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Sine-Gordon Model

1.1 The Dawning of Solitons: From the Frenkel–Kontorova Model

to the Sine-Gordon Model

It is traditional to start a discussion of the solitons with a famous story about

John Scott Russell, who first observed and described the solitary waves. Many

books on solitons begin from this starting point (see, e.g., [310] or [383]). Here,

however, we take another route, departing from the Frenkel–Kontorova model

introduced in 1938 [155].1 This one-dimensional toy model describes a chain of

particles, coupled by the horizontal springs to the nearest neighbors and placed

in a periodic potential, which, for example, represents a substrate.

As with every good toy model, it has a lot of other realizations. For example,

it can be visualized as a system of two parallel superconducting wires with a

Josephson junction in between, or even as a model of the basic functions of

DNA (see, e.g., [115]).

Here we consider another mechanical analog of the Frenkel–Kontorova model,

which was suggested by Scott in 1969 [352]. This is a chain of identical simple

pendulums of length l and mass m separated by distance a. The pendulums are

oscillating in parallel planes and are elastically coupled through the identical

torque springs with their nearest neighbors (see Figure 1.1). Thus, the nth

pendulum both vibrates near its equilibrium point xn, i “ 1, 2, . . . s, s Ñ 8

and oscillates under force of gravity.

As a dynamic variable we can consider the deviation angle φpxn, tq from

the lower vertical position at time t, then the potential energy of the elastic

interaction between two adjacent pendulums is

α

2
rφpxnq ´ φpxn´1qs

2,

where α is the torsion constant.

1 For a detailed review of the model and its applications, see, e.g., [63, 85].
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Figure 1.1 Chain of pendulums elastically coupled with their nearest neighbors.

Then the rotational kinetic energy T and the total potential energy U of the

system are given by the sum over all the pendulums

T “
I

2

ÿ

n

ˆ

Bφpxn, tq

Bt

˙2

;

U “
α

2

ÿ

n

rφpxn`1, tq ´ φpxn, tqs
2

`
ÿ

n

V rxn, ts,

(1.1)

where I is moment of inertia of a pendulum and xn is the coordinate of the nth

pendulum in the chain. The external potential V rxns is simply the gravitational

potential energy

V rxns “ ´mgl p1 ´ cosφpxn, tqq . (1.2)

Then the equation of motion of a pendulum placed at xn is

I
B2φpxn, tq

Bt2
´αrφpxn`1, tq´2φpxn, tq`φpxn´1, tqs`mgl sinφpxn, tq “ 0. (1.3)

Evidently, for small-angle oscillations φpxnq ! 1 this equation can be linearized

I
B2φpxn, tq

Bt2
´ αrφpxn`1, tq ´ 2φpxn, tq ` φpxn´1, tqs ` mglφpxn, tq “ 0,

and the motion is simple harmonic. If we neglect the gravity force, the problem

is reduced to

I
B2φpxn, tq

Bt2
´ αrφpxn`1, tq ´ 2φpxn, tq ` φpxn´1, tqs “ 0. (1.4)
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The Dawning of Solitons 5

This equation can be solved by Fourier transform. Let us multiply (1.4) by e´ikn

and sum over all n supposing that φn ” φpxn, tq decays to zero for large n:

I
B2

Bt2

8
ÿ

n“´8

φne
´ikn

“ 2αpcos k ´ 1q

8
ÿ

n“´8

φne
´ikn. (1.5)

This is the simple differential equation that allows us to find the coefficients of

the Fourier transform, the kth mode of the oscillations

φpk, tq “

8
ÿ

n“´8

φne
´ikn.

Clearly, the solution is

φpk, tq “ Apkq cospωtq ` Bpkq sinpωtq,

where the frequency ω “

b

2α
I p1 ´ cos kq and Apkq, Bpkq are arbitrary constants

that define the energy of the kth mode. Note that the modes of the linear system

are decoupled from each other; there are no transitions between them.

However it is not so easy to find a solution for (1.3) when the linear approxi-

mation cannot be used. As a matter of fact one has to apply numerical methods

to solve it.

On the other hand, we can consider long-wave excitations in this system.

That is, the excitations such that the characteristic length at which φ changes

significantly is much greater than the distance between neighboring pendulums a.

This allows us to introduce the continuum limit of the model (1.1) replacing the

discrete variable xn with the coordinate x “ na and then taking the limit a Ñ 0.

The Taylor expansion of the functions φpxn`1q “ φpxn ` aq and φpxn´1q “

φpxn ´ aq yields

φpxn˘1q « φpxnq˘a
Bupxnq

Bx
`
a2

2

B2φpxnq

Bx2
˘
a3

3!

B3φpxnq

Bx3
`
a4

4!

B4φpxnq

Bx4
`¨ ¨ ¨ (1.6)

Thus, in the order up to Opa4q,

φpxn`1q ´ 2φpxnq ` φpxn´1q « a2
B2φpxnq

Bx2
,

and the equation of motion (1.3) takes the form

I
B2φpx, tq

Bt2
´ αa2

B2φpx, tq

Bx2
` mgl sinφpx, tq “ 0. (1.7)

We can now introduce the dimensionless variables to absorb the parameters

of the model:

x Ñ“
x

a

c

mgl

α
; t Ñ t

c

mgl

I
.
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6 Sine-Gordon Model

Then (1.7) finally takes the form

B2φpx, tq

Bt2
´

B2φpx, tq

Bx2
` sinφpx, tq “ 0. (1.8)

In other words, in the continuum limit a Ñ 0 the set of the discrete real angular

variables φpxn, tq becomes the scalar field φpx, tq, which is a continuous canonical

variable defined for any coordinate x at any moment of time t.

Equation (1.8), known as the sine-Gordon equation, was actually well known

long before it got this name. Historically, it was Jacques Edmond Bour [81] who

analyzed this equation, considering the compatibility conditions for the Gauss

equations for pseudospheres. It was rederived independently by Bonnet in 1867

and Enneper in 1868, again in the context of the differential geometry of surfaces

of a constant negative Gaussian curvature.2

Consequent study of this equation by Bianchi (1879) and Bäcklund (1880s)

[62] resulted in discovery of the interesting result that it is possible to generate

a tower of new solutions of (1.8) from one particular known solution, even a

trivial one. In Section 1.2 we briefly consider this approach, which is known as

the Bäcklund transformation.

Furthermore, (1.8) supports solitonic solutions, the kinks that we discuss in

Section 1.2. To the best of our knowledge, these solutions were first found in

1950 in further consideration of the Frenkel–Kontorova model [248], once again

a long time before the idea of solitons became fashionable.

In 1962, Perring and Skyrme [319] formulated the sine-Gordon model as a

simple, relativistic, nonlinear scalar field theory. Their description is most appro-

priate for our discussion.

Equation (1.8) may be derived from the Lagrangian

L “
1

2

ˆ

Bφ

Bt

˙2

´
1

2

ˆ

Bφ

Bx

˙2

´ U rφs ”
1

2
BμφB

μφ ´ Upφq, (1.9)

where for the sake of generality we introduce the potential of the scalar field

Upφq “ p1 ´ cosφq. Hereafter we make use of the covariant notations in 1 ` 1

dimensions to make manifest the Lorenz invariance of the model. Our choice for

the metric in 1`1 dimensions is gμν “ diag p1,´1q and we adopt the natural units

� “ c “ 1 to simplify our notations. The corresponding variational equation is

B

Bxμ

ˆ

δL

δpBμφq

˙

“
δL

δφ
, (1.10)

which yields the covariant form of (1.8)

BμB
μφ “ ´U 1

pφq. (1.11)

2 There were (unsuccessful) attempts to restore historical credit, e.g., referring to this
equation to as the Enneper (sine-Gordon) equation [358].
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The Dawning of Solitons 7

Evidently, the canonical stress energy tensor is

Tμν “

ˆ

δL

δpBμφq

˙

Bνφ ´ gμνL “ BμφBνφ ´ gμνL. (1.12)

Explicitly, the components of Tμν are

T00 “
1

2

ˆ

Bφ

Bt

˙2

`
1

2

ˆ

Bφ

Bx

˙2

` 1 ´ cosφ; T01 “
B2φ

Bx Bt
;

T11 “
1

2

ˆ

Bφ

Bt

˙2

`
1

2

ˆ

Bφ

Bx

˙2

´ 1 ` cosφ; T10 “
B2φ

Bx Bt
.

