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Summary

The amount and pattern of genetic variation in a population can be estimated from genes or DNA
sequences sampled from the population. Although random sampling is assumed in almost all cases,
we often do not know whether sampling is random or not. Using a simple non-random sampling
model, the effects of non-random sampling on the estimation of parameters in population genetics
were investigated. This non-random sampling model assumes that n genes are randomly sampled
with replacement from m genes which were randomly sampled from a large random mating
population, and various degrees of non-randomness can be generated by changing the value of m.
The results obtained show that the effect of non-random sampling on the number of alleles and
the number of segregating sites is substantially large whereas the effect of non-random sampling on
heterozygosity and the average number of nucleotide differences is negligibly small unless non-
randomness is extremely large. The effects of non-random sampling on the tests of neutrality were
also investigated, and the results obtained indicate that the effect of non-random sampling is
stronger on Fu and Li's tests than on Tajima's test.

1. Introduction

In order to identify the mechanism of the maintenance
of genetic variability, we must first know the amount
and pattern of genetic variation. The amount and
pattern of genetic variation in a population can be
estimated from genes or DNA sequences sampled
from the population. In most, if not all, of the cases,
random sampling is assumed. However, we often do
not know whether genes are randomly sampled or
not. For example, when fruit flies are collected by
using a trap with banana in a day, some of the flies
may be near relatives of some others. In the extreme
case, all of them may be the offspring of a single pair
of flies. In this case, all the flies might have the same
mitochondrial DNA, ignoring newly arisen mutations
and heteroplasmy, even when a large number of flies
are collected. In another case, genes are sampled from
animals in zoos without knowing the origins of these
animals. They may have come from the same troop or
family. Strictly speaking, random sampling means
that each gene has an equal and independent chance
of being sampled. Thus, most, if not all, of the
samplings employed for population genetics study are
not random. In some cases, for some unknown
reason, sampling may deviate from randomness

substantially. For example, Roy et al. (1994) suggest
the possibility of non-random sampling in the studies
of gray-wolf and coyote populations. Therefore, it is
quite important to know the effect of non-random
sampling on the estimation of parameters which can
be used for identifying the mechanism of the main-
tenance of genetic variation. If the effect is negligibly
small, then we do not have to seriously consider how
genes are sampled from a population. On the other
hand, if the effect is substantial, then we have to be
careful with sampling.

In this paper, using a simple non-random sampling
model, I will examine the effect of non-random
sampling. Although there might be a large number of
models for non-random sampling, I will consider only
one simple model. Because of its simplicity, this model
will be applicable to various cases. Throughout this
paper, we consider only a large random mating
population, since the main purpose of this paper is to
investigate the effect of non-random sampling.

2. Model

In this model, m genes are first sampled from the
population at random, and n genes are then randomly
sampled from the m genes with replacement. Fig. 1
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Fig. 1. Random sampling model (a) and non-random
sampling model (b).

shows this sampling scheme together with random
sampling scheme. It might be clear that, as m increases,
non-random sampling approaches random sampling.
In the case where all individuals sampled from the
population are the offspring of a single pair of diploid
individuals, we assume m = 4 for locus on autosome,
m = 3 for that of X chromosome, and m = 1 for that
of Y chromosome as well as for that of mitochondrial
DNA under this model. This means that the value of
m depends on the location of locus even for the same
sampling. In this model, various degrees of non-
randomness can be generated by changing the value of
m. Thus, we can call 1 /m the index of non-randomness.
It should be noted here that this non-random sampling
model assumes that each gene is sampled with an
equal probability, but samples are not independent.

3. Theory

Using this model, we will examine the effect of non-
random sampling on the estimates of parameters,
which include allele frequency, heterozygosity, the
number of alleles, the average number of nucleotide
differences, and the number of segregating (or poly-
morphic) sites. We will also examine the effect on the
tests of neutrality developed by Tajima (1989 ft) and
Fu & Li (1993).

