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A CANCELLATION THEOREM FOR MODULES OVER 
THE GROUP C*-ALGEBRAS OF CERTAIN 

NILPOTENT LIE GROUPS 

ALBERT JEU-LIANG SHEU 

Introduction. In recent years, there has been a rapid growth of the 
AT-theory of C*-algebras. From a certain point of view, C*-algebras can be 
treated as "non-commutative topological spaces", while finitely generated 
projective modules over them can be thought of as "non-commutative 
vector bundles". The AT-theory of C*-algebras [30] then generalizes the 
classical AT-theory of topological spaces [1]. In particular, the ^Q-group of 
a unital C*-algebra A is the group "generated" by (or more precisely, the 
Grothendieck group of) the commutative semigroup of stable isomor­
phism classes of finitely generated projective modules over A with direct 
summation as the binary operation. The semigroup gives an order 
structure on K0(A) and is usually called the positive cone in K0(A). 

Around 1980, the work of Pimsner and Voiculescu [18] and of A. 
Connes [4] provided effective ways to compute the ^-groups of 
C*-algebras. Then the classification of finitely generated projective 
modules over certain unital C*-algebras up to stable isomorphism could 
be done by computing their A^-groups as ordered groups. Later on, 
inspired by A. Connes's development of non-commutative differential 
geometry on finitely generated projective modules [2], the deeper question 
of classifying such modules up to isomorphism and hence the so-called 
cancellation question were raised (cf. [21] ). 

Although the cancellation question was studied and solved to some 
extent for commutative C*-algebras by topologists in terms of vector 
bundles a long time ago [11], not much has been done for non-
commutative C*-algebras, except for Marc A. Rieffel's work [21], in which 
he completely solved the cancellation question for irrational rotation 
C*-algebras (the "non-commutative tori") and classified all finitely 
generated projective modules over such algebras up to isomorphism. 

In this paper, we are going to study the same question for the group 
C*-algebras of nilpotent Lie groups. In the main result, a classical 
cancellation theorem for vector bundles over spheres is generalized to the 
case of finitely generated projective modules over certain "non-commuta­
tive spheres", namely, the unitized group C*-algebras C*(G) of G in the 
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class T of nilpotent Lie groups of the form R' X 3 a R, in terms of 
the dimension of the fixed-point subspace of the coadjoint space L(G)*. 
In particular, it follows that there are groups G of arbitrarily high 
dimension such that the cancellation law holds for projections over 
C*(G) + . This is in contrast to the case of abelian G: the cancellation law is 
known to fail for vector bundles over spheres of high dimensions. In 
addition, the finitely generated projective modules over C*((7)+ with G a 
simply connected nilpotent Lie group of dimension no greater than four 
are classified up to isomorphism. 

We shall express C*(G) for G in T as an extension of C*(F) by 
(C{)(R

J~]) © (C0(R
d~]) ) e K for some F in T of lower dimension, where 

d + 1 is the dimension of G, and we shall compute the element 
corresponding to this extension in the relevant KK -group. This extends 
results of Fell, Kasparov, and Voiculescu for the Heisenberg Lie group. 

Some new properties of connected stable rank and topological stable 
rank of C*-algebras are derived, and the topological stable rank of C^(G) 
for G in T is computed; this generalizes a result of Rieffel for the 
Heisenberg Lie group. The connected stable rank of C*(G) for G in T is 
estimated. 

Finally, two new stable ranks related to the cancellation problem are 
introduced, and for C*(G) with G in T, one of these is computed, and the 
other estimated. 

Acknowledgement. I am grateful to my thesis advisor, Professor Marc A. 
Rieffel, for his patience, constant support and warm encouragement. I am 
also indebted to him for the suggestion of this topic, and for many helpful 
comments. I would also like to thank Professor Claude Schochet, 
Professor George A. Elliott, and the referee for reading the manuscript 
and making helpful comments. 

1. Cancellation theorems for vector bundles over spheres. In this section, 
we shall give the topological background needed in this work, and an easy 
account of the cancellation property for vector bundles [9, 12, 28]. 

Before we go into the main topic of this section, we shall introduce some 
notations and clarify the meaning of "cancellation." 

Let A be a C*-algebra. We shall denote the n X n matrix algebra over A 
by Mn(A ); this is also a C*-algebra, and in particular a normed space. For 

x in Mn(A) and y in Mm(A), we shall denote the element ( n ) of 
M„ + JA) by x®y. VU yf 

We shall denote the topological subspace of all self-adjoint idem-
potents in Mn(A) by Proj„(y4), and regard Proj„(,4) as a subspace of 
Proj„ + ,(/l), by the obvious embedding that sends p in Vxo]n(A) to p © 0 
in Proj„ f X{A). Let P ro j^ / l ) be the union of all Proj„(y4)'s, or more 
precisely, let P ro j^ / l ) be the direct limit of the increasing sequence of 
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topological space Proj/7(^). We shall call any element of Pvoj^iA) a 
projection over A. From now on, it is understood that P r o j ^ ^ ) is filtered 
by Proj,7(v4)'s, and p in Projn(A) will always be identified with p ® 0 in 
Projw+w(v4) for any n and m in N. 

Similarly, we shall denote the open subset of all invertible (or unitary) 
elements in Mn(A) for any unital C*-algebra A by GLn{A) (or Un(A) ), 
and view GLf1(A) (or Un(A) ) as a subspace of GLn+x(A) (or Un+X(A)) by 
the embedding that sends u in GLn(A) (or Un(A) ) to u © 1 in GLn+x(A) 
(or Un + l(A)). Let GLJ^A) (or UJ^A)) be the direct limit of the 
increasing sequence of topological spaces GLn(A) (or Un(A)). We shall 
call any element of GL^A) (or U^A) ) an invertible (or unitary) over A. 
From now on, it is understood that GL^A) (or U^A) ) is filtered by 
GLn(Ays (or Uf1(AYs) and u in GLn(A) (or /7 /?(^)) will always be 
identified with u © Im in GLn+m(A ) (or Un+m{A ) ) for any A and m, where 
Im is the identity matrix in Mm{A). 

When A is unital, we shall call two projections p and q in P r o j ^ ^ ) 
unitarily equivalent (or, simply, equivalent) over A, and write/? ~ q, if 
there exists u in U^A ) such that upu* = q. 

By definition, a finitely generated projective module over a unital 
C*-algebra A is a direct summand of the free ^-module A" for some n. Let 
p be an element of Proj/?(,4). Then we get 

A" =p(A")(B(\ -p)(A") 

and p(An) is a finitely generated projective module over A. It is well 
known that the map sending p in Proj,7(/4) to the finitely generated 
projective module p(An) over A induces a one-to-one correspondence 
between the unitary equivalence classes of projections over A and the 
isomorphism classes of finitely generated projective modules over A. Thus, 
in this work, we shall freely identify finitely generated projective modules 
over A with projections over A. 

In doing AT-theory for locally compact spaces, we shall usually consider 
the category of "pointed" topological spaces. Similarly, in defining the 
AT-groups of a (not necessarily unital) C*-algebra, we shall consider A^", 
the algebra A with an identity adjoined. In other words, it is convenient to 
consider the category of "pointed" (or augmented) C*-algebras, that is, 
pairs (v4, Q) of a unital algebra A and an algebra homomorphism Q from 
A onto C. (Note that A = (ker(g) ) + in this case.) 

Let (A, Q) be a "pointed" C*-algebra. Then for any projection/? over A, 
say in Proj/?(^4), we may define the dimension dim(/?) of/? with respect to 
Q to be the rank of the projection Q(p) in Proj^(C). 

By Swan's theorem [29], there is a one-to-one correspondence between 
the isomorphism classes of vector bundles over a compact space X and the 
isomorphism classes of finitely generated projective modules over C(X). 
So we may identify a projection over C(X) with a vector bundle over X. 
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Now a "pointed" commutative C*-algebra (C(X), Q) corresponds to a 
"pointed" space (X, x0) in the sense that Q(f) = f(x0) for a l l / i n C(X). 
Under the above identifications, the dimension of a projection over 
C(X) with respect to Q is equal to the dimension of the fibre of the 
corresponding vector bundle over X at xiy When X is not connected, this 
example shows that the dimension of a projection over C(X) depends 
upon the choice of Q (or, equivalently, of x0). 

In this work, we shall always view A+ as the "pointed" C*-algebra 
(A+, QA) where QA is the canonical quotient map from A^ to C, sending 
the adjoined identity in A+ to 1 in C. The dimension of a projection over 
A is understood to be with respect to QA. 

Two projectionsp and q over a unital A are called stably equivalent over 
A, if the corresponding finitely generated projective modules are stably 
isomorphic, or, equivalently, if p © Ik and q © Ik are equivalent over A for 
some k, where Ik is the identity of Mk(A). 

1.1. Definition. Let A be any C*-algebra. We shall say that the 
cancellation law holds for projections of dimension ~ n over A , if any two 
stably equivalent (over A + ) projectionsp and q of dimension â n over A 
are equivalent (over A ), that is, if p © Ik ~ q® Ik implies p ~ q for all 
projections p and q of dimension ^ n over A . 

Now we recall a classical theorem (cf. Theorem 1.5 of chapter 8 of [11] ) 
about the cancellation law for vector bundles, hence for finitely generated 
projective modules over commutative C*-algebras by Swan's theorem [29]. 
Since the main result of this paper is based on a generalization of this 
theorem in the case of the d-sphere S , we shall present a proof (different 
from the one in [11] ), both for the sake of completeness and for 
illustration of the idea used later in Sections 4, 5 and 6. By abuse of 
language, we shall denote the trivial /7-dimensional complex vector bundle 
over a space simply by C" 

1.2. THEOREM [11]. If the compact space X is a CW complex of dimension 
d, and if E and F are complex vector bundles over X of {constant) dimen­
sion ^ d/2 such that E © C ^ F © C" for some n, then E — F. That is, the 
cancellation law holds for projections of dimension = d/2 over C(X). 

Proof We shall prove this by induction. Clearly the theorem holds for 
any O-dimensional compact space X. Let us assume that it holds for X a 
CW complex of dimension = d — 1. 

For simplicity, we assume that X is gotten from its (d — l)-skeleton 
Xd_x by attaching only one d-ce\\ 

D = {JC in Rd: \x\ ^ 1}, 

say X = Xd_x Uj- D. (The general case follows from the same 
argument.) 

Let 
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/)+ = {x in IT: |JC| ^ 1/2}, D_ = D - D+ and 

S = 8Z)+ = 3D_ = S^"1. 

By the induction hypothesis, 

E\x — F\x -

Since A^_, is a deformation retract of F = A^.j Uy Z)_, we have 
£ | r ~ F | y [1]. Clearly £|D and F\D are the trivial vector bundle C over 
D + since D+ is contractible, where /: is the dimension of E of F. So £" and 
F are gotten by gluing D+ X Ck to M = E\Y = F\Y along S through some 
clutching maps g and h from 5* X Ck to A/|5. Since X is compact, we may 
endow M with a metric and assume that g and /z are isometric. Then g~xh 
determines an element [g~lh] in *ird_x(Uk(C)). Similarly, E © Cn and 
F © C7 are gotten from clutching maps g © i and h © /' where i is the 
identity map on the trivial bundle Cn over S. It is routine to check that 
E ffi C" ~ F © C1 implies that 

[g _ 1 /z ]©/„ = [(g®i)-\h(Bi)] = 0 i n ^ _ 1 ( f / A . + / I ( C ) ) . 

It is well known that the map 

induced by inclusion of U (C) into £/+ 1(C) is an isomorphism if 
4 ^ (/? + l)/2. Thus [ g - ^ ] = 0 in 77J_1(c/A(C)) since £ ^ d/2. 
Again, it is routine to check that [g~lh] = 0 implies that E ~ F. 

The above proof applied to the case X = Sd+] shows that the 
cancellation law holds for all complex vector bundles over Sd+l if, and 
only if, the map 

^ ( C / „ ( C ) ) - ^ ( £ / „ + 1(C)) 

is injective for all n in N. So by the known data about TTj(Un(C) ) for d = 3 
[28] and the facts that 

*2m(Um(Q ) = Z//W! 

(due to R. Bott), 

7r4m+,(£/2m(C)) = Z/2 

[32], and 

hm^(t/„(C)) = ^ V + I ) 
—>« 

is always torsion free, we get the following corollary. Let [/] denote the 
integral part of t in R. 
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1.3 COROLLARY. (1) The cancellation law holds for complex vector bundles 
of dimension = [ (d ~ l)/2] + 1 (i.e., of dimension = dIT) over Sc. 

(2) The cancellation law holds for all complex vector bundles over Sc if 
d ~ 4, but fails if d = 1m + 3 or 4m + 2 for some m in N. 

Remark. It is believed that the cancellation law always fails for vector 
bundles over Sd with d ^ 5. 

2. Group C*-algebras of certain nilpotent Lie groups. In this work, we 
are mainly concerned with the nilpotent Lie groups in the class I\ which 
is defined to be the collection of all nilpotent Lie groups of the form 
R x l a R, that is, the semi-direct product of the abelian group R^ with R 
through an action a of R on R . Since every simply connected nilpotent (or 
even solvable) Lie group can be gotten by taking a finite number of 
semi-direct products with R, that is, can be written as 

( . . . ( (Rrf x a , R) x a ; R ) X a j . . . ) x a < R 

for some actions al9 a2, . . . , a„, this work can be considered as a first 
attempt to study the cancellation property for more general nilpotent Lie 
groups. 