(1.13)

As usual, this tensor is conserved due to translational symmetry of the sine-

Gordon model, i.e.,

BμT
μν

“

"

BtT
00 ´ BxT

10 “ 0

BtT
01 ´ BxT

11 “ 0.
(1.14)

Since we are interested in finite-energy solutions, we have to consider the total

energy of this system

E “

8
ż

´8

dxT00 “

8
ż

´8

dx

„

1

2
pBtφq

2
`

1

2
pBxφq

2
` Upφq

j

. (1.15)

The corresponding vacuum solutions of the field equation (1.11) are configu-

rations φ0, which satisfy the stationary points of the action, i.e., we shall search

for fields that satisfy the conditions

U 1
pφ0q “ 0; U2

pφ0q ą 0. (1.16)

The potential of the sine-Gordon model Upφq “ p1 ´ cosφq is periodic. It has

an infinite number of degenerate vacua at φ0 “ 2πn, n P Z, for each of those

U2pφ0q “ 1.

Lorentz invariance of the model (1.9) allows us to start from the static confi-

gurations; they can be boosted if necessary. Therefore, we suppose that B0φ “ 0

and the energy functional (1.15) can be written as

E “

8
ż

´8

dx

„

1
?
2

Bxφ ˘
a

Upφq

j2

¯

8
ż

´8

dx
a

2Upφq Bxφ ě 0. (1.17)

Evidently, the energy is minimal if

1

2

ˆ

Bφ

Bx

˙2

“ Upφq. (1.18)
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8 Sine-Gordon Model

We suppose that the potential is positively defined for any values of φpxq, thus

we can define a superpotential W pφq as a function associated with Upφq:

1

2

ˆ

BW

Bφ

˙2

“ Upφq. (1.19)

Hence, the second term in (1.17) can be written as

8
ż

´8

dx
a

2Upφq Bxφ “ W rφp8qs ´ W rφp´8qs. (1.20)

Then the lower energy bound (so-called Bogomolny bound [77]) is saturated if

E ě W rφp8qs ´W rφp´8qs and the scalar field satisfies the first-order equation

Bφ

Bx
“ ˘

BW

Bφ
. (1.21)

The idea of superpotentialW pφq actually originates from supersymmetric models

where this function becomes a fundamental quantity (see, e.g., [354]). On the

other hand, the method of superpotential is very useful to construct nontrivial

soliton solutions in a system of coupled scalar fields [60].

A trivial vacuum solution of the field equation (1.8) is simply the state φ “

φ0 “ const, where φ0 are the minima of the potential energy Upφq. Then the

Bogomolny bound is saturated trivially, i.e., W rφp8qs “ W rφp´8qs and E ě 0.

We can consider small oscillations about the vacuum, then the Taylor expan-

sion yields Upφ ´ φ0q «
1
2 pφ ´ φ0q2 and we arrive at the original linear Klein–

Gordon equation for the scalar field of unit mass:

pB
2
t ´ B

2
x ` 1qφ “ 0. (1.22)

A plane-wave solution of this equation, commonly referred to as a mode, is

φk,ωpx, tq “ Aeipkx´ωtq, (1.23)

where A is the amplitude, k is the wavenumber of the mode and ω is the frequency

of the propagating wave. Substitution of this function into (1.22) yields the

dispersion relation

´ ω2
` k2 ` 1 “ 0. (1.24)

In other words, the linear waves of different lengths propagate with different

speeds. Thus, a general solution of the Klein–Gordon equation can be written as

an integral sum over all modes

φpx, tq “

8
ż

´8

dx
!

A`pkqeipkx´ω`tq
` A´pkqeipkx´ω´tq

)

, (1.25)
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The Dawning of Solitons 9

where ω˘ “ ˘
?
k2 ` 1. Evidently, this is a usual expansion in a Fourier series.

These states belong to the perturbative sector of the model, in the context of the

discrete Frenkel–Kontorova model (1.1) these linear excitations can be identified

with phonons.

The solution of the sine-Gordon equation is trivial if the field is in the vacuum

state, i.e., φ0 “ 2πn, n P Z. Since we are looking for a regular solution with finite

total energy, the field must approach the vacuum as x ˘ 8 and Bxφpx, tq Ñ 0 as

x Ñ ˘ 8. We also suppose that Btφpx, tq is bounded on both ends of the infinite

one-dimensional space.

However, the vacuum is infinitely degenerated and the corresponding vacua can

be different. For example, we can consider the asymptotic conditions φp´8q “ 0

and φp8q “ 2π. Then the field is not in the vacuum everywhere; it is interpolating

between these two vacuum values and the corresponding potential energy of the

configuration is no longer zero. Note that in that case the transition to the trivial

solution is not possible–the boundary conditions on the field are different for

these configurations and it would take an infinite amount of energy to overcome

the barrier between these two sectors.3

To find nontrivial solutions of the sine-Gordon equation (1.8) let us con-

sider the first-order equation (1.18). Evidently, for the case under consideration

Upφq “ p1´cosφq and the superpotential isW pφq “ ´4 cos φ
2 . Thus, the minimal

energy bound is saturated if

Bφ

Bx
“ ˘2 sin

φ

2
. (1.26)

Separating the variables, we arrive to

dx “ ˘
dpφ{2q

sinpφ{2q
. (1.27)

Let us consider the positive sign in the right-hand side of this equation. Then

the integration yields

x ´ x0 “ ln tan
φ

4
,

where x0 is the integration constant. Thus, we get the nontrivial solution to the

sine-Gordon model

φKpxq “ 4 arctan ex´x0 . (1.28)

This solution is referred to as the kink . It corresponds to the transition

between two neighboring vacua, as at x Ñ ´8 the field is taking the value

φp´8q “ 0 while at x Ñ 8 it approaches another vacuum value, φp8q “ 2π

(see Figure 1.1).

3 Strictly speaking, this energy is proportional to the volume of the 1-dim space L.
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Figure 1.2 The potential of the sine-Gordon model (left panel), the energy
density of the static kink, and the kink solution localized at x0 “ 2 (right
panel).

Obviously, taking the negative sign in the right-hand side of (1.27) we obtain

another solution, which interpolates between φp´8q “ 2π and φp8q “ 0, the

antikink

φK̄pxq “ 4 arctan e´px´x0q. (1.29)

Both kink and antikink are exponentially localized lumps of energy centered

around the x “ x0. Indeed, substitution of the static solutions (1.28) or (1.29)

into the integrand of (1.15) yields the energy-density distribution displayed in

Figure 1.2, right panel.

Epxq “
4

cosh2px ´ x0q
. (1.30)

The dimensionless energy of the static configuration, i.e., its mass, is finite,

M “

8
ż

´8

dxEpxq “ 8.

This solution is an example of a soliton, a spacially localized particle-like

configuration that is stable and, in many respects, behaves like a particle.

The kink state belongs to the non-perturbative sector of the sine-Gordon

model; it cannot be obtained via perturbative expansion in the vicinity of a

particular vacuum since it becomes infinitely heavy in the weak-coupling limit.

