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Abstract. Let � be a closed surface other than the sphere, the torus, the projective plane
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minimal profinite actions for the fundamental group of � that are topologically free but not
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1. Introduction
Let � be a countable discrete group. Let α be a minimal action of � on a compact
Hausdorff space C. The action α is topologically free if for every non-trivial element
γ ∈ �, the set {x ∈ C | α(γ )x = x} has empty interior. This notion of freeness can
be characterized by the triviality of the uniformly recurrent subgroup (hereafter URS)
associated with the action α as follows. Let Sub(�) be the space of subgroups of � and let
Stabα : C → Sub(�) be the Borel map defined by

Stabα(x) := {γ ∈ � | α(γ )x = x}.

Here Sub(�) is equipped with the topology of pointwise convergence which turns it
into a compact totally disconnected topological space on which � acts continuously by
conjugation. Glasner and Weiss proved in [GW15] that there exists a unique closed,
�-invariant, minimal subset in the closure of {Stabα(x) | x ∈ C}, called the stabilizer URS,
associated with the minimal action α, which we denote by URS(α). The stabilizer URS
is trivial if it is equal to {{1}}. One of the features of the stabilizer URS associated with
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a minimal action α is that its triviality is equivalent to the topological freeness of α, see
Lemma 2.1.

Let (X, μ) be a standard probability measure space and let β be a probability measure
preserving (hereafter p.m.p.) action of a countable group � on (X, μ). The action β is
essentially free if for every non-trivial γ ∈ �, the set {x ∈ X | α(γ )x = x} is μ-negligible.
The measurable counterpart of the stabilizer URS is the stabilizer invariant random
subgroup, stabilizer IRS for short, associated with β. It is defined as the �-invariant Borel
probability measure (Stabβ)∗μ on Sub(�), and is denoted by IRS(β). A stabilizer IRS is
the prototype of an IRS, which is a Borel probability measure on Sub(�) that is invariant
under the conjugation action of �. The trivial IRS is the Dirac measure at the trivial
subgroup. Observe that IRS(β) is trivial if and only if β is essentially free. Abért, Glasner
and Virág proved that every IRS is in fact a stabilizer IRS for some p.m.p. action, see
[AGV14].

An ergodic minimal action � � (C, μ) is a minimal action of � on a compact
Hausdorff space C together with a �-invariant ergodic Borel probability measure μ.
Thus, an ergodic minimal action has both a stabilizer URS and a stabilizer IRS. It is
a classical result that the essential freeness of an ergodic minimal action implies its
topological freeness, see Lemma 2.2. In other words, if the stabilizer IRS of an ergodic
minimal action is trivial, then its stabilizer URS is trivial. The present article provides new
counterexamples in the study of the converse.

Definition 1.1. An ergodic minimal action is allosteric ( : other, : fix, firm,
solid, rigid) if it is topologically free but not essentially free. A group is allosteric if it
admits an allosteric action.

Question 1.1. What is the class of allosteric groups?

First, let us discuss examples of groups that do not belong to this class. It is the case for
groups whose ergodic IRSs are all atomic, that is, equal to the uniform measure on the set
of conjugates of a subgroup which admits only finitely many conjugates. Indeed, we prove
in Proposition 2.3 that the IRS of an ergodic minimal action which is topologically free
is either trivial, or has no atoms. Thus, if Sub(�) is countable, then � is not allosteric,
see Corollary 2.4. Examples of groups with only countably many subgroups are finitely
generated nilpotent groups, more generally polycyclic groups, extensions of Noetherian
groups by groups with only countably many subgroups (e.g. solvable Baumslag-Solitar
groups BS(1, n)), see [BLT19] or Tarski monsters.

There are also groups whose ergodic IRSs are all atomic for other reasons. For instance,
this is the case for lattices in simple higher rank Lie groups [SZ94], commutator subgroups
of either a Higman–Thompson group or the full group of an irreducible shift of finite type
[DM14], and a projective special linear group PSLn(k) over an infinite countable field
k [PT16]. See also [Cre17], [CP17] or [Bek20] for other examples of groups with few
ergodic IRSs. Thus, none of these groups are allosteric, because of their lack of IRSs.

More surprisingly, there exists non-allosteric groups with plenty of ergodic IRSs, such
as countable abelian groups which admit uncountably many subgroups. Indeed, if � is such
a group, then any Borel probability measure on Sub(�) is an IRS, but � is not allosteric
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since any minimal �-action which is topologically free is actually essentially free for any
invariant measure, see Remark 4.4. Another example is given by the group FSym(N) of
finitely supported permutations on N, as well as its alternating subgroup Alt(N). They both
admit many ergodic IRSs, see [TTD18, Ver12]. However, an argument similar to that of
[TTD18, Lemma 10.4] implies that neither FSym(N) nor Alt(N) is allosteric.

Let us now discuss examples of allosteric groups. Bergeron and Gaboriau proved in
[BG04] that if � is non-amenable and isomorphic to a free product of two non-trivial
residually finite groups, then � is allosteric. We refer to Remark 2.12 for a more precise
statement of their results. In [AE07], Abért and Elek independently proved that finitely
generated non-abelian free groups are allosteric, and in [AE12], they proved that the free
product of four copies of Z/2Z admits an allosteric action whose orbit equivalence relation
is measure hyperfinite. In all [AE07, AE12, BG04], the allosteric actions obtained are in
fact profinite, see §2.2 for a definition. These were the first known examples answering a
question of Grigorchuk, Nekrashevich and Sushchanskii in [GNS00, Problem 7.3.3] about
the existence of profinite allosteric actions.