It is well known that the group C*-algebra [17] of a semi-direct product 
N X 3 a H is equal to the crossed product C*(N) Xa H where the //-action 
a on C*(N) is induced by the //-action a on N. Indeed, the group 
C*-algebra C*(RJ X 3 a R) of the nilpotent Lie group RJ x i a R is equal 
to 

C*(R^) Xa R = C0(R
d) XA R 

where à is the induced action of R on (RJ)* ~ RJ, that is, 

(à(t)(yx,...,yd\ (xx,...,xd)) 

= ((y\>-->yd)> a(t)(xh...,xd)) 

for all (yx, . . . 9yd) in (RJ)* - RJ and (JC,, . . . , xd) in Rd. 
In order to understand the structure of C*(R > < a R) better, it is 

helpful to know certain general facts about the representation theory of 
nilpotent Lie groups. The main reference for this is [14]. (See also [19].) 
Kirillov classified the irreducible representations of any nilpotent Lie 
group G. Let us recall some facts from Kirillov's theory. 

Any Lie group G has an adjoint action on its Lie algebra L(G), denoted 
by 

Ad:G-> Aut(L(G)) 

[10], which in turn induces a coadjoint action of G on the dual of L(G), 
denoted by 

coAd:G -» Iso(L(G)*). 
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The orbits of the coadjoint action of G in L(G)* are called coadjoint 
orbits. 

2.1. THEOREM [14]. The equivalence classes of irreducible unitary 
representations of a given connected simply connected nilpotent Lie group G 
are in one-to-one correspondence with the coadjoint orbits of G. 

2.2. THEOREM [14]. Given a connected simply connected nilpotent Lie 
group G, there are polynomial Junctions /?0, px, . . . ,pk on L(G)*, invariant 
under the coadjoint action of G, such that the dense open subset 

S = {x in L(G)*:p0(x) * 0} 

of L(G)* is foliated by the coadjoint orbits of the form 

{x in L(G)*:pt(x) = cl for i = / , . . . , k) 

with cl in R. 

2.3. Definition [14]. The coadjoint orbits contained in the set S defined 
in Theorem 2.2 are called coadjoint orbits in general position. 

2.4. THEOREM [14]. Every coadjoint orbit is even dimensional. 

2.5. THEOREM [14, 19]. Let G be a connected simply connected nilpotent 
Lie group. If S' is a coadjoint invariant subset of S in L(G)* with Euclid­
ean measure zero, then the Plancherel measure on G is supported on 
(S — S')/coAd and hence the direct integral of the irreducible representa­
tions corresponding to the orbits in S — S' is a faithful representation of 
C*(G). 

For nilpotent Lie groups G of the form R > < a R, the orbit method of 
Kirillov can be simplified. Instead of working with the full coadjoint 
action of G on L(C7)*, we can work with just the action of the second 
factor R on the dual of the first factor (R^)* ~ R ,̂ by Mackey's theory 
[16]. 

Before going further, we need to analyze the structure of the Lie algebra 
of G = Rd X a R. Recall that a is a group homomorphism from R to the 
group GLj(R) of linear isomorphisms on R . Let 

in Md(K). 

Then 
oo 

a(t) = Exp(/r> = 2 (fTn)/(n\). 

Since G is nilpotent, under a suitable change of basis for R , we get T 
strictly upper triangular and a(t) upper triangular with entries in the 
diagonal equal to 1. More precisely, since 7^ = 0 for some TV, the Jordan 
canonical form of T is strictly upper triangular. 

T = — a 
rii 
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Now we assume that G = R >< f t R is non-abelian, or equivalently a is 
non-trivial, that is, a is not the constant map sending each / to the identity 
element of GLd(R). In this case, the matrix T cannot be zero and hence has 
a non-zero entry above the main diagonal. So by a change of basis, we may 
assume T- = 0 for / =j and Tn = 1 with respect to the basis {ex, . . . , ecJ] 
of Rd. Then since 

a(t) = Exp(tT) = 1 + tT + (\/2\)t2T2 + . . . , 

we have «(0 / ; equal to 0 if / > j , to 1 if / = j \ and to a polynomial ^y(0 if 
i < y ; in particular we have oc(t)]2 = t. In other words, we have a(t)e} = ex 

and a(i)e2 = tej + e2> while for 3 ^i /*^i d, we have 

7 - 1 

«(0^/ = £; + 2 AvOK-
7 = 1 

Let/ , , . . . , / / be the dual basis of e,, . . . , ^ in (RJ)* — RJ Then by the 
definition of the action «, a(t) is the transpose a(/)* of «(/), and so 

«(0(^i/, + . . . + ^ /y ) 
d 

- yj\ + ((Vi + J ^ ) / + 2 ?,(*, j>i , . . . , ^ ) / > 
/ = 3 

where 

/ - I 

?,-(/, >>,,••• , ^ ) = >>,-+ 2 ^-A/(0 for / = 3, 4, . . . , d. 
j = \ 

Let us state and prove a fact about crossed products of C*-algebras 
with groups. Recall that a group homomorphism a from a locally compact 
group G to the automorphism group Aut(v4) of a C* -algebra A is called a 
strongly continuous G-action on A if for all x in A the map sending g in G 
to (a(g))(x) in y4 is continuous (in norm). For any given strongly 
continuous G-action a on A, we may construct the crossed product 
A XaG. 

2.6. THEOREM. Let G be a locally compact group and a be a strongly 
continuous G-action on a C*-algebra A. If J is an a-invariant closed ideal oj 
A, then the following sequence is exact 

0-^JXaG^AXaG
7^ (A/J) Xa G -> 0, 

where 1: J —» A is the inclusion map and TT: A —* A/J is the quotient map. 

Proof. (1) In order to prove exactness at (A/J) Xa G, we need only show 
that 7r*(A Xa G) is dense in (A/J) Xa G, since the image of a 
homomorphism of C*-algebras is always closed [17]. Hence we only need 
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to show that every element in CC(G, A/J), the (v4 A/)-valued com­
pactly supported continuous functions on G, can be approximated by 
77*(Ct.(G, A) ). Using a partition of unity, we can easily prove this fact. 

(2) In order to show exactness at / Xa G, we need to prove that i* is 
injective. Recall that for each covariant representation (<£, p) of the 
dynamical system (/, G, a), we have a representation <J> Xa p of J Xa G 
such that 

( (* xa p)(f) xo = fc <Hf(g) XPteXÔ ) * 

for all / in CC(G, J) and £ in the Hilbert space of the representation <f> 
and p. And there is a covariant representation (<£', p') of the dynamical 
system (J, G, a) with <f>' non-degenerate such that <f>' Xa p' is a faithful 
representation of J Xa G (cf. 7.6.4 of [17] ). 

Since <j>' is non-degenerate, we may extend <f>' to a representation <J>" of >1 
by setting 

4>"(a) = strong-limA 4>'(aux) 

for a in A and {wx)x a n approximate identity for / (cf. 2.10.4 of [6] ). We 
claim that (<#>", p') is a covariant representation of (A, G, a). Indeed 

P(g)<t>"(a)p(g)-] = 4>"«g)(a)), 

since 

strong-limx <j>'(a(g)(ux) ) = id 

( [a(g)(ux) } x is also an approximate identity for / , and <i>' is non-
degenerate). 

Clearly 

0J>" xa P) ° L* = *' x « P-

Hence t* must be injective because <£' Xa p is injective. 
(3) In order to prove exactness at A Xa G, we need only show that 

Ker(77*) is contained in Im^*), since 

(TT* O t*)(Cc(G, / ) ) = 0 

and so TT̂  O t* = 0. By (2) above, we may regard J Xa G as an ideal 
of A Xa G since CC(G, J) is clearly an ideal of CC(G, A). Let 8 be a 
faithful representation of A Xa G/J Xa G, lifting to a representation 8' of 
A Xa G. Since every representation of A Xa G comes from a covariant 
representation of (A, G, a), we may assume that 8' = cj> Xa p for some 
covariant representation ($, p) of (A, G, a). 

Since 

0 = 8\J Xa G) = (<t> Xa p)(J Xa G), 

we get <j>(J) = 0, and hence <j> gives rise to a representation \p of A/J such 
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that \p o 77 = <f>. It is easy to see that (\p, p) is a covariant representation of 
(AI7, G, a), and that 

(* Xa p) O 77* = cj> Xa p = 8' 

is a representation of 4̂ Xa G with kernel equal to J Xa G. So Ker(77*) is 
contained in J Xa G = lm(t^). 

Remark. (1) The above theorem was proved for the case G = R in [4]. 
(2) The idea of the above proof is buried somewhere in [8]. 

Now let us return to the nilpotent Lie group G = Rc x 3 a R, with a 
non-trivial. We shall denote the linear span of f2, . . . ,fd in (RJ)* ~ Rd 

by W and the complement (R^)* — W by V. Then both W and V are 
invariant under the action a. Therefore by Theorem 2.6, we get an exact 
sequence of C* -algebras 

0 - ^ C 0 ( K ) X A R ^ C 0 ( R J ) X . R 

= C ( G ) - > C 0 ( » 0 X A R ^ O . 

Since ex is in the center of G, the quotient group G/Re] is isomorphic to 
R</-i > < ^ R w h e r e t h e R_ a c t i o n p o n 

Rd-\ _ R ^ / R ^ ~ Re2 + Re3 + . . . + R ^ 

is gotten from a in a natural way. In fact, the infinitesimal generator of the 
action ft, namely 

dt 

is gotten from T by deleting the first column and the first row, and 
similarly /}(/) is gotten from a(t) in the same way for all / in R. Clearly we 
may identify the dual of 

Rd/Rex ~ Re2 + Re3 + . . . + Red 

with 

W = R/2 + R/3 + . . . + Rfd 

in an obvious way by regarding f2, / 3 , . . . ,fd as the dual basis of e2, 
e3, . . . , ej. Since /?(/) is the transpose of fi(t) and a(t) is the transpose of 
«(/), we get J3(t) from a(/) by deleting the first column and row, hence 
jS(t) = à(t)\w under the above identification of the dual of R^/R^ 
with W. 

Let F = Rd~] Xp R. (Note that F is a quotient of G, not a subgroup of 
G.) Then 

C*(F) = CoCR^1) XA R - C0(»0 Xâ R-
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We remark that /? may be trivial, in which case F is abelian and hence 
isomorphic to R^ , so C*(F) ~ C0(R

d). But in any case, F is in the 
class r . 

Now we analyze the crossed product C0(K) X* R, where 

V= { ( ^ . . . j ^ i n R l j , ^ 0 } 

is the complement Rd - W of W in Rd ~ (RJ)*. Since 

a(t)(y]9 ...,yd) = (>>,, tyx + >'2, q3(t, yl9 . . . , ^ ) , 

and, for j ^ ^ 0, we have 

1(̂ 1 + J2I ~> °°as kl ~^ °°> 

each a-orbit in F is an algebraic curve expanding to infinity and the 
isotropy subgroup of each (y]9 . . . ,yd) in F i s the trivial subgroup {0}. 

We claim that the union X of 

* + = { (y } , y 2 , • • • ,yd)
in *d\y\ > ° a n d ^2 = °} 

and 

x- = ( 0 ^ - ^ • • • >y<i)in Rd\y\ < ° mdyi = °} 
is a transversal to the orbits in V. In fact, we have a map <J> from F to X, 
sending ( j j , . . . ,yd) to 

which is a submersion of V onto X with the inverse image of each point in 
X being its a-orbit. Indeed, we have <j> o 1 = id^, where t is the inclusion 
map from Xinto V, by a straight computation. It is also easy to check that 
y and <t>(y) are in the same a-orbit 

(<Ky) = « ( - j y j ' i ) -J7) 

for all j ; in V, and that if (j>(y) ¥= <j>(y') for>> and y in V, then>> a n d / are 
not in the same a-orbit. 

Thus X is the orbit space V/a(R) and F is a foliated manifold with the 
a-orbits as leaves; moreover the foliation on V comes from submersion of 
V onto X. So either by Corollary 15 of [8] or by Connes's theory 
of C*-algebras of foliations [3], we get 

C0(V) X A R - C0(X) ® K ~ C0(X+) ® K 0 C0(X_) ® K 

where K is the albegra of compact operators on a separable Hilbert space. 
Since X_ and X_ are homeomorphic to R , we have 

C0(X+) ® K ~ C0(X_) ® K - C0(R J _ 1) ® K. 

Summarizing the above discussion, we get 
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2.7. T H E O R E M . For any non -abelian G = Rd X f t R in T (that is, a 

non-trivial), there are a (possibly abelian) group F in T, which is the quotient 
group of G by a \-dimensional central subgroup, and an exact sequence of 
C*-algebras 

0 ^ D - D + e Z ) _ ^ C*(G) - ^ C*(F) -> 0, 

where 

D+ ~ Z)_ ~ C 0 ( R J _ 1 ) ® K 

and rr is induced by the quotient map from G to F. Thus C*(G) is an 
extension of C*(F) by 

( C o ( R J _ 1 ) e C o ( R J - 1 ) ) 0 K . 

Remark. (1) This theorem generalizes the well-known description of the 
group C*-algebra of the (3-dimensional) Heisenberg Lie group as an 
extension of C0(R2) by C0(R - {0} ) ® K [7, 15]. 

(2) For general nilpotent Lie groups, it is still possible to describe C*(G) 
as a sequence of extensions by algebras of the form C0(X) ® K. But we 
shall not pursue this matter here. 

