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We prove interior boundedness and Holder continuity for the weak solutions of
nonlocal double phase equations in the Heisenberg group H"™. This solves a problem
raised by Palatucci and Piccinini et al. in 2022 and 2023 for the nonlinear
integro-differential problems in Heisenberg setting. Our proof of the a priori
estimates bases on De Giorgi-Nash—Moser theory, where the important ingredients
are Caccioppoli-type inequality and Logarithmic estimate. To achieve this goal, we
establish a new and crucial Sobolev—Poincaré type inequality in local domain, which
may be of independent interest and potential applications.
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1. Introduction

In this paper, we are interested in local behaviour of the weak solutions to nonlocal
double phase problem in the Heisenberg group H™, whose prototype is

u(§) — u(m)[P~*(u(8) — u(n))
P.V.
/H“ { It o &)1 27

+a(&,n) ulé) = “(’1)1”72(2@[ u(n) dn=0 in %, (1.1)
||77 oé-”Hn
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where 1 < p < g < o0, s,t € (0,1), a(-,-) > 0, @ = 2n + 2 is the homogeneous
dimension and € is an open bounded subset of H" (n > 1). In the display above,
I - lgn and P.V. mean the standard Heisenberg norm and “in the principal value
sense”, respectively. The main feature of the integro-differential equation (1.1) is
that the leading operator could change between two different fractional elliptic
phases according to whether the modulating coefficient «a is zero or not.

We observe that, if the coefficient a = 0, equation (1.1) is reduced to the p-
fractional subLaplace equation arising in many diverse contexts, such as quantum
mechanics, image segmentation models, ferromagnetic analysis and so on. Let us
pay attention to the linear scenario first, i.e., p=2. This kind of problems can
be regarded as an extension of the conformally invariant fractional subLaplacian
(—Apgn)® in H™ proposed initially in [2] by the spectral formula

P(=3aulm ™ + 1)

1 s
T (—3auT™ +52)

(_AH")S = 28‘T|s y S € (07 1)a

where s € (0,1), I'(+) is the Euler Gamma function, T is the vertical vector field,
and Apgn is the typical Kohn—Spencer subLaplacian on H". Subsequently, Roncal
and Thangavelu [36] demonstrated the representation as below

(-8 u(e) = Clnoppv. [ MO g e,

an [ln1 o &[G

holds true for C'(n,s) > 0 depending only on n, s. During the last decade, several
aspects of the fractional operator of the type (1.2) have been investigated, such as
Hardy and uncertainty inequalities on stratified Lie groups [6], Sobolev and Morrey-
type embedding theory for fractional Sobolev space H*(H™) [1], Harnack and Holder
estimates in Carnot groups [18], Liouville-type theorem [7]. One can refer to [19-22]
and references therein for more results on the linear case. Regarding the nonlinear
analogue to (1.2), the p-growth scenario is considered (p # 2). For what concerns
the regularity properties of weak solutions to the fractional p-subLaplace equations
on the Heisenberg group, Manfredini et al. [31] established the interior boundedness
and Holder continuity via employing the De Giorge-Nash—Moser iteration; see also
[32] for the nonlocal Harnack inequality, where the asymptotic behaviour of frac-
tional linear operator was proved as well. In addition, as for the obstacle problems
connected with the nonlocal p-subLaplacian, we refer to [34] in which Piccinini stud-
ied systematically solvability, semicontinuity, boundedness and Holder regularity
up to the boundary for weak solutions. More interesting estimates or fundamental
functional inequalities can be found in [27, 28, 33]. To some extent, we can see that
the results mentioned above extended the counterparts of the fractional Euclidean
setting in [13, 14, 26, 29, 30] to the Heisenberg framework.

Equation (1.1) could be viewed naturally as the nonlocal version of the classical
double phase problem of the following type

—div(|VulP2Vu + a(z)|Vu|?™?Vu) =0 in Q. (1.3)
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Within the Euclidean context, the regularity theory of weak solutions to (1.3)
or minimizers of the corresponding functionals has been developed extensively,
beginning with the pioneering papers of Colombo and Mingione [8, 9]. Under a €
L2 () and, p < g < n”—_’;) if p<mn,orp<gqg<ooif p>n,local boundedness for u

was shown; and further under u € L{2.(Q), a € C&;"(Q) and p < ¢ < p+ «, Holder
continuity of u was obtained as well, see, e.g. [9, 10].

Very recently, the investigation of nonlocal problems with nonstandard growth,
especially of those with (p, ¢)-growth condition, has been attracting increasing
attention, however only in the fractional Euclidean spaces. In this respect, De
Filippis and Palatucci [12] introduced nonlocal double phase equations of the
form (1.1) in the Euclidean spaces, and established Hélder continuity for bounded
viscosity solutions. Weak theory on this class of nonlocal equations was rapidly
explored in hot pursuit, for example, [37] for self-improving inequalities on bounded
weak solutions, [17] for Holder regularity and relationship between weak and vis-
cosity solutions in the differentiability exponents s > ¢, [4] for Holder property
with weaker assumption on solutions in the case s <t, [24] for the sharp Holder
index and the parabolic version. Concerning more regularity and related results for
nonlocal problems possessing nonuniform growth, one can see [3, 5, 16, 23, 35] and
references therein.

In particular, we would like to mention that Palatucci, Piccinini, et al. in a series
of papers [31-33] proposed the open problems about the regualrity of solutions to
the so-called nonlocal double phase equation in the Heisenberg group H™. In this
paper, influenced by the works [4, 14] we answer this question and develop the
local regularity theory for the weak solutions of such equations in the Heisenberg
group H", including the boundedness and Hélder continuity of solutions. The main
difficulties which are different from the previous ones are mainly two parts. One is
that equation (1.1) not only possesses the nonlocal feature of the embraced integro-
differential operators and the noneuclidean geometrical structure of the Heisenberg
group, but also inherits the typical characteristics exhibited by the (local) double
phase problems due to the (p, ¢)-growth condition and the presence of the non-
negative variable coefficient a. We need to find some appropriate assumptions on
the summability exponents p, ¢ € (1, 00) and differentiability exponents s,¢ € (0, 1)
together with the variable coefficient @ in order to locally rebalance the non-uniform
ellipticity of the operator. The other one is that the existing Sobolev embedding
theorem, lemma 2.2, cannot be applied to our setting directly. To overcome this
point, we have to establish a suitable Sobolev—Poincaré type inequality on balls in
the Heisenberg group H™. It may be of independent interest and potential applica-
tions when investigating regularity properties for some other nonlocal equations in
the Heisenberg group. These difficulties make the current study more challenging
than the fractional p-subLaplacian case.

Now we are in a position to state our main contributions. We first collect some
notations, definitions as well as assumptions. Let s, t and p, ¢ satisfy

l<p<g<oo, 0<s<t<l1, (1.4)
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and the coefficient @ : H® x H* — RT fulfil

Oga(é-an) :a(nvg) < ||a’||L°°7 5777€an (15)
and
la(&m) —a (€, < lal, (I€ " o &lan + ' onllm ), (1.6)

for (§,m),(¢',n') € H" x H" and a € (0, 1].
For convenience, we introduce the following notations:

i a(&m)

T4
4 _ ,neH" and 7> 0,
T o el oe S

H(&n,7) =

and
J[(Tl — 7'2) = ‘7'1 — T2|l72(7'1 — 7'2),
with 71,72 € R and [ € {p, q}, and

plus) = [ [ 1 (€ u©) = utnl) o

It o &llZn

for every measurable set 2 C H” and u : 2 — R. A function space related to weak
solutions to (1.1) is defined as

AQ):={u:H" > R:ulg € L (2) and
/ H(E . Ju(€) — uln))—=01__ < oo},
Ca

In=1 o €l

where
Co 1= (H" x H")\ ((H"\Q) x (H"\0)).