The main result of this article is to prove that non-amenable surface groups, that is,
fundamental groups of closed surfaces other than the sphere, the torus, the projective plane
or the Klein bottle, are allosteric. More precisely, we prove the following result.

THEOREM 1.2. Any non-amenable surface group admits a continuum of profinite
allosteric actions that are pairwise topologically and measurably non-isomorphic.

Moreover, we prove that the IRSs given by the non-isomorphic allosteric actions that
we construct are pairwise distinct. We refer to Theorems 4.1 and 4.2 for a precise statement
of our results. Let us mention that surface groups are known to have a large ‘zoo’ of
IRSs. For instance, Bowen, Grigorchuk and Kravchenko proved in [BGK17] that any
non-elementary Gromov hyperbolic group admits a continuum of IRSs which are weakly
mixing when considered as dynamical systems on Sub(�). In an upcoming work (personal
communication), Carderi, Le Maître and Gaboriau prove that non-amenable surface groups
admit a continuum of IRSs whose support coincides with the perfect kernel of �, that
is, the largest closed subset without isolated points in Sub(�). However, our IRSs are
drastically different from the latter ones: we show that they are not weakly mixing and that
their support is strictly smaller than the perfect kernel, see Remarks 4.4 and 4.5.

We develop in §2 the preliminary results needed about profinite actions and allosteric
actions. In particular, we prove that allostery is invariant under commensurability. To build
ergodic profinite allosteric actions of non-amenable surface groups, we rely on a residual
property of non-amenable surface groups to prove in §3 that they admit special kinds of
finite index subgroups. The proof of Theorem 1.2 is completed in §4.

2. Preliminaries
2.1. Topological dynamic and URS/IRS. Let C be a compact Hausdorff space and let α

be an action by homeomorphisms of a countable discrete group � on C. The action α is
minimal if the orbit of every x ∈ C is dense. Recall that α is topologically free if for every
non-trivial element γ ∈ �, the closed set

Fixα(γ ) := {x ∈ C | α(γ )x = x}
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has empty interior. Since C is a Baire space, this is equivalent to saying that the set
{x ∈ C | Stabα(x) �= {1}} is meagre, that is, a countable union of nowhere dense sets.

The set Sub(�) of subgroups of � naturally identifies with a subset of {0, 1}� . It is
closed for the product topology. Thus, the induced topology on Sub(�) turns it into a
compact totally disconnected space, on which � acts continuously by conjugation. A
URS of � is a closed minimal �-invariant subset of Sub(�). The trivial URS is the
URS that only contains the trivial subgroup. Recall that the stabilizer URS of a minimal
action α of � on C is the unique closed, �-invariant minimal subset in the closure
of {Stabα(x) | x ∈ C}. It is straightforward to check that the map Stabα is upper-semi
continuous. Therefore, it is continuous on a Gδ dense set. If C0 ⊂ C denotes the locus
of continuity of Stabα : C → Sub(�), then one can prove that URS(α) is equal to the
closure of the set {Stabα(x) | x ∈ C0}, see [GW15].

A proof of the following classical result can be found in [LBMB18, Proposition 2.7].

LEMMA 2.1. Let α be a minimal �-action on a compact Hausdorff space C. Then α is
topologically free if and only if its stabilizer URS is trivial, if and only if there exists x ∈ C

such that Stabα(x) is trivial.

The following lemma clarifies the relation between the stabilizer URS and the stabilizer
IRS. Recall that the support of a Borel probability measure is the intersection of all closed
subsets of full measure.

LEMMA 2.2. Let α be a minimal �-action on a compact Hausdorff space C and μ be a
�-invariant Borel probability measure on C. Then URS(α) is contained in the support of
IRS(α). In particular, if IRS(α) is trivial, then URS(α) is trivial.

Proof. Let F be a closed subset of Sub(�) such that μ(Stab−1
α (F )) = 1. By minimality

of α, every non-empty open subset U of C satisfies μ(U) > 0. Thus, Stab−1
α (F ) is dense

in C. Let x ∈ C be a continuity point of Stabα . Let (xn)n≥0 be a sequence of elements in
Stab−1

α (F ) that converges to x. Then Stabα(x) ∈ F and we thus obtain that URS(α) ⊂ F .
By definition of the support of IRS(α), this implies that URS(α) ⊂ supp(IRS(α)).

The following proposition gives a partial converse to Lemma 2.2.

PROPOSITION 2.3. Let α be a minimal �-action on a compact Hausdorff space C and
μ be a �-invariant Borel probability measure on C. If URS(α) is trivial, then IRS(α) is
either trivial or atomless.

Proof. Assume that IRS(α) has a non-trivial atom {�}. By invariance, the atoms {γ�γ−1}
have equal measure for all γ ∈ �. Thus, � has only finitely many conjugates. Thus, the
closure in Sub(�) of the set {Stabα(x) | x ∈ C} contains the finite set {γ�γ−1 | γ ∈ �},
which is closed, �-invariant and minimal. Thus, URS(α) is non-trivial.