(i) Allele frequency

When the frequency of allele is/? in the population, the
probability distribution of allele frequency, x, in a
sample of n genes is given by

Prob {x = i/n} = —
n\

iPV -1 (1)

for random sampling (see Fig. 1 a). On the other hand,
considering binomial sampling twice (compound

Table 1. Standard deviations of allele frequency,
where p = 0-5 is assumed

Random
20 100 500 sampling

10 0-285 0190 0165 0160 0158
20 0-268 0156 0122 0114 0112
50 0-257 0131 0-086 0-074 0071

100 0-254 0122 0071 0055 0050
500 0-251 0114 0055 0032 0022

distribution), the probability distribution of x for
non-random sampling (see Fig. 1 b) can be given by

Prob{x = 0} = £ (1 -j/m)nw},

n \ m-l

Prob{x = i/n} = j^—- S (J/m)\\ -j/j ^ S

for

(2a)

n - l , (2b)

(2 c)Prob {x = 1} = £ UM"w},

where w} is given by w} = w!/^(l —p)™'1 /W-(m —
From (2a), (2b) and (2c), we can obtain the
expectation and variance of x for non-random
sampling, which are given by

E(x) = p and (3)

As m increases, V(x) approaches p(\ —p)/n, which is
the variance of x for random sampling. It is clear from
(3) that unbiased estimates of allele frequency can be
obtained even by non-random sampling.

Standard deviations of x obtained by (3) are shown
in Table 1, where/) = 0-5 is assumed. We can see from
this table that the effect of non-random sampling on
the estimate of allele frequency depends on the ratio
of m to n. Namely, if m is substantially larger than n,
the variance of x for non-random sampling is close to
that for random sampling. In fact, the ratio of
variance of x for non-random sampling to that for
random sampling is given by 1 + n/m — 1 /m. This
means that if n is small, we do not have to seriously
consider how genes are sampled from a population
unless m is extremely small. On the other hand, if n is
large, we have to be careful with sampling.

(ii) Heterozygosity

Heterozygosity in a population can be denned as

(4)

where pt is the frequency of the iih allele in the
population. We usually estimate heterozygosity by
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Table 2. Expectations and standard deviations of
heterozygosity, where pr = 07 , p2 = 0-2 and p3 = 01
are assumed

and variance of the number of alleles, wa, in a sample
of n genes chosen at random from the population are
given by

= 100 Random sampling = V
(/-I) M

E(H) E(H) E(H)

10 0-437 0188
20 0-437 0150
50 0-437 0126

100 0-437 0117
500 0-437 0109

0-455 0169
0-455 0122
0-455 0085
0-455 0069
0-455 0054

0-460 0164
0-460 0113
0-460 0070
0-460 0049
0-460 0022

r
n i

(5)

where x( is the frequency of the iih allele in a sample
of n genes. Nei & Roychoudhury (1974) and Nei
(1978) showed that (5) gives the unbiased estimate of
H when n genes are sampled at random from the
population. When sampling is not random, however,
the expectation of H is given by

(6)
m

which can be obtained by using

E(x(
2) = (m + n-\){Pi{\ -P()+p?}/(mn)

[see (3)]. Therefore, H gives an underestimate of H
under non-random sampling, and the amount of bias
depends only on m. Namely, the amount of under-
estimation is substantial only when m is very small.

In the case of random sampling, Nei (1978) showed
that the sampling variance of H is given by

- and V(nJ =

(8)

where M — 4Nv, Nis the effective population size, and
v is the mutation rate per gene per generation. In the
case of non-random sampling, the expectation and
variance of na in a sample of n genes can be obtained
as follows.

Let us consider the case where i genes among m
genes are chosen at least once, and denote by Q(i, n)
the probability that i genes among m genes are chosen
at least once, given that n genes are chosen from m
genes with replacement. When n = 1, obviously we
have 2(1,1) = 1. When n = 2, the probability that the
gene sampled at the second sample is the same as that
of the first sample is 1 /m, whereas the probability that
the gene sampled at the second sample is not the same
as that of the first sample is 1 — \/m. Therefore, we
have

2(1,2) = 2 0 , \)/m=\/m

and

V(H) =
n(n-\)

2(2,2) = ( 1 -
In general, the probability that the gene sampled at
the rath sample is the same as one of i genes already
sampled before the wth sample is i/m, and the
probability that the gene sampled at the «th sample is
different from i—\ genes already sampled before the
nth sample is 1 — (i— \)/m. Therefore, we have

(i-\,n-\). (9)

+ 2(«-2){2>?-Q>2)2}]. (7) Solving (9), we obtain

On the other hand, the sampling variance of H for
non-random sampling is shown in the Appendix.