Additionally, in view of the nonlocal nature of this problem, we need define a tail
space

—1 iy p— (@)
LI H") = {u e Ly (H"): /Hn T €)@ d¢ < oo},

and the nonlocal tail

u (9 u (9" )
T (u; &, 1) = + s dg.
(s 0.7) /H”\Br (¢0) <||fo §||ﬁq:1?$8p Ha”L Hf(;l OfHﬁQﬁ;ﬁq ‘

We can notice that the quantity T is finite if u € L% ' (H").
We now give the definition of weak solutions to (1 1).
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DEFINITION 1.1. weak solution If u € A(Q) satisfies

Ja(ul€) = um) (@) = em) | 4ey —

Jp(u(€) —u®))(p(&) — »v(n))
+ a(§,
//c [ I ©n ln=1 o €[l

n—log|@ter
(1.7)

for every ¢ € A(Q) with p =0 a.e. in H"\Q, then we call u a weak solution to (1.1).

Note that u € A(Q) implies u € HW*? (Q), i.e., A(Q) C HW>? (Q). Hence in
this work, we only consider the case sp < Q. Otherwise, the complementary scenario
sp > @ ensures the local boundedness and Holder continuity directly because of the
fractional Morrey embedding in the Heisenberg group [1].

Our main results are stated as follows. The first one is the local boundedness of
weak solutions.

THEOREM 1.2 Let the conditions (1.4) and (1.5) be in force. If

Qp
p<qg< 4 when sp < @,

@sp (1.8)
p<g<oo when sp > Q,

then every weak solution u € A() N LI (H") to (1.1) is locally bounded in €.

The second one is about the Holder regularity of weak solutions to (1.1) via
supposing a(-,-) is Holder continuous and the distance between ¢ and p is small.
For simplicity, we denote

data := data(n, p, q, s, t, a, [a]a, ||a|| L),
as the set of basic parameters intervening in the problem.
THEOREM 1.3 Let the conditions (1.4)-(1.6) with
tq < sp+a, (1.9)

be in force. If weak solution u € A(Q) N LL (H") to (1.1) has local boundedness
in Q, then it is locally Holder continuous as well, that is, for any subset Q' CC €,

u belongs to C’l()o’f(Q’) with some 3 € (0, qs_pl) depending on data and [|u|| oo (qry-

Putting these two theorems above, Holder continuity is immediately obtained
without local boundedness assumption under the intersecting conditions.

REMARK 1.4. For the case s> t, local boundedness can be obtained under (1.5),
(1.8) by checking the proof of theorem 1.2. Meanwhile, following the proof of the-
orem 1.3 and making a few slight modifications, we can deduce, under the same
preconditions of theorem 1.3, that weak solutions are also of the class C2?(€') with

loc
some 3 € (0, m).

qg—1
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This paper is organized as follows. In § 2, we introduce the Heisenberg group
and function spaces, and then deduce some needful Sobolev embedding theo-
rems. Section 3 is dedicated to proving local boundedness of weak solutions by
the Caccioppoli-type estimate. At last, we shall show that the locally bounded
weak solutions to (1.1) are Holder continuous via establishing Logarithmic-type
inequality in § 4.

2. Functional setting

In this section, we introduce the Heisenberg group H™ and some function spaces,
and establish several important Sobolev embedding results. The Euclidean space
R+ (n > 1) with the group multiplication

1 n
fon= (561 +y1, T2+ Y2, 7$2n+y2na7+7/+52(xiyn+i —Zﬁn+z‘yz‘)> )
i=1

where & = (21,72, ,%on,7T), 1 = (Y1,¥2," " ,Y2n, 7' ) € R?*" T leads to the
Heisenberg group H™. The left invariant vector field on H" is of the form

Xi = am’i — nTﬂaT’ Xn+i = 8In+’i + 57‘87-, 1 S 7 S n,

and a non-trivial commutator is
T= a-,— = [X“Xn+l] = XanJri — Xn+iXi7 1 < ) <n.

We call that X7, X, .-, X5, are the horizontal vector fields on H" and T the
vertical vector field. Denote the horizontal gradient of a smooth function u on H"™
by

VH’LL = (Xlu,Xgu, e ,Xgnu) .

The Haar measure in H" is equivalent to the Lebesgue measure in R?"*1,
We denote the Lebesgue measure of a measurable set £ C H"™ by |E|. For
&= (x1,22, - ,Tan,T), we define its module as

1
4

2n 2
J€lln = (Z> 4
=1

The Carnot-Carathéodary metric between two points £ and 7 in H" is the shortest
length of the horizontal curve joining them, denoted by d(£, 7). The C-C metric is
equivalent to the Koranyi metric, i.e., d (£,7) ~ ||~ o n|jgn. The ball

By (§o) ={ € H" : d(§, &) <7},

is defined by the C-C metric d. When not important or clear from the context, we
will omit the center as follows: B, := B;.(&o).
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Let 1 < p < o0, s € (0,1), and v : H* — R be a measurable function. The
Gagliardo semi-norm of v is defined as

1
(m® !
[ ]HWS,LD H") — </H" /H” ||77_1 Og”Q-‘r&p d§d77> 5

and the fractional Sobolev spaces HW*? (H™) on the Heisenberg group are defined
as

HW=* (H") = {U € LP (H") : [v] gpyyrs.pany < oo}
endowed with the natural fractional norm

1

p
(e (. S—

For any open set 2 C H", we can define similarly fractional Sobolev spaces
HW?#? (Q) and fractional norm ||v|| gws.p(q). The space HW{* (Q2) is the closure
of C§° () in HW*? (§2). Throughout this paper, we denote a generic positive con-
stant as ¢ or C. If necessary, relevant dependencies on parameters will be illustrated
by parentheses, i.e., ¢ = ¢(n,p) means that ¢ depends on n,p. Now we recall the
fractional Poincaré type inequality and Sobolev embedding in the Heisenberg group
H"™; see [34, proposition 2.7] and [28, theorem 2.5], respectively.

LEMMA 2.1. Poincaré type inequality Letp > 1, s € (0,1) and v € HWSP(B,).

Then we have
p
_ pd < sp/ / )‘ d d ,
/Brw o, rig<e [ un—lognQ*” 0

where ¢ = ¢(n,p) > 0, = fz, vdé.

LEMMA 2.2. Let 1 < p < oo, s € (0,1) such that sp< Q. Let also v : H* — R
be a measurable compactly supported function. Then there is a positive constant
c¢=c(n,p,s) such that

P P
v HLP 5y = [U]HWS7P(H7L)7

with p% = Q%Z m

Now we also give the following result, a truncation lemma near 0.

LEMMA 2.3. Letp > 1, s € (0,1) andv € HWS? (B,). If p € C%! (B,)NL>® (B,),
then it holds that v € HW*? (B,.) and ||ov| gws.»(B,) < cl|vl|pws.p (s, with ¢> 0
depending on n,p, s, r and .

The proof of this lemma is very similar to that of [15, lemma 5.3], so we omit it
here. Based on lemmas 2.1-2.3, we could conclude a Sobolev—Poincaré inequality
on balls in the Heisenberg group, which plays a crucial role in proving regularity of
solutions.

https://doi.org/10.1017/prm.2024.89 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.89

8 Y. Fang, C. Zhang and J. Zhang

PROPOSITION 2.4. Sobolev—Poincaré type inequality Let 1 < p < oo, s € (0,1)
fulfil sp< Q. Suppose that v € HW=P (Bgr(&)) and B-(§) C Br(&) (0 <r < R)
are concentric balls. Then there exists a positive constant ¢ = c¢(n,p, s) such that

(jirh«—( ) ac)”

e

()"
<CDIRT][ / L dedn,
BR JBg Hn‘l OéHQJr i

where

Dy(R,7) = (R>Q

r

() ()]

Proof. Take ¢ (&) € C§° (Bg (§o)) as a cut-off function such that 0 < p <1, p =1
in B, (&), supp ¢ C BR_H«( 0) and |[Vgo| < 5% in Br (). Then (v — (v),)p €

HW{?(Bg) and further (v — (v))p € HWSP(H™) by zero extension. We split
H" x H" into

(BR X BR) @] (Hn\BR X BR) U (BR X HH\BR) @] (HH\BR X Hn\BR) .