The a-orbits in (R )* ~ R are exactly the intersections of the coadjoint 
orbits in L(G)* ~ R J + 1 with R J , since coAd(R^) acts on ( R J ) * ~ RJ 

trivially (R is abelian). Either by invoking Kirillov's description of orbits 
of the first kind and the second kind with respect to a codimension one Lie 
subalgebra, or by making computat ions directly, we can conclude that 
the coadjoint orbits are either the products of 1-dimensional a-orbits 
in R with R, or single points. In particular, the open subset V X R in 
R ~ L(G)* is composed of 2-dimensional coadjoint orbits of the form 
(1-dimensional a-orbit in V) X R. This dense open subset of orbits is 
co-null for Euclidean measure. Hence, by Theorem 2.5, the group 
C*-algebra C*(G) is contained in Ch(X) ® K; that is, the elements of 
C*(G) can be realized as bounded continuous K-valued functions on X. 
However, the boundary behaviour of such functions around 

{ (0, 0, y3, . . . ,yd) | j / 3 , . . . , ^ are in R} 

is still unclear. (Cf. Theorem 5.3.) 
Summarizing the above, we get 

2.8. P R O P O S I T I O N . Let G and F be as in 2.7. Then the short exact 
sequence 

0 -> C0(X) ® K -> C*(G) -> C*(F) -> 0 

is an essential extension. In other words, C*(G) may be considered as a 
subalgebra of Ch(X) ® K, containing C0(X) ® K as an ideal. 
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Now we introduce an invariant of Lie groups, which, for groups in F, is 
closely related to the cancellation property for modules over the group 
C*-algebra and to various notions of stable rank of this C*-algebra, as 
explained later in Section 3. 

2.9. Definition. For any Lie group (7, we define r(G) to be 
dim( (L(G)*)7), that is, the dimension of the fixed point subspace of 
L(G)* under the coadjoint action of G. 

2.10. PROPOSITION. Let G and F be as in 2.7. Then 

dim(F) - dim(G) - 1 and r(F) = r(G). 

Proof. Since Fis the quotient of G by a 1-dimensional central subgroup, 
we have dim(F) = dim(G) — 1. 

Because F contains only 1-dimensional a-orbits, we know that all the 
zero-dimensional a-orbits in R are contained in W and, from the proof 

A 

of Theorem 2.7, they are exactly the zero-dimensional /?-orbits for 
F = R X^R. Moreover, from the proof of Proposition 2.8, we know 
that the set of zero-dimensional coadjoint orbits of G is the product of the 
set of zero-dimensional a-orbits with R. So 

r{G) = dim( {y in (RJ)* ~ Rd\à(t)(y) = y for all t in R} X R) 

= dim( {y in W\$(t)(y) = y for all tin R} X R) = r(F). 

Remark. (1) In a sense, Theorem 2.7 combined with Proposition 2.10 
allows us to use induction on dim(G) for G in T, in order to prove various 
properties of C*(G). 

(2) The group F in 2.7 could be abelian, and in that case, 

r(G) = r(F) = dim(F). 

(3) The only G in T with r(G) = 1 is R [26]. 

2.11. PROPOSITION. Given n = m = 2, we can always find G in T with 
dim(<7) = n and r(G) = m. 

Proof. Taking any strictly upper triangular T in M/J_1(C), we may 
define 

a(t) = Exp(tT) for / in R 

and set 

G = R r l x i t t R , 

which is in F. Then a(t) = Exp(/T*) and 

{y in R"~]\à(t)y = y for all t in R} 

= {y in R ' ^ ' l r * ^ ) = 0} = Ker(7*). 

https://doi.org/10.4153/CJM-1987-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-018-7


378 ALBERT JEU-LIANG SHEU 

So 

r(G) = dim(Ker(7*) X R) = dim(Ker(r*) ) + 1. 

Pick T in MW_,(C) such that 

T(yx, . . . ,.>/„_,) = (ynv ym + x, . . . ,>>„_„ 0, . . . , 0). 

Then 

dim(Ker(T*)) = m ~ 1. 

And the G gotten from this T has 

r(G) = (m — 1) + 1 = m and dim(G) = n. 

Remark. Note that for each m greater than 1, we have infinitely many 
G in T with r(G) = m, and the dimension of G can be arbitrarily 
high. However, for each m in N, there are only finitely many G in T with 
dim(G) ^ m, since each G in I\ say 

G = RJ X 3 D 

is determined by the Jordan canonical form of —a 
dt 

(up to a permuta­

tion of the blocks in the main diagonal) and the entries of Jordan 
canonical forms are either 0 or 1. 

Before we close this section, we shall discuss a special kind of group 
automorphism on non-abelian G's in T, which will be needed later in 
Section 5 to prove the main theorem (Theorem 5.4) of this work and to 
compute the element of 

KK\C*(F), C 0 ( R J _ 1 ) 0 C0(R
J~l) ) 

corresponding to the extension gotten in Theorem 2.7. (For definitions 
and results of AX-groups and extensions, see [13, 23].) 

Let G = R* x 3 a R be non-abelian in T. Since 

a(t)( — x) = -a(t)(x) for all x in RJ and t in R, 

we get a well-defined group automorphism hG of period two on G by 
sending, (x, /) in R x 3 a R to ( — x, t). Then hG induces an automorphism 
C*(hG) of C^(G\ which sends / in CC(G) t o / o hG in CC(G). Since 

(fo hG)(x, i) = / ( - j c , /) for all (x, /) in G, 

we see that, under the isomorphism 

C*(G) - C*(Rd) Xa R - C0( (RJ)*) XA R, 

C*(/z6) can be identified with the automorphism on C0( (R'')*) X5 R 
gotten by sending _y in (R'')* ~ R'' to —y and sending t in R to /. 
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Since Vand Win (RJ)* ~ Rd are invariant under the map sendingjy to 
—y, the map C*(hG) restricted to D ~ C0(X) ® K gives an automorphism 
of D. Moreover, since (y, 0, y3, . . . ,yd) is sent to (—y, 0, — j>3, . . . , —yd) 
under Ac, the orbit spaces X+ and X_ are interchanged under /zG. So 
C*(hG) sends Z> + to D_ and vice versa. From the fact that h2

G = idG, we 
even get 

C*(hG)\D_ =(C*(hG)\D+)-1. 

So we may identify Z)+ with Z)_ under C*(hG) and then identify them 
w - i with C0(Ir ') 

automorphism of 
K. In this way, we may identify C*(hG) \D with the 

W - l J - K (C0(R"_1) ® K) 0 (C0(R t f_ l) ® K) 

sending ( / + , / _ ) to ( / _ , / + ) . 
Summarizing, we get 

2.12. PROPOSITION. For non-abelian G in T, //zere zs #/? automorphism 
h of C*(G) such that under suitable identification of D+ and D_ with 

></-h C0(R^ ') ® K, w /ztfve the following commutative diagram 

(C0(R ) ® K) 0 (C0(R" ') ® K) ~ D +»C*(G) 

W - K 

(ïi) 
r 

(C0(R*_1) ® K) S (QCR^ 1 ) ® K) D- +C*(G) 

3. Topological and connected stable ranks of C*(G) for G in T. In this 
section, we shall recall some facts about topological stable rank and 
connected stable rank, invented by Marc A. Rieffel [20], we shall derive a 
few useful facts about stable ranks, and we shall compute the stable ranks 
of C*(G) for G in T. We shall also introduce and study two new stable 
ranks, which will be used in Section 5 to describe the cancellation 
property. 

3.1. Definition [20]. Let A be a unital C*-algebra. The set Lgn(A) of left 
unimodular n-rows is defined to be { (ax, . . . , an) in An\ax, . . . , an generate 
A as a left ideal in A }. Similarly Rgn(A) is defined to be { (ax, . . . , an) 
in An\ax, . . . , an generate A as a right ideal in A }. 

So (ax an) is in Lgn(A) (or Rgn(A)) if and only if there exist 

a„b„ 
bn in A such that bxax + . . . -f- bnan = 1 (or axbx + 

1). 
+ 

3.2. Definition [20]. The topological stable rank tsr(A) of a unital 
C*-algebra is the least integer n in N such that Lgn(A) in dense in A". 

https://doi.org/10.4153/CJM-1987-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-018-7


380 ALBERT JEU-LIANG SHEU 

For unital A, we have tsr(A) = tsr(A ). Thus for a general C*-algebra 
A, we may define the topological stable rank tsr(v4) of A to be tsr(A+). 

3.3. Definition [20]. The connected stable rank csr(^l) of a unital 
C*-algebra A is the least integer n in N such that for all k ^ n, we have 
GLk(A)°, the connected component of the identity in GLk(A), acting 
transitively on Lgk(A). 

For unital A, we have csr(v4) = csr(A+). Thus for a general C*-algebra 
A, we may define the connected stable rank csr(A) of A to be csr(y4 ). 

3.4. THEOREM [20]. (1) For a compact space X, we have 

tsr(C(X)) = [dim(*)/2] + 1. 

(2) For any C*-algebra A, we have tsr(.4 ® K) equal to 1 if tsr(A) = 1 
and equal to 2 if tsr(A ) = 2. 

3.5. THEOREM [20]. For any C*-algebra A, we have 

csr(^l) g tsr(,4) 4- 1. 

3.6. PROPOSITION [20]. If A is a unital C*-algebra, then csr(A ) is equal to 
the least integer n in N such that Lgk(A) is connected for all k ^ n. 

3.7. THEOREM [20]. If J is a closed ideal of a C*-algebra A, then 

max{tsr(7), tsr(A/J) } ^ tsv(A) 

ë max{tsr(/), tsr(A/J), csr(A/J) }. 

3.8. THEOREM [20]. If A is unital and csr(v4) = n, then the canoni­
cal homomorphism from GLfl_](A) to GLn(A)/GLn(A)°, sending x in 
GLn_](A) to the coset (x © Y)GLn(A)°, is surjective. In particular, the 
canonical homomorphism from GLcsr(^A^_x{A) to KX{A) is surjective. 

As an example, we shall compute the stable ranks of C0(R^). Before 
doing that, we shall give a topological interpretation of csr(C(X) ) for a 
compact space X. 

Note that 

Lgn(C(X)) = (C - {0})x 

= {f\f is a continuous map from X to C'7 — {0} }. 

Since S2n~] is a deformation retract of C" — (0), we get 

[X,C ~ {0}] = [X S ,2 ' ,_1], 

the (2/7 — l)-th cohomotopy group of X. By the definition of csr(C(X) ), 
we have csr(C(X) ) = n if, and only if, for all k ^ n the topological space 
Lgk(C(X) ) is connected. But 
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7T0(Lgk(C(X) ) ) = *r0( (C
k - {0} f) = [*, Ck - {0} ] 

= [X,S2k~1]. 

So csr(C(X) ) = n if, and only if, [X, S2k~]] is trivial for all k â n. 

Example. (1) By Theorem 3.4, we have 

tsr(C(Sd)) = [d/2] + 1. 

From the classical results of homotopy theory and the above interpreta­
tion of csr(C(X) ), we get csr(C(Sd) ) equal to 2 if d = 1, equal to 1 if 
d = 2, and equal to [ (d + l)/2] + 1 if J ^ 3. In fact, we have 

[S\ S2k~]] = <nx(S
2k~x) 

equal to Z if /: = 1 and equal to 0 if k = 2, while 

[S2, S2k~l] = ir2(S
2k~l) = 0 for all k in N. 

So we get 

csrCCXS1)) = 2 and csr(C(S2) ) = 1. 

It is well known that 77-,z(S
/7_1) equals Z2 if n â 4 and equals Z if « = 3, 

while 7rw(5w) = Z for all « in N (cf. Section 21 of [28] ). So for d ^ 3, we 
get 

[SJ, S2k~l] = ird(S
2k~l) 

equal to 0 if 2/c — 1 > d and not equal to 0 if 2k — 1 is d or J — 1. 
Hence 

csr (C(^) ) = [(</+ l)/2] + 1 for J ^ 3. 

(2) From 3.4, we get tsr(C(T2) ) = 2 where T2 is the 2-torus. By 
Theorem 3.5, we have 

csr(C(T2) ) ^ 3. 

But it can be shown that 

[T2, S2k~]] = 0 if k â 2 and [T2, S1] ^ 0, 

by elementary arguments from homotopy theory. So 

csr(C(T2) ) = 2. 

(More generally, we have 

c^CiT1)) = [(d + l)/2] + 1 

for any d-torus with J in N.) 

Remark. (1) Since C0(R) is a quotient of C0(R
2) and 

csr(C0(R)) = csr(C(S1)) = 2 > 1 = csr(C(S2) ) = csr(C0(R2) ), 
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we find that max{csr(7), csr(A/J) } = csr(A ) does not hold in general for 
closed ideals J of A. However, we do have the following analogue, 
for connected stable rank, of half of Theorem 3.7. 

(2) If X is a contractible compact space, then 

csr(C(X)) = 1, 

while 

tsr(C(X)) = [dim(X)/2] + 1. 

This simple observation tells us that csr(^) can be much smaller than 
tsv(A ) in general. For example, we have 

isv(C(Bd) ) = [d/2] + 1 

while c s r (C(^ ) ) = 1 for the closed unit ball Bd in Rd. 

3.9. THEOREM. If J is a closed ideal of a C*-algebra A, then 

csx(A) ^ max{csr(/), csr(A/J) }. 