The standard deviations of H as well as the
expectations of H are shown in Table 2, where
px = 0-7, p2 = 0-2 and p3 = 01 are assumed. In this
table, the expectations and standard deviations of H
for random sampling are also shown. We can see from
this table that the effect of non-random sampling on
the expectation of H is negligible unless m is very
small, whereas the effect on the standard deviation is
strong when m/n is small. From these results, we can
conclude that, even when genes are not randomly
sampled, heterozygosity can be used except when m is
very small, although the standard error of H might be
larger than that for random sampling especially when
m/n is small.

(iii) Number of alleles

Ewens (1972) showed that when mutants are selec-
tively neutral (Kimura, 1968, 1983), the expectation

m"-\m-i)\
(10)

for 1 < i < m and i ^ n, otherwise 20,«) = 0, where
SJf is the Stirling number of the second kind. Then,
the expectation of na for non-random sampling is
given by

where a is the smaller one of m and n. The variance
of «a for non-random sampling is given by
V(/iJ = E(«a)-{E(«a)}

2, where E(«a) is given by (11)
and E(«a) is given by

(12)

in which a is the smaller one of m and n.
Computations of (11) and (12) are cumbersome, so

that the following approximations might be useful.
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Table 3. Expectations and standard deviations of the
number of alleles observed in a sample of n genes
from a population, where M = 1 is assumed

Table 4. Expectations and standard deviations of the
average number of nucleotide differences among a
sample of n genes, where M = 10 is assumed

71

10

20

50

100

500

m = 20

E(«a)

9-71 3
(2-720)
3162

(3167)
3-518

(3-519)
3-592

(3-592)
3-598

(3-598)

Note: Values
by (14a) and

W(/O
1-097

(1092)
1-267

(1-264)
1-389

(1-388)
1-413

(1-413)
1-415

(1-415)

m= 100

E(«a)

2-884
(2-885)
3-504

(3-506)
4-264

(4-266)
4-733

(4-734)
5180

(5181)

in parentheses are
(14*).

W(na)

1159
(1158)
1-385

(1-384)
1-627

(1-627)
1-763

(1-762)
1-884

(1-883)

Random

E(«a)

2-929

3-598

4-499

5-187

6-793

sampling

\/V(na)

1-174

1-415

1-695

1-885

2-269

; approximate ones obtained

n

10

20

50

100

500

0 0

m = 20

E(k | m)

9-500

9-500

9-500

9-500

9-500

9-500

m = 100

V V(/c | m) C\K | w ; v v(K \ m

5-648
(2-500)
5-332

(1-667)
5166

(1018)
5-114

(0-711)
5074

(0-315)
5065

(0000)

9-900

9-900

9-900

9-900

9-900

9-900

5-653
(2-529)
5-330

(1-689)
5160

(1032)
5107

(0-722)
5066

(0-320)
5056

(0000)

Random
samplin

i) b(/c | m)

10000

10000

10000

10000

10000

10000

'g

\\/\(k\m)
5-655

(2-534)
5-331

(1-693)
5-160

(1035)
5107

(0-723)
5065

(0-320)
5055

(0000)

The expected number of genes chosen at least once
among m genes, given that n genes are chosen from m
genes with replacement, can be given by

A = 2 iQ{i, n) = m{\ - ( 1 -1 /« ) "} , (13)

where a is the smaller one of m and n. Then, the
expectation and variance of na are approximately
given by

- + B

, + B(\-B),

(14a)

(146)

where B is given by (A — b)M/(M + b) and b is the
largest integer which is smaller than or equal to A.

Numerical examples are shown in Table 3, where
M = 1 is assumed. In the computation of Q(i,ri), (9)
was used rather than (10) since SJ,° becomes very
large. We can see from this table that the effect of
non-random sampling on the number of alleles is
substantial, especially when n is large. In fact, as n
increases, the expectation and variance of na approach

_ v .
M

and V(«a) =
Q - l ) M

(15)

which are the same as those for random sampling with
a sample size of m. From these results, we can
conclude that we have to be careful with sampling in
the case where the number of alleles are used for
measuring the amount of genetic variation.