By virtue of lemma 2.2 and the definition of ¢, we get

v—(v), [P g v— (v P: &
(f mmenriae)” < ([ iw=w,er ac)

<c / ) / ﬂ (v (&) - (vmﬁ: (ff ;g(ﬁg iﬁp— OBEIO]
<ec /B ) /B R (v (€) - <v>r>|ﬁ] (_51) ;gﬁ%;;zp_ OREIOI
>
+C/BR/W\BR In~ 1£g)||2?+9(?)| dedn
= J1 + Ja.
Note that
/BR /BR Hn—loan“P dedn +C/BR /BR _1|:|€(|c§?s; OIF e

‘p
dgdn + Ji1.
/BR /BR ln=1 05”Q+9p
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We first evaluate Jq1 as

(0),”
Jin < / / ——y d€dn
-’ Br/BR ||77 ! Of||Q+p( Y
< [ o=@, [ ey ded
T (B=1) iy " Jeanon [t o gllg Y

<c(R}fT)pR‘SP/BR o () — (o), d
<oz ) m (/BR o ) <v>R|pdn+/BR )~ <v>ﬁdn>
<C( —r) - (Rép/BR/BR - 1o§Q+>S|z MH(”)R_(U)’”'”BRO’

where in the last line we have utilized lemma 2.1. On the other hand,

f( — (0))

< |BR\][ v — (0) P

B
<ol NCREE

( > & /BR/BR ||n—1oe||Q+” s

(v)g = (v),[" |Br| = | Bkl

R \? R (n)|?
J1<C<l+<R—7“> +<7‘) < —7”>>/BR/B‘R I~ 1O£||Q+spd§d77
R\® @ —vml” .,

Moreover, for £ € H"\Bgr, n € Bry,, owing to the triangle inequality [11] there
2
holds that

6= 0 &olln < (1 n ””“'H) €= o nlln

€Tl
(R0)/2\ | o 2R
< (14 EED et o gllan = 22 f ol
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From this, it follows that

- (),

J2 < C
1 O§||Q+8p

/ dedy
BR—H" H"\Bpg ||77

< R )Q-&-szﬁ 1 .
<e [ e [ - @),y
R=r gy €710 b3 /b

R+r
2

Q
(RR)M | =), ¢
- )

- R <R Q+sp> / / ()P dcd
- ¢ S S ”7
(R =)@t By JBR ||77 1o§||‘?”

Q Q+sp p
R
<(3) (75) Lo oot cn
" R—r Br /B (71 o €llgnn

the procedure of which is analogous to J;. Eventually, we obtain

<c

p

( [ o=, d&) e
By

R Q R P Q+sp )‘p
<o) |G (G5 S e e

which implies the statement. 0

If we let R = 2r in the preceding Sobolev—Poincaré inequality, then we can get
the very simple version below.

COROLLARY 2.5. Let 1 < p < oo,s € (0,1) fulfil sp< Q. Suppose that v €

HW?®P(By,) and B, C Ba, are concentric balls. Then there exists a positive
constant ¢(n,p, s) such that

i )P
— (v), " d P ded
<Br'“ ] ’5) = 7{9/3 Hn—loan*“’ s

The following result shows an embedding relation between the fractional Sobolev
spaces HW%4(Q)) and HW*P(Q).

LEMMA 2.6. Let 1 <p<gqand0<s<t<1. Let also  be a bounded measurable
subset of H™. Then there holds that, for each v € HWH4(Q),

WO - v o\ o s p©-vml .\
(/Q QMIO“QHp&n) < ol 5 (diam (9)) (/Q Rrevenic sn>,

where ¢> 0 depends upon n,p,q,s,t.
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Proof. For p < q, we first utilize the Holder inequality to get

[v(§) —v(n)”
/ T“mspdfdn

In
(m!” 1
dédn
//Q” -1, f”H q)q ” €||Q g E4(s—t)p

q=p
q

< / [v(§) —v(n) // dedn .

<UL L e T

“log ||
On the other hand,

18 Sprr= i N

1
o+ (s t)pq dédn
-1 C>«£||

© &l|zn

(t—s)pg _
<Q|Bll//p v dpdy

— (t—s)
_ |Bl| (q p)d qupq ‘Q|’
(t —s)pq

with d := diam (€2). The combination of preceding inequalities implies the desired
display.

If ¢=p, noting ||n~! o &[jgn < diam (Q) for &, € Q and s < t, we can readily
obtain

w©—vml .\ 0(&) =0 ()
</n o [t o €1 dgd”) B </

— 4 n)
o [ln—t o €IS In—1 fl\( or
%

< (diam ()" ( /Q : W dﬁdn>

Now, we complete the proof.

The forthcoming two lemmas are the consequences of these results above, which
will be exploited in the proof of boundedness and Holder continuity for solutions

https://doi.org/10.1017/prm.2024.89 Published online by Cambridge University Press
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LEMMA 2.7. Assume that s,t € (0,1), 1 < p < q and (1.8) hold. Then for every
f e HW?®P? (B,) we infer that

Rr |p g
d¢é < déd
7{9( ) ¢ <ol (7{3/3 ||n—1os\|§n+sp “)

+ CDI(R7 T) <|Suppf‘) 7[ / |p fdﬁ
|Br Br /Br ||n 1o§||Q+5p
p

I f

R\ ( |supp /| /
ce( ) () (]l

where supp f = {B, : f # 0}, and ¢> 0 depends only upon n,p,q,s,t, and ag is
any positive constant.

£

/’-S

+a0Ji

+ ap

Proof. By the Holder inequality and proposition 2.4, we obtain

P . P
]{B ris dfgcj{g fri x{f;éo}df—i-c(f)
jsupp |\ @ - N L
§c< o ) (ﬂ 7rs d§> .

Dy(R,r) ( |supp f| fFE&—fmlP
xC 7SP ( |BT| > J[BR /BR ||,,7—1 o é—”Q"rSp dfdn

ISuppf|>p_1 flP
“( [B,] 7{3

TvS
where we used the inequality below,

dg,

p

(EDF ’ de.

TS

I

-1
" (ISupp fl)p ][
B |Br| By T

On the other hand, via the Holder inequality and proposition 2.4 again,

]ir d§<c<]{gr dﬁ) +c
DY Rr (n)[” INE
d€d r

= (ﬂR/BR ||n—1o£|\Q+SP 5") T

q q

DY (1) f©-for .\
= (]{gR/BR It oeg:” 5")

ISuppf|> /1
+C< B,] Y[B

X0
By

@ *“Q

q

(),

rt

I f=.|"
rt rt

B

&)

rt

dg,
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where we can see that

q q-1 q p—1 q
()" o (Isupp /] ][ I ge < (1uwp ] 7[ I ge.
rt | B | By T | B, | B T
We finally observe the plain relation that
P q Q P q
][ i + ag i df <c E f i +ag |~ df
By | T8 rt T Bp|T*® rt

In summary, we combine all the previous inequalities to arrive at the desired display.
O

Now denote

+ — .
ap:= sup af(,:) and ap:= inf af(--).
R BRXBR (’ ) R BRXBR (7 )

LEMMA 2.8. Let s,t € (0,1), 1 <p <gq and a(-,-) satisfy (1.6) and (1.9). Assume
f € HWH1 (Bg) N L*>® (Bg) with R < 1. Then for v := mln{pps q; } > 1, we have

A )]

R’I‘ D1RT H(En|f (&)~ f))
1 a~ f déd
< C( + 111 oo < rtq ) BrJBn In~1o §||H" S

ve (1+|\f|\m3 (A varfZ]) e

where B, C Br C Bp are concentric balls with %R <r<R<R,and ¢c>0

depends only on n,p,q,s,t and [a],. Here D, (R,r) is the corresponding Dy (R, T)
defined in proposition 2.4 with sp replaced by tq.

