.a.p. every day (Judge et al. 2005).

Two stochastic models of the process of infection
among rabbits have been constructed in order to
assess the disease dynamics and likely persistence
of infection in rabbit populations. The first is a time
independent model for the disease prevalence as
a function of age in a group of rabbits in which the
population structure is assumed to be in equilibrium,
so that the model includes horizontal and vertical
infection, but no demographic processes. Fitting
this relatively simple model to field data enables the
estimation of the overall infection rate and its separ-
ation into horizontal and vertical components, with
the result that the infectious contact rate f is esti-
mated to be 0-037 while the vertical transmission
probability is estimated at 0-14. Joint confidence
regions over the space of these disease transmission
parameters are obtained. The corresponding rates
have subsequently been passed into a more detailed
numerical time dependent model which takes account
of non-equilibrium demographic processes such as
birth, death, spatial inhomogeneity, migration and
age dependence, in addition to horizontal and vertical
infection, in order to explore the stability of the
infection in response to various ranges of the disease
transmission parameters. The modelling has shown
that M.a.p. is likely to persist in rabbit populations
for extended periods and thus any disease control
strategy should include both the domestic and wildlife
hosts.
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in rabbits (Oryctolagus cuniculus): a field study. Applied
and Environmental Microbiology 72, 398—403.
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Modelling protein metabolism by the hindlimb tissues
in lambs. L. A. CROMPTON?!, J. FRANCE? AND
M. A. LOMAX:2. *Animal Science Research Group,
School of Agriculture, Policy and Development,
University of Reading, Whiteknights, PO Box 237,
Reading, Berkshire RG6 6AR, UK, *Centre for
Nutrition Modelling, Department of Animal and
Poultry Science, University of Guelph, Guelph,
Ontario N1G 2W, Canada, ®Division of Biomedical
Sciences, Imperial College London, Wye Campus,
Ashford, Kent TN25 5AH, UK

Amino acid isotope dilution kinetics have been com-
bined with arterio-venous difference preparations to
simultaneously estimate protein synthesis and degra-
dation by the tissue beds of the fore and hind limbs
in humans and animals. The estimates of tissue pro-
tein turnover are assumed to represent muscle, the
predominant tissue, but have always included a con-
tribution from the non-muscular tissues (skin, bone
and adipose tissue). Isotope dilution kinetics have
been applied to construct and solve a mathematical
model of tyrosine (TYR) metabolism across the
hindlimb tissues of lambs in the steady state, which
allows the estimation of amino acid inflows and
efflows from hindlimb tissues. The kinetic model
has been used to resolve in vivo isotopic data and to
estimate the fractional rates of constitutive protein
synthesis, degradation and accretion. Curve fitting
models have been developed to describe the changes
in fractional synthesis rate (FSR) and fractional
accretion rate (FAR) with plasma amino acid con-
centration.

The kinetic model contains one intracellular pool
representing free TYR and two extracellular pools
representing the arterial and venous TYR pools sup-
plying and draining the tissue bed. Conservation of
mass principles were applied to each pool to generate
two sets of ordinary differential equations (one set
for total TYR and one set for labelled TYR), which
describe the dynamic behaviour of the system and
were subsequently solved for the unknown steady
state flows. Inputs required for model solution are
plasma flow rate across the hindlimb, TYR con-
centrations and plateau specific radioactivity (SRA)
in the arterial and venous pools and plateau TYR
SRA in the intracellular pool. Using these data and a
limited number of assumptions, the model can be
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solved to calculate the steady state flow rates for
TYR inflow, efflow and bypass and TYR flows
representing the synthesis and degradation of consti-
tutive protein. Fractional synthesis and degradation
rates can be estimated for hindlimb tissue from model
solutions and the TYR content of hindlimb muscle
(32-811 mmol/kg wet wt).

The model has been used to resolve in vivo radio-
isotope data obtained from experiments with multi-
catheterised lambs during a constant jugular vein
infusion of [2,3-3H]TYR tracer. TYR Kkinetics were
measured across the hindlimb of ten lambs (36 kg) fed
a range of feed intakes as described previously
(Crompton & Lomax 1993). The nitrogen intake of
the lambs ranged from 3-38 g/day and plasma TYR
concentration varied from 29-89 nmol/ml. The
kinetic model outputs demonstrated that the flow of
TYR into constitutive protein only accounted for on
average 0-694 of the TYR inflow into the hindlimb,
mean (SEM) values were 1-44 (0-14) and 2-08 (0-25)
nmol/min/g respectively. Comparison of hindlimb
FSRs with FSRs measured directly in muscle, showed
that the contribution of non-muscular tissues to
hindlimb tissue was 0-482 (0-060).

Curve fitting models were developed to describe the
relationship between the plasma TYR concentration
(x axis, nmol/ml) and the fraction rates of hindlimb
constitutive protein synthesis and accretion (y axis,
%/day). Both models were sigmoidal in shape. For
synthetic rate the model used was FSR =y.../[1 +
(k/x)], and parameter estimates (SE) wWere yy.x =811
(0-46)%/d, k=30-5 (1-37) nmol/ml, c¢=5-21 (1-49).
Residual sum of squares=3:67, R?>=0-890 and
Durbin—Watson statistic=2-36. For accretion rate
the model used was FAR =a+ {b/[1 + (k/x)°]}, with
parameter estimates, a= —1-07 (0-:35)%/d, b=3-22
(0:55)%/d, k=454 (3-10) nmol/ml and c¢=21-0
(28-2). Residual sum of squares =2-62, R2=0-893 and
Durbin-Watson statistic=1-05. The parameters of
the two equations lend themselves to direct physio-
logical interpretation. Both fractional rate models
fitted the data satisfactorily and can be related to
our current knowledge on the nutritional control of
protein turnover. The models have the advantage of
providing a simple biological description of changes
in tissue protein synthesis and accretion with chang-
ing peripheral amino acid concentration.
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