Furthermore, the kink solution is a topological soliton. We can introduce the

topological current

jμ “
1

2π
εμνB

νφ; B
μjμ “

1

2π
εμνB

μ
B
νφ ” 0, (1.31)
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The Dawning of Solitons 11

which is automatically conserved. Notably, it is not a Noether current, associated

with some symmetry of the model.4 Thus, the topological charge is

Q “
1

2π

8
ż

´8

dx
Bφ

Bx
“

1

2π
rφp8q ´ φp´8qs . (1.32)

The topological charge is an index that labels different sectors of the sine-Gordon

model. The kink configuration (1.28) corresponds to the sector with Q “ 1,

while the antikink solution (1.29) belongs to the sector with Q “ ´1. The trivial

vacuum solution is in the sector with Q “ 0. Note that in the framework of the

Frenkel–Kontorova model the kink solitons are representing dislocations in a one-

dimensional atomic chain. These solutions are important in solid-state physics

to model various plastic deformations.

In what follows we use the properties of symmetry of the sine-Gordon equa-

tion (1.8). The model is symmetric both with respect to the usual space-time

symmetries, i.e., translations x Ñ x`x0, t Ñ t` t0, reflections x Ñ ´x, t Ñ ´t,

and the Lorentz transformations (recall that we are using natural units)

x Ñ
x ´ vt

?
1 ´ v2

“ γpx ´ vtq; t Ñ
t ´ vx

?
1 ´ v2

“ γpt ´ vxq, (1.33)

where γ “ 1{
?
1 ´ v2 is the Lorentz factor, as usual.

The sine-Gordon model also enjoys another group of symmetries, which include

the reflections of the field φ Ñ ´φ and shifts between the vacua φ Ñ φ ` 2πn.

Thus, the moving solitons may be obtained by a Lorentz transformation of the

kink solution (1.28):

φKpx, tq “ 4 arctan exp pγpx ` x0 ` vtqq . (1.34)

Then we can also define the momentum of the moving configuration as

P “

8
ż

´8

dx T 0
1 “

8
ż

´8

dx BxφBtφ. (1.35)

Clearly, both the energy of the kink and its momentum conserve (cf. (1.14)).

Substitution of the solution (1.34) into the expression (1.35) yields the explicit

value of the momentum P “ 8v{
?
1 ´ v2.

4 However, in the quantum-field theory there is an exact equivalence between the
sine-Gordon model and the massive Thirring model [105]. This duality allows us to
identify the topological current of the quantum sine-Gordon model with dual Up1q

Noether current of the massive Thirring model.
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12 Sine-Gordon Model

1.2 Bäcklund Transformation and Other Solutions for the

Sine-Gordon Equation

The sine-Gordon equation (1.8) is a nonlinear hyperbolic partial differential equa-

tion, thus unlike the Klein-Gordon equation (1.22), a linear combination of two

solutions of the former equation is not a solution. However, the most remarkable

property of the sine-Gordon equation (1.8) is related to its symmetries. There is a

nice and very rare possibility to construct all solutions of it, both in perturbative

and non-perturbative sectors.

Before proceeding with discussion of the solutions of the sine-Gordon equation,

let us make a few mathematical comments. Historically, the sine-Gordon equation

arose from investigation of the geometry of isometries of surfaces with constant

negative Gaussian curvature contained in R
3 [62]. Now, we can introduce the

light-cone coordinates

τ “
1

2
px ` tq ; ρ “

1

2
px ´ tq , (1.36)

thus

Bx “
1

2
pBτ ` Bρq ; Bt “

1

2
pBτ ´ Bρq . (1.37)

Then the usual d’Alembert operator in 1 ` 1 dimensions can be written as

l “ B2
t ´ B2

x “ ´BτBρ. In the light-cone coordinates (1.36), the sine-Gordon

equation (1.8) becomes simple

φρτ “ sinφ. (1.38)

Note that the usual linear wave equation in this variables becomes φρτ “ 0.

On the other hand, we can consider a two-dimensional surface covered by these

coordinates (known as Tchebyshev nets; see, e.g., [335]) with the line element

(first fundamental form of the surface)

ds2 “ dτ2 ` dρ2 ` 2 cosφ dτdρ,

where φ is the angle between the asymptotic lines τ “ const, ρ “ const on the

surface embedded into Euclidean space R
3, which can be taken as parametric

curves.5 In other words, the coordinates ρ, θ correspond to the parametrization of

the surface by arc length along asymptotic lines. Then the corresponding second

fundamental form 2 sinφdτdρ is zero along the asymptotic directions and the

Gaussian curvature K satisfies the equation BτBρφ`K sinφ “ 0. Thus, the sine-

Gordon equation (1.38) in the light-cone coordinates (1.36), is the compatibility

equation between the first and second fundamental forms of a surface; it implies

that the Gaussian curvature of this pseudospherical surface is constant: K “ ´1.

5 In the original x, t coordinates this form can be written as

ds2 “ sin2
φ

2
dt2 ` cos2

φ

2
dx2.
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Bäcklund Transformation 13

Figure 1.3 Pseudospherical surfaces of Gaussian curvature K “ ´1, which
correspond to the kink solution (1.28) (upper plot), two-kink solution (1.49)
(bottom left), and breather solution (1.62) (bottom right). (Plots were
generated with the visualization program 3D-XplorMath).

The surface that corresponds to the kink configuration (1.28) is displayed in

Figure 1.3, upper plot.

The form (1.38) of the sine-Gordon equation is convenient to construct a

variety of solutions. Geometrically, these solutions can be obtained via a simple

geometrical transformation of pseudospherical surfaces with the same curvature

(see, e.g., [335]). Analytically, the statement is that one can construct a new

solution of the sine-Gordon equation, starting from a given solution, even the

trivial one, φ “ 0. This gives us an algorithm of generation of an infinite tower

of solitons for the sine-Gordon hierarchy. More generally, this nice possibility

is related to a special feature of (1.8), the sine-Gordon system is completely

integrable.

Roughly speaking, a classical Hamiltonian system is referred to as integrable

if it possesses infinitely many integrals of motion. In Section 1.3, we briefly

comment on this beautiful property; here we just note that the presence of

the soliton solutions in the spectrum is not directly related to integrability of

the model, though there many integrable systems that support various solitons.

The Bäcklund transformation for the sine-Gordon equation starts from the

observation that the second-order equation (1.8) can be represented in terms

of two first-order equations. Suppose that the function φ0pτ, ρq is a particular

solution of the sine-Gordon equation, i.e., BτBρφ0 “ sinφ0.
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14 Sine-Gordon Model

Let us now consider another function φ1pτ, ρq that satisfies the system of two

equations

Bτφ1 “ Bτφ0 ´ 2λ sin

ˆ

φ0 ` φ1

2

˙

,

Bρφ1 “ ´Bρφ0 `
2

λ
sin

ˆ

φ0 ´ φ1

2

˙

,

(1.39)

where λ is a parameter of the transformation.

Suppose there is the compatibility condition, which can be obtained by cross-

differentiating the function φ1, and the partial derivatives are commuting, i.e.,

BρBτφ1 “ BτBρφ1. (1.40)

Then, differentiating the first equation with respect to ρ and the second equation

with respect to τ , and making use of the original equations (1.39), we obtain

BρBτφ1 “ BρBτφ0 ´ 2 cos

ˆ

φ0 ` φ1

2

˙

sin

ˆ

φ0 ´ φ1

2

˙

“ BρBτφ0 ` sinφ0 ´ sinφ1.

(1.41)

Hence, if φ0 satisfies the sine-Gordon equation, the function φ1 also is a solution,

though not necessarily the same.