IP

rs

I
ot

+
+CLR

+ag

Proof. In view of Holder continuity of a, we have

<a

:UH’

+ 4[a] ,R* < aF, + 8a] ,r*

DJ |

Then we by employing tq < sp+ «, 7 < 1 have

q
4 Cra—tq+sp‘f|q—P

p

I

,rS

rt
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14 Y. Fang, C. Zhang and J. Zhang
Thus

p

I

rrS

Al
(1 + Hf||L°°(BT)> b{;

(
< (1417182 m,)) {7{3 (
+e (1417192 5,)) ( .

w1
)«

Observe that

p

P
+tag

+ag !

7«8

(f),

rt

’(f)r

TS

i

q
) ae.
r

EEAl

Moreover, it follows from proposition 2.4 that

1 Pt %
[][ f- ”d§]7<<][ f- (), d§>”
Br r Br r
eDy (R,7) )\pd i
=T J{BR/BR Hn—lognﬂ“p o
and
ay 1 a =
_ ¥ _ q
b[ f=h), df}wf(f f-h), td£>t
By r By r

_ Di(R.7) ][ / FO=FI e
S Br /B H77_10§||Q+tq

https://doi.org/10.1017/prm.2024.89 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.89

Local regularity for nonlocal double phase equations 15

Merging the last four inequalities leads to

A )]

(1 N HfHLoo(B )) <D1 (R,7) + D (Rﬂ“))

7P rta

QI IGESOAY
T{BR/BR(m—lognQ*S” B2 §|§,%WQ> o
q
re(trnZs,) £, (|£] +anl 4]) @

TS
Di(R,r) D1 (R,7) H(&n,|f (&) —fm))
<c (1 + 111 L°°(B )) < lrsp 17«tq ) fBR Br In=1o f”H" dedn
) .

We now finish the proof. O

s

TS

I
ot

+
R

+agp

P
+az

R

f

+e(1+ 17182 5,)) fBR ( r

f

s ’l“t

3. Local boundedness

This section is devoted to showing the interior boundedness of weak solutions to
equation (1.1) by means of the key ingredient, a Caccioppoli-type inequality in the
nonlocal framework. The forthcoming lemma indicates the multiplication of each
function in A(€2) and a cut-off function also belongs to A(£).

LEMMA 3.1. Let s,t,p and q satisfy (1.4) and ¢ € HW, > (B,),v € A(Q). If one
of the following two conditions holds:

(i) The inequality (1.8) holds and v € L? (Ba,) satisfies p (v; Bay) < 00
(i) v € L1 (Ba,) satisfies p (v; Ba,) < 00,

then p (vp; H™) < oo. In particular, ve € A(QY) whenever Ba, C Q.

Proof. By v € A(2), proposition 2.4 and (1.8), we get v € L7 (Bs,2) in (i). Thus,
we just consider condition (ii). By the definition of p (ve; H™), we have

dedn
v HY) = 2 H(¢n, v _ e/
p (vpi ' /Hn\33/2 /Bw Enle @O v e ) e
v o _ d&dn
f, /2/33 HEn e = v S
=20 + I, (3.1)
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16 Y. Fang, C. Zhang and J. Zhang
Owing to ¢ € HW}'™ (B,.), we find

a v (&) v ()]
L < (”SDHLOO B, + 1) / / ( P ||aHLoo dédn
&) #\ By, 1B, \ N1 0 8T =1 o €]

< c(lelimin +1)" (77 [ 0@ a6+ lallor™ [ oo de) <oo. 32

By
The term I5 is estimated as

ddn
L < H (&, |(v (&) —v(m) e (m)]) — =T
2 /B//B/ L T

dédn
+c H (& n, v §)— —
/| 5 / HEnOE© sy

q dédn
< c(lll ey +1 / / H (., v (6)]) — 2540
( (Br) ) B3, 2 / Bz Hﬁ’lofﬂﬁ%
dn

Vil [ 0©OF [ B
) J5s0o By It o Q7P
Vel ol [ 0@ [ -
B3y 2 Bs,- ||7771 OﬁHHn

q —s
< (Il 1) "0 03 B + Vil s,y [ 0O e
Ba,

4 eIVl g a7 [ o917 dg
2

Ba,

< 0. (3:3)
Thus, it follows p (ve; H™) < co by combining (3.2), (3.3) with (3.1). O

Next, we prove a nonlocal Caccioppoli-type inequality. Define

p—1 q—1

talen) ——

-
h(&n,7) = ———msp )
In=t o€l 7= 0 &llgn

&EmeH"and 7>0. (34)

The numerical inequality below, to be exploited frequently, is from [14, lemma
3.1].

LEMMA 3.2. Let p > 1 and a,b > 0. Then we have
a? — b’ < paP~tla—b|,

and
a? — b < ebP + ce'Pla — P,

for any € € (0,1) and some ¢ = c(p) > 0.
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Local regularity for nonlocal double phase equations 17

LEMMA 3.3. Caccioppoli-type inequality Let B, (§0) CC Q, 1 <p <gq, (1.5) and
(1.8) hold. Assume u € A(Q) is a weak solution to (1.1). Then for any ¢ € C§° (B;)
with 0 < ¢ < 1, we have

[ Hmbes @~ ws ) (97€) + 07 ) 00
BB I~ o €]l
<e [ [ HEnI6© - 00 0 €+ ws ) — T
By J Br ” 1 oann

dn

el su h(€.m, |w S — w (¢)de, (3.5
i (EGEuEW/Hn\BT (&, lw () ”n_loﬂgn)/& L (€) 07 () de, (3.5)

for some ¢ :=c(n, s,t,p,q) > 0, where wy := (u — k)1 with k > 0.

Proof. We just consider the estimate for w,, since the estimate for w_ can be
proved similarly. By lemma 3.1, it follows that wy¢? € A(Q) from u € A(Q) and
¢ € C°(B,) € HWy™ (B,), so we can take the testing function ¢ = wy¢?¢ in
(1.7). Then we have

_ M) (8U(6) — wy ()6 (n))
- /B/Bl It o €135
+ afe, ) PO —uln >?|<77 (Og(ﬁg(f) w+(n)¢q(n))] dédy

) (€)67(€)
”/Hn\m /B [ Hn‘l oan“”

PP ‘?(”>>g1§f>¢q<f>] dedn
[n=* o &llgn

=:J1+ Jo. (36)

We first estimate J;. Since J; is symmetry for £ and 7, we may suppose without
loss of generality that u (§) > u (n). Then for I € {p, ¢}, it yields

Ji(w(€) —u(n)) (wy (§) 97 () —wy () ¢7 (1))

(wy () = wy ()" (w (&) ¢ (&) —wy () ¢ (), ifuw(€) >u(n) >k
=19 @(© —um) w7 (), if u(€) > k> u(n)
0, ifk>u(€) >un)
> Ji(wy (§) —wy () (wy (§) $7(§) —wy () ¢ (0)) -
Moreover,

wy (§) 97 (§) — w4 (n) 97 (n)

e O~ () (g 6y g () 4 2O D (g 6y gy,
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18 Y. Fang, C. Zhang and J. Zhang

which implies

T (wy () = w () (ws (€) &7 (€) — w4 (n) ¢ (n))

> g (€) — wi () CETED () o ()t OO a6y o).