(iv) Average number of nucleotide differences

The average number of (pairwise) nucleotide
differences among a sample of n DNA sequences can

Note: Values in parentheses are \/Vs(k\m).

be used for measuring the amount of genetic variation
at the DNA level, and can be denned as

n-1 n
(16)

where k(j is the number of nucleotide differences
between the rth and jth DNA sequences. Tajima
(1983) showed that, when mutants are selectively
neutral and when there is no recombination, the
expectation and variance of k are given by

E(A:) = M and
n + \

M+-
9n(n-\)

M2. (17)

As shown in the Appendix, the expectation of k for
non-random sampling is given by

E(k\m) = —-M.
m

(18)

We can see from this equation that the effect of non-
random sampling on the expectation of the average
number of nucleotide differences is not substantial
unless m is extremely small, as on the expectation of
heterozygosity. The variance of k for non-random
sampling is shown in the Appendix.

Numerical examples are shown in Fig. 2 and Table
4, where M = 10 is assumed. In Fig. 2, the distributions
of k are given for m = 20 and 100 as well as for
random sampling, where n = 100 is assumed. These
distributions were obtained by computer simulation,
the method of which is shown in the Appendix. We
can see from this figure that the effect of non-random
sampling on the distribution of k is negligible. In
Table 4, the expectation and variance of k are given
for m = 20 and 100 as well as those for random
sampling. We can see from this table that the effect of
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Fig. 2. Distribution of the average number of nucleotide
differences (k), obtained by computer simulation. The
averages (the standard deviations) of k for m = 20 ( # ) ,
m = 100 (®) and random sampling (O) are 9-490 (5128),
9-884 (5110) and 10-025 (5-125), respectively.

non-random sampling on the expectation and variance
of k is negligibly small. Therefore, we can conclude
that, when we use the average number of nucleotide
differences for measuring the amount of DNA
polymorphism, we do not have to seriously consider
how genes are sampled from a population.

(v) Number of segregating sites

The number of segregating (or polymorphic) nucleo-
tide sites among a sample of DNA sequences is
another measure of DNA polymorphism. Watterson
(1975) showed that, when mutants are selectively
neutral and when there is no recombination, the
expectation and variance of the number of segregating
sites, S, among a sample of n DNA sequences are
given by

and V(5) = ar{n) M + a2(n) M
(19)

where a^ri) and a2(n) are given by

fli(") = S (1 /0 and a2(n) = 2 (l/i*) for n ^ 2,
f - 1 4 - 1

(20)

and a^l) = a2(l) = 0. When n is large (n > 5), the
approximations of a^ri) and a2{n) are available
(Tajima, 1993 a, b).

When sampling is not random, the expectation and
variance of S can be obtained in the same way as in
the case of the number of alleles. Namely, the
expectation of 5" can be obtained by

(21)

where a is the smaller one of m and n, and Q(i, ri) is
denned by (10). Since E(S2) = V(S) + {E(S)}2 =

for random sampling,

271

Table 5. Expectations and standard deviations ofM
estimated by using the number of segregating sites
among a sample of n genes from a population, where
M = 10 is assumed

n

10

20

50

100

500

. = 20

E(M)

9142
(9177)
8-690

(8-707)
7-733

(7-736)
6-840

(6-840)
5-224

(5-224)

VV(M)

4-728
(4-705)
3-869

(3-857)
3109

(3106)
2-696

(2-695)
2056

(2-056)

m = 100

E(M)

9-824
(9-828)
9-722

(9-728)
9-464

(9-468)
9112

(9114)
7-614

(7-615)

v/V(M)

4-765
(4-759)
3-924

(3-919)
3194

(3191)
2-801

(2-800)
2162

(2160)

Random sampling

E(M)

10000

10000

10000

10000

10000

VV(M)

4-772

3-935

3-214

2-834

2-244

V(S) = {a

Note: Values in parentheses are obtained by using approxi-
mations (23 a) and (236).

the expectation of S2 for non-random sampling can be
given by

E(S2) = £ Q(i, n) K(/) M + [H(/)}2 + a2(i)] M2). (22)

Then, the variance of S can be obtained by
V(S) = E(5"2)-{E(5)}2. As in the case of the number
of alleles, using A defined as (13), the expectation and
variance of S can be approximately given by

E ( S ) {(b) (A- b)/b} M, (23 a)

- b)/b) M+{a2(b) + (A- b)/b2} M\
(23 b)

where b is the largest integer which is smaller than or
equal to A. In order to estimate M, we often use
M = S/a^ri), since it gives the unbiased estimate of
M under the assumption that mutants are selectively
neutral, there is no recombination, and the population
is panmictic (Watterson, 1975). The expectation and
variance of M are given by E(M) = E(S)/a1(n) and
V(M) = V(S)/{a1(n)}2, and it is now clear that M
gives an underestimate of M when sampling is not
random.