Proof Since csr(A) = csr(^4+), we may assume that A is unital. 
Let n be the maximum of csr(J) and csr(^4/J). With elements of Lgk(A ) 

considered as column vectors and elements of GLk(A) considered as k 
by k matrices over A, we have GLk(A) acting on Lgk(A) by left 
multiplication. 

What we want to show is that for all k ^ n and any (ax, . . . , ak) in 
Lgk(A), there is some W in GLk(A)° such that 

W'(al9...,ak) = ( 1 , 0 , . . . , 0). 

Let 77 be the quotient map from A to A/J. Given k = n and (ax, . . . , ak) 
in Lgk(A), since n i^ csx(A/J), we can find T in GLk(A/J)° such that 

T • (Tria,), . . . , 7r(ak) ) = (1, 0, . . . , 0) in {A/J)k. 

( (77-(<2j), . . . , ir(ak) ) is in Lgk(A/J) since 

# l M û l ) + . . . + TT(bk)7T(ak) = 1 

if bxax + . . . + bkak = 1 for bu . .., bk in A ) 
Since Tis in GLk(A/J)°, we can find S in GLk(A)° such that ^(S) = T 

(cf. [30] ). Thus 

^ S - ( f l „ . . . , ^ ) - ( 1 , 0 , . . . , 0 ) ) = ( 0 , . . . , 0 ) ; 

that is, 

S • (ax, . . . , ak) = (1 -f X], x2, • • • , xk) 

for some jt, in J. 
We claim that (1 + JCJ, x2, . . . , xk) is in Lgk(J

 + ) . In fact, since 
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(1 + x „ . . .,xA.) = S • (tf,,.. .,ak) 

is in Lgk(A), there are 6,, . . . , 6A in A such that 

6,(1 + x,) + 62x2 + . . . + 6AxA = 1. 

So 6, = 1 — 6,x, — 62x2 — . . . — 6AxA is in J +. Let {wA} be an 
approximate identity for J. Then 6,(1 + x,) + b2(uxx2) + . . . + bk(uxxk) 
approaches 

6,(1 H- X,) + b2x2 + . . . + bkxk = 1 

as X goes to infinity. Hence for À large enough, we get 6,(1 + x,) H-
(b2ux)x2 + . . . + (bkux)xk close to 1, hence invertible i n / 4 . Let 6 i n / 4 be 
the inverse of 6,(1 -f x,) + (b2ux)x2 + . . . + (bkux)xk. Then we get 

(66,)(1 + x,) + (bb2ux)x2 + . . . + (6VA)xA = 1. 

Since 66,, bb2ux, . . . , 66AwA are all i n / + , we find that (1 4- x,, x2, . . . , xA) 
is indeed in Lgk(J

 + ) . 
Now since k = n ^ csr(J ), there is some Sf in GLk(J )° such that 

•S" • (1 + x,, x2, . . . ,xA.) = (1, 0, . . . , 0 ) . 

Let W = S' • S, which is in GLk(A)°. Then 

W-(au...,ak) = S' -(S-(au...,ak)) 

= Sf • (1 + x,, x2, . . . , xA) = (1, 0, . . . , 0). 

Remark. The above proof works if A is a Banach algebra and / is a 
closed ideal of A with an approximate identity. 

The following theorem is an analogue, for connected stable rank, of 
3.4(2). Before we state and prove it, we need to recall some properties of 
GLk(A)° and Lgk(A). For unital A, the subset Lgk(A) of A is open, and 
two elements of Lgk(A) are in the same connected component (that is, 
they are connected by a path in Lgk(A ) ) if, and only if, there is some T in 
GLk(A)° sending one to the other. The map sending (a, , . . . ,<3A) to 
(tf|, . . . , «•_!, bal + 0-, a-+1, . . . , ak) with /' ¥= j and 6 in ^ is an operator 
in GLk(A)° (it is an elementary row operation). Also the map sending 
(a,, . . . , ak) to (a,, . . . , fl/_i, 6^, #, + ,, . . . , tfA), with 6 in (7L,(v4)°, is in 
GLk(A)°. 

3.10. THEOREM, i w any C*-algebra A, we have csx(A ® K) i 2. 

Proof. By Theorems 3.4 and 3.5, we have 

csr(^ ® K) ^ tsr(^ ® K) + 1 ^ 3. 

So we only need to show that GL2((A ® K) + )° acts transitively on 
Lg2((A®K) + ) . 
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When A is unital, the proof is easier, but we shall just consider the 
general case. 

Let (X + x, fi + y) be in Lg2( (A ® K) + ) with X, /i in C and x, y 
in A ® K. We need to show that (X 4- x, \x + j/) is connected to (1, 0) in 
Lg2( (A ® K) + ). It is clear that either X ¥= 0 or fi ¥* 0, since ^ ® K is a 
proper ideal of (A ® K) + . Clearly we can find T in GL2(C)° = GL2(C), 
which is regarded as a subgroup of GL2( (A ® K) + )°, such that 

r-(A,/x) = (1,0), 

and hence such that 

T - (X 4- x, /i + J ) = (1 + * ' , / ) 

for some x' and y in ,4 ® K. 
Thus we only need to show that every (1 + x, y) in Lg2( (A ® K) ) is 

connected to (1, 0). Consider yl ® K as filtrated by Mn{A)'s in the 
canonical way, that is, identifying w in Mn(A) with w © 0 in A ® K where 
0 is the zero matrix of infinite size. Since Lg2( (A ® K) + ) is open in 
( (/4 ® K) ) , we can approximate x and y by a and 6 in Mn(A) 
respectively, for some large n, so closely that (1 + a, b) is connected to 
(1 + x , j ) i n L g 2 ( 0 4 ® K ) + ). 

Let c, J be in Mn(A) and s, / be in C such that 

(s + c)(l + Û) + (f + J)fe = 1. 

Pick any v in Mn(A ). By an elementary row operation, it is easy to see that 
(1 + a, b) is connected in Lg2( (A ® K) + ) to 

0 - ( S S)-U + o S)0-(S S))-(S S)) 
= (l + f « 0 ) ( * °)) 

V \ 0 0 / ' \v(s + c)(\ + a) 0 / / ' 
where 0 is the zero matrix in Mn(A ). Since 

Vv(/ + d) 0 / 

is in GL|( {A 0 K) + )°, we get, by the remark before this theorem, that 

V + \ 0 0 / ' V1 + \v(/ + d) o))\v(s + c)(\ + a) 0 / / 

is connected to 

°\ ( 
>(s + c)(\ 

d + (a ° H b °)) 
V V0 0 / ' \v(s + c)(l + a) 0 / / ' 

where the former is equal to 
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fi + H)( b °)) 
I VO 0 / ' \v(s + c)(l + a) + v(t + d)b 0 / / 

- ( • - (su)-es)) -
Now by another elementary row operation, we find that 

(> + ( s 2 M ! 2 ) ) 
is connected to 

- ( > - ( " o " S)-(t S)) 
in Lg2((A 0 K ) + ) . 

Since Mn(A) is a C*-algebra, it has an approximate identity. So we 
choose v in Mn(A) such that a — av is close to 0 and 

1 
(a - av 0\ 
\ 0 0 / 

sits in GLX((A ® K) + )°. 
Let w, be a path in GL,( (A ® K) + ) such that 

w0 = 1 + 1 n n and w, = 1. V o o / 

Then clearly 

( - C 2)) 

is in Lg2( (A 0 K) + ) for all /, and 

is connected to 

(•«) 
inLg2((/ l ®K) + ). 

By an elementary row operation, it is clear that 

(<-es)) 
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is connected to (1, 0) in Lg2( (A 0 K) ). 
Summarizing the above discussion, we get that every (1 4- x, y) 

in Lg2((A 0 K) + ) is connected to (1, 0) in Lg2((A 0 K) + ). So 
Lg2( (A 0 K) + ) is connected and hence 

csr((A 0 K) + ) ë 2. 

Remark. (1) Combining Theorems 3.8 and 3.10, we get a well-known 
fact, namely that every element of KX((A 0 K)+) ( = KX(A)) is 
represented by a unitary element in (A 0 K) + , since the canonical map 
from UX((A® K) + ) to Kx( {A 0 K) + ) is surjective (cf. [5] ). 

(2) Let n be a non-negative integer. Then csr(C0(R") 0 K) equals 1 if n is 
even and equals 2 if n is odd. In particular, we have 

csr(K) = 1 and csr(C()(R) 0 K) = 2 

although 

tsr(C0(R) ) = 1 = tsr(C0(R) 0 K) 

by 3.4 (cf. [26] ). 
(3) If X is a contractible space (or a disjoint union of finitely many 

contractible compact spaces), then 

csv(C(X) 0 K) = 1 [26]. 

We are going to prove another theorem about connected stable rank, 
namely Theorem 3.17, but we need a few lemmas before we can prove 
it. 

In what follows, we shall denote an element (a}, . . . , an) of An by a 
and bxax -f . . . -f bnan by (b|a) for elements b and a of A". We shall also 
denote |a,| + \a2\ + . . . + \an\ by |a|. 

3.11. LEMMA. TWO elements a and ar are connected by a path a(r) in 
Lgn(A ) (or Rgn(A ) ) with a = a(0) and a' = a(X)if, and only if, there is a 
path Tt in GLU(A )° such that T{) = ln and Tt • a = a(0 (or a • Tt = a(t) )for 
all t in [0, 1]. 

Proof. Since [0, 1] is compact, the lemma follows easily from the 
following assertion: 

For all a in Lgn(A), there is a small neighborhood U of a in A'1 and a 
continuous map T from U to GLn(A)° such that 

T(x) a = x for all x in U and T(a) = In. 

In fact, we may fix an element b in An such that (b|a) = 1 and define 
S(\) to be the operator in Mn(A) sending c in A" to 

(x - a) • (b|c) = ( (x, - a,) • (b|c), . . . , (xn - an) • (b|c) ). 

Then since 
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| (x - a) • (b|c) | â |x - a| • | (b|c) | ^ |x - a| • |c| • M 

where 

M = sup{ |Z>,|: i = 1, 2, . . . , « } , 

we get 

|S(x) | ^ M • |x - a|. 

So for x in a suitably small neighborhood U of a, the norm of S(\) is small 
and hence the operator T(x) = S(x) + In is in GLn(A)°. Notice that 

T(x) • a = S(x) • a + a = (x - a) • (b|a) + a 

= (x — a) + a = x. 

This proves the assertion, and the lemma follows. 

3.12. LEMMA. Let J be a closed ideal of a unital A and let TT be the quotient 
map from A to A/J. Assume that csr(A) < oo and that a(/) is a path in 
Lgn(A) for some n. If 

(b|a(0)) = 1 and (dk(a(l) ) ) = 1 

for some b in An and d in (A/J)f\ then there is a path b(t) in A11 such that 

(b(0 |a( / ) ) = 1 

for all t in [0, 1] with b(0) = b and 7r(b(l) ) = d. 

Proof Case (1): n ^ csr(v4). By Lemma 3.11, we have paths Tt and T/ in 
GLn(A)° such that 

Tt • a(0) = a(/) for all t in [0, 1], 

with 

T0 = In = TJ and T{ - a(l) = (1, 0, . . . , 0). 

So using Tt and T/, we may construct a homotopy F from [0, 1]" into 
GLn(A)° such that 

F(0, 0 = In and F(l , 0 • a(0 = (1, 0, . . . , 0) 

for all t in [0, 1]; that is, the map sending (s, /) in [0, 1]" to F(s, t) • a(/) 
gives a deformation of the path a(7) to the point (1, 0, . . . , 0) in Lgn(A ). 

Let 

c = b - F ( l , 0 )" 1 and d' = d • TT(F(1, l )" 1 ) . 

Then 

c, = ( c | ( l , 0 0)) = (b|a(0)) = l 

and similarly d\ = 1. By considering elementary matrices, we can easily 
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see that, for any (1, x2, . . . , xn) in Lgn(A)9 there is a path Wt in GLn(A)° 
such that (1, JC2, . . . , x„) • Wt is of the form (1, *, * , . . . , * ) for all t in 
[0, 1], with 

( 1 , * 2 , . . . , * „ ) • Wx = ( 1 , 0 , . . . , 0) and W0 = /„. 

Now pick c' in ,4'7 such that 

c\ = 1 and TT(C') = d'. 

Then there is a path 5, in GLn(A)° such that 

( c - S , | ( l , 0 , . . . , 0 ) ) = 1 

for all / in [0, 1], with 

S{) = id and c • S} = c'. 

Now we set 

Vt = F ( 1 , 0 ) - 1 -SrF(l,t). 

Then 

7r(b • Vx) = TT(C • Sx • F(l, 1) ) = w(c' • F( l , 1) ) 

= rf' • 77(F(1, 1)) = d. 

Moreover, 

(b *>(*)) = ( c - S r - F ( l , O l a ( 0 ) 

= (c • S,|F(1, t) • a(0 ) = (c • St\ (1, 0, . . . , 0) ) = 1. 

So the path b(t) = b Ĵ  is what we are looking for. 
Case (2): n < csr(A). Let csr(A) = TV. Setting ^'(0/ to be tf(f)/ if 

\ ^ i ^ n and to be 0 if n < /: S vV, we get a'(/) in LgN{A ) for all z1 in 
[0, 1]. Let 6; be /?, if 1 ^ / ^ « and be 0 if « < / ^ N. Then 

(b'|a'(0)) = (b|a(0)) = l. 