Since

109 (&) — 2 ()| < q (" () + 07 () |6 (&) — ¢ ()]
< e(q) (67(6) + 6% ()T 6(6) — s ()]

from lemma 3.2, we use Young’s inequality, 0 < ¢ < 1 and % > 0 to deduce that

lwy (§) —w

()t~ e O ) a6y g |

<c(q) |ws (&) —wy ()" (w ()+w+())(¢q(§)+¢q())’+‘” (&) — ¢ (n)]
< efwy () = w (I (67(8) + 7 (1))

a—t

+e(e,q) (7€) + 67 ()T 16(€) — Sl (wy (€) +wy ()
< elwg (€) — wi )" (67 (€) + 07 () +c(,0) 16 (€) — & ()] (ws (€) + wy ().

Then, by choosing € small enough, we have

Ji (wy (§) —wi () (w4 (€) 97 (§) — w4 (n) 7 (n))
19 (§) + ¢ (n)

>fwy (€) = wy ()| = = clé(€) — ¢ ()] (ws () + 1wy ()"
Thus, we get
() = we ()" (&(€) + ¢ (1)/4 = cl(€) = )P (we (&) + we (1))
e / / [ =1 o €I
+ afe,ny e (€ = wi IT(67(0) + 97 () /4

_ —+t
In=1 o €| g

_ elol€) = s (©) +we ()* ] e

=t o €| gitta
> / H (&, e () = wi (m)]) (6 (€) + ¢ () — 2L
o4,
/ / H (6.1,16(6) — o) (. (€) + wy (n))) — 20— (3.7)
In—1og|.
Now we estimate Jo. Note that
i (w(€) = u(m)wy (€) > —w!=t () wy (€). (3.8)
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Local regularity for nonlocal double phase equations 19

In fact, when u(€) > w(n), it easy to see that the inequality (3.8) holds. When
w(€) < u(n) and u(§) < k, wy (§) = 0, the inequality (3.8) also holds. When

k<u(§) <u(n),

Ji(u(€) — u(m)w(€) = —|w (€) —wip ()" wp () = —wl ()ws (€).
Thus, we apply (3.8) and (3.4) to get

Jp(u(€) — u(n))w ()8 () Ta(u(€) — u(n)ws (€)61()
Jo =2 b ,
’ /"\B / { eg @ T g }

x dedn

w4 (€)61(€) wl ™ (nwy <§>¢q<s>] dédn
+a(g,
/ n\Br/ [ —1os|| &) =1 o g|lig, =1 o €)%,

dn 4
= h(&;m, N1 Q0 dé€. 3.9
= (Ee::;lz?p <b/Hn\BT (& m,w+(m)) -1 0§|Ign> /B‘r w(£)¢(§) d€ (3.9)

Combining (3.6), (3.7) with (3.9), we get (3.5). O

The following standard iteration lemma can be found in [25, lemma 7.1].

LEMMA 3.4. Let {y;};=, be a sequence of nonnegative numbers satisfying
Yi+1 < blbZ 1+ﬁa 1= Oa 1) 27 e

for some constants by, 8 >0 and by > 1. If

then y; — 0 as ¢ — oco.

We end this section by providing the proof of boundedness. Lemmas 2.7 and 3.3
play the vital roles in the process.
Proof of theorem 1.2. For convenience, denote

Hy (1) =7° +|la||peoT?, T >0.

Let B, = B, (&) CC Q be a fixed ball with » < 1. For ¢ = 0,1,2,--- and kg > 0,
we write

(1+27%), o= BLEI gyim o (1-277Y)

T

l\.’)\ﬁ

and

= [ Hy((© - k)2 de
At (kz""z)
In addition, we denote

A* (kiyri) = {6 € Br, :u(§) > ki} .
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20 Y. Fang, C. Zhang and J. Zhang
Then via (’LL (5) - kz)+ < (u (6) - kifl)_p

AT (kii,’/‘i) C AT (ki—h ’I“i) C AT (ki_l,ri_l) . (310)
Moreover, for € € AT (k;, r;), we have

(w(€) —kic1)y =u(€) —kic1 > ki —kio1 =2 ko

Thus, it deduces

. (u(§) = ki—1)h i
|AY (ki,ri)| < /A+(km) R de < kyP2Py; (3.11)
and
‘ s (w(®) — ki), \""
/ W@k, des / e b (M) e

< k’(l)—l)zi(p—l)/ Ho ((u(8) — kiv),) de
Bri_y

=k P2y, . (3.12)

We use lemma 2.7 with f := (u — k), a0 := [|al|pc and (3.11) to get

yi < or® ]/B Ho (u(€) — ki),) d

) — k), P

q
<erdter 7[ ( . ) d¢
T

L u — Ki — (u — ki P %
SC”CLHLOOTZ_Q+SP*MD1;7 (0i,75) (][B /B ’( (€ k)+ (u(n) )+| dfdn)

+ ”aHLOO‘

u - oén‘“”
. = (u(n) — ki) |"
+CT1Q le(Uisz) kuTz 7[ / ||77 1 OEHQ+SP * dfd’l]
Pt K — ki), |
+ criQJFSP(A |(BI?,‘TZ)> 7[ ( (u (§)r$ )+ + lall oo (u (E)M )4 ) de

s — ki), — (u(n) — ki), |7 g
Scnaumr?“"f‘?Df(ai,m(f /. o ; )Togﬁlé(l)p = dsdn>

— (u(n) — ki), |"
+c/<: Q QsPQ QD1U“szl1][ / S
By ||77 1O§HQ“’

d&dn

+cr?+SP—W(’“|2TZy‘“> ][ Ho ((u(€) — ki), ) de. (3.13)
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Local regularity for nonlocal double phase equations 21

When we apply lemma 3.3, we choose a cut-off function ¢ € C§° (B oi-l—Ti_l)
Zitliz1

satisfying 0 < ¢ <1, ¢ = 1in By, and [Vg¢| < = %2? Then we have

that, from (3.12), i—177%
—(u(n) — ki) !p
f / —Jlro£||Q+sp + dédn
<A, [, AEnle© -k, -am-r )l
7= o &llgn

i dédn
<or ”ﬂf (w(©) - ki), | -
B By, |In~to g &P

Ti—1

i dédn
sellaler2f -k
_ +(t—1
By, 4 By, 4 ”77 ! o{'Hﬁn ( e
u(n) — k)Pt w(n) — k)4t
+c¢ sup / 7( (171) gisp + |lall o 7( (771) gitq dn
gesupp ¢ JH\B,, _, \ [In7! o &llgn =1 o &llg

<2 e -k ae

Q+tq
—gai i—1 + 0
T cllall g r 920 ”Qé (w(€) — k)L dgm(—r ! ")

_— Ti—1 = 0i
(u(n) — k)7 (u(n) — k)4
: o e dnf (u(€) — ki), dé
/Hn\sm (m—l o Eo| &P In=1 o &)L B., .

<ot (o) - k),) de

Ti—1

+ 2 QDT (u— k), ;€011 7{3 (u (&) — ki), de

< ! @ratrmly,

where we used the fact that

T ((u— ki) :€,mim1) <T (U; €0, g) < 00,
and
[~ o &ollgn <14 165" 0 &llgn g ML T T RO
In=to&llgn ~ In=1 o &llgn Ti-1—O0p  Ti-1— 0
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for £ € supp ¢ and n € H"\B,, ,. Noting that D;(oi, ;) < c21@+P) it follows
from (3.13) that

2
i q(Q+p)+Q(Q+q+p) q ¢<L+Q+p+w> Sp g _
9 : ]yﬁl +c2 \ 9 Ty S p e hyp
(3.14)

Yy < c2

Since Hy (u) € L' () from the assumption (1.8), we get that

yoz/ Ho ((w(€) — ko) +) dE — 0 as ko — oo.
At (ko)

First, we consider ko > 1 so large that
yzgyzfl §§y0§17 Z:172a

Then, we have from (3.14) that
0i, 8
yi <2 Yi—1s

where

9:2<(Q+p+q)q+p2>, ﬁzmin{q—l,‘”),p—l}.
p p Q

Finally, we can choose kg so large that

_ 6
2 B2

Tl

yo < ¢

holds. Then lemma 3.4 implies

Yoo = Ho ((u(8) — 2ko) +) d€ =0,

/A+ (Qko,g)

which means that u < 2kg a.e. in B%'

Applying the same argument to —u, we consequently obtain u € L>°(B

).