Indeed, let us begin from the trivial solution φ0 “ 0. Then the system of

equations (1.39) is reduced to

Bτφ1 “ ´2λ sinpφ1{2q; Bρφ1 “ ´2λ´1 sinpφ1{2q. (1.42)

Now, separating the variables, we get another solution, which can be easily

identified as the one-kink soliton (1.34):

φ1pτ, ρq “ 4 arctan exp
´

´λτ ´
ρ

λ
` δ

¯

, (1.43)

where δ is the integration constant.

Now we can fix the value of the parameters λ, δ. Indeed, recovering the original

variables x, t by comparing this solution with (1.34) we can see that δ � x0 and

´λτ ´
ρ

λ
“ ´

1

2

ˆ

λ `
1

λ

˙

x ´
1

2

ˆ

λ ´
1

λ

˙

t ”
x ` vt

?
1 ´ v2

.

Thus,

v “
1 ´ λ2

1 ` λ2
or λ “ ˘

c

1 ´ v

1 ` v
.

Note that we generated both the kink and antikink solutions.

It is convenient to write the one-kink solution in the form

φ1 “ 4 arctan eθ, θ “ ´

„

λ2 ` 1

2λ

ˆ

x `
λ2 ´ 1

λ2 ` 1
t

˙

` δ

j

. (1.44)
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We can now continue this process, i.e., substitute the new solution φ1pτ, ρq

(1.42) into the system of the Bäcklund equations (1.39) and integrate it to

get another soliton solution (presumably this procedure will give us a two-kink

solution), etc. However, at that step the straightforward integration becomes

rather involved, so there is another way around.

Indeed, a remarkable property of the Bäklund transformation (1.39) is that

the successive transformations with different choices of parameters λ1 and λ2

commute.6 In other words, performing two consequent transformations

φ0
λ1

ùñ φ
p1q

1

λ2
ùñ φ2

φ0
λ2

ùñ φ
p2q

1

λ1
ùñ φ2

as a first step we obtain two different one-kink solitons (1.42), and then we get

a new solution composing these solitons into the KK system of charge Q “ 2 as

a second step. Thus, we have four pairs of equations:

Bτφ0 ´ Bτφ
p1q

1 “ 2λ1 sin
φ0 ` φ

p1q

1

2
, Bρφ0 ` Bρφ

p1q

1 “
2

λ1
sin

φ0 ´ φ
p1q

1

2

Bτφ0 ´ Bτφ
p2q

1 “ 2λ2 sin
φ0 ` φ

p2q

1

2
, Bρφ0 ´ Bρφ

p2q

1 “
2

λ2
sin

φ0 ´ φ
p2q

1

2

Bτφ2 ´ Bτφ
p1q

1 “ ´2λ2 sin
φ

p1q

1 ` φ2

2
, Bρφ2 ` Bρφ

p1q

1 “
2

λ2
sin

φ
p1q

1 ´ φ2

2

Bτφ2 ´ Bτφ
p2q

1 “ ´2λ1 sin
φ

p2q

1 ` φ2

2
, Bρφ2 ` Bρφ

p2q

1 “
2

λ1
sin

φ
p2q

1 ´ φ2

2
.

Simple algebraic transformations allow us to eliminate the derivatives, thus in

both cases we obtain the same relation

λ1 sin
1

4

´

φ0 ` φ
p2q

1 ´ φ
p1q

1 ´ φ2

¯

“ λ2 sin
1

4

´

φ0 ` φ
p1q

1 ´ φ
p2q

1 ´ φ2

¯

. (1.45)

This finally yields the addition formula for the algebraic Bäcklund transforma-

tion:

tan
φ2 ´ φ0

4
“

λ1 ` λ2

λ1 ´ λ2
tan

φ
p2q

1 ´ φ
p1q

1

4
. (1.46)

Consequently, we can apply this algebraic relation to generate recursively new

solutions of the sine-Gordon model of higher degree, step by step. Note that

at each step the number of parameters of the solution increases. The one-kink

solution depends on two parameters, λ and δ, and for the two-kink configuration

we have four free parameters, λ1, λ2 and x
p1q

0 , x
p2q

0 , etc. Physically, taking different

values of those parameters we can specify positions, topological charges of the

constituents, and velocities.

6 More precisely, they commute for a special choice of the integration constants.
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Figure 1.4 Dynamics of the symmetric head-on KK collision for v “ 0.8 (1.47)
and the field of the symmetric two-kink configuration at λ1 “ ´λ2 “ 0.6 and
δ1 “ δ2 “ 0.

A particular example is the symmetric two-kink solution centered at the origin.

Let us take λ2 “ ´1{λ1, x
p1q

0 “ x
p2q

0 “ 0, i.e., v1 “ v2 “ v, and for the sake of

definiteness consider positive values of λ1. Then φ0 “ 0 and the addition formula

(1.46) yields

φ2 “ φKK “ 4 tan´1

ˆ

v sinh γx

cosh γvt

˙

, (1.47)

where v “ p1´λ2
1q{p1`λ2

1q. One can easily verify that the topological charge of

this configuration is

Q “
1

2π
rφ2p8q ´ φ2p´8qs “ 2,

as expected. Indeed, on the spacial infinity φKKp˘8, tq “ ˘2π and φ2p0, tq “ 0,

thus the field varies from ´2π to 0 along the negative half line, and from 0 to

2π along positive half line (see Figure 1.4, right panel).

Note that this configuration has constituent structure; it is not a function of

a single variable x ´ vt. The φKK system (1.49) consists of two kinks moving

with different velocities, however the solitons became individual only when they

are well separated. The constituent structure of the configuration (1.47) becomes

evident when we evaluate the corresponding energy and momentum of the field.

Indeed, substitution of the two-kink solution (1.47) into the definitions of the

energy (1.15) and momentum (1.35), gives

E “
8

a

1 ´ v21
`

8
a

1 ´ v22
; P “

8v1
a

1 ´ v21
´

8v2
a

1 ´ v22
.

Since the mass of the static kink in dimensionless variables is M0 “ 8, the

contribution of each component remains clearly individual for any moment

of time. Note that the solutions we obtain in such a way are not static; the

https://doi.org/10.1017/9781108555623.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108555623.003


Bäcklund Transformation 17

configuration (1.47) is ill defined in the limit v “ 0 and the constituents are

always doomed to move. In Figure 1.4 we display the entire process of the

collision of two kinks in the axis x, t.

Another particular example is the symmetric kink–antikink collision. Consid-

ering λ2 “ 1{λ1, x
p1q

0 “ x
p2q

0 “ 0 we get v1 “ ´v2 “ v, i.e., the soltons are

moving with equal and opposite velocity. In this case

φ2 “ φKK̄ “ 4 tan´1

ˆ

sinh γvt

v cosh γx

˙

, (1.48)

or

φKK̄ “ 4 tan´1

„

eγvt´ln v ´ e´γvt´ln v

eγx ` e´γx

j

.

The soliton solutions of the sine-Gordon model are bona fide solitons; the asymp-

totical structure of the two-kink configuration in the process of the collision is

different by the phase shift only. To find its value we have to compare the spacial

asymptotic of the initial configuration (1.48) at t “ ´8 with the final asymptotic

of infinitely separated scattered kinks at t “ 8.

Let us consider the solution (1.48) in the limit of very large negative time

t Ñ ´8, then expansion of the exponents yields the asymptotic form of the

initial configuration

φKK̄ « φK

„

x ` v

ˆ

t `
δt

2

˙

γ

j

` φK̄

„

x ´ v

ˆ

t ´
δt

2

˙

γ

j

,

where φK and φK̄ are the kink and antikink solutions (1.34), respectively. The

parameter δt “ 2 ln v
γv defines the shift of the position of scattered solitons; it is

actually a delay of the time experienced by a kink due to interaction with an

antikink. Indeed, in the remote future t Ñ 8 the solution (1.48) becomes

φKK̄ « φK

„

x ` v

ˆ

t ´
δt

2

˙

γ

j

` φK̄

„

x ´ v

ˆ

t `
δt

2

˙

γ

j

.