This last result implies that the converse of Lemma 2.2 is actually true for groups
admitting only countably many subgroups.
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COROLLARY 2.4. Let α be a minimal �-action on a compact Hausdorff space C and μ a
�-invariant Borel probability measure on C. If Sub(�) is countable, then IRS(α) is trivial
if and only if URS(α) is trivial.

Thus, groups � such that Sub(�) is countable are not allosteric.

2.2. Profinite actions and their URS/IRS. Let � be a countable group. For every n ≥ 0,
let αn be a �-action on a finite set Xn, and assume that for every n ≥ 0, αn is a quotient of
αn+1, that is, there exists a �-equivariant onto map qn : Xn+1 � Xn. The inverse limit of
the finite spaces Xn is the space

lim←− Xn :=
{
(xn)n≥0 ∈

∏
n≥0

Xn | for all n ≥ 0, qn(xn+1) = xn

}
.

This space is closed, thus compact, and totally disconnected in the product topology. Let
α be the �-action by homeomorphisms on lim←− Xn defined by

α(γ )(xn)n≥0 := (αn(γ )xn)n≥0.

If each Xn is endowed with a �-invariant probability measure μn, we let μ be the unique
Borel probability measure on lim←− Xn that projects onto μk via the canonical projection πk :
lim←− Xn→ Xk , for every k ≥ 0. The �-action α preserves μ and is called the inverse limit
of the p.m.p. �-actions αn. A p.m.p. action of � is profinite if it is measurably isomorphic
to an inverse limit of p.m.p. �-actions on finite sets. A proof of the following Lemma can
be found in [Gri11, Proposition 4.1].

LEMMA 2.5. Let � �
α lim←−(Xn, μn) be the inverse limit of the p.m.p. finite actions � �

αn

(Xn, μn) and let μ denotes the inverse limit of the μn. Then the following are equivalent.
(1) For every n ≥ 0, αn is transitive and μn is the uniform measure on Xn.
(2) The action α is minimal.
(3) The action α is μ-ergodic.
(3) The action α is uniquely ergodic, that is, μ is the unique �-invariant Borel

probability measure on lim←− Xn.

With the above notation, the following lemma is useful to compute the measure of a
closed subset in an inverse limit (here, no group action is involved).

LEMMA 2.6. Let A be a closed subset of lim←− Xn. Then, A =⋂
n≥0 π−1

n (πn(A)). Thus,

μ(A) = lim
n→+∞μn(πn(A)).

Proof. First, A is contained in
⋂

n≥0 π−1
n (πn(A)) since it is contained in each

π−1
n (πn(A)). Conversely, let x be in

⋂
n≥0 π−1

n (πn(A)). For every n ≥ 0, there exists
yn ∈ A such that πn(x) = πn(yn). By compactness of A, let y ∈ A be a limit of some
subsequence of (yn)n≥0. By definition of the product topology, for every n ≥ 0, πn(x) =
πn(y), thus x = y and x belongs to A.
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Let (�n)n≥0 be a chain in �, that is, an infinite decreasing sequence � = �0 ≥ �1 ≥ . . .

of finite index subgroups. If Xn = �/�n and μn is the uniform probability measure
on Xn, then we get a profinite action that is ergodic by Lemma 2.5. Conversely, any
ergodic (equivalently minimal) profinite �-action � � lim←− Xn is measurably isomorphic
to a profinite action of the form � � lim←− �/�n for some chain (�n)n≥0, by fixing a point
x ∈ lim←− Xn and letting �n be the stabilizer of πn(x) ∈ Xn.

LEMMA 2.7. Let (�n)n≥0 be a chain in � and let α be the corresponding ergodic profinite
�-action. Then URS(α) is trivial if and only if there exists (γn�n)n≥0 ∈ lim←− �/�n such
that

⋂
n≥0

γn�nγ
−1
n = {1}.

Proof. For all x ∈ lim←− �/�n, if x = (γn�n)n≥0, then

Stabα(x) =
⋂
n≥0

γn�nγ
−1
n .

Thus, the result is a direct consequence of Lemma 2.1.

PROPOSITION 2.8. Let (�n)n≥0 be a chain in � and let α be the corresponding ergodic
profinite �-action. If URS(α) is trivial, then either IRS(α) is trivial or there exists a finite
index subgroup � ≤ � such that the p.m.p. �-action by conjugation on (Sub(�), IRS(α))

is not ergodic.

Proof. Assume that the p.m.p. �-action by conjugation on (Sub(�), IRS(α)) remains
ergodic under any finite index subgroup of �. Since URS(α) is trivial, there exists by
Lemma 2.7 a sequence (γn)n≥0 of elements in � such that

⋂
n≥0

γn�nγ
−1
n = {1}.

For every k ≥ 0, if πk : lim←− �/�n→ �/�k denotes the projection onto the kth coordinate,
then the set

{Stabα(x) | x ∈ lim←− �/�n, πk(x) = γk�k} ⊂ Sub(�)

has positive measure for IRS(α), is contained in Sub(γk�kγ
−1
k ) and is invariant under the

finite index subgroup Stabαk
(γk�k) = γk�kγ

−1
k . By ergodicity, it is a full measure set.