NI

4. Holder continuity

We are going to demonstrate the Holder regularity of weak solutions to equation
(1.1) in the last section. First, the second important tool, logarithmic estimate, is
established as follows. Throughout this part, we fix any subdomain ' CC Q.

LEMMA 4.1. Logarithmic inequality Let s,t,p, q satisfy (1.4) and a(-,-) fulfil (1.5),
(1.6) with (1.9). Let also u € A(Q) be a weak solution of (1.1) such thatu € L>()
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Local regularity for nonlocal double phase equations 23

and w > 0 in Bg := Bg (§) C @ with R < 1. Then for any 0 <r < % and d> 0,
d&dn

/ / . d‘lln‘loﬁllﬁn
Q+sp uP7 () + w7t Q+tq wit
<eK® (9 + po—l / T f:]) C;Jrspsn) dn + qu—l / 717 (nC)th dn |,
H\Br 17" 0 &ollgn H\BR|N™! 0 &ollgn

holds true. Here K := 1+ d%P + ||u||LC>O @) and the constant ¢ > 1 depends on
data.

Proof. Let us give some notations as below,

T4 p—1 74-1
Hp (fﬂ]ﬂ') = (5777) ﬁ? hp (gana7—> = (fﬂ?)
and
TP T4 =1 7a-1
_ + _ +

GP (T) - psP + a, ptq7 9p (T) - psP + a, ptq ’

with a} := sup a(,-)and 7> 0.
BpxBp

Consider a cut-off function ¢ € C§° (B%, (50)) satisfying
0<¢p<1, ¢=1inB, and |Vyd|< finB%.
r

Taking the test function ¢ (§) := %, we have from the weak formulation
that

0= /BZT /BQT [ =1 og||gi@’) (Jﬁé» g2r(157(77)7))>

L —um) () ¢
n-? 5||Q+fq( (@(E) g%(u(n)))]dfdn

—u(m) o T(u© —u(m)]67(E)
“/Hnwzr /B [ s 105\\H+Sp relbm,- Logllgtte ] () "

= Il +IQ7 (41)

+a(€ )=

with @ :=u +d.
In what follows, we deal with Iy in the case @ (§) > @ (n) that is divided into two
subcases:

> u(e)., (42)

and
u (&) = 2u(n). (4.3)
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If (4.2) occurs, we first observe that

?7 (€) ¢? (n)
g2r (0(€))  gor (u(n))
cg?™ (€) SUPBy o Vo] |n™" o &llgn

g @ 1)
1
+01() [ 4 (o (O + (1= o)) do

<@ ©Or i olllan _ (p—1)¢7(6) (a(§) —u(n)
B gar (@ (1)) 20Gor (u(n)) ’

<

(4.4)

where the first inequality holds naturally when ¢(£) < ¢(n). Here, we have used
(4.2) and

td
| 45 (63} (0a (@ + = oyu(w) do >
0

the details of which can be found in [4]. Then, combining (4.4) and Young’s
inequality yields

(Bw©=um) . Tw©=um)) (e
F&m: ( IR A m= ) )(

O T o €llgna (n)

< G (a ()

o© —a@P ) -
I Teel TS g )
(=D O H(Ema©) —a(n)

()" ") eg? (§) |u (&) —u(n)|

Gar (@ () [In~1 o €l Gar (@ (n)) I~ o ][5

_ (=1 (&) H (&n, u(§) —u(n)
2qG27( ()

r Pl o €|l |u ()] 5 r Ut o €l u (n)]
+e(e)ay

q

”(8)Gw(ﬁ(n))lln—losuﬁi O G @) I o€l
(=11 H (& n,u (&) —u(n) rp(s—) pa(t=1)
- 20¥ G (8 () ez e
(4.5)
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Local regularity for nonlocal double phase equations 25

2’;:_11 , (qp_%l)p > ¢ and ¢ >0 is independent of a. We proceed

to evaluate G, (u(n)). For &, € By, recalling the Holder continuity of a, we get

a2+r*a’27‘7 (f U)+0(57 ) [ ]a(4r)a+a(§a77)‘

Thus this implies by the facts that » < 1 and tq < sp + « that

Gar (1) < G+ 20l a1 20 o) 510
potsp— tq u? (77) uf (77)
< (1 8lalar "7 Ml ) ) oy + 0 (6 G
< (14 [ullge ) ) Hor (€m0 () (4.6)

Next, we will obtain an estimate on log@. It is easy to find

I

o £6) _ /1 a@-am) (@ — 8/l el I~ ol
0 a(n)

(n) +o@@)—uam)  — u(n)/(2r)° 2r)s

S

so, by the monotonicity of the function f(7) = (77 + a(&,n)74|n~t o EHﬁr(f_s)q)/T
with 7 > 0,

_ a(é)—a(n) \¥ a(@)—u(n) 7 ~1 = (t=s)q
a() _ It o llin [(wlosmn) +alen) () It oella!

log < > = - +1
v e (B Y + ate,m) (E2) " It o gl
CH (€m,a(8) —a(m) | I o€l
ST eEmam) T @) 1)

where we need to note ||n~! o &|lgn < 4r. It follows from (4.5)—(4.7) that

— s — 1-s — 1—
() , i o&lim , cln™ o€l |, eln~ o &l

() (2r)® (2r)? p(1—s) (2r)q(1—t)

N

¢ (&)
F(ﬁﬂ?) S - K

log

|

Second, we in the case (4.3) tackle the integral I;. Applying lemma 3.2 and the
relation @ (§) > 2 (n), we could derive

GO ) (O - () 1 |
o @E) g @) = gm@@ W (9%(25(77)) ggrw(n)))
o ) 4@ 8O ol 21 i)
< gor (00)) T gar (@ (1)
_dole) — ol (2 1) 6" )
o gor (I_L (5)) 2p92r (ﬁ (77))’
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with e = Z_=1_ Thereby, it holds that

ch (& mn,u (&) —u(n)|¢(€) — o h(&n,u(§)—un) e (n)

F&m< gor (@ (8)) cgor (@ (1))
_ o)l o €l (€ m (O —an) A€ male) - () e (o)
< gor (@ (©) Ky, @)

Here F (£, 7) is the same as that in (4.5) and the estimate for go, (@ (7)) is similar
0 (4.6). Moreover, via @ (§) > 2a (n) > 0 in Ba,,

|a(&)—a(m)|P—! |a(&)—a(m)| 2~

hemae —atn) _ g e S

(@ = Ja@)-a(yp-t |a(&)—a(n)[9~1

g2r(0(E) N C L N R
(2r)*F (2r) te
Tt ol Int ol
and further
_ 1— _ _
Plen < ol o€l h(Ema(e) —am) ¢ ()
T (2P (2r)10=1) cKhar (&, (n))

Now we obtain an estimate on 1og under (4.3). Notice a(&) < 2(a(§) —a(n)).

we get
u(§)
5 )
- e(@(© —am)/In~" o €lii)”" In~" ol
- @(m/ @) (2r)"@=D
] a(e)—a(n) \P7 ag)—am 17 - (t=5)q
o gl (i) +at 77)<H17‘10€H‘?) ™" o Ellzn o
- s 1) a a (t—s
(2r)"7" ()™ ot (Z2)" It o gl
cehEma(©—am) el ot
= hae(§ma(n) (2r)sP—1 7

where the fact |77 o &|lgn < 4r was utilized. Noting ¢ > p and ||~ o &||lgn < 4r

again,

(»—-1)

#(€) 10, 8 | el ol ™ it o€l el ol

F(fﬂl) < - cK o a(n) (2T)P(1_5) (2T)q(1_t) (2r)€(p Y

N
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At this moment, for @ (§) > @ (n), the integral I is evaluated as

) | u(&)‘ dédn
n<-L 9(€), ¢1(n)} [log =
VSR iy S, M) M)}‘Ogu(n) I o €lG

o £]|P=sp
e / / [n~" 15 Il)
By J Bay rp(

_ _ s(p—1 _ s
I~ o gllgn™ | Il ogligh ™ |l 1os||Hn] dédn
It o €l1gn

+ ra(1—t) rs(p—1) rs

Bay BZT

dédn .
+c 4.8
n)‘ =1 0 &]|%, 9

where

/ / - OfHHn dgdn </ / [n~* o &llkn d€dn
Ba,. J By, ||77_1°§H§n By, /By (n) ! Hn‘lofllﬁn

4r
c -1
Sﬁ/ / p' " dpdn < er€.
By, JO

Furthermore, if @ (§) < @ (7n), the same estimate still holds true through exchanging
the roles of £ and 7.