In other words, the scattering of the kinks in the sine-Gordon model is disper-

sionless.

To construct a general two-kinks solution of the sine-Gordon equation we have

to consider the one-kink solitons written in the form (1.44) with arbitrary values

of the parameters, i.e., φi “ 4 tan´1 eθi , i “ 1, 2. Then we can apply the addition

formula (1.46). The result of some algebraic manipulations is the two-soliton

solution

φ2 “ 4 tan´1

ˆ

λ1 ` λ2

λ1 ´ λ2

˙

eθ1 ´ eθ2

1 ` eθ1`θ2
. (1.49)

This formula actually contains information about the process of collision of

the kinks. The initial configuration φ2 at t “ ´8 consists of two infinitely

separated kinks that collide at t “ 0 and then become separated again. Clearly,
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Figure 1.5 The field of the kink–antikink configuration (1.48) at λ1 “ λ2 “ 0.4
and δ1 “ ´δ2 “ 5 before and after the head-on KK̄ collision for v “ 0.6.

all other degrees of freedom of the model do not contribute to this process and

production of the kink–antikink pairs in the sine-Gordon model is not allowed.

The remarkable point is that the radiation modes are not excited by the collision

of the kinks; they do not appear in the final state after the collision of the solitons.

Thus, the perturbative and non-perturbative sectors of the sine-Gordon model

are completely isolated from each other. Here we can see another manifestation

of the integrability of the model; it is completely solvable and all solutions can

be presented analytically in closed form.

One would naively expect that the collision of the kink and antikink at low

impact velocity would mean their annihilation into the trivial vacuum. However,

the integrability of the sine-Gordon model does not allow this to happen. Indeed,

though the configuration (1.48) belongs to the topologically trivial sector, the

collision between the kink and antikink is completely elastic. The final state after

collision in the remote future describes an infinitely separated kink and antikink.

The only difference from the central symmetric collision of the kinks is the flip of

the vacuum. While in the initial state the kink and antikink were interpolating

between the neighboring vacua 0 on both ends of the spacial infinite line and

´2π in the center of collision, in the final state they approach the vacuum 2π at

the center and φpx Ñ ˘8q “ 0. This scenario is displayed in Figure 1.5. Similar

to the collision of the kinks, the positions of the solitons are shifted by 2δ.

1.2.1 Excitations of the Kink and Interaction between the Solitons

It would be misleading to conclude that the kinks do not interact with each other;

there is always a force acting between the solitons. This force can be evaluated

when we consider the limit of the expression (1.47) with the kinks separated by

a finite large distance d. Then the asymptotic interaction energy can be found if

we consider an initial configuration

φpxq “ φKpx ` dq ` φKpx ´ dq ´ 2π, (1.50)
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Figure 1.6 The modified Pöschl–Teller potential of the linear excitations of
the sine-Gordon model.

where φKpxq is the one-kink solution (1.28). Then we can expand the corre-

sponding energy of the configuration in powers of 1{d and subtract the mass of

two infinitely separated kinks, Eintpdq “ EKKpdq ´ 2M0, where M0 “ 8. This

yields the interaction energy [319]

Eint “ 32e´2d. (1.51)

Evidently, it is the Yukawa-type interaction, and it is repulsive for the kinks and

attractive in the case of the kink–antikink pair.

Indeed, let us consider small excitations ηpx, tq about the sine-Gordon kink

(1.28), φKpxq ` ηpx, tq, where φKpxq “ 4 arctan pexq. Then, the equation that

describes these deviations from the kink profile can be easily derived from (1.8):

B2ηpx, tq

Bt2
´

B2ηpx, tq

Bx2
` ηpx, tq cosφKpxq “ 0. (1.52)

Now we can separate the variables: ηpx, tq “ ξpxqeiωt. After some simple alge-

bra we arrive at the linear, one-dimensional, Schrödinger-type equation on the

fluctuation eigenfunctions
ˆ

´
d2

dx2
` 1 ´

2

cosh2 x

˙

ξpxq “ ω2ξpxq. (1.53)

This equation is very well known. The corresponding Pöschl–Teller potential

(Figure 1.6) was proposed in 1933 to model diatomic molecules [326]7

B2Upφq

Bφ2

ˇ

ˇ

ˇ

ˇ

φ“φK

“ 1 ´
2

cosh2 x
. (1.54)

It turns out this potential possesses a remarkable property: it is reflectionless.

In other words, it is absolutely transparent for incoming waves with any energy.

7 This potential was first considered in 1930 by Epstein [130] and Eckart [127], who pointed
out its reflectionless character.
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20 Sine-Gordon Model

In order to see it we can solve the eigenvalue problem directly by reducing it to

the hypergeometric differential equation (see, e.g., [230]). However, for sake of

diversity here we follow another route [183].

Note that (1.53) can be written as

â:âξpxq “ ω2ξpxq, (1.55)

where we introduced the ladder operators

â:
“ ´

d

dx
` tanhx; â “

d

dx
` tanhx. (1.56)

We define the ground state ξ0 as the state annihilated by the operator â, i.e.,

âξ0 ”

ˆ

d

dx
` tanhx

˙

ξpxq “ 0. (1.57)

Up to a normalization factor, the solution to this equation is

ξ0pxq “
1

coshx
. (1.58)

This is the translation zero mode with zero eigenvalue ω0 “ 0. Indeed, an

excitation of this mode corresponds to the configuration

φKpxq Ñ φKpxq ` Cξ0pxq “ 4 arctan pexq `
C

coshx

“ φKpxq `
C

2

dφKpxq

dx
« φKpx ` C{2q,

(1.59)

where C is some number. Clearly, this is the kink solution translated by

δx “ C{2. Of course, the energy of the configuration remains unchanged by

this translation. On the other hand, appearance of the zero mode (1.58) in the

spectrum of fluctuations reflects the translation invariance of the sine-Gordon

model, which was violated by the localized field configuration (1.28).

We can now try to find another excited mode acting by the operator â: on

the ground state. However there is no other discrete level in the problem with

potential (1.53), thus only continuum modes appear in the spectrum.

Using the parametrization ξpxq “ fpxqeikx we can find these modes as the

solution of the corresponding differential equation on the function fpxq. After

some algebra we get

ξkpxq “ ptanhx ` ikqeikx ωk “

a

1 ` k2. (1.60)

It is noticeable that

âeikx ”

ˆ

d

dx
` tanhx

˙

eikx “ ξkpxq.

This is the plane wave propagating along the profile of the kink (the meson). The

mass of these excitations in dimensionless units is m “ 1. This result actually

agrees with our evaluation of the interaction potential between the kinks (1.51).
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Indeed, this force is mediated by the Yukawa interaction, which, for the large

separation R “ 2d between the solitions, is e´mR. Thus, there is a gap in the

energies 0 ă ω ă 1.

We can now find the asymptotic form of the excitations. In the remote past the

modes (1.60) are infinitely far away from the kink, thus ξp´8q “ p´1` ikqeikx,

while in the remote future they approach the asymptotic form ξp8q “ p1 ` ikq

eikx`δ. Therefore, there is no reflected wave and the additional phase shift

acquired by the incoming wave is

eiδk “
ik ` 1

ik ´ 1
, (1.61)

while the phase shift of the transmitted wave relative to the incident wave is

δk “ π ´ arctanp2k{pk2 ´ 1qq.

Finally, note that there are no negative eigenmodes with ω2 ă 0 in the

spectrum of fluctuations, thus the kink configuration is stable.

1.2.2 Breathers

We mentioned already that the kink–antikink pair cannot annihilate into a trivial

vacuum state. The reason for this unusual behavior is the integrability of the

model, which has an infinite number of integrals of motion. However, this pair

may form a bound state, which is another extremely interesting non-perturbative

solution of the sine-Gordon equation. It describes the tightly bounded kink and

antikink, which are coupled together and oscillating with a constant frequency.

