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On sequences of lattice packings

Joseph Hammer and Denis Dwyer

In this note we establish theorems on compactness of lattice

packings.

I. Introducti on

1. Let a , ..., a be a linearly independent set of vectors in

d-dimensional euclidean space 2s . A set A is called a <i-dimensional

lattice with basis a , ..., a if its elements are all vectors of the form

A a + . . . + X ,a where the X. are integers. The determinant of A ,

d{A) , is defined by

d(A) = |det(a\ ..., ad)\ .

This definition is, in fact, independent of the basis taken for A .

2. An infinite sequence of lattices {X } is said to converge to a

lattice A if each A has a basis a , ..., a and A has a basis

a1, ..., ad such that lim a"7' = aJ (1 2 j 5 d) . With this definition of
n

convergence, d{A) becomes a continuous function, for A -»• A implies

d[A ) •+ d{h) . Mahler's selection (compactness) theorem for lattices

states (see Mahler [4]):

Let {X } be an infinite sequence of lattices satisfying the

following two conditions: there are constants K and K such that
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(i) d[A ) £ K for a l l lattices A ,

( i i ) ||a|| > J 2 > 0 for every a t 0 € A .

Then {A } contains a convergent subsequence.

In other words i t is possible to select from a bounded sequence of

la t t ices a subsequence which tends to a lat t ice A . (A sequence of

la t t ices is said to be bounded if i t satisfies (i) and ( i i ) . )

3. Let S be a point-set in a . A latt ice A is called

S-admissible if no point of A except possibly 0 is an inner point of

S . The critical determinant A(S) of S is defined as the infimum of

<i(A) taken over a l l S-admissible lattices A . A critical lattice for S

is one which is S-admissible and for which d(k) = A(S) .

For the existence of a crit ical lat t ice of a set Mahler [5] has the

following theorem.

Let S be a point set in Er and let 0 < A(S) < » . Then S

possesses a critical lattice if and only if there exists a bounded infinite

sequence of S-admissible lattices {A } such that

l im d[A ) = A(S) .

4. Let S be a set and P = {P } a sequence of points in r . I f

the sets [S+P } do not overlap (that is, interiors do not meet) then P

is said to provide a packing for S . When {p } is a lattice A , then we

have an (S, A) lattice packing. For a central symmetric convex set S

the following relationship holds: A is a lattice packing for S if and

only if A is admissible for 2S •

We say that {s+P } cover the whole space if each point of space lies

in at least one of the sets of {S+P } .

5. A distance function on bounded subsets of & is defined by

D{SV S2) = inf{e > 0 : S1 c N[S2, e) , S2 c tf^, e)}, where N(S, e) is

the e-neighbourhood of S . This distance function defines a metric on the
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closed bounded subsets of a . For this metric, Blaschke has the

following convergence theorem (Blaschke [/]).

Let [s \ be an infinite sequence of compact convex subsets of Zr

which, are bounded; that is, contained in some solid sphere. Then [s }

contains a subsequence which converges to a compact convex set.

II. Sequence of packings

Let

L = { (S, A_) : S is central symmetric convex set

and A^ is a packing lattice of S] .

wow L can be viewed as a subset of the cartesian product A x B where

A = {S} and B = {A_} , and so to have the subspace topology derived from
o

the product (metric) topology on A x B . Thus (S , A ) tends to, say,
n

[S , Ac ) if and only if S tends to S. and Ao to Ao in the
0 S0 n ° Sn S0

sense defined in 2 and 5 of the introduction. We ask when is L compact!

If L = A * B , that is, every element of A x B is a lattice packing,

then by Tychonoff's product theorem L is compact if and only if A and

B are compact. But this is a very special case. It occurs if every

element of {A^} provides a packing for every element of {S} . In the

theorem below the above question is answered for the case that L is a

map; that is, there is a map <\> : A •*• B such that [S, A«) € L if and

only if A^ ( )

THEOREM 1. Let A and B be compact and <j> : A -*• B as described

above. Then L is compact if and only if <)> i s continuous.

Proof. Let <J> be continuous and {[S , A- )} be a sequence in L .
n

Because A is compact {5 } has a convergent subsequence {s } which

converges to S , say. Since <J> is continuous A^ =<(>(•? ) converges

to A_ = <|>(S) •
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{(V *•Thus •( \S , Aq \f is a convergent subsequence of the original sequence.

' V
Therefore L is compact.

On the other hand let L be compact and {S } be a sequence in A

converging to S . We have to show that A~ = 4>(S ) tends to Ag = <j)(5) .
n

Suppose, by way of contradiction, that there is a subsequence \S } such
nk

that no Aj, is within a certain distance of Aq . Since L is compact,
nk

there is a subsequence i\S , A,, > of i \S , A_ \> which
U \ \ k Hk

converges. Now 5 tends to S and since each AQ does not lie

\ nk

within a certain distance of A^ , -IA' \ tends to A' ̂ A^ . However,

nk

th is sequence tends to [S, Â J and [S, Â J € L which contradicts '-

being a map. Therefore <j> is continuous.