For the second contribution Iy in (4.1), we first observe that if n € Bg,
then (u(§) —u(m)+ < u(€) +d by u(n) > 0, and that if n € H"\Bg, then
(u () — u(n), <u(€)+u_ () <a(€)+u_ (y). From this and supp ¢ C Bsy, we

can evaluate I, as

@) @O —u )] dedy

I2<2/BR\BQT/ l S Toger T T e ]w(ﬂ(@)
@) @O —um) ] dedy
“/Hn\m/ l lofHQ“P Fan) ln=1 o €)@ ]927“(@(0)

h (& m,
<[ I 5" D gy [ ]
H™\ By B3r 927" ||77 Of”]}ﬂn H"\BRr B&

oh (€, 1) .
gor (@ () Lo €3,
=: Ip1 + Is. (4.9)
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We now intend to control precisely the term % by some constants. In

view of the condition (1.6), there holds that, for £ € Bs, and n € H",

a(fﬂ?) Sa(gvn)_a(€’§)+a;r

1_tq—sp tg—sp
< @2llallgee)” T la(&m) —a(EH) T +as,
<cln~t o€l T + ag,. (4.10)

This indicates

a1 ad—1 ad—1
&+ ) +a 27» (3]

I < / / In=Togligh, In—Logl|td, d€dn
21 = C
H"\By, JBg, _ap=l(e) ln 1okl R ) [ |\77‘1O§HI§QHn
2 Jn—Toglih, T @0 2 Logllgdh, (2

2)sr
< K / / T eay,
Hn\32r B37‘ -1 o fH

by virtue of |[p~to&|lun > 5. For & € B%r and n € H™\Bsy,, via the triangle

inequality,
B L et 50|Hn> B
n~" o &ollun < - n Lo &||un
|| || ||77 1 of”ﬂn || H
3r/2 _
s(1+ /)m Voglgn = 4l o flwn,  (411)

Thus by [31, Lemma 2.6],

I < cK‘B&

5P
——————dn < cK7r%. (4.12)
/H"\Bzr =1 0 &l *?

Let us proceed to examine I9o. With the aid of (4.10), (4.11) and u(§) > 0 in BTT

n) +ul () ul ()
Iy < c / / ( + a3, g 1 (d) dédn
H"\Bp By n=1o gl gt =t o &l|Zi

-1 -1 -1
(up () | w0 ) "
sp
’I’L\BR

_ _ Q+t
In=t o &ollin I~ o ollgn

<o) [

H

1 1

Q+sp j1—p U/Ii (77) + ug (77)
<ecr d 0T
w\Bp [[n7" o &ollgn

qg—1
u
+ CTQ+tqd1_q/ ,1—(77?Q+tq d?], (413)
HW\Bp 171 0 &ollgn

where we notice n € H"\Bgr C H™\ By,
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Merging (4.8), (4.9), (4.12), (4.13) with (4.1) arrives eventually at the desired
estimate with the positive constant ¢ depending upon n, p, q, s, t, @, [a], and ||a||foc.
([

COROLLARY 4.2. Let the assumptions of lemma 4.1 be in force. Define
w :=min {(log (7 4 d) — log (u+d))_,log b}

with 7,d > 0 and b> 1. Then for the weak solution u of (1.1) it holds that

sp up_l + ’U,q_l tq uq_l
<k (14 dZ—l/ m (17]) c;rsivn) dn + dZ—l/ T (n22+tq dn |,
B \Br [In™" o &ollg H\Bg [[n~1 o &ollgn

where ¢> 1 depends on data, and K is defined as in lemma 4.1.

Proof. Notice that, since w is a truncation of log(u + d),
£ = dan= £ | o - d§| &

]{3]{3 ()| dédn

log (u(6) ) log () + |,
7{3]{3 ||77 1os|\Hn/<2r> s

déd
< ][ / log ‘ €dn -
By J By u(n) +d ||77_1 og”H"
Then the desired result is a plain consequence of lemma 4.1. O

In the end, we will focus on establishing Holder regularity of weak solutions. For
this aim, it is sufficient to show an oscillation improvement result, theorem 4.3.
Before proceeding, let us introduce some notations. For j € NU {0}, set

rj=o'r, 0€(0,1/4, Bj:=B. (&) and 2B;:= By,

where we fix any ball Ba,.(&) C @ CC Q. Furthermore, define

1

) up—l + uq—l p—1
w(ro) = 2sup fu| +  r° / e de
Br m\Br (€5 o &llgn

1

(L e )
+(r — ,
w8, 16" o Ellgn

P | sp
w(r;) == < J) w(rg) = a?Pw(r) for some 0 < B < 1

and
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Let us point out that o and 8 are to be determined later.
Now we are in a position to prove the following iteration lemma, which suggests
u € C%P(B,).

THEOREM 4.3 Let u € A(Q) N LY (H") be a weak solution to (1.1). Under the
conditions (1.4), (1.5) and (1.6) with tq < sp + «, there holds that

oscu <w(r;) for any j € NU{0},
J

where these notations are fized as above.

Proof. Argue by induction. The conclusion is obvious for 7 =0 and then assume it
holds true for ¢ < j. Now we show this claim for j + 1. Let us notice the simple fact
that either

1
2Bj11 N {u > iélfu +w(rj)/2} > §|2Bj+1|, (4.14)
J

or

1
2.Bj+1 N {’U, < lélfu +CU(T])/2} Z §|2.Bj+1|. (415)
J

Define

u—infp, u, if (4.14) occurs,
Uj; =
Supp; u — U, if (4.15) occurs.

Obviously, u; > 0 in B; and
1
[2Bj41 N {uy 2 w(ry)/2}] 2 5128541, (4.16)

Moreover, u; is a weak solution to (1.1) such that

sup |u;| < w(r;) for any i€ {0,1,2,---,j}. (4.17)

K2

Now we set an auxiliary function

w = min [1og (W>} kK with £ > 0.
uj; + d n

Applying corollary 4.2 derives

7/ o — (w)aps, |
2Bj+1

.p—1+‘u.|q—l |u-|‘1_1
<CK? | 1+d'"Prih / Pug P2 Vs 17 gy grayte / — g
= +1 - +1 — ’
( T Jas;  llgg o gllger T Sy llgg o gl

(4.18)
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with K defined as in lemma 4.1. We evaluate the second integral at the right-hand
side. By means of (4.17) and the definition of w(ry),

-1
tq |uj|q

’”'+1/ — o ¥
T e |6 o €l

lg—1 |g—1
tq} :/ |u|? tq/ 2
=r —_— df +7r; — d§
B;_1\B; ||§0 OEHQH(I ! H™\By [1§o ! °§||g;tq

A\ [ul?=" + (supp, |u|)~!
< . ya-l ] C tfl/ 0 d
St (2) o [, e

+t
€5t 0 €| St

i=1
J . tq
<C - . 1
o () o
4ta—B(¢—1)