This solution is known as a breather (see Figure 1.7).

In order to obtain this solution explicitly, we have to perform the analytical

continuation of the velocity parameter v Ñ
iω?
1´ω2 in the kink–antikink solution

(1.48). Then in the rest frame, we obtain

φ2 ” φω “ 4 tan´1

ˆ

?
1 ´ ω2

ω

sinωt

coshpx
?
1 ´ ω2q

˙

. (1.62)

By definition, the topological charge of this localized stable configuration is

zero. However, similar to the KK̄ system it cannot annihilate into a trivial

vacuum. An evident similarity of this configuration with the kink–antikink part

can be seen when we compare the Figure 1.5 and Figure 1.7, bottom panel. Since

the frequency ω remains a free parameter, there is a family of the breather soli-

tons interpolating between the small-amplitude quasi-phonon oscillations about

the trivial vacuum and the kink–antikink pair. Note that the solution (1.62)

corresponds to the stationary breather; evidently it can be boosted via the usual

Lorentz transformation.

Substituting the breather solution (1.62) into general formula for the energy

(1.15) after some calculations we get

Eω “ 16
a

1 ´ ω2, (1.63)
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Figure 1.7 The field of the breather solution (1.62) as a function of variables
x, t at ω “ 0.5 (upper plot) and the snapshot of the field of the breather at
ω “ 0.001, t “ 30 (bottom plot).

which is less than the energy of the kink–antikink pair for any nonzero values

of ω, thus the breather cannot decay.

Clearly, existence of the breathers sheds new light on the kink–antikink colli-

sion. We can consider it as a three-stage process. At the first step, the approach-

ing solitons form an intermediate, excited breather state, energy of which is above

the bound (1.63) for any nonzero impact velocity. Then this “quasi-breather”

starts to oscillate and in the half period its field approaches the neighboring

vacuum. Thus, at the final step the soliton–antisoliton pair is reborn.

Remember that the integrability of the model does not allow for any nontrivial

processes. Even the collision between the kink and the breather is completely

elastic. This composite configuration, which is another exact solution of the sine-

Gordon equation (1.8), can be considered a superposition of the corresponding

separated solitons moving toward the collision center.8 Numerical simulation

8 More precisely, such a configuration can be constructed by writing the three-soliton
kink–antikink–kink solution of the sine-Gordon equation in Hirota’s form [411] and
consequent complex conjugation of the corresponding parameter.
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Figure 1.8 Scattering of the kink on the breather: Contour plots of the scalar
field as a function of variables x, t at ω “ 0.5 (top panel) and the snapshots
of the field of the kink-breather configurations at t “ 50 and t “ 250 (bottom
panel)(Courtesy of Tomasz Romanczukiewicz).

shows that the outcome of the collision depends on the impact velocity. If the

initial kinetic energy of the kink is smaller than the energy of the breather,

the kink is elastically reflected from the breather with a small time delay in

agreement with quantity 2δ. If the kinetic energy of the kink exceeds the energy

of the breather, the elastic scattering of the kink on the breather results in the

passage of the kink through the breather with small displacement of the solitons

by the same amount, 2δ. The breather survives the passage being transferred

from the top vacuum 2πn to the bottom vacuum 2πpn ´ 1q. In Figure 1.8 we

display the results of direct numerical simulations and the profiles of the initial

and final configurations.

Discussing collisions of the solitons, remember that they possess some internal

structure and are not quite particle-like states. Particularly, at some moment

in time the central collision between the kink and antikink through the quasi-

breather intermediate state instantaneously results in a trivial vacuum state

when both solitons are losing their identity. Similarly, a collision between the

kink and the breather, which actually represents a strongly coupled kink–antikink

pair, may be treated as a process in which the incoming kink knocks out one of

the bounded components and replaces it in the recreated breather.
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1.3 Integrability: The Sine-Gordon Model

The idea of classical integrability is related to nice properties of some Hamilto-

nian systems in that they may support an infinite tower of independent integrals

of motion. More precisely, these systems are described by some set of nonlinear

differential equations that – at least in principle – can be solved analytically,

thus these systems are exactly solvable.

Unfortunately, there is no generic prescription that would allow us to identify

the integrable systems at first glance. One needs to work out a specific approach

to reveal integrability of each particular system under consideration.9

In this section, we discuss some general aspects of the concept of classical

integrability that are relevant to our discussion. Actually, our goal is to provide

an introduction, which is necessary to understand the role this beautiful idea

is playing in the discussion of solitons. There are many good reviews on this

subject that may give a thorough introduction to the basis of integrability (see,

e.g., [38, 125] and references therein). Here, we only comment on the basics of

integrability. In particular, for the sake of simplicity, we will not discuss here

very a powerful and mathematically refined approach to integrable systems, the

inverse scattering technique.

Given a Hamiltonian system, how does one find whether it is an integrable sys-

tem or not? How does one find these independent conserving charges explicitly,

especially taking into account that there any infinitely many of them?

Sadly, as mentioned above there is no general recipe; each particular system

must be treated differently. As a first step, let us clarify the definition of an inte-

gral of motion. Recall that in a classical Hamiltonian theory a (local) conserved

quantity Q is defined as a function of configuration space that is invariant with

respect to evolution in time, i.e.,

dQ

dt
“ tH,Qu “ 0, (1.64)

where H is the Hamiltonian of the system. In the field theory the Hamiltonian is

defined as a functional over the infinite-dimensional space of field configurations.

For example, in the sine-Gordon model we have (cf. (1.15))

Hrφs “

8
ż

´8

dx

„

1

2
Π2

`
1

2
pBxφq

2
` p1 ´ cosφq

j

, (1.65)

where the canonical momentum density is

Π “
δL

δ 9φ
“ Btφ. (1.66)

9 “Note that there is the Painlevé test of integrability of a system of dynamical equations
[316], based on the study of corresponding critical points. However, this algorithm is mainly
restricted to relatively simple low order systems in one spacial dimensions.”
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The functional derivative, which arrears here, is defined as

δL

δφpxq
“

BL

Bφ
´

B

Bx

BL

Bφx
`

B2

Bx2

BL

Bφxx
` . . . (1.67)

and

Bφpxq

Bφpyq
“ δpx ´ yq.

The generalization of the Poisson bracket of the functionals H and Q, which

preserves the antisymmetry and satisfies the Jacobi identity, is

tH,Qu “

8
ż

´8

dx
δH

δφ

B

Bx

δQ

δφ
, (1.68)

and the time evolution of the system is defined by the Hamiltonian equations of

motion

Π “ Btφ “ tφ,Hrφsu “
B

Bx

δH

δφ
. (1.69)

The usual Hamiltonian formalism for finite-dimensional systems can be recov-

ered if we expand the field φpx, tq in Fourier series, φpx, tq “
ř

fke
ikx. Substitut-

ing this expansion into (1.69) we can see that the quantities qk “ fk{k, pk “ f´k

and H “
i
2πH, for each Fourier mode satisfy the conventional equations

dqk
dt

“
BH
Bpk

;
dpk
dt

“ ´
BH
Bqk

, (1.70)

and the Poisson bracket (1.68) becomes

tH,Qu “
i

2π

8
ÿ

k“´8

k
BH

Bfk

BQ

Bf´k
. (1.71)

Evidently, the energy functional itself and the momentum P (1.35) are the

integrals of motion. However it is convenient to express these integrals via two

conserved quantities

I˘1 “

8
ż

´8

dx

„

1

2
pBtφ ˘ Bxφq

2
` p1 ´ cosφq

j

“

8
ż

´8

dx
“

2pB˘φq
2

` V pφq
‰

,

(1.72)

thus, H “
1
2 pI1 ` I´1q and P “

1
2 pI1 ´ I´1q.