Similarly let d\ be di if 1 â /' ^ « and be 0 if « < / ' tk N. Then 

(d 'k (a ' ( l ) ) ) - (dk (a ( l ) ) ) = 1. 

So we may apply case (1) to get a path b '(0 in LgN(A ) such that b'(0) = b' 
while 

7r(b'(l) ) = d' and (b'(0 |a'(0 ) = 1 

for all / in [0, 1]. Since a\t)l = 0 for / > n, we get 

(b(r) |a(0 ) = 1 if b(t\ = b\t)t for 1 ^ / ^ «. 

Clearly b(r) is the path we are looking for. 
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3.13. COROLLARY. (1) Let A be a unital C*-algebra with csr(^l) < oo. If 
a(/) is a path in Lgn(A) for some n with 

(b|a(0)) = 1 = (c|a(l)) 

jor some b and c in A", then there is a path b(t) in A" connecting b and c, 
and 

(b( / ) |a(0) = \ for all tin [0, 1]. 

(2) Let J be a closed ideal of a unital C* -algebra A with csr(/l ) < oo and 
denote by u the quotient map from A to AI J. If 

(dk(a) ) = 1 

for some d in (A/J)n and some a in Lgn(A), then there is c in A'1 such that 

7r(c) = d and (c|a) = 1. 

Given two surjective unital homomorphisms §.A —* C and \p:B —> C 
between unital C*-algebras, we shall call the subalgebra 

D = { (a, b) in A 0 B\<j>(a) = ^(b) } 

of A © B the pull-back of (A, <f>, £, ^ C) and denote it by A ®c B. 

3.14. LEMMA. Let D be the pull-back of (A, <J>, /?, ^, C), and let 
( (tfj, bx), . . . , (an, bn) ) be in Dn for some n in N. If csr(A) < oo, 
then ( (a,, 6,), . . . , (ÛW, Ô„) ) /s />? Lgn(D) if and only if (a,, . . . , #„) is in 
Lgn(A) and (bu . . . , bn) is in Lgn(B). 

Proof We shall denote ( (a,, 6,), . . . , (a,,, /?„) ) by (a, b). 
(1) If (a, b) is in Lgn(D), then for some (a', b') in Z>", we have 

(1, 1) = ( (a', b') I (a, b) ) = ( (a'|a), (b'|b) ), 

that is, (a'|a) = 1 and (b'|b) = 1. Hence a is in Lgn(A) and b is in 
LSn(B). 

(2) If a is in Lgn(A) and b is in Lgn(B), then we have 

(b'|b) = 1 for some b' in B". 

So by 3.13 and the fact that 

»/<&',)•*(<*,) + . . . + W„) • 4<a„) 

= w>\)-W>{) + ... + wH)-w„) 
= ^((b'|b)) = w ) = l, 

we have (a'|a) = 1 for some a' in A" such that cf>(a') = \p(b'). Thus (a', b') is 
in D" and 

( (a', b') | (a, b) ) = ( (a'|a). (b'|b) ) = (1, 1). 
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Hence (a, b) is indeed in Lgn(D). 

There is a more intrinsic description of pull-backs. Letp] and p2 be the 
projections from D to A and B respectively, that is, 

/?,( (a, b) ) = a and p2( (a, b)) = b for (a, b) in D. 

Then A ~ D/J and B ~ D/K where / = Ker(/?,) and AT = Ker(/?2). 
Moreover, J K = 0, because if (a, b) is in / • K then (a, 6) is both in J and 
in AT; hence 

a = />,( (a, b) ) - 0 and b = p2( (a, 6) ) = 0. 

And it is easy to see that 

C ~ £>/(/ + AT), 

since 

Ker(</>o/7j) = / + K 

(if (a, b) is in Ker(<|> o px), then 

#ft) = <K )̂ = ^ , ( ( f l , f c ) ) ) = o, 

whence ((3, 0) and (0, b) are in D, and (a, b) = (a, 0) + (0, 6) is in J + A'). 
Conversely, if we have two closed ideals J and AT in a C*-algebra Z) such 
that J - K = 0, then 2) is the pull-back of 

(D/J,pl9 D/K,p2, D/(J + K)\ 

where px and/?2
 a r e t n e quotient maps from D/J and Z>/AT to D/(J + AT) 

respectively. We would like to thank Marc A. Rieffel for pointing out this 
fact, which simplifies our original statement of the following proposi­
tion. 

Analyzing the properties needed to prove the next theorem (namely, 
Theorem 3.17), we found the following technical proposition. 

3.15. PROPOSITION. Let { /A}A G A be a net of closed ideals (ordered by 
inclusion) of a unital C*-algebra A and J be the closure of the union of the 
Jxs. IJ KXJ X in A, are closed ideals of A such that Jx- Kx = Ofor all X in A, 
then 

trs(A) = max{tsr(A/J), tsr(A/Kx) \X in A}. 

Proof By Theorem 3.7, we clearly have tsr(^) = n where n is 

max{tsr(>4//), tsx(A/K^) \X in A}. 

Clearly we may assume n < oo. So by Theorem 3.5, we have 

csr(yl/^x) ^ isx(A/Kx) + 1 < oo for all X. 

Let a be any element of An and let e be any positive real number. 
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Since tsr(A/J) ^ n, we can find a' in A" such that 77(a') is in Lgn(A/J) 
and 

k(a' - a) | < c/2, 

where IT is the quotient map from A to ^4/7. So there is some X0 in A such 
that TTX (a') is in Lgn(A/Jx ) and 

|«7rA (a' — a) | < 6/2, 

since 

\imx\'7TX(x) | = k(.x) I for all x in A. 

(Here 7rx is the quotient map from A to A/Jx). 
Now let B be the quotient v4/A Â , D be the quotient v4/Jx , and C be the 

quotient A/(KX + /A ). Then by the remark before 3.15, we have A 
isomorphic to the pull-back of (By </>, D, $, C), where </> and \p are the 
quotient maps from B and D to C respectively, by identifying a in A with 
(/?(#), ô(tf) ) in the pull-back, where ft and 8 are the quotient maps from A 
to 5 and D respectively. Note also that 

\a\ = max{ |/?(tf) |, \8(a) \ } for all a in v4. 

Since 

iKS(a) ) = <X£(a) ) and | ^ ( a ' - a) ) | < e/2, 

we can find b' in Bn such that 

<Kb') = i//(8(a') ) and |b' - /5(a) | < e/2. 

Since 

tsr(fl) = tsr(A/Kx) ^ « 

by assumption, we can find b in Lgn(B) such that 

|b - b'| < m i n t - , TJ 1, 

where 17 is a positive real number such that if 

|d - 8(a') I < 7} with d in D\ 

then d is in Lgn(D). (Such 77 exists because Lgn(D) is open in D" and 8(a') 
is in Lgu{D).) Then 

|<Kb) - iKS(a')) I = l#b - b') I < m i n | ^ , r j j . 

So we can find d in Dn such that 

^(d) = (Kb) and |d - Ô(a') | < mint - , rj J § TJ, 
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whence d is in Lgn(D). 
Thus (br dj) is in the pull-back A of (B, 0, A * , C) for / = 1 , 2 , . . . , n. 

By 3.14 and the assumption that 

csr(£) = csx(A/Kx) < oo, 

we find that (b, d) is in Lgn(A) since b and d are in Lgn(B) and Lgn(D), 
respectively. Moreoever, since 

|b - 0(a) | ë |b - b'| + |b' - 0(a) I < ^ + ^ = €, and 

|d - 0(a) | ë |d - 8(a') | + |8(a' - a) | < ^ + ^ = c, 

we get 

| (b, d) - a| < € with (b, d) in Lgn(A). 

So we get Lgn(A) dense in A". Hence tsr(A) ^ A7. Thus tsr(A) = n. 

3.16. COROLLARY. If A is the pull-back of(B, <£>, Z), ip, C) for some B, <f>, 
Z), i// &/7J C, /7z£/7 w /?#v^ 

tsr(/l) = max{tsr(#), tsr(Z)) }. 

In the following, we denote the space of bounded continuous functions 
on a topological space X by Ch(X). 

3.17. THEOREM. Let X be a locally compact topological space. Ij A is a 
C*-subalgehra of Ch(X) 0 K containing J = C0(X) 0 K, then 

isv(A) = max{tsr(y4A7), tsr(J) }. 

(Note that tsr(J) equals 1 //dim(A r+) ^ 1 and equals 2 / /dim(X+ ) ^ 2, fcy 
Theorem 3.4.) 

ProoJ. Let {^ A } A G A ^ e a n increasing net of relatively compact, open 
subsets (ordered by inclusion) of X such that X is the union of £/A's. So 

J = l imA(Co(£/A)0K). 

Let Dx be the closure of Ux in X and 7A be C0(UX) 0 K. Setting 

A:A = {/in / I | / ( J C ) = 0 for all x in É7X}, 

we get Jx • Kx = 0 and 

/ l /# A — C(DX) 0 K — J /C 0 (Z - Dx) 0 K. 

Thus, applying Proposition 3.15, we get 

tsr(A) - max{tsr(^/7), tsr(A/Kx) |A in A} 

^ max{tsr(/f/J), tsr(7) } 
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since A/Kx is a quotient of / . But by Theorem 3.7, we have 

tsr(A) ^ max{tsr(^//), tsr(7) }, 

so we get the conclusion 

tsr(^) = max{tsr(^/7), tsr(7) }. 

Remark. This theorem gives a partial answer to a question raised by 
Marc. A. Rieffel (Question 4.15 in [20] ), concerning when 

tsr(^) = max{tsr(A/J), tsr(J) }, 

where J is an ideal in A. 

Now we are ready to compute tsr(C*(G) ) and estimate csr(C*(G) ) for 
G in T. 

3.18 THEOREM. If G is an element in F, then we have 

csr(C*(G)) ^ max{csr(C0(R'(6))), 2} ^ [(r(G) + l)/2] + 1, 

and 

tsr(C*(G)) = tsr(C0(R'"(6)) ) = [r(G)/2] + 1. 

Proof By the remark (3) following Proposition 2.10, the only G in T 
with r(G) = 1 is R. We may therefore assume that r(G) = 2. Then 

tsr(C0(Rr(C)) ) = [r(G)/2] + 1 ^ 2 . 

Case 1. If G is abelian, say G = Rd (d g 2), then 

r(G) = d and C*(G) = C0(RJ). 

So 

csr(C*(G) ) = csr(C0(R'y) ) ^ max{csr(C0(R'(6)) ), 2} and 

tsr(C*(G) ) = tsr(C0(RJ) ) = tsr(C()(R
/(G)) ). 

Case 2. If G is not abelian, say G = R Xft R with a non-trivial, then by 
2.7 and 2.10, we can find F (which may be abelian) in G with 

r(F) = r(G) ^ 2 and dim(F) = dim(G) - 1 

such that there is an exact sequence of C*-algebras 

0 -> (C0(R J _ 1) 0 C0(R
d~l) ) ® K -> C*(G) -» C*(F) -> 0. 

So we get 

csr(C*(G) ) g max{csr( (C0(R J _ 1) 0 C0(RJ~1) ) ® K), 

csr(C*(F) ) } 

^ max{2, max{2, csr(C()(R / (n) ) } } 

= max{2, csr(C0(R'"(6)) ) }, 
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by Theorem 3.9 and the induction hypothesis for F. Similarly, 

tsr(C*(G) ) = max{tsr(C*(F) ) , 

tsr( (C 0 (R^ ') 0 C0(R
J- ' ) ) 0 K) } 

= max{tsr(C0(R'(F)) ), 

t s r ( ( C 0 ( R J - 1 ) e C 0 ( R ' / - | ) ) ® K ) } 

= max{tsr(C0(R'(G>) ), 2} 

= tsr(C0(R'(C)) ), 

by Theorem 3.17, the induction hypothesis for F, and the fact that 

tsr(C0(R'<G>) ) S 2 

together with Proposition 2.8. 

Now we introduce two new stable ranks. 

3.19 Definition. Let A be a C*-algebra (maybe unital). The cancellation 
stable rank, cansr(/l+), of A+ is the least non-negative integer n such that 
the cancellation law holds for projections of dimension ^ n over A . 

3.20. Definition. For a unital C*-algebra A, the surjective Kx stable 
rank sKjsr(/l) is the least non-negative integer n such that the ca­
nonical homomorphism from Un(A) to KX(A) is surjective. (By definition, 

3.21. PROPOSITION. (1) cansr (C(Sd) ) is the least non-negative integer n 
such that, for all k = n, the canonical homomorphism from tird_](Uk(C) ) to 
7Tj-\(Uk + j(C) ) is injective. 

(2) cansr(C(5^) ) ^ t s r ( C ( ^ - 1 ) ) . 
(3) sKjSr(C(iS ) ) is the smallest non-negative integer n such that, for all 

[d/2] 4- 1 > k = n, the canonical homomorphism from 7Td(Uk(C) ) to 
^/(^[j/ij + iCQ ) is surjective. 

(4) sKjsr(,4+) ^ csr(yl+) - 1, for any C*-algebra A. 

Proof. (1) Since isomorphism classes of vector bundles of dimension 
k over S correspond to elements of 7Td_](Uk(C)), and the stabilization 
"© 7m" corresponds to the canonical homomorphism from ird_x{U(k) ) to 
7Td_](U(k + m) ), the property that stable isomorphism implies isomor­
phism for all vector bundles of dimension ^ n over Sd is equivalent to the 
property that the canonical homomorphism from tnd_x(U(k)) to 
TTd-\(U(k + 1) ) is injective for all k = n. So by Swan's theorem [29], we 
get the conclusion. 