Thus, for almost every (a.e.) x ∈ lim←− �/�n, Stabα(x) is a subgroup of γk�kγ
−1
k . Since

this is true for every k ≥ 0, we conclude that IRS(α) is trivial.

2.3. Allostery and commensurability. Two groups �1 and �2 are commensurable if there
exist finite index subgroups �1 ≤ �1 and �2 ≤ �2 such that �1 is isomorphic to �2. In
this section, we prove the following result.
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THEOREM 2.9. Allostery is invariant under commensurability.

We prove Theorem 2.9 in two steps, by showing that allostery is inherited by finite
index overgroups in Proposition 2.10 and by finite index subgroups in Proposition 2.11.
Let � be a countable group and � ≤ � a finite index subgroup. Let α : � � (C, μ) be
an action by homeomorphisms on a compact Hausdorff space C with a �-invariant Borel
probability measure μ on C. Let β : � � C × � be the action defined by β(γ )(x, δ) =
(x, γ δ). Define an equivalence relation ∼ on a C × � by declaring that (x, γ ) ∼ (x ′, γ ′)
if and only if there exists λ ∈ � such that (x′, γ ′) = (α(λ)x, γ λ). The �-action β projects
onto a �-action by homeomorphisms on C × �/∼ which is called the �-action induced
by α. We denote it by Ind�

�α. The product of μ with the counting measure on � projects
onto a Borel probability measure on C × �/∼ which is invariant by Ind�

�α.

PROPOSITION 2.10. Let � be a countable group and � ≤ � a finite index subgroup. Then
the �-action induced by any allosteric �-action is allosteric.

Proof. Let α : � � (C, μ) be an allosteric action. It is an exercise to prove that Ind�
�α is

ergodic and minimal. Moreover, IRS(Ind�
�α) is non-trivial since the restriction of Ind�

�α

to � is not essentially free. Finally, URS(α) is trivial, thus there exists by Lemma 2.1 a
point x ∈ C such that Stabα(x) = {1}. Let y be the projection of (x, 1) onto the quotient
(C × �)/∼, then StabInd�

�α(y) = {1}. Since Ind�
�α is minimal, this implies by Lemma 2.1

that URS(Ind�
�α) is trivial. Thus, Ind�

�α is allosteric.

PROPOSITION 2.11. Any finite index subgroup of an allosteric group is allosteric.

Proof. Let � ≤ � be a finite index subgroup. We recall the following two facts. If
� � (X, μ) is an ergodic action, then any �-invariant measurable set A ⊂ X of positive
measure satisfies μ(A) ≥ 1/[� : �]. Moreover, for any �-invariant measurable set B ⊂ X

of positive measure, there exists a �-invariant measurable set A ⊂ B of positive measure
on which � acts ergodically.

Let � be an allosteric group, and let � ≤ � be a finite index subgroup. Let N be the
normal core of � (the intersection of the conjugates of �). It is a finite index normal
subgroup of � which is contained in �. We will prove that N is allosteric. Proposition 2.10
will then imply that � is allosteric. We let d = [� : N] and we fix γ1, . . . , γd ∈ �, a
coset representative system for N in �. Let � �

α (C, μ) be an allosteric action. For all
x ∈ C, we define ON(x) = {α(γ )x | γ ∈ N}. This is a closed, N-invariant subset of C.
By minimality of α, for all x ∈ C,

X =
d⋃

i=1

ON(α(γi)x).

Moreover, since N is normal in �, for all x ∈ C and γ ∈ �, we have ON(α(γ )x) =
α(γ )ON(x). This implies that μ(ON(α(γ )x)) = μ(ON(x)) and that μ(ON(x)) > 0. Let
y be a point in some closed, N-invariant and N-minimal set. Then N � ON(y) is minimal.
Let A ⊂ ON(y) be an N-invariant measurable set of positive measure on which N acts
ergodically. Let μA be the Borel probability measure on A induced by μ. Then N �

(ON(y), μA) is an ergodic minimal action, which is still topologically free. Let us prove
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that it is not essentially free. Since α is allosteric, IRS(α) is atomless, see Proposition 2.3.
Thus, for μ-a.e. x ∈ C, Stabα(x) is infinite. Since N has finite index in �, this implies that
for μ-a.e. x ∈ C, Stabα(x) ∩N is infinite. Thus, N � (ON(y), μA) is not essentially free
and thus is allosteric.

Remark 2.12. It is proved in [BG04, Théorème 4.1] that if � is isomorphic to a free product
of two infinite residually finite groups, then � admits a continuum of profinite allosteric
actions. Let �′ be a non-amenable group which is isomorphic to a free product of two
non-trivial residually finite groups. Then Kurosh’s theorem [Ser77, §5.5] implies that �′
admits a finite index subgroup � isomorphic to a free product of finitely many (and at least
two) residually finite infinite groups. Proposition 2.10 then implies that �′ is allosteric.