Numerical examples are shown in Table 5, where
M = 10 is assumed. In this table, the expectation and
standard deviation of M are given, and we can see that
the effect of non-random sampling on M estimated by
using the number of segregating sites is substantial
when n is large. In fact, as n increases, the expectation
and variance of S1 approach E(S) = a1(m)M and
V(5) = ax(m)M + a2(m)M2. The distributions of M
obtained by computer simulation are shown in Fig. 3
(see the Appendix for the method of simulation). We
can see from this figure that the effect of non-random
sampling on the distribution of M are substantial.
From these results, we can conclude that we have to
be careful with sampling, when we use the number of
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Estimate of M (M) obtained from the number
of segregating sites

Fig. 3. Distribution of M estimated from the number of
segregating sites, obtained by computer simulation. The
averages (the standard deviations) for m = 20 (#) ,
m = 100 (©) and random sampling (O) are 6-836 (2-697),
9-102 (2-801) and 10017 (2-839), respectively.

segregating sites to estimate the amount of DNA
polymorphism.

(vi) Distribution of nucleotide frequencies

When mutants are selectively neutral and when there
is no recombination, Tajima (1989 ft) showed that the
expected number of nucleotides whose frequency is
i/n in a sample of n DNA sequences is given by

i(n-i)
M, (24)

where 1 < / ^ n — 1. In the case of non-random
sampling, following (2 b), we have

li

"' (J/my-\l - , (25)

12

0 00 0 04 0 08 012 016
Frequency of nucleotide (i/n)

0-20

Fig. 4. Distribution of the expected number of nucleotides
whose frequency is i/n, given that n DNA sequences are
sampled from a population; m = 20 (#) , m = 100 (©)
and random sampling (CO-

272

where 1 ^ / < n — 1. It should be noted that
Gn(i) = Gn(n-i) and Gn(i\m) = Gn(n-i\m).

Numerical examples are shown in Fig. 4, where
M=10 and n = 100 are assumed. In this figure,
GB(/|m)'s for m = 20 and 100 as well as Gn(i) are
shown only when 0 < i/n ^ 0-2, since they are close to
each other when 01 < i/n < 0-9. We can see from this
figure that non-random sampling affects the expected
number of nucleotides whose frequency is close to 0 or
1, whereas it does not affect the expected number of
nucleotides whose frequency is not close to 0 or 1. In
other words, the effect of non-random sampling is
substantial only on rare variants.

(vii) Test of neutrality

Under the assumptions of random mating population
and no recombination, we can test the neutral
mutation hypothesis (Kimura, 1968,1983) from DNA
sequences sampled from a natural population.
Tajima's (1989 ft) method is based on the difference
between the average number of nucleotide differences,
k, and the estimate of M, M = S/ax(n), obtained from
the number of segregating sites, since the expectations
of k and M are both M under these assumptions. As
shown before, however, the expectations are not equal
to M when sampling is not random. Since the effect of
non-random sampling is stronger on S than on k, it
might be expected that Tajima's method cannot be
used when sampling is not random.

Recently, Fu & Li (1993) developed the other tests
of neutrality. In addition to k and S, their method uses
the number of singletons (SJ, which is defined as the
number of nucleotides whose frequency is \/n in a
sample of n DNA sequences. Under the above
assumptions, the expectation of S1 is given by

E(S1)=Gn(\) = -M, (26)

when sampling is random. Thus, we can estimate M
by M= (n — \)Sl/n. In fact, Fu & Li's method is
based either on the difference between S/ax(ri) and
(n — \)SJn or on the difference between k and
(n-\)SJn. [Note that Fu & Li (1993) also developed
the other methods which can be used when an
outgroup sequence is available.] When sampling is not
random, the expectations of k, S and Sx can be
obtained by using (25). Namely, the expectation of k
can be given by

(27)
m

which is identical with (18), the expectation of S can
be given by

m

x {1 - (1 - i/m)n - (i/m)n} M, (28)
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Table 6. Expectations o/k, S/a^n) and (n —l)Sj/n,
where M = 10 is assumed

n

w = 20

E(5

E(/t) ax{n

') n - l

m =

1 E(*)

100

E(S) « - l E ( 5 )