The form of this structure suggests the following algorithm of construction of

integrals of motion. Let us consider two quantitiesX,Y , which are some functions

of the field φ and its derivatives. Suppose they satisfy the equation BtpX ´Y q “

BxpX ` Y q (cf. (1.14)) and impose the condition that the combination X ` Y
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approaches the same finite value on both ends of the spacial line. Then, integrat-

ing this equation over the space and changing the order of differentiation and

integration in the left-hand side, we get

d

dt

8
ż

´8

dxpX ´ Y q “ pX ` Y q

ˇ

ˇ

ˇ

ˇ

8

´8

“ 0, (1.73)

that is, the quantity I “
ş

dxpX´Y q is conserved. Evidently, in our consideration,

X “ 2pB˘φq2 and Y “ ´V rφs. Then we can continue our search for other

conserved quantities considering polynomials of higher degrees in derivatives.

For example, the next suitable pair of third degree is10

I˘3 “

8
ż

´8

dx

„

1

2
pB

2
˘φq

2
´

1

8
pB˘φq

4
` pB˘φq

2
pcosφq

j

. (1.74)

We can check directly that this quantity commutes with the Hamiltonian (1.65).

This procedure can be extended; however, it is a bit tedious to continue our search

for corresponding polynomials of higher degrees. Evidently, there is a general

formulation that allows us to find, at least in principle, all sets of conserved

quantities.

Now we briefly describe how this goal can be achieved. It is convenient to start

from the reformulation of the sine-Gordon model in terms of the Lax represen-

tation. The idea is that each integrable nonlinear system can be represented in

the form of the compatibility condition between two linear equations of a Lax

pair [264].

Let us consider two matrix-valued functions Aρ, Aτ of the light-cone

coordinates ρ, τ (1.36), which also depend on the auxiliary variable λ P C. This

parameter is referred to as the spectral parameter. Suppose these matrices satisfy

the system of two linear equations:

Bψ

Bρ
“ Aρψ;

Bψ

Bτ
“ Aτψ, (1.75)

where ψpρ, τq is an auxiliary column vector that is assumed to satisfy the com-

patibility condition similar to (1.40):

B2ψ

BρBτ
“

BAρ

Bτ
ψ ` Aρ

Bψ

Bτ
;

B2ψ

BτBρ
“

BAτ

Bρ
ψ ` Aτ

Bψ

Bρ
. (1.76)

Thus,

BτAρψ ` AρAτψ “ BρAτψ ` AτAρψ

for any function ψpρ, τq. In other words, we have a zero curvature condition

BτAρ ´ BρAτ “ rAτ , Aρs. (1.77)

10 There is no nontrivial solution of the second degree.
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This relation has a clear interpretation in terms of differential geometry, where

the equations pBρ ´Aρqψ “ 0 and pBτ ´Aτ qψ “ 0 describe the parallel transport

of a vector ψ in the ρ and τ directions, respectively. The matrices Aρ and Aτ

are referred to as the connection coefficients, thus the condition (1.77) defines

a connection one-form on a two-dimensional vector bundle over the τ, ρ plane:

dA “ Aρdρ ` Aτdτ . Then the zero curvature condition (1.77) means that the

parallel transport of a vector ψ from one point on the τ, ρ plane to another does

not depend on the path connecting these points.

Let

Aρ “ iλ

ˆ

1 0

0 ´1

˙

`
i

2

ˆ

0 φρ

φρ 0

˙

“ iλ ¨ σ3 `
i

2
φρ ¨ σ1

Aτ “
cosφ

4iλ

ˆ

1 0

0 ´1

˙

`
sinφ

4iλ

ˆ

0 ´i

i 0

˙

“
cosφ

4iλ
¨ σ3 `

sinφ

4iλ
¨ σ2,

(1.78)

where σi are the usual traceless, Hermitian Pauli matrices. Hence, the 2 ˆ 2

connection matrices Aρ, Aτ are taking values in the Lie algebra sup2q.

The zero curvature condition (1.77) then becomes

1

2i
psinφ ´ Bρτφq ¨ σ1 “ 0,

i.e., it is equivalent to the sine-Gordon equation on the function φpρ, τq [2].

Evidently, this correspondence holds for any value of the spectral parameter λ.

Since the matrices Aρ, Aτ are in the Lie algebra sup2q, there is a freedom in

their definition, which is related to the usual gauge transformations

Aρ Ñ Ãρ “ UAρU
´1

` BρUU´1;

Aτ Ñ Ãτ “ UAτU
´1

` BτUU´1,
(1.79)

where Upρ, τq is an arbitrary invertible SUp2q matrix. This transformation actu-

ally defines a symmetry of the equation of motion (1.8); it is an underlying

reason for the existence of an infinite set of integrals of motion in the sine-Gordon

system.

Note that, in a general case, in order to recover the original sine-Gordon

equation from the zero curvature condition imposed on the matrices Ãρ, Ãτ ,

we have to separate out the coefficients of powers of λ in the resulting matrix-

valued equation. Thus the gauge (1.78) is particularly convenient in the light-cone

coordinates ρ, τ .

Obviously, the Lax formulation does not depend on a particular choice of

the coordinates. In particular we can return to the usual coordinates px, tq and

instead of the Lax pair (1.78), consider another 2 ˆ 2 matrices

Ax “
i

4

ˆ

Btφ 2 sinhpa ` iφ{2q

2 sinhpa ´ iφ{2q ´Btφ

˙

;

At “
i

4

ˆ

Bxφ ´2 coshpa ` iφ{2q

´2 coshpa ´ iφ{2q ´Bxφ

˙

.

(1.80)
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Further, these matrices can be expanded in the sup2q basis as

Ax “
i

4

ˆ

λ ´
1

λ

˙

cosφ ¨ σ1 ´
i

4

ˆ

λ `
1

λ

˙

sinφ ¨ σ2 `
i

4
Btφ ¨ σ3

At “ ´
i

4

ˆ

λ `
1

λ

˙

cosφ ¨ σ1 `
i

4

ˆ

λ ´
1

λ

˙

sinφ ¨ σ2 `
i

4
Bxφ ¨ σ3,

(1.81)

where we restore the conventional spectral parameter λ “ ea. Then the zero

curvature condition in the px, tq variables after some straightforward calculations

yields

rBx ´ Ax, Bt ´ Ats ” BtAx ´ BxAt ` rAx, Ats

“
i

4
psinφ ` Bttφ ´ Bxxφq ¨ σ3 “ 0.

(1.82)

Thus, we recover the original sine-Gordon equation (1.8) again.

Let us consider the zero curvature condition in more detail. The covariant

derivative Dx “ Bx ´ Ax corresponds to the parallel transport of a vector ψ in

x-direction. We can describe it in terms of the space-time dependent transfer

matrix ψ1 “ Tψ, where the transported vector ψ1 satisfies the equation Dxψ
1 ”

pBx ´ Axqψ1 “ 0, i.e.,

pBx ´ AxqT px, y, tq “ 0, (1.83)

with the initial condition T px, xq “ I. This equation has a general solution

written as a path-ordered exponent

T px1, x2, tq “ P exp

»

–

x2
ż

x1

dxAxpx, tq

fi

fl . (1.84)

Similarly, a translation in t-direction is given by the exponent

Spt1, t2, xq “ P exp

»

–

t2
ż

t1

dtAtpx, tq

fi

fl . (1.85)

Then the zero curvature condition, which is also the condition of commutativity

of covariant derivatives, means that a parallel transport along a closed contour

gives the identity:11

W “ P exp

„
¿

dxμAμpx, tq

j

“ I.