3. Finite index subgroups of surface groups
3.1. Residual properties of surface groups. A surface group is the fundamental group
of a closed connected surface. If the surface is orientable, then its fundamental group is
called an orientable surface group and a presentation is given by

〈x1, y1, . . . , xg , yg | [x1, y1] · · · [xg , yg] = 1〉,
for some g ≥ 1 called the genus of the surface (if g = 0, then the surface is a sphere and
its fundamental group is trivial). If the surface is non-orientable, we call its fundamental
group a non-orientable surface group. It has a presentation given by

〈x1, . . . , xg | x2
1 . . . x2

g = 1〉,
for some g ≥ 1, called the genus of the surface. A surface group is amenable if and only if
it is the fundamental group of the sphere, the torus (orientable surfaces of genus 0 and 1),
the projective plane or the Klein bottle (non-orientable surfaces of genus 1 and 2). These
groups are respectively isomorphic to the trivial group for the sphere, Z2 for the torus,
Z/2Z for the projective plane and the non-trivial semi-direct product Z � Z for the Klein
bottle.

Definition 3.1. Let p be a prime number. A group � is a residually finite p-group if for
every non-trivial element γ ∈ �, there exists a normal subgroup N � � such that �/N

is a finite p-group and γ /∈ N . Equivalently, � is a residually finite p-group if and only if
there exists a chain (�n)n≥0 in � consisting of normal subgroups such that for every n ≥ 0,
the quotient �/�n is a finite p-group and⋂

n≥0

�n = {1}.

Baumslag proved in [Bau62] that orientable surface groups are residually free, that is,
for every non-trivial element γ , there exists a normal subgroup N � � such that �/N is a
free group and γ /∈ N . Free groups are residually finite p-groups for every prime p, a result
independently proved by Takahasi [Tak51] and by Gruenberg in [Gru57]. This implies the
following well-known result: orientable surface groups are residually finite p-groups for
every prime p.
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FIGURE 1. Illustration of �A,B with |A| = 1 and |B| = 2 as an orientable surface group.

Remark 3.1. By a result of Baumslag [Bau67], non-amenable non-orientable surface
groups are also residually p-finite groups for every prime p. However, we leave as an
exercise to the interested reader the fact that the fundamental group of a Klein bottle is
not residually p for some prime p. We will not require these results.

3.2. Special kind of finite index subgroups in surface groups. Let A, B be two
non-empty totally ordered finite sets. We let �A,B be the group defined by the generators
ai , αi , bj , βj for i ∈ A and j ∈ B and the relation

[ai1 , αi1 ] . . . [ain , αin ] = [bj1 , βj1 ] . . . [bjm , βjm],

where i1 ≤ · · · ≤ in is an ascending enumeration of the elements in A and j1 ≤ · · · ≤ jm

an ascending enumeration of the elements in B. Then �A,B is isomorphic to a
non-amenable orientable surface group, and every non-amenable orientable surface group
is isomorphic to �A,B for some non-empty totally ordered finite sets A and B (see Figure 1).
The group �A,B naturally splits as an amalgamated product

�A,B = �A ∗Z �B ,

where �A = 〈ai , αi , i ∈ A〉 and �B = 〈bj , βj , j ∈ B〉 are free groups of rank 2|A| and
2|B|.

If A′ ⊂ A and B ′ ⊂ B, there is a natural surjection �A,B � �A′,B ′ defined on the
generators by

ai �→ a′i for every i ∈ A′, bj �→ b′j for every j ∈ B ′,
αi �→ α′i for every i ∈ A′, βj �→ β ′j for every j ∈ B ′,
ai �→ 1 for every i ∈ A \ A′, bj �→ 1 for every j ∈ B \ B ′,
αi �→ 1 for every i ∈ A \ A′, βj �→ 1 for every j ∈ B \ B ′.

We say that this morphism erases the generators ai , αi , bj , βj for i ∈ A \ A′ and
j ∈ B \ B ′, see Figure 2. Algebraically, �A′,B ′ is isomorphic to the quotient of �A,B

by the normal closure of the set {ai , αi , bj , βj | i ∈ A \ A′, j ∈ B \ B ′} in �A,B , and the
homomorphism �A,B � �A′,B ′ corresponds to the quotient group homomorphism.

Here is the main theorem of this section. In what follows, Z[1/p] denotes the set of
rational numbers of the form k/pn for k, n ∈ Z.

THEOREM 3.2. Let � be a non-amenable orientable surface group and fix a decomposi-
tion � = �A ∗Z �B as above. Let p be a prime number and r ∈]0, 1[∩Z[1/p]. Let 〈〈Z〉〉�B

be the normal closure of the amalgamated subgroup Z in �B . For every non-trivial γ ∈ �
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FIGURE 2. An illustration of the morphism that erases generators.

FIGURE 3. Illustrations of the proof of Theorem 3.2. The above line illustrates the coverings corresponding to the
inclusions � ≤ �d ≤ �. The bottom line illustrates the covering corresponding to the inclusion N ′ ≤ �d/N .

and for every element δ ∈ �B \ 〈〈Z〉〉�B , there exists a finite index subgroup � ≤ � such
that:
(1) γ /∈ �;
(2) the index [� : �] is a power of p;
(3) the number of left cosets x ∈ �/� that are fixed by every element in �A is equal to

r[� : �];
(4) none of the left coset x ∈ �/� is fixed by δ.

Proof. Fix A, B two non-empty totally ordered finite sets, such that � is isomorphic
to �A,B . Let S = {ai , αi , bj , βj | i ∈ A, j ∈ B} be the set of generators. Let j0 be the
smallest element in B. Let γ ∈ � \ {1} and δ ∈ �B \ 〈〈Z〉〉�B . Let p be a prime number
and r ∈ ]0, 1[∩Z[1/p].