An interesting illustration of the theorem occurs in discussion of

Voronoi domains. In Groemer [2] i t is shown that corresponding to a

la t t ice A there is a unique Voronoi domain V(A) ;

V{A) = {x € E** : \\x\\ S \\x-g\\ for a l l g € A} .

Let A be a compact set of Voronoi domains and B the corresponding

compact set of lattices. Then J- = {{v(A), h) : V(A) € A] is compact for

Groemer has essentially shown V(A) -*• A is continuous.

REMARK I. Theorem 1 remains true if we replace the sequence of

lattice packings by sequence of lattice coverings or by the same token the

theorem is true for a sequence of any lattice distribution of sets S in

REMARK 2. In Theorem 1 we showed that the compactness of {S} and

{As} and the continuity of <)> : {S} -»• {A^} implies that {(5, A5)} is

compact. Similarly we can show that the compactness of {5} and
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{[S, Ag)} implies the compactness of {A~} , or the compactness of {A,,} and

{S, A<,} implies the compactness of {5}.

REMARK 3. By definition, the density function for a packing (S, A)

is

l i m T(B.S,A,a) - V(S)

where V{S) is the volume of 5 , B is an arbitrary bounded convex body, p(B)

is the radius of largest sphere contained in B , z is an arbitrary point,

and T(B, S, A, z) is the total volume of the bodies S + x with x € A + z

and S + x c B . (For particulars see Lekkerkerker [3, page 165].)

It can be seen that this density function is continuous in (S, A) ; so

in a compact lattice packing there is a packing which has maximum density.

In particular let A be a packing lattice for a given convex set 5 . Put

X = {A : (S, A) is a packing and such that d(A) 5 d[h )} . Then

L = {(5, A) : A (. X} is a compact set of packings, which assumes a densest

packing for S .

I I I . S e q u e n c e s o f a d m i s s i b l e l a t t i c e s

Let A be S-admissible. Then (S, A) will be called a pair. If A

is also critical for S then (S, A) is called a critical pair. A

sequence [S , A ) is called bounded if {s } and {A } are bounded.

THEOREM 2. Let {(s , A )} be a bounded sequence of pairs where the

S are closed convex. Then {[S , A )} has a convergent subsequence such

that its limit {S, A} is a pair. If the [S , A ) are also critical

pairs, then the limit of this subsequence is a critical pair.

Proof. (i) Since {S } and {A } are bounded we may then select a

subsequence of pairs {[S , A )} , a. convex set S and a lattice A such
nk nk

that S •* S , A •* A . We show A is S-admissible. Suppose not.
nk nk

Then there exists x d int 5 , x t 0 , such that x € A . Since the S
nk

tend to S and since the 5 and S are convex, there exist a number N
nk
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and a neighbourhood U of x such that

(1) n, > N i m p l i e s xi.Uci.ntS
K. ft*

Also we have

(2) lim A = A .
nk

From (l) and (2) we obtain a contradiction to A being S -admissible.
nk nk

Therefore A is S-admissible; that is, (£, A) is a pair.

(ii) Suppose further that the [s , A ) are cri t ical . Then

A(5 ) = d[A ) . Thusv nJ "• n'

d(A) = lim d[h ) = lim A(S )

V 0 0 " k "*•*" "*

by Mahler's continuity result on critical lattices.

Therefore A is critical for S .

COROLLARY. Let {s } be a bounded sequence of central symmetric

convex sets and {A } a bounded sequence of lattices. If {[s , A )} is

a sequence of 'pairs then the sequence of lattice packings {(%S , A )} is

compact.

REMARK. In Mahler [5] i t has essentially been shown that the sequence

of pairs {5, A } is compact where 5 is a point set such that

0 < A(S) < «> and {A } is bounded.

This i s a special case of the sequence of pairs {5 , A } for we can

simply put S = S for all, n . But in Theorem 2, 5 cannot be extended

to non-convex sets , for example to star shaped sets. In the theorem we

have used Blaschke's compactness theorem for convex sets and the continuity

of the A function. To extend the theorem to star-shaped bodies we would

want a compactness theorem corresponding to Blaschke's while retaining the

continuity of the A function. Now Mahler [4] has shown that for A to
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be continuous for star bodies, a topology K must be used. This topology

K is strictly finer than the usual Hausdorff-Blaschke topology for closed

sets, say T . It is known that T is a compact topology. The following

result from topology shows that K cannot be compact.

If T is a coarser topology than K on a set X , and if T is

Hausdorff and K compact, then T = K (see, for instance, Rudin [7,

p. 61]).

On the other hand, Theorem 1 can be extended to non-convex sets S
n

provided [S } is compact. For instance, Melzak [6] has obtained a
n 3

compactness theorem for a certain class of star-shaped bodies in E . For
this family Theorem 1 is valid.
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