11 In quantum field theory such a contour is known as the Wilson loop. This gauge-invariant
observable plays a central role in the lattice formulation of the gauge theory (see, e.g.,
[112]).
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Indeed, let us introduce the monodromy matrix Lptq “ T p´8,8, tq and

consider a closed path in the x, t plane. Due to the flatness condition, the

Wilson loop is invariant under continuous deformations of the path contour. In

particular, we can consider a rectangular path along the contour, which starts at

x “ ´8 at t “ t1, and then consequently goes through the points p8, t1q, p8, t2q,

p´8, t2q, and back to p´8, t1q.12 Further, taking into account the explicit form

of the Lax pair (1.81) and asymptotic behavior of the field φpxq, which yields

Atp8, tq “ Atp´8, tq, we can define the asymptotic matrix

M ” Atp8q “ ´
i

4

ˆ

λ ´
1

λ

˙

¨ σ1.

For such a contour we have the Wilson loop composed of four transfer matrices

as

S´1
pt1, t2,8qL´1

pt2qSpt1, t2,8qLpt1q

“ ept1´t2qML´1
pt2qept2´t1qMLpt1q “ I.

(1.86)

This formula can be rewritten as

ept2´t1qMLpt1;λqept1´t2qM
“ Lpt2;λq. (1.87)

Evidently, when we consider an infinitesimally small time interval δt “ t2´t1 Ñ 0

this relation yields the Lax equation

dLpλq

dt
“ rMpλq, Lpλqs. (1.88)

Therefore the trace of the matrix W pλq does not depend on time. By con-

struction we obtain the set of integrals of motion, for example,

dTrpLnq

dt
“ nTrpLn´1 9Lq “ nTrpLn´1

rM,Lsq “ 0

for an arbitrary n.

More generally, expanding the trace TrLpλq in powers of λ or λ´1 we can

now get an infinite number of conserved quantities that are all coefficients of the

corresponding Laurent series expansion.

Explicitly, we have to make use of the gauge freedom to cast the Lax conection

in the diagonal form (see, e.g., [38]). First, we make use of the gauge transfor-

mation (1.79) with the matrix e
i
4φ¨σ3 . Then the matrix of the Lax connection

Ax defined by (1.81) transforms to

Ax Ñ Ãx “
i

4

„ˆ

λ cosφ ´
1

λ

˙

¨ σ1 ´ λ sinφ ¨ σ2 ` pBtφ ` Bxφq ¨ σ3

j

.

12 This procedure becomes much more simple in the sine-Gordon model with periodic
boundary conditions.
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The connection Ãx lies in the sup2q algebra, Ãx “ Aa
x ¨ σa, thus it is always

possible to transform it to the Abelian gauge by means of a suitable rotation

UpAa
x ¨ σa

qU´1
` BxUU´1

“ fpxq ¨ σ3, . (1.89)

Then the transformed monodromy matrix becomes diagonal, i.e.,

L Ñ L̃ “ exp

»

–

8
ż

´8

dxfpxqσ3

fi

fl, (1.90)

where the function fpxq can be found from the corresponding equation of Ricatti

type. In other words, the transformed monodromy matrix is now given by a

plain integral without path ordering. Finally, the conserved charges I`n are

the coefficients in the expansion of TrpLpλqq “ 2 cos
ş

dxfpxq in powers of λ´1.

The complementary set of charges I´n can be constructed via the conjugated

transformation e´ i
4φ¨σ3 and consequent diagonalization of the Lax connection.

1.3.1 CP
1 Sine-Gordon Model

An interesting generalization of the sine-Gordon model is related to mapping

of the scalar field φpx, tq onto the complex-valued massive field w “ w1 ` iw2,

which is a function of the space-time coordinates, i.e., it is a map from R
1`1 to

CP
1

– S2. We consider the following Lagrangian

L “
BμwBμw̄ ´ m2|w|2

p1 ` |w|2q2
, (1.91)

which defines the CP
1 model with a mass term. This theory was suggested by

Lund and Regge to model dynamics of vortices in a superfluid in an external field

[278]. Note that in general we do not restrict the field w to the surface of unit

sphere, though the scale invariance of the CP
1 model always makes it possible.

The energy density of the model is

E “
|Btw|2 ` |Bxw|2 ` m2|w|2

p1 ` |w|2q2
. (1.92)

Let us consider the case m2 ‰ 0. There are two vacua that correspond to w “ 0

and w “ ˘8, thus one can expect there to be a soliton solution that interpolates

between these vacua.

Clearly, the model is invariant with respect to Up1q transformations w Ñ eiδw,

thus the corresponding conserving Noether current is

Jμ “
ipwBμw̄ ´ w̄Bμwq

p1 ` |w|2q2
, (1.93)
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and there is a conserved quantity

Q “ i

8
ż

´8

dx
wB0w̄ ´ w̄B0w

p1 ` |w|2q2
. (1.94)

The relation of this model with the sine-Gordon theory can be set if we map the

field w to the circle via stereographic projection

w “ tan

ˆ

φ

4

˙

eiθ,

where φ and θ are angular parameters on the sphere S2. Then the Lagrangian

(1.91) becomes

L “
1

16
BμφB

μφ ´
1

4
pm2

´ Bμθ B
μθq sin2

φ

2
. (1.95)

In other words, we arrive at the model that describes two nonlinearly coupled

real scalar fields, φpx, tq and θpx, tq, and the mass of field φ depends on the

derivatives of the massless component θpx, tq.

Evidently, if the effective mass term is positive, i.e., for m2 ą Bμθ Bμθ, the

model has an infinite number of degenerate vacua at φ0 “ 2πn, n P Z is similar

to the sine-Gordon model (1.9).

The analogue of the expression for the energy bound (1.21) can be easily

written in the form

E “
1

16

8
ż

´8

dx

«

pBtφq
2

`

ˆ

Bxφ ´ 2
a

m2 ` pBtθq2 ` pBxθq2 sin
φ

2

˙2

` 4pBxφq
a

m2 ` pBtθq2 ` pBxθq2 sin
φ

2

ff

ě
m

4

8
ż

´8

dx pBxφq sin
φ

2
“

m

4

ż

dφ sin
φ

2
.

(1.96)

One can see that the energy is minimal for the static configurations with a

spacial independent component θ, i.e., if Btφ “ Btθ “ Bxθ “ 0. Then the bound

is attained if

Bφ

Bx
“ ˘ 2m sin

φ

2
,

which is just the Bogomolny bound (1.26) with explicit mass parameter m.

Clearly, the solution is the kink (1.28) φpxq “ 4 arctan e
?
m2px´x0q or

wpxq “ e
?
m2px´x0q.
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In this case the Up1q charge of the configuration (1.94) is zero. Note that the

normalization of the model is taken in such a way that the mass of the static

kink is equal to one.

There is another interesting solution of the model (1.95), the Q-kink [202,

393]. In order to construct this solution we consider time-periodic component

θptq “ ωt. Then, for the static field φpxq the minimal energy configuration is

given by the oscillating field

wpx, tq “ eiωte
?
m2´ω2px´x0q. (1.97)

The name Q-kink appears because the oscillating solution carries the Up1q

charge. Indeed, one can see that the stationary rotations of the field wpx, tq with

a constant frequency ω yields the conserved charge

Q “
w

2

8
ż

´8

dx sin2
φ

2
“

ω
?
m2 ´ ω2

, (1.98)

thus, the model admits spinning kink solutions, which are also referred to as

Q-kinks [268, 393]. In Chapter 6 we consider similar charged localized field

configurations, both in 1 ` 1 dimensions and in higher-dimensional models, so

we will not discuss here the details of Q-kinks. Just note that the energy of the

spinning configuration is

E “
m2

?
m2 ´ ω2

.

Hence the solution becomes unstable as ω ą m. In such a case it decays into the

burst of radiation of scalar quanta.
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