Step 1: Cyclic covering. Let ϕ : �A,B � Z be the surjective homomorphism defined on
the generators of �A,B by

ϕ(bj0) = 1, ϕ(βj0) = 0,
ϕ(ai) = ϕ(αi) = ϕ(bj ) = ϕ(βj ) = 0 for every i ∈ A, j ∈ B \ {j0}.

For every d ≥ 1, we let �d be the kernel of the homomorphism �→ Z/dZ obtained by
composing ϕ with the homomorphism of reduction modulo d. Then �d is a surface group.
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Let us describe a generating set for �d . For every 0 ≤ k ≤ d − 1 and i ∈ A, let ai,k and
αi,k be the conjugates of ai and αi respectively, by bk

j0
. Similarly, let bj ,k and βj ,k be the

conjugates of bj and βj respectively, by bk
j0

. Then �d is generated by the set

d−1⋃
k=0

{ai,k , αi,k | i ∈ A} ∪
d−1⋃
k=0

{bj ,k , βj ,k | j ∈ B \ {j0}} ∪ {bd
j0

, βj0}.

So far, every left coset x ∈ �/�d is fixed by every element of �A, and either every or none
of the left coset x ∈ �/�d is fixed by δ, depending on whether δ ∈ �d or not.

Step 2: Erasing the right amount of generators. Let n be the length of γ ∈ � \ {1} in
the generating set S. In the following, we let d be a (large enough) power of the prime p
such that rd is an integer and rd + n ≤ d . Let E ⊂ {n+ 1, . . . , d − 1− n} be a subset of
cardinality rd, so that γ does not belong to the normal closure N of the set

⋃
k∈E bk

j0
�Ab−k

j0
in �d . Let us prove that none of the conjugate of δ by a power of bj0 belongs to N.
Assume this is not the case, then this would imply that δ belongs to the normal closure
of

⋃d−1
k=0 bk

j0
�Ab−k

j0
in �d , which is easily seen to be equal to the normal closure 〈〈�A〉〉�

of �A in �. However, the group �/〈〈�A〉〉� is naturally isomorphic to �B/〈〈Z〉〉�B , in such
a way that the following diagram commutes:

�B

�� ����
���

���
���

�

�/〈〈�A〉〉� �� �B/〈〈Z〉〉�B ,

which implies that �B ∩ 〈〈�A〉〉� is equal to 〈〈Z〉〉�B . This would thus imply that
δ ∈ 〈〈Z〉〉�B , which is a contradiction.

Step 3: The group �d/N is a residually finite p-group. We let π : �d � �d/N be the
quotient group homomorphism. As orientable surface groups are p-residually finite and
since �d/N is an orientable surface group, there exists a normal subgroup N ′ � �d/N

whose index is a power of p, such that for every k ∈ {0, . . . , d − 1} \ E, for every i ∈ A,
π(ai,k) /∈ N ′ and π(αi,k) /∈ N ′. If γ ∈ �d , we also assume that π(γ ) /∈ N , and if δ ∈ �d ,
we also assume that for all k ∈ {0, . . . , d − 1}, π(bk

j0
δb−k

j0
) /∈ N ′. Let us prove that the

subgroup � := π−1(N ′) of � satisfies the four conclusions of the theorem.

Proof of (1). Either γ /∈ �d and thus γ /∈ �, or γ ∈ �d and π(γ ) /∈ N .

Proof of (2). Since the index of N ′ in �d/N is a power of p, [�d : �] is also a power
of p. Thus [� : �] = [� : �d ][�d : �] is a power of p.

Proof of (3). By construction, x ∈ �/� is fixed by every element in �A if and only its
image under the canonical [�d : �]-to-one map �/� �→ �/�d is equal to bk

j0
�d for some

k ∈ E. Since |E| = rd, there are exactly rd[�d : �] = r[� : �] such x ∈ �/�.

Proof of (4). If δ /∈ �d , then none of the coset x ∈ �/� is fixed by δ. If δ ∈ �d ,
then for all k ∈ {0, . . . , d − 1}, we have π(bk

j0
δb−k

j0
) /∈ N ′, and thus δb−k

j0
� �= b−k

j0
�.
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By normality of � in �d , we deduce that none of the coset x ∈ �/� is fixed by δ (see
Figure 3).

4. Proof of the main theorem
In this section, we give the proof of Theorem 1.2. More precisely, we prove the following
results.

THEOREM 4.1. (Orientable case) Let � be a non-amenable orientable surface group and
fix a decomposition � = �A ∗Z �B as above. Let 〈〈Z〉〉�B be the normal closure of the
amalgamated subgroup Z in �B . Then there exists a continuum (αt )0<t<1 of ergodic
profinite allosteric actions of � such that for all 0 < t < 1:
(1) the set of points whose stabilizer for αt contains �A has measure t;
(2) each element of �B \ 〈〈Z〉〉�B acts essentially freely for αt .
In particular, for all 0 < s < t < 1, the actions αs and αt are neither topologically nor
measurably isomorphic, and the probability measures IRS(αs) and IRS(αt ) are distinct.