(2) Apply Proposition 1.2 and the fact that 

isY(C(Sd~v)) = [(d - l)/2] + 1. 
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(3) Since ^j(Um(C)) stabilizes at m = [d/2] + 1 as we have seen in 
Section 1, and 

^ ( [ / , ( C ) ) = U.iCiS")), 

we see that sKiST(C(Sd)) = n is equivalent to the surjectivity of the 
canonical map from 7rd{Uk(C) ) to 

*d(u[d/1]+x{Q) ^ Kx{C{sd)) 

for all [d/2] + 1 ^ k ^ n by definition. 
(4) Apply Theorem 3.8. 

Remark. Since £/004) is defined to be {1}, it is clear that the following 
three conditions are equivalent: (a) sKjSr(^) = 0, (b) KX{A) = 0, (c) 
U^A) is connected. 

Using known data from homotopy theory, we can compute 
sK,sr (C(^) ) and cansr(C(SJ) ) for d small. 

3.22. Example. Using data in Chapter 11 of [9] (or Sections 23-25 of 
[28] ), we get the following sequences: 

7 7 , ( ^ ( 0 ) = z S W,(I/2(C) ) = Z ^ vx(U3(C) ) = Z ^ . . . 

^ ( t / , (C) ) = 0 ^ flr2(I/2(C) ) = 0 ^ *2(I/3(C) ) = 0 5 . . . 

*3(I/,(C) ) = 0 "> 7T3(U2(C) ) = Z S 773(^(0 ) = Z S . . . 

^ ( ^ ( C ) ) = 0 -> 774(f/2(C) ) = Z2 -> 7T4(t/3(C) ) = 0 S . . . 

ir5(l/,(C) ) = 0 ->*r5(£/2(C) ) = Z2 -^ ir5(I/3(C) ) = Z ^ . . . 

From the above sequences, we get, by definition, 

cansrCCOS1)) = 0, s K ^ C ^ S 1 ) ) = 1. 

cansr(C(S2)) = 0, sK,sr(C(S2) ) = 0. 

cansr(C(S3) ) = 0, sK,sr(C(53)) = 2. 

cansr 

cansr(C(S5) ) = 3, sK,sr(C(S5)) = 3. 

Remark. Note that 

sK,sr(C(S2c/)) = 0 for all J, 

since / ^ ( C ^ ) ) = 0. 
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3.23. LEMMA. Let J be a closed ideal of A and denote by m the quotient 
map from A to AI J. If K^n) from K\(A ) to KX(A /J) is the zero map 
then 

sK,sr(/l+) ë sK l S r ( / + ) . 

Proof. Let u be an element of U00{A + ) . Then since [^{u) ] = 0 in 
K\(A + /J), we get that IT(U) is in the connected component Um(A + /J)° for 
some m, hence can be lifted to some element of Um(A )°, say u''. Thus u is 
connected tow'" u in V00(A

+). Letv = u' '«. Then 

7T(V) = 1T(u')~ 7T(U) = 7T(u)~ 7T(U) = Im, 

so v is in Um(J + ) . 
Let n = sK1sr(/+) . Then since the canonical map from Un(J ) to 

KX(J ) is surjective, we get v connected to some w in Un(J ) by a path in 
U^iJ^). So u is connected to w by a path in L ^ / l ). 

Thus we have proved that for any u in U^A ), there is some w in 
Un(J*) (hence in Un(A

+)) such that u and w are connected by a path 
in UQO(A+). In other words, the canonical map from Un(A

+) to KX(A+) is 
surjective. So sK,sr(/l ) ^ w = sK,sr(J ). 

3.24. THEOREM. .For awy non-abelian G in T, we /z#ve 

sKlSr(C(G) ) = [llfdim(G)lsod^ 

Proof. Applying 2.7, we get an exact sequence 

0 -» Z) -^ C*(G) ^> C*(F) -> 0 

for some F in T. 
By Connes's Thorn isomorphism theorem, either 

^,(C*(<7)) = 0 o r #,(C*(F)) = 0. 

Thus the map A (̂7r) from 

^(C*(G) + ) = KX(C\G)) 

to 

^,(C*(F) + ) = tf,(C*(F)) 

is always zero. So we may apply Lemma 3.23 to get 

sK,sr(C*(G) + ) ^ sK,sr(Z) + ). 

By 3.21(4) and 3.10, we get 

sK,sr(D + ) ^ csr(Z) + ) - 1 ^ 2 - 1 = 1. 
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Hence we get 

sK l Sr(C*(G)+)) ^ 1. 

Clearly the canonical map from 

U0(C*(G) + ) = {1} 

to 

^ (C*(G) + ) = 770(t/oo(C*(G) + ) ) 

is surjective if and only if ^/00(C*(G) + ) is connected, that is, 

^ ( C * ( G ) + ) = 0. 

But by Connes's Thorn isomorphism theorem, we know that KX(C*(G) + ) 
equals 0 if dim(G) is even, and equals Z if dim(G) is odd. The conclusion 
follows. 

3.25. THEOREM. Let X be a locally compact space with the property that, 
for any given compact subset K of ' X, there is an open and relatively compact 
subset Y of X such that K is contained in Y and X — Y is a retract of X. If A 
is a C*-subalgebra of Ch(X) 0 K, containing C0(X) 0 K, and K](X+) =-- 0 
(where X is the one-point compactification of ' X), then 

sK,sr04+) ë sKxsv(A +/ C0(X) ® K). 

Proof Let J = C0(X) 0 K. Then 

K}(J+) = KX(J) = KX(C0(X)) 

= KX(C(X+)) = K\X+) = 0. 

If sK,sr(v4 + /7) = 0 then KX(A +/J) = 0, and then by the exact 
sequence 

0 = KX(J) -> KX(A+) -> KX(A + /J) = 0, 

we get 

KX(A) = KX(A+) = 0. 

Hence sK,sr04+) = 0. 
Thus we may assume 

sKxsr(A + /J) S 1; 

in particular, X is not compact. (If X is compact, then 

J = C0(X) 0 K = A = Ch(X) 0 K 

and hence 

A + /J = J+/J = C 

But KX(C) = 0, so 
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sK]sv(A + /J) = sK,sr(C) = 0.) 

Let n = sK,sr(,4 + A/) â 1, and denote by 77 the quotient map from A to 
AI J. Given any u in UOQ(A+), we have a v in Un(A

 + IJ) such that IT(U) is 
connected to v by a path in U00(A

 + /J), since 

sKlsr(A+/J) = n. 

Since VT7(H)-1 in UQO(A + /J)° may be lifted to some element u' in 
U^A )°, we have u connected to u'u by a path in L ^ / l ), and 

TT(U'U) = v<n(u)~X<n(u) = v in UJ^A*/J). 

With m such that u and w' are in Um(A+) and m > n, 

TT(U'U) = v®Im_„ in t / w (^ + / J ) . 

Let w be an element in Mn(A
+) such that 7r(w) = v. Then 

TT(U'U - (we lm_n) ) = 0 in Mm04 + / J ) , 

and so u'u — (w © /w_,7) is in Mm(J). 
Let /z = i/w — (w © Im-U). Then 

u'u = ( w 0 / „ , _ „ ) + /i 

with h in Mm(J). Since /z(x) goes to 0 as x goes to infinity, we may find an 
open and relatively compact subset Y of X and a retraction r from X to 
A" - Y such that 

I ( (u'u) \X_Y - (w © /„,_„) |^_y) I < 1/2, 

and hence W\X-Y ls m ^L,?(/4
 + /C()(Y) ® K) since (w'w) | ^ _ y is a unitary 

over A + /C0(Y) ® K. 
Note that £>K O W is a constant M/2(C)-valued function on X, so that 

QK o (w o r) = QK o w 

and w o r — w is in Mn(Ch(X) ® K). Moreover, 

(w o r — w)(x) = 0 for all x m X — Y, 

so w o r — w is in Mn(J), and hence w o r is in M„G4+). Similarly, 
(w\x_Y)~] o r is in Mn(A

+) and 

( ( H A - - K ) _ 1 ° r ) 0 O r) = 1 = (W O r)((w\x_Y)~] o r). 

So w o r is in GLtl(A
+). 

Let 

w' = (w o r)( (w o r)*(w o r) ) ~ ' 

be the unitarization of w o r. Then 

77-(w/) = IT(W O r)(7r(w o r)*77-(w o r ) ) 
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= 77(W)(77(W)*77(W) ) 1 / 2 = v(v*v) U2 = V, 

since w o r — w is in Mn(J). 
Thus 

*( (w © /„_„)-V«) ) = (v e /m_„rV e /„,_„) = /,„, 
so (w' 0 /„,_„)" V " ) is in Um(J+). Since 

770(c/oo(/+)) = # , ( / + ) = 0, 

we get (V © Im_n)~
](u'u) connected to lm by a path in U^J^); hence 

w' • w is connected to W by a path in U^A^). 
So w is connected to w' by a path in (700(^+), and w' is in Un(A

+). 
Hence [w'] = [u] in ATj(/l+). Thus the canonical map from Un(A

+) to 
KX(A+) is surjective, and hence 

sK,sr(,4+) g « = sKjSrOl + A/). 

4. The cancellation property for projections over (C 0(R J)®K) + . In this 
section, we shall prove that the cancellation law holds for all finitely 
generated projective modules over (C0(X) 0 K)+ when X is a disjoint 
union of finitely many Euclidean spaces. 

It is helpful at this point to recall basic definitions and facts about 
AT-theory of topological spaces or C*-algebras. The main references are 
[1, 12, 30]. 

Using the notation and terminology introduced in Section 1, we have 
the well-known fact that two projections over a unital C*-algebra A are 
unitarily equivalent over A if and only if they are in the same path 
component of P r o j ^ ^ ) [28]. The ÂQ-group K0(A ) of A is defined to be the 
Grothendieck group of the semi-group of (unitary) equivalence classes of 
projections over A, or equivalently, the Grothendieck group of the 
semi-group 770(Projoo(^4) ) of connected components of Pro j^ / i ) , where 
the binary operation is the direct sum " 0 " of matrices over A as defined in 
Section 1. 

Similarly the Kx-group KX(A ) of A is defined to be the group ir^U^A ) ) 
of connected components of U^A), where the binary operation is again 
the direct sum of matrices over A (or, equivalently, the matrix product, 
since the path 

(u 0\( cos(0 sin(OWv 0\ /cos( / ) - s i n ( / ) \ 
VO l / \ - s i n ( 0 c o s ( 0 / \ 0 1/Vsin(0 cos(/) / ' 

with / in [0, 77/2], connects uv ffi 1 with u © v). 
For a general C*-algebra A, the /^0-group K0(A ) of A is defined to be the 

kernel of the homomorphism from K0(A
 + ) to K0(C) ~ Z induced by 

the quotient map QA from A+ to C, while the Kx-group KX(A) of A is 
simply set to be KX(A+). 
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If A = C(X) for some compact space X, then by regarding elements of 
Proj^iCiX) ) as Proj^C)-valued continuous functions on X, we get 
K{)(C(X) ) equal to the Grothendieck group of 

[*, ProJoo(C) ] = hm[X, Proj,?(C)], 
— » A ? 

where [Y, Z] means the set of homotopy classes of maps from Y to Z. By 
identifying a Proj/2(C)-valued continuous function on X with a vector sub-
bundle of the ^-dimensional trivial bundle X X C" over X, we get 

K0(C(X) ) = K\X) 

where K (X) is the classical K -group of compact spaces as introduced 
in [1]. Similarly, we have 

K\X) = KX(C{X)\ 

The following lemma is well known and a simple proof can be found 
in [13]. 

4.1. LEMMA. Given any unital C*-algebra A, there is a continuous map rA 

from the set { (/?, q) \p and q are in Vro]x(A) and \p — q\ < 1} to U^A) 
such that 

TA(p, q)p(rA(p, q))~] = q 

jor all (/?, q) in the domain of rA and rA(p, p) = 1 for all p. 

Remark. rA is natural with respect to A, that is, if <f> is a unital 
homomorphism from A to B, then 

<KTA(p9q)) = rB(<Kp),<Kq)) 

for (/?, q) in the domain of rA. 

4.2. LEMMA. Given a continuous map p from Rc to Projn(A
+) for some 

C*-algebra A and a point JC0 in R , we can find a continuous map ufrom R̂  
to Un(A

+) such that 

u{x)p(x)u(x)~x = p(x0) 

for all x in R and u(x0) = In. Moreover, ifQA op is a constant function, 
then u can be chosen so that 

(QA o u)(x) = In for all x in RJ. 

Proof. Without loss of generality, we may assume x0 = 0. Let r denote a 
non-negative integer, and Br the open ball of radius r in RJ centered at the 
origin x0. 

We shall show that any continuous Un(A^)-valued function on the 
closure Br of Bn satisfying the conditions 
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(***) ( W ( 0 ) = ln a n d U(X)P(X)U(X) l = p(0), 
\(QA ° u)(x) = In if QA op is a constant function, 

for all x in £r, can be extended to a continuous Un (A + )-valued function on 
# r + 1 satisfying (***) for all x in 2?r+1. Then by induction on r, we get u 
defined on R , satisfying (***) for all x in R .̂ 

Let u be a £/,?04 )-valued continuous function on Br, satisfying (***). 
Since/? is uniformly continuous on the compact ball Br+X, we can find m 

in N such that if x and y are in Br+] with \x — y\ < 1/ra, then 

\p(x) -p(y)\ < 1. 