10
20
50

100
500

9-500 9142 7-900
9-500 8-690 5-955
9-500 7-733 2-255
9-500 6-840 0-326
9-500 5-224 0000

9-900 9-824 9-556
9-900 9-722 9078
9-900 9-464 7-745
9-900 9112 5-846
9-900 7-614 0-337

Note: E(k) = E^/a^n) = (n-1) E(5,)/« = 10 for random
sampling.

which leads to (21), and the expectation of S1 can be
given by

(29)
m

Numerical examples are shown in Table 6, where
E()fc), E(S)/a1(n) and («-l)E(51)/n are given for
M=10 . Note that all these values are equal to
M = 10 for random sampling. We can see from this
table that the effect of non-random sampling is
substantial on (n—\)SJn, whereas non-random
sampling does not affect k very much.

In order to know the effect of non-random sampling
on the tests of neutrality, I have conducted computer
simulation, the method of which is shown in the
Appendix. In this simulation, three test statistics
were compared, which are D = d/\/V(d), where
d = k-S/a1(n) (Tajima, 19896), D* = d*/^N(d*),
where d* = S/a^-in-^SJn (Fu & Li, 1993),
andF* =/*/VV(/*), where/* = k-(n-l)SJn(Fu

012 -
•

0 1 0 -

2 008 :

oc
| 006 -

I 004 :
0 0 2 -

0 0 0 -

M=10, n = 50 (a)

-

-

- 4 -3 -2 -1 0
D

012 -

010 -

2 008 :

1 006 -

I °04:
0 02 -

0 0 0 -

M=10, « = 50 rT

\

^ A\

(6) :

-4 -3 -2 0
D*

Fig. 5. Distributions of (a) D and (b) D*, obtained by
computer simulation; m = 20 (•) , m = 100 (©), and
random sampling (O)-

& Li, 1993). The results of computer simulation are
shown in Table 7 and Fig. 5, where M = 1 0 is
assumed. In Table 7 the means and standard deviations
of D, D* and F* are given. Figs 5 a, b show the
distributions of D and D*, where n = 50 is assumed. It

Table 7. Means and standard deviations (S.DS) ofD, D* and F* obtained
by using computer simulation, where M = 10 is assumed

n

10

20

50

100

500

m

20
100
Random
20

100
Random
20

100
Random
20

100
Random
20

100
Random

D

Mean

0-124
-0031
-0074

0-285
-0016
-0090

0-671
0061

-0102
1091
0171

-0096
2044
0-719

-0091

S.D.

0-942
0-902
0-892
0-948
0-905
0-889
0-983
0-922
0-898
1016
0-938
0-903
1137
1-034
0-907

D*

Mean

0161
- 0 0 2 1
-0-070

0-459
0035

- 0 0 8 2
1-279
0-276

- 0 0 8 9
1-880
0-706

- 0 0 7 8
2093
2-306

- 0 0 6 0

S.D.

0-957
0-920
0-912
0-946
0-938
0-932
0-769
0-946
0-966
0-407
0-892
0-981
0-302
0-363
1000

F*

Mean

0172
- 0 0 2 7
- 0 0 8 0

0-475
0023

- 0 0 9 8
1-266
0-237

- 0 1 1 1
1-884
0-589

- 0 1 0 2
2-512
1-896

- 0 0 9 1

S.D.

1052
1012
1003
1024
1015
1008
0-848
0-992
1007
0-623
0-929
0-995
0-709
0-678
0-970
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can be seen from these table and figures that the effect
of non-random sampling is not very large in the case
of D, whereas the effect is quite large in the cases of D*
and F*. This is because the effect of non-random
sampling is much stronger on (« — 1) St/n than on k or
S/a^in) (see Table 6). Therefore, we can conclude that
we have to be very careful with sampling to apply the
tests of neutrality, especially when D* or F* is used.