THEOREM 4.2. (Non-orientable case) Let �′ be a non-amenable non-orientable surface
group. Then there exists an index-two subgroup � ≤ �′ which is isomorphic to an
orientable surface group and which decomposes as � = �A ∗Z �B , and a continuum
(βt )0<t<1 of ergodic profinite allosteric actions of �′ such that for all 0 < t < 1, the set of
points whose stabilizer for βt contains �A has measure t/2. In particular, for all 0 < s <

t < 1, the actions βs and βt are neither topologically nor measurably isomorphic, and the
probability measures IRS(βs) and IRS(βt ) are distinct.

During the proof of these theorems, we will need the following lemma.

LEMMA 4.3. Let � be a group, and �1, . . . , �n be finite index subgroups of �. If the
indices [� : �i], i ∈ {1, . . . , n}, are pairwise coprime integers, then the left coset action
� � �/(�1 ∩ · · · ∩�n) is isomorphic to the diagonal action � � �/�1 × · · · × �/�n

of the left coset actions � � �/�i .

Proof. The kernel of the group homomorphism �→ �/�1 × · · · × �/�n defined by
γ �→ (γ�1, . . . , γ�n) is equal to �1 ∩ · · · ∩�n. Thus, �/(�1 ∩ · · · ∩�n) is isomor-
phic to a subgroup of �/�1 × · · · × �/�n. Moreover, for every 1 ≤ i ≤ n,

[� : �1 ∩ · · · ∩�n] = [� : �i][�i : �1 ∩ · · · ∩�n],

and since the indices [� : �i] are pairwise coprime, this implies that [� : �1 ∩ · · · ∩�n]
is divisible by [� : �1] · · · [� : �n]. Thus, the group homomorphism �/�1 ∩ · · · ∩
�n→ �/�1 × · · · × �/�n is an isomorphism and it is �-equivariant.

We are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Let � be a non-amenable orientable surface group, and we fix a
decomposition � = �A ∗Z �B . Let 0 < t < 1 be a real number. Let (pn)n≥1 be a sequence
of pairwise distinct prime numbers. We fix a sequence (rn)n≥1 such that each rn belongs
to ]0, 1[∩Z[1/pn] and

∏
n≥1 rn = t . Such a sequence exists because each Z[1/pn] is
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dense in R. Finally, let (γn)n≥0 be an enumeration of the elements in � with γ0 = 1, and
(δn)n≥1 be an enumeration of the elements in �B \ 〈〈Z〉〉�B . For every n ≥ 1, there exists
by Theorem 3.2 a finite index subgroup �t

n ≤ � which does not contain γn, whose index
[� : �t

n] is a power of pn, such that the number of left cosets x ∈ �/�t
n that are fixed by

any element of �A is equal to rn[� : �t
n], and such that none of the left coset x ∈ �/�t

n

is fixed by δn. For every n ≥ 1, let �t
n := �t

1 ∩ · · · ∩�t
n. The sequence (�t

n)n≥1 forms a
chain in �, and we denote by αt the corresponding ergodic profinite action and by μt the
profinite �-invariant probability measure on lim←− �/�t

n. This is a p.m.p. ergodic minimal
action and we will prove that it is allosteric. By construction of �t

n, we have that
⋂
n≥1

�t
n = {1}.

This implies by Lemma 2.7 that URS(αt ) is trivial. Let us prove that each element
of �B \ 〈〈Z〉〉�B acts essentially freely for αt . Let δ ∈ �B \ 〈〈Z〉〉�B . By Lemma 4.3,
the number of x ∈ �/�t

n such that δx = x is equal to the number of (x1, . . . , xn) ∈
�/�t

1 × · · · × �/�t
n such that (δx1, . . . , δxn) = (x1, . . . , xn). If n is large enough, then

this last number is zero by construction of �t
n. Thus, Lemma 2.6 implies that Fixαt (δ) is

μt -negligible.
Finally, let us prove that the actions αt are not essentially free. By construction, the

indices [� : �t
i] are pairwise coprime. Thus, Lemma 4.3 implies that the number of

x ∈ �/�t
n that are fixed by every element in �A is equal to the number of (y1, . . . , yn) ∈

�/�t
1 × · · · × �/�t

n that are fixed for the diagonal action by every element in �A.
By construction of �t

i , this number is equal to r1[� : �t
1]× · · · × rn[� : �t

n] which is
equal to r1 . . . rn[� : �t

n]. Thus, Lemma 2.6 implies that the μt -measure of the set of
points whose stabilizer for αt contains �A is t. In particular, this implies that IRS(αt ) is
non-trivial. Thus, αt is allosteric. Moreover, this also implies that for all 0 < s < t < 1,
the actions αs and αt are not measurably isomorphic and thus not topologically isomorphic
since every αt is uniquely ergodic by Lemma 2.5, and this finally implies that the measures
IRS(αs) and IRS(αt ) are distinct.