_ﬁ(q_l)o.)(rj)q_l7 (4.19)

<l —Bla—1))10ga’

where we used the fact that 8 < 2 (< g ) Analogously,

sp
75 . p—1
<m> wlri-1)

, (4.20)

M~

) Jqp—1 4 |u<|q—1
i [ WP g < e+ gz
ey N6 0 €lIE B

< CNo PPy (r P

Il
Hl—‘

with 3 < 225 (_ o 1) where N := 1+ ||ul|%5 LOC(Q,) )
is from the term |u;|97!, and C >0 depends on n,p, s and the difference of ;Tpl
and . Combining (4.19), (4.20) with (4.18) and remembering J'H =0, we get

and the derivation of ||quL;f(Q,

f e wan e

2Bjt1
< CK? (1 + Ndl_pUSp_B(p_l)w(rj)p_l + dl—qatq—ﬁ(q—l)w(rj)q—l) ,

where C' depends on n,p,q, s,t and the difference of 5 and

q 1’
In what follows, picking

d _Uq 1 - (7’]‘)7

and recalling w(r;) = 07%w(rg), we find

][ |w — (w)ap, ., | dE
2Bj+1

< CK> {H_Ng(q —B) (1-p)+ (22

) (- Dy ( -B)(1—a)+ (74 —8) (a—1) < CN3,

where C' depends on n,p, g, s,t, a, [a]a, ||a|| L and the difference of 8 and %, and

ps_pl. Here we need to utilize the definition of K as in lemma 4.1, and w(r;) <
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2||ul oo (qry- From the last inequality,

‘2Bj+1 N {’UJ = k}| < CNS
12841 L

We refer to [14, page 1296] for the details. By taking

k =log (w(rj)/Q h ew(rj)) = log (1/2; E) ~ log éu

3ew(r;)

ﬂ,ﬁ
with € := oa=1 7 it holds that

2Bj41 N {u; < 2ew(rj)} _ CN° _ CiogN? (4.21)
|2Bj41] -k IOg%

for the constant Clog > 0 depending on n,p, ¢, s,t, o, [ala, [|a]| Lo and B.
At this moment, we are going to perform a suitable iteration. For each i =

0,1,---, let
» . pit3pi _ 3pitop
pi =Tjy1+27'Tj11,  pi = PPl 5= TP
4 4
and the corresponding balls
B'=B,, B'=B;, B'=B8B;.

Then take the cut-off functions t; € C$°(B?) such that

0<y; <1, o;=1in B' and V| < 2”27”]-__:1.

Besides, set
ki = (142 ew(ry), wi = (ki —uj)y,

and

BNy < B0 203

A; . :
|B| B

Observe the apparent facts that

Tit1 < pip1 < Pi < Pi < pi 21541, 0 < w <k < 2ew(ry),

and denote
P q
+ - ; T + T
ajyq = sup a(-,-), Ajy1 = 1nfB a(+,-), G(r):= o~ +aj—
Bar,y XBar; 2rj41 X P2y i1 J+1
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With the help of Caccioppoli inequality (lemma 3.3), we derive

H(E,m, ws€) — wilm)])
déd
ﬁzm I togld
o HIEn 00 + D) ~ ) g,
i I I o €18
(€ m wi(©))
+C i d d
v 5(25§/Lm31|n—1oamn 5)

Via the definition of w; and v;, J; is evaluated as

QZpkp
nectt [ £ o 0 dedy
j+1 B"ﬁ{u i<k;}

2“1]@‘7 _
+Cat, 2 / ]1 I o €z dedn
rd j+1 JBin{u;<k;}

< C2G (k) As, (4.23)
and moreover, we have

][ wi? de < ChyA;.
B’L

As for the nonlocal integral in J,, we first note that if n € B’ and & € H” \ B,
then

) &5 onllan Y |\ -
leg ol < (14 JE 2 ) o g < 2" o e

Furthermore, w; < k; < 2ew(r;) in B; (by w; > 0 in Bj), and w; < k; + |u| in
H"\ B;. In a similar way to treat I in the proof of lemma 4.1, by applying (4.19),
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(4.20), the definition of € and B; 1 C B we derive

p [ MEmw(©)

negi Jampi gt o €|Zn

p—1 q—1 q—1
w; + w; w?
< sup/ .%Jratllidf
m\Bi [l o &G T It o gl

neB?
p—1 q—1 q—1
. w —+ w; w!
< (2@ +sptia) / wi AW M e
> = ; +17 = Tt
a5y 167 0 Elma ™ T g o €l
< C2i(Q+sp+tq) / |u]|p_1 + |u |q_1 a+ ‘uj‘q_l df
= Q+sp j+1 Q+tq
wn\B; & " o &l 165 o Ellgn
1 -1 1
cop@men [ TR KT
— = t
mBj €57 o llgn ™™ 7T g o €llgn
_ _ 1 1 1
< 02i(Q+sp+ta) Neo(ry)P~ +al, w(ry)"! + ki +kq at 1kq
> s — + t +1
ijgﬁ(p o T Jq oB(a—1) J+1 aj; ]3’1
-1 1 -1 1
< 21 (Q+sp+ta) L +at kq + Nkp +af i
- ep=1riPohlr=1) AR Lplfghla=1) = 1ty A rity
p(p—1) _
SP——=1  1.p—1 tg—spr.9—1 )
< ON2i@tsrtta) | 7 qspl Bovar, o tjk 1 G
Tit1 Ti11 ki

< ON2HQ+sp+ta) G(k:) )
- k

Therefore,
Jy < ON2HQTsPHAG(E) A, (4.24)

On the other hand, making use of lemma 2.8 with u := w; yields that

Aﬂqcx&‘—km4)

1
P N 5
w w;
< “| +af, |5 d¢
i+1 \ |73 Iyt
Bit+ 1 j+1

< CN (Dl(ﬁzvpz+1) + Dl pzvpz-i-l ) f H f 777 Iwz( ) wz(n)l)
Bt JBi

d&dn
sp
Ti+1 J+1 lofHﬁn
p
+ONA || tar, ﬂ de. (4.25)
TS rt
B | Tj+1 j+1
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Thanks to the definitions of Dl,ﬁl and pj, pi+1, we from p; = pj41 =~ rj41 and

pi — pit1 = 2773741 calculate

Dl(ﬁ;’;ﬂi+1) < 02i(@Q+sptp), D1(ﬁ:7m+1) < 02i(Q+tata),
Tj+1 it

It is easy to obtain

p q
]/ D da, || de <O Glw,)dg < CT(k) A, (4.26)
Bt |Tj41 Tit1 Bl

It follows from (4.22)—(4.26) that

1 ) 1
Ag+1G(2_l_15W(Tj)) = A?+1G(ki - ki+1)
< ON?222QT20G (k) A,
< ON?22QF20G (cw(r;)) Ai,

and further
Aipr < CN?*Y21'2(<;>+3z1)’yA;_Y7

where v = min {%, %} > 1 and C depends on data and .
Now if Ag fulfils
29(Q+3
A — |2Bj+1 N {UJ < 25W(Tj)}| < (CN}Y)?ﬁQ_ z§,1)2q) — (4 27)
" 2Bj41] - e '

then by lemma 3.4 we deduce A; — 0 as i — 0o. This means
Uj Z 5w(7'j) a.e. in Bj+1,
which together with (4.17) leads to

e S (1=2)(ry) = (1= o~ wlryn).

Finally, choosing 8 € (0, q“f’l) small enough such that

sp_
oP>1-e=1-0ga1 ﬁ,

then oscp;, ju < w(rj4+1), and B depends on data and [|uf| oo (o). Indeed, due to
(4.21), it yields that

3
AO < M < s
log =
L Cloa N3 S Crog N
by picking o < exp —% . Then, we select o = min § 7,exp —% to
ensure the condition (4.27) does hold true. Now we finish the proof. O
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