4. Discussion

In this paper, using a simple non-random sampling
model, we have examined the effects of non-random
sampling on the estimates of the amount of genetic
variation in a population and on the tests of neutrality.
The results indicate that the effect of non-random
sampling on heterozygosity and the average number
of nucleotide differences is small (see Tables 2 and 4)
and that the effect on the number of alleles and the
number of segregating sites is substantial (see Tables
3 and 5). Therefore, we can conclude that we have to
be very careful with sampling in the case where the
number of alleles or the number of segregating sites
is used to estimate the amount of polymorphism,
whereas we do not have to seriously consider how
genes are sampled when heterozygosity or the average
number of nucleotide differences is used to estimate
the amount of polymorphism. In the case where we
test the neutral mutation hypothesis by using the
amount of DNA polymorphism, we have to be very
careful with sampling, especially when Fu & Li's
(1993) methods are used (see Table 7 and Fig. 5). We
also note that all the three test statistics, D, D* and
F*, tend to be positive under non-random sampling.
Therefore if they are significantly smaller than zero,
we do not have to consider the effect of non-random
sampling as a cause of deviation. On the other hand,
if they are significantly larger than zero, we have to
consider whether sampling is random or not.

Although I used this simple non-random model,
there is no reason to believe that non-random sampling
always occurs in this way. To obtain the general effect
of non-random sampling, we have to study the other
types of non-random sampling.

When a population is subdivided and when mi-
gration rates among subpopulations are small, sam-
pling biases might be expected if genes are sampled
only from one subpopulation. This sampling is not
random, since each gene does not have an equal
change of being sampled from the population. In
some cases, the average number of nucleotide
differences, k, among DNA sequences sampled from
one subpopulation gives the unbiased estimate of4Nv,
where N is the effective size of entire population and
v is the mutation rate per generation (Li, 1976;
Slatkin, 1987; Strobeck, 1987), although this is not
always the case (Tajima, 1989 a, 1990). Furthermore,
the number of segregating sites, S/ax(n), gives a biased

estimate of ANv, even when k gives the unbiased
estimate (Tajima, 1989a). This means that the effect of
non-random sampling is stronger on S than on k, as
in the simple non-random sampling model.

In some cases, genes are sampled based on
information about genetic variation. For example,
genes are sampled and sequenced, based on allelic
information revealed by electrophoresis (Kreitman,
1983). For theoretical studies under this sampling
strategy, see Hudson & Kaplan (1986).

In population genetics, random sampling is assumed
in almost all cases. As has been shown in this paper,
we often obtain biased estimates of parameters if
sampling is not random. Although the most efficient
way to eliminate biases is random sampling, we may
not be able to avoid non-random sampling in some
cases. In such cases, if we can identify non-randomness
from data, we will be able to avoid misinterpreting
data. One possible way is to test whether or not
Hardy-Weinberg law holds. Another possible way is
to examine linkage disequilibrium. In both cases,
however, additional information is necessary.
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Appendix

(i) Sampling variance of the estimate of
heterozygosity

Following Nei & Roychoudhury (1974), the sampling
variance of the estimate of heterozygosity (H) for
non-random sampling can be given by
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the average number of nucleotide differences (k)
among a sample of n genes are given by

E(k) = M and V(k) = -M

9n(n-\)
M2, (A 4)

x2) - { E(x2)}2].

(Al)

which can be obtained from the following formulae:

= M, (A 5fl)

% = M+2M\ (A 5b)

E(k(j kir) = M/2 + 4M2/3, (A 5 c)

E(k(jkrs) = M/3 +1 lM2/9, (A Sd)

where /, j , r and s are mutually different (Tajima,
1983).

In order to obtain the expectation and variance of
k under non-random sampling, we have to consider
how genes are sampled from m genes. To distinguish
the expectations under non-random sampling from
those under random sampling, we define E(x) under
non-random sampling as E{x\m). If two genes
sampled from m genes come from the same gene in m
genes, then we have E(k(j | m) = E(kti) = 0, whereas
if they come from different genes, then we have

Using (2), E{xf),E(x2x2) and E(x2) can be obtained as £(£„ | m) = E(&y) = M from (A 5 a). Since the
probabilities of having the former and latter events
are 1 /m and 1 — 1 /m, respectively, we have+ 6(n-l)(n-2)E(y3)

+ 7(#i-l)EO/<
2) + EO/<)}/n8,

E{x2x2) = [(n-\)(n-2)(n-3)E(y*y2)

(A 2a)

+ (n-l)(n-2){E(y2yj)

+ (n-\)E(ytyi)]/n3, (A2b)