We shall extend u step by step to Br+{l/m) for all / = 1, 2, . . . , m. 
So let us assume that u has been extended to Br+{ ( / - i ) / m ) and satisfies 

(***) for all x in 2? r + ( ( /_1 ) / m ) . For x in R^ with 

r 4 (/ - l)/m ̂  |JC| ̂  r 4 (i/w), 

we define 

w(x) = u((r 4 (/ - l) /w)x/ |x | )TA/(/ j+)(p(x), 

/>((r 4 (/ - l ) /m)x / |x | ) ) ; 

this is meaningful, since 

\x - (r 4 (/ - 1)/W)JC/|JC| | ^ 1/m, 

and hence 

\p(x) - p((r 4 (/ - l)/m)jc/|x| ) | < 1, 

so Lemma 4.1 can be applied. Note that u is well defined, since 

TM„(A+)(P(X)>P(X)) = In 

for x in Rd with |JC| = r 4 (/' - l)/m. 
It is routine to check that the extended u satisfies (***) for x in Br+(j/m) 

by the remark after Lemma 4.1. 
In dealing with unitaries over A +, it is sometimes convenient to 

consider only "normalized" unitaries, that is, the elements of 

Vn{A+) = {« in Un(A
+) \QA(u) = K in l/„(Q }. 

Clearly every unitary u in £/„(/!+) can be "normalized", that is, multiplied 
by QA(u)~\ since 

QA(QA{u)~xu) = I„. 

We shall denote lim Vn(A
+) by VJ^A^). 

—»w 

Since Un(C) is connected and the map sending u in Un(A
 + ) to QA(u~])u 

is a retraction, the imbedding of Vf7(A
+) into Un(A^) induces an isomor­

phism from 7r0(J^04 + ) ) to TT0(U (A*) ). Hence 
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Similarly, it is convenient to work with "standard" projections, that is, 
the elements of 

SY>roh,(A
 + ) = {P in Proj„(^ + ): QA(p) = Idim(p) © 0^dim{p)}. 

(Here, we denote the n X n zero matrix by On.) We shall denote lim 

S?TO]„(A+)bySY>ro)00(A
 + ) . 

4.3. PROPOSITION. The imbedding of SProjfl(A
+) into ProjA?(^ ) induces 

an isomorphism between 7T0(SFrojfl(A ) ) and 770(Proj„(/l ) ). Hence 

770(5ProJooM
 + ) ) = ^ ( P r o j ^ + ) ). 

Proof. (1) For any/? in Proj„(/l+), there is a u in UfI(A
 + )° such that 

QA(upu l) = Ik®Ou_ k 

where k = dim(/?). 
In fact, since QA(p) is a rank k projection in Proj^(C), we can find u in 

Un(Q = U„(C)° such that 

uQA{p)u~x = h®On k. 

QA(upu x) = uQA(p)u x =Ik®On_k 

Regarding U„(C)° as a subset of Un(A
+)°, we get u in Un(A^)° and 

QA(U 

as required. 
(2) We claim that if p0 and px are in SVxo)n{A+) and are in the same 

connected component of Vro)n(A ), then they are in the same connected 
component of SProjw(v4 + ). 

Indeed, let p0 and px be connected by a path pt in Proj,?(/l+). Then 
QA(pt) is a path in Proj,7(C), hence of constant rank, so dim(pt) = 
dim(/?0) = k for all t, for some k. 

By Lemma 4.1, we can find a path ut in Un(C) such that 

utQA(PtW
X = QA(Po) = h®0„_k 

for all t in [0, 1]. Thus 

«,(4 e on„k)U;] = u,QA(Px)U;y = ik ® o„.k, 
so w, = a ® b for some a in Uk(C) and Z? in Un_k(C). Let ar and 6r, 
with / in [1, 2], be paths in Uk(C) and Un_k(C) respectively, such that 
ax = a, bx = b, a2 = ln and b2 = I„-k- Then 

(at ® bt)QA(px){at ® bty
X = (at ® bt)(Ik ® On_k)(a;X ® b;X) 

h © o„ 
and 
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(a2®b2)px{a2@b2)
 ] = Inpxln

X = />,. 

Now set qt to be utptu~ if t is in [0, 1], and to be (at © bt)p](at © bt)~
x if 

/ i s in [1, 2]. Note that 

uxpxu\x = (a © b)px(a © b)~x = (ax © bx)px(ax © i , ) " 1 . 

Then/?0 = UQPQUQ1 is connected to/?! = q2 by the path #r in SFrojn(A^) 
with / in [0, 2]. 

Thus, as long as we are only concerned with the connected components 
of Proj00(yl+), i.e., with the equivalence classes of projections over A +, we 
only need to investigate standard projections. 

An important feature of the ^-theory of C*-algebras is stability, that is, 
K*(A ) ~ K*(A ® K) for any C*-algebra A and the isomorphism is induced 
by the canonical imbedding of A into A ® K, sending x in A to x ® ex x 

where {e^} are matrix units of K. Actually, for unital A, we have K0(A) 
isomorphic to the Grothendieck group of Projx(A ® K)/unitary equiva­
lence, and KX(A) isomorphic to 7T0(UX(A ® K)+) . In [5], the i^-groups are 
indeed defined in this way. Combining these ideas, we have the following 
Proposition 4.4. 

Realizing elements of A ® K as matrices with infinitely many entries in 
A, we can embed V^dA ® K)+) into Vx( (A ® K)+) . More precisely, let 
{et j} be a set of matrix units for K, and m be a bijection from N X N to N. 
Then for v in Vn( (A ® K)+), say v = In + w with w in Mn(A ® K), we 
define 

TJ(V) = Ix + ^{e^w^^e^^^j^ 

in Vx( (A ® K)+) , where the summation is over all possible /, j , h, and 
k in N (with 1 ^ I, j ^ «) and w- is the (/, 7')-th entry of w as an n X n 
matrix over A ® K. Then 17 is an embedding of V^i (A ® K)+) into 
Vx( (A ® K) + ). 

4.4. PROPOSITION. Let r)n be the embedding 7] restricted to Vn((A ® K)+) . 
Then 7T0(Tfn) is an isomorphism from 770(J^( (̂ 4 ® K) ) ) to 7r0(Vx((A ® 
K) + ) ). In particular, the inclusion of Vn((A ® K) + ) into V^dA ® K) + ) 
induces an isomorphism from ^Q(Vn( (A ® K) ) ) to 

ir^VU (A ® K) + ) ) = * , ( (A 0 K)+) , 

and 7TQ(T)) is an isomorphism from 

v0(Vm((A®K) + ))^Ki(A®K) 

to 

^0(V]((A®K) + ))^K](A). 

A detailed proof can be found in [26]. 
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Let A be a C*-algebra. It is often useful to regard elements of (C()(X) 0 
A ) as those A -valued continuous functions on X which are constant 
modulo A and converge to that constant at infinity. In this interpretation, 
we can describe the projections and unitaries over (C0(X) 0 A)+ (or 
(Ch(X) 0 A)+) in the following way. 

Projn((C0(X) 0 A) + ) = {p\p is a Proj „ (.4+)-valued continuous 
function on X, such that QA op is a constant Proj„(C)-valued function and 
P ~ QA ° P vanishes at infinity}. 

Un( (C0(X) ® A ) + ) = {w|w is a L/"w(yl+)-valued continuous function on 
X, such that QA o « is a constant (/n(C)-valued function and u — QA o u 
vanishes at infinity}. 

In the rest of this section, we shall use X to denote a disjoint union 
of finitely many Euclidean spaces of positive dimensions, say 
Rd{X\ . . . , Rd(m) with d(i) in N. Then for any element x in X we shall 
denote the norm of x, inherited from the Euclidean space in which x sits, 
by \x\. So 

S = {xmX:\x\ = 1} 

is the disjoint union of the unit spheres in RJ(1), . . . , R'/(m), and 

B = {x in X:\x\ < 1} 

is the disjoint union of the open unit balls in R^(1), . . . , R'7(m). Also the 
vector space structure is preserved on each Euclidean space and so we may 
do addition or scalar multiplication with elements of X. Finally we set 

S' = S - { (1, 0, . . . , 0) in Rd(i):i = 1, 2, . . . , m] 

and for x in R^(/) we define e^x) to be the point (1, 0, . . . , 0) in RJ(l). 
Now we proceed to study the cancellation property for (C0(X) ® K ) + . 
First, let us observe that 0 is the only projection of dimension zero 

over (C0(X) 0 K) + . Indeed, let p be in Proj„( (C0(X) 0 A) + ) such that 
dim(/?) = 0. Then/? is in Proj„( (C0(X) 0 A)9 that is, p(x) is in Proj„(y4) 
for all x in X and/?(x) converges to 0 as x goes to infinity. But since every 
non-zero projection has norm one and each component of X is 
non-compact, we get \p(x) \ = 0 for all x in X, that is,p(x) = 0 for all x 
in X. Thus p = 0 as desired. (Note that if X is replaced by a compact 
set y, there may be a lot of non-zero projections of dimension zero over 
(C(Y) 0 A) . For example, every projection in K is a projection of 
dimension zero over K and there are infinitely many non-zero 
projections in K.) 

In what follows, we shall only consider projections of dimension greater 
than zero over (C0(X) 0 A) + . 

For each/7 in SProj„( (C0(X) 0 A)+), we define q in 

S P r o j w ( ( C 0 ( * ) ® ^ ) + ) 
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in the following way. Let k = dim(/?). For all y in R ( /) and for any 
1 ^ /*^ m, we set qp(y) equal top(x) if y = x/(\ + |JC| ), and equal to Ik 

© On_k if |^| è 1. Since p(x) converges to Ik © On_k as x goes to the 
infinity, qp is continuous. Since the map sending x to 1/(1 + \x\ ) is 
homotopic to the identity map of X, we see that p is connected to q by a 
path in 

S P I O J „ ( ( C 0 ( A ) ® ^ ) + ). 

Moreover, if p0 and/?j are connected by a path/?, in 

SPro j„ ( (C 0 W®,4)+) , 

then q and g are connected by the path q . (Actually, all we need from 
q are the properties that q is connected to p in 

SProj„((C0(X)®,4) + ) 

and that q — (Ik © 0„_A) vanishes outside a compact set in X.) 
By Lemma 4.2, for each p of dimension k in 

SProj , ?((C 0(*)®,4)+) 

there is a w in Ĵ ?( ( Q ( I ) ® A) + ) such that 

w(x)^(x)w(x)~1 = qp(ex(x)) = 7A. © <9„„A and 

w(ej(x) ) = In for all x in X. 

Thus for x in X with |JC| ^ 1, we have 

u(x){lk®On_k)u(x)-{ =IkQO„-k, 

so that 

u(x) = w(x) © v(x) for some w in Vk( (Ch(X - B) ® A) + ) and 

v i n K B ^ ( ( C ^ - B)®A) + ) . 

Clearly 

w(^j(x) ) = Ik for all x in X. 

(Note that w and v are defined only outside the union of open unit balls 
in X.) 

It can be shown that the class [w|y] in 

i r0(^o( (CQ(S') ® A) + ) ) = * , (C0 (S' ) ® ^ ) , 

determined by the restriction of w to S", is independent of the choice of w, 
and that the map T from 

^o(Pro J o o ( (C 0 (Z)®^) + ) ) 

to Xj(C0(S") ® A), sending [p] to [w|5,], is a homomorphism of semi-
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groups, which sends Ir to 0 for all r in N. Hence T induces a homomor-
phism from K0( (C0(X) ® A) + ) to KX(C0(S') ® A). (See [26] for details.) 

In the following theorem, we shall consider the special case that A is a 
stable C*-algebra, that is, an algebra of the form A ® K. 

4.5. THEOREM. Let X be a disjoint union of finitely many Euclidean spaces 
of positive dimensions. The cancellation law holds for all projections over 
(C0(X)®(A®K))+. 

Proof Let S' and B be as defined above, that is, the disjoint unions of all 
unit spheres with (1, 0, . . . , 0) removed, and all open unit balls, 
respectively. 

n > 0 and/?! are in SProj^C (C0(X) ®A® K) + ) and Ir@p0 is unitarily 
equivalent to lr ® px for some r in N, or, equivalently, 

[I, ®p0] = [Ir®pl] in ^ ( S P r q U (C0(X) ® A ® K) + ) ), 

then, clearly, 

T(Po) = T(Pl) and dim(/?0) = dim(/7,). 

By the fact that the only projection of dimension zero over (C0(X) ® 
A ® K) is 0 as we observed before, we may assume that 

k = dim(/?0) = àïm(px) > 0. 

Let n be an integer in N such that p0 and px are contained in 
SProj„((C0(*) ® A ® K)+) , and for / = 0, 1, let u{ be an element 
in Vn( (Ch{X) ®A® K) + ) such that 

^i(x)qPi(x)ui(x)~] = Ik ® On_k and 

ut{ex{x) ) = In for all x in X. 

Then there are w/ in Vk( (Ch(X - B)®A® K) + ) and v, in Vn_k( (Ch(X - B) 
®A ® K) + ) such that 

ut(x) = w;(x) © V,.(JC) for all x in X - B. 

Clearly 

[w0|y] - T(p0) = T(px) = [w}\s,] 

in 

^o(^oo( (Co(S0 ® A ® K)+) ) = Kx(C0(S') ®A®K). 