Proof of Theorem 4.2. Let �′ be a non-orientable surface of genus g ≥ 3. Consider
the usual embedding of an orientable surface � of genus g − 1 into R

3 in such a way
that the reflexions in all three coordinate planes map the surface to itself, and let ι

to be the fixed-point free antipodal map x �→ −x. Then �′ is homeomorphic to the
quotient of � by ι, and the covering � �→ �/ι ≈ �′ is called the orientation covering.
We decompose � as the union of two surfaces �A and �B with one boundary, of genus
|A| and |B| respectively, with |A| ≤ |B|, so that ι(�A) ⊂ �B . Fix a point p ∈ �A ∩�B ,
then Van Kampen’s theorem implies that the fundamental group � of the surface �

based at p is isomorphic to �A ∗Z �B with �A = π1(�A, p), �B = π1(�B , p) and Z ≈
π1(�A ∩ �B , p). The fundamental group �′ of �′ based at p′ = ι(p) naturally contains
the subgroup � as an index-two subgroup. Fix a curve contained in �B that joins p to ι(p).
This produces an element γ0 ∈ �′ \ � that satisfies γ0�Aγ−1

0 ≤ �B .
Let (αt )0<t<1 be a continuum of allosteric �-actions on (Xt , μt) given by

Theorem 4.1. The actions βt : �′ � (Yt , νt ) induced by the �-actions αt are allosteric, see

https://doi.org/10.1017/etds.2023.52 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.52


1594 M. Joseph

Proposition 2.10. Let us prove that the set of points in Yt whose stabilizer for βt contains
�A has νt -measure t/2. Since βt is an induced action and [�′ : �] = 2, the �′-action βt is
measurably isomorphic to a p.m.p. �′-action on (Xt × {0, 1}, μt × unif), still denoted by
βt , that satisfies the following two properties:
(1) for every γ ∈ �′ \ �, the sets Xt × {0} and Xt × {1} are switched by βt (γ );
(2) for every γ ∈ �, for every x ∈ Xt , we have βt (γ )(x, 0) = (αt (γ )x, 0) and

βt (γ )(x, 1) = (αt (γ0γ γ−1
0 )x, 1).

This implies that for all (x, ε) ∈ Xt × {0, 1}, the subgroup �A is contained in Stabβt (x, ε)

if and only if either ε = 0 and �A is contained in Stabαt (x), or ε = 1 and γ0�Aγ−1
0 is

contained in Stabαt (x). Thus, the set of points whose stabilizer for βt contains �A has
νt -measure

t + μt({x ∈ Xt | γ0�Aγ−1
0 ≤ Stabαt (x)})

2
.

To finish the proof, it is enough to prove that the intersection of γ0�Aγ−1
0 and �B \ 〈〈Z〉〉�B

is non-trivial, since any element in �B \ 〈〈Z〉〉�B acts essentially freely for αt . The
conjugation by γ0 induces a group automorphism ϕ : � �→ �, such that ϕ(�A) ≤ �B .
Since �A is not contained in the derived subgroup D(�), so is ϕ(�A). However, the
amalgamated subgroup Z is contained in D(�), thus so is 〈〈Z〉〉�B . This implies that
the intersection ϕ(�A) ∩ (�B \ 〈〈Z〉〉�B ) is non-empty. We deduce that the set of points
whose stabilizer for βt contains �A has νt -measure t/2. We conclude that the actions
βt are neither measurably nor topologically pairwise isomorphic and that their IRS are
pairwise disjoint as in Theorem 4.1.

Remark 4.4. Let α : � � (C, μ) be an allosteric action. Then we have

supp(IRS(α)) ⊂ {Stabα(x) | x ∈ C}.
This implies that the support of IRS(α) does not contain any non-trivial subgroup with
only finitely many conjugates, because otherwise, the closure of the set {Stabα(x) | x ∈ C}
would contain a closed minimal �-invariant set �= {{1}}. Carderi, Gaboriau and Le Maître
proved (personal communication) that the perfect kernel of a surface group coincides with
the set of its infinite index subgroups. This implies that allosteric actions of surface groups
are not totipotent (a p.m.p. action is totipotent if the support of its IRS coincides with the
perfect kernel of the group, see [CGLM20]).

Remark 4.5. A p.m.p. action � � (X, μ) is weakly mixing if for every ε > 0 and every
finite collection � of measurable subsets of X, there exists a γ ∈ � such that for every
A, B ∈ �,

|μ(γA ∩ B)− μ(A)μ(B)| < ε.

With this definition, it is easily seen that the restriction of a weakly mixing action to a
finite index subgroup remains weakly mixing. Thus, Proposition 2.8 implies that the IRSs
of non-amenable surface groups we have constructed are not weakly mixing.

Remark 4.6. The proof of our main theorem applies mutatis mutandis to branched
orientable surface groups, that is, fundamental groups of closed orientable branched
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FIGURE 4. A branched surface.

surfaces (see Figure 4). These groups can be written as amalgams. Fix an integer g ≥ 2
as well as 2g letters x1, y1, . . . , xg , yg . Fix a partition of {1, . . . , g} into n non-empty
intervals A1, . . . , An. Let �k be the free group generated by xi and yi for every i ∈ Ak ,
and let Z→ �k be the injective homomorphism defined by sending the generator of Z to
the product

∏
i∈Ak

[xi , yi]. Then the amalgam ∗Z�i is a branched orientable surface group,
and any branched orientable surface group can be obtained this way. The fundamental
group of a closed orientable branched surface of genus≥ 2 is a residually p-finite group for
every prime p, see [KM93, Theorem 4.2]. Thus, our method of proof applies to branched
orientable surface groups, with any �k in the role played by �A during the proof of
Theorem 4.1.

Question 4.7. Is the fundamental group of a compact hyperbolic 3-manifold allosteric?
More generally, is the fundamental group of a compact orientable aspherical 3-manifold
allosteric?
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