E(x2) = {(«-1) E(ft) + E(y()}/n (A 2c)

for i+y, where E{yt), E(y2), E(y3), E(y*), E ( j ^ ) ,
2) and E(.F2>>2) are given by

(A3fl)
l)^2+jP(}/m, (A 3 A)

(A 3 c)

E(k(j\m) =
m m

-Ei^^^^M. (A>
m

In the same way, we have

m m m

E{ktjkir\m) (A 6 b)

mr m

,(m-\)(m-2)
^ m2

= (/M - l)ptp}/m,

- 1 ) (m - 2)piPj(pt

, (A 3d)

(A 3e)

(A 3/)
2,
(A3g)

m%.
(A 3A)

2m

E(k(jkrs\m)

3m2 (A 6c)

m-l

m m

(ii) Expectation and variance of the average number
of nucleotide differences among a sample of n genes

When mutants are selectively neutral and when there
is no recombination, the expectation and variance of

(m-\)(m-2)(m-3)
"I 5 c'\.KtJ Krs)

m

3m2 M + -
9m3 M2.

(A6d)
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Then, the expectation of k is given by

E(k | m) = E(k(j | m) = - M.
m

The variance of k can be obtained from

2

(A 7)

E(kt, krs | m)} - {E(k | m)}2 (A 8)

(Tajima, 1983). Substituting (A 6ft), (A 6c) and (A
6d) into (A 8), we finally obtain

'-M2

' 3m2n(n-\)

2{m-\){m{m+\){n2-
9m3n(n-l)

As n increases, \(k \ m) approaches

(A 9)

3m2

2{m-\){m2

9m3 M2, (A 10)

which can be called the stochastic variance (Tajima,
1983). The sampling variance can be obtained by

(iii) Method of computer simulation

The following computer simulation, which is similar
to that of Tajima (1989ft), was conducted in this
study. First, the process in which n genes are randomly
sampled from m genes is generated. Let w{m, i) be the
number of times the /th gene among m genes are
chosen in this process. Then, w(m, i)'s for i — 1,2,3,...,
and m can be generated by choosing one of 1, 2, 3, ...,
and m with equal probability with replacement n
times. Secondly, the process in which m genes are
randomly sampled from a population is generated. In
this process, the theory of gene genealogy is used. Two
of 1, 2, 3, ..., and m are chosen with equal probability
without replacement. If/ and 7 are chosen (/ <j), then
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w(m— 1,/) is computed by w(m, i) + w{m,j), and
w(m — 1, k) is computed by w(m, k) for k < j and k 4= i
or by w(m, k+1) for k ^j. In the same way, two of 1,
2, 3, ..., and m— 1 are chosen at random and
w(m—2,0'sfor / = 1,2,3,..., and m — 2 are generated.
We repeat this process until w(2,1) and w>(2,2) are
obtained. Now we generate mutations. The number of
mutations, z(j), occurred in w(j, 1), w(J,2), w(j,3), ...,
and w(J,j), is generated by assuming that z(J) follows
the geometric distribution,

( y - l ) M z

(Al l )

(Watterson, 1975). Then, the number of mutations in
each w(j, i), z(J, i), is generated by choosing one of
w(j, ;')'s at random with replacement z(J) times. Under
the theory of gene genealogy, z(j) and z(J, i) correspond
to the number of mutations in j branches and the
number of mutations in the /th branch among j
branches between j DNA sequences and 7 — 1 DNA
sequences, respectively [see Tajima (1989 ft)], and w(j, i)
is the number of genes in the /th branch among j
branches. Therefore, the average number of nucleotide
differences can be computed by

( }

the number of segregating sites can be computed by

m i

S = J S u{j, i) z(j, /), (A 13)

where u(j,0 = 1 if 1 ^ w(j, f)^n~\ and u(J,0 = 0
otherwise, and the number of singletons can be
computed by

m i

(A 14)

where v(J, i) = 1 if w(J, i) = 1 or w(j, i) = n — 1 and
v(J, i) = 0 otherwise. Finally, D, D* and F* are
computed from k, S and Sv For each set of parameter
values, simulations are conducted 100000 times to
obtain the means, variances and distributions of k, S,
Slt D, D* and F*. The method of computer simulation
for random sampling is the same as that of Tajima
(1989 A), and simulations are also conducted 100000
times for each set of parameter values.
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