Now by Proposition 4.4, the inclusion of Vk((C0(S') ® A ® K) + ) into 
P̂ o( (CQC.S') ® V4 ® K) ) induces an isomorphism from 

ir0(Vk((C0(S')®A®K) + )) 

to 

^o (^oo( (Co(5 ' )®^®K) + ) ) , 
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so we get 

K M = K M in 7T0(Vk( (C0(S') 0 ^ 0 K) + ) ). 

So there is a path wr in Vk( (C0(S") 0 .4 0 K)+) connecting w0 |y and 
w j ^ , and a path vt in J^_^( (C0(S") 0 , 4 0 K)+) connecting v0\s, and vx\sf, 
where / varies from 0 to 1. 

We know that 

u7luo<lp0
uolUi = u7](h © < V A > I = qpi 

in Mw((Cfr(Z) 0 .4 0 K)+), but we do not know if ux u0 is in 
Un( (C0(X) 0 ^ 0 K) + ) or not. So we modify it in the following way. 
Let 

' ux(x)~ u0(x) if x is in B, 

u(x) = < 
wx(x/\x\) ]wlx^](x/\x\)@v](x/\x\) \{-X(x/\x\) 

if 1 ^ |x| ^ 2, 

/„ if M > 2. 

Then w is in Vn( (C0(X) ®A® K)+) since u(x) - In = 0 for all x in X with 
|JC| > 2. For JC in 5 , we have 

u(x)qPo(x)u(x)~l = w1(x)"1w0(x)^()(x)w0(x)~1w1(x) 

And for x in X — B, we have 

u(x) — w(x) © V(JC) 

for some w(x) in Uk((A 0 K)+) and some v(x) in Un_k((A 0 K)+); 
hence for x in X — 5 we also have 

u(x)q (x)u{x) ' = (H-(X) 0 v(x) ) (4 8 <V,)(w(x) ' 0 V(JC)" 

= 7A. 0 O n _ t = qpi(x). 

Thus we get 

uqpu~X = qpx 

with w in Vn{ (C0(X) ® A ® K)+) . Hence qp is unitarily equivalent over 
( C o ( X ) 0 ^ 0 K ) + toqpx. 

Since # is unitarily equivalent to/? for any standard projection/? over 
(C0(X) 0 A 0 K) + , it follows that/?0 and/?! are unitarily equivalent. 

So we have proved that any two stably equivalent standard projections 
over (C0(X) ®A 0 K) + are unitarily equivalent. Therefore by Proposition 
4.3, this property holds for all projections over (C0(X) ®A® K) + , and the 
theorem is proved. 
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Remark. (1) More generally, we can prove that the cancellation law 
holds for projections of dimension greater than zero over (A ®Ky for 
any C*-algebra A [27], by a different argument from that above (possibly 
an easier one), but the main idea of the above proof is essential to the 
discussion in the next few sections, concerning the cancellation problem 
for the C*-algebras of nilpotent Lie groups. 

(2) The above theorem shows that, although the cancellation law does 
not hold for finitely generated projective modules over 
with d ^ 5, it does hold for those over (C0(R

d) ® K) + , the unitized 
stabilization of C0(R ), for any d. 

(3) Note that in case A = K, we may replace w|y by w\s and replace 
K](C0(S

r) ® K) by K{(C(S) ® K) in the definition of V , since the 
homomorphism from KX(C0(S') ® K) to 

K^CiS) ® K) ~ KiidS) ) ^ ^(Co(S') ) ^ #,(C0(S') ® K) 

induced by the inclusion is an isomorphism. Thus, later on (especially in 
Sections 5 and 6), whenever we are in this situation, namely with A = K, 
we shall take T to be with values in 

K](S) ^ K}(C(S) ® K) 

instead of with values in K^C^S') ® K). 
(4) The cancellation law holds for projections of dimension ^ 

t s r (C(^ ) )/n over (C0(R
d) ® Mn(C) ) + . 

Now let us go back to the case of general A (not necessarily stable), and 
show that the map T is surjective. More specifically, let us construct a 
projection/*, in S P r o j ^ (C0(X) ® A)+) for each z in Kx( (C0(S') ® A ) + ), 
such that T(pz) = z, and such that dim(pz) is the lowest possible 
dimension of the projections/? satisfying T(p) = z. When A is stable, we 
have 

dim(pz) = 1 for all z in Kx( (C0(S') ® A)+). 

Let z in Kx( (C0(S
f) ® A ) + ) be realized by w in Vk ( (C0(S

f) ® A ) + ) with 
/c as small as possible; in other words, z can not be realized by any element 
in Vk_x{ (C0(S

f) ® A)+). When A is stable, we have k = 1 by Proposition 
4.4. 

Let wr be a path in J^A( (C0(S')®A) + ) connecting w 0 w _ 1 with 72A. We 
define 

' I2k if 1̂1 = 0, 

u(x) = | W|A-|(-X/|JC| ) if 0 < |JC| < 1, 

W(JC/|JC|) e ^ / H ) " 1 if |JC| ^ 1. 

Then w is an element of V2k( (Ch(X) ® A) + ) such that 

https://doi.org/10.4153/CJM-1987-018-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-018-7


A CANCELLATION THEOREM 409 

u(ex(x) ) = llk for all x in X. 

Let 

p'z{x) = u{x)~\lk ® Ok)u(x) for all x in X 

Then 

QA(PZM) = QA(u(xy])(lk © Ok)(QA(u(x)) 

= I2k(Ik®Ok)I2k = lk®Ok 

for all x in X, and /?;(*) = Ik © <9A for all x'm X - B. 
Clearly we can find (a unique) pz in SProj2A( (C0(X) ® ^ ) + ) such that 

q = /?', simply by reversing the process that we used to define q\ more 
precisely, we define 

pz(x) =p'z(x/(\ + \x\)\ 

We have 

dim(/?z) = k and T(/?z) = [w] = z. 

Thus we have proved the surjectivity of T. 

4.6. PROPOSITION. The map Tf sending [p] — [/?'] in K0( (C0(X) ® A) ) 
to 

(T( [p] ) - T{ [p'] ), dim(/>) - dim(/>') ) 

in KX{C()(S') ® A) © Z is an isomorphism. 

Proof. The map sending [p] - [/?'] in K0( (C0(X) ® A) + ) to dim(/>) -
dim(//) in Z ~ ^o(C) is exactly the homomorphism 

K{)(QC0(X)®A)-

So T' is a group homomorphism. 
Let z be in A^(C0(S') ® A) and r be in Z. Then with A: = dim(/?_), we 

have 

r ( [ f t ] + ( r - *)[/ ,]) 

= (7( [/?J ) + (r - *)7X [/,] ), d im(^) + (r - t)dim(/,) ) 

= (z + (r - £) • 0, k + r - k) = (z, r). 

So T' is surjective. 

If n i / ^ o l ~ \P\\) = (0,0), then 

dim(/?0) = dim(/?,) and r(/?0) = r(/?,). 

If dim(/?0) = 0 then/?0 = 0 = /?,. So we may assume that 

A: = dim(/?0) = dim(/?j) > 0. 
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For / = 0, 1, let n be in N and ut be in Vn( (Ch(X) ®Ay) with 

Ujie^x) ) = ln for all x, 

so that pf is in SProj,?( (C0(X) ® A)+) and 

There are w, in Vk((Ch(X - B) ® A) + ) and v, in V„_k((Ch(X ~ B) ® 
A) + ) such that 

Uj(x) = Wj(x) © Vj(x) for all x in X — 5. 

Then 

K i d = 7X/>o) = 7X/>i) = [w,|y] in ^(Co(S') ® A). 

So w0|y © /yy and w}\s, © /# are connected by a path in Vk + N{ (C0(S") ® 
^ ) + ) for some large N. Thus by the same argument as used in the proof of 
4.5, we can construct u in Vk + N( (C0(X) ® A) + ) such that 

u(qpn®IN)u-] =qpl®IN. 

Hence q © IN and q © IN are unitarily equivalent. So /?0 and px are 
stably equivalent, since q is unitarily equivalent to p for any standard 
projection/?. Thus [p0] = [px] and hence Tf is injective. 

By 4.5 and the existence of one-dimensional p^ over (C0(RJ) ® K)+ for 
all z in KX(C(S ~ !) ® K), we get the following classification theorem. 

4.7. THEOREM. The semigroup of unitary equivalence classes ojprojections 
over(C0(R

d)®K) + is 

{ [pz © /w_,]:z /« ^(CXS"7"1) ® K), H m N} U {0}, 

which is isomorphic to (Z © N) U {0} if d is even and to N U {0} if d is 
odd. 

5. The cancellation property for projections over C*((7)+ with G in T. In 
this section, we shall prove an analogue of 1.3, which says that the 
cancellation law holds for projections of dimension ^ [ (d — l)/2] + 1 
over C(S ), for certain "non-commutative spheres", namely C*(G)+ with 
Gin T. 

5.1. LEMMA. Let J be a closed ideal of A and denote by TT the quotient map 
from A to A/J. If K{){TT) from K0(A) to K0(A/J) is the zero homomorphism 
and if the cancellation law holds for projections of dimension = k over 
(A/J) , then every projection of dimension = k over A is unitarily 
equivalent over A to some projection in P r o j ^ / ). 

Proof. Let/? be in Vvo]n{A ) of dimension m. Then [p] — [Im] is in 
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K0(A) = Kcr(K0(QA)) 

where QA is the quotient map from A + to C. So 

o = K0(ir)([p] - [ /J ) = Mp)] - K / J ] = Mp)] - [/„,] 

in K0(A/J) since K0(7T) is the zero map. Thus TT(P) and Im are stably 
equivalent projections over (A/J) +. 

Now if m = k, then since the cancellation law holds for projections of 
dimension ^ k over (A/J) +, we get 7r(p) actually unitarily equivalent to 
Inv that is, for some large M in N, TT(P) © 0M_,7 and 7W © 0M_m are 
connected by a path in Proj ̂  (( /*/ . /)+) . Hence there is some u in 
UM({A/J) + )° such that 

u(TT(P)®oM_n)u-] = / m e o w . w . 
Since w is in the connected component of the identity in UM( (A/J)+), we 
can find v in UM(A*)° such that ir(v) = u and hence 

•n{v(p®0M^n)v-x) = / „ , © O w _ n . 

Since v(p © 0M_tl)v~ is connected to/? © 0M_n in ProjM(/l ), hence 
in P r o j ^ ^ + ) , we only need to show that v(p © 0M^n)v~] is in ProjM( /+) 
considered as a subset of Proj^^ - 1 -) . But this is obvious from the fact 
that 

<v(p®0M.n)v-x) = Im®0M-m. 

5.2. LEMMA. The only projection of dimension 0 over C*(G) for G in T is 
the zero projection. 

Proof. We shall prove this by induction on dim(G). 
(1) If dim(G) = 1, then G = R and C*(G) = C0(R). If p is a projection 

of dimension 0 over C*(R) + , say in Proj„(C0(R) + ), then/7 is in 

Proj„(C0(R) ) = {q\q is a Projw(C)-valued continuous function on 

R which vanishes at infinity} = {0} 

(any non-zero projection in Projw(C) has norm 1). 
(2) Suppose that the theorem holds for G in V with dim(G) = d. Let G in 

r be of dimension d + 1. If G is abelian then 

G = Rcl+] and C*(G) = C0(R J+1), 

so using exactly the same argument as in (1), we get the conclusion of the 
theorem. If G is non-abelian, then 

G = Rd Xa R 

for some non-trivial a and 

C*(G) = C0(RJ) XA R. 
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So by Theorems 2.7 and 2.10, there is an Fin T of dimension d and a short 
exact sequence 

0 ^ D - D + 9 i ) _ i C*(G) ^ C*(F) -> 0 

with 

Z>+ ~ Z>_ ~ C 0 (R J _ 1 )® K. 

Let /? be a projection of dimension 0 in Proj/;(C*(G) + ). Then TT(/?) is a 
projection of dimension 0 in Proj„(C*(F) ), and hence by the induction 
hypothesis, we get ir{p) = 0. Thus p is in Proj/7(Z) + ). As observed in 
Section 4, the only projection of dimension 0 over D is the zero 
projection, so/? = 0. 

Let G be a non-abelian group in the class T. Recalling the results of 
Section 2 about C^(G), we shall set (i) X to be the disjoint union of X+ 
and X_9 where X+ and X__ are Rd~\ (ii) D = D+ 0 £>__ where 

Z), = C0(X,) 0 K for / = + , - , 

(iii) £ = E+ ® E__ where 

El = Di/CoiBJ ® K = C0(X7 - /?,.) ® K 

for / = + , — and Bt = the unit open ball in Xh 

(iv) L = C*(G)/(C0(S+) 0 C0(£_) ) ® K 

which is contained in 

(Ch(X+ - B+) @ Ch(X^ - B) ) ® K, 

and (v) 7 = (T+, 71) to be the map from the semigroup 

7T0(?ro}oo((C0(X)®K)+)) 

to the group 

Kl(S) = Kl(S+) 0 K](S_), 

as constructed in Section 4, where S is the union of unit spheres S + and 
S_ in X+ and X_ respectively. With these notations, we have the two 
exact sequences 

0 -> D -^ C*(G) -̂ > C*(F) -» 0, 

0 -> £ A L A C*(F) -» 0. 

From now on, whenever we deal with non-abelian G in T, we shall use the 
above conventions without explanation. 

Let G = Rc Xa R be non-abelian in T. Then 
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K*(D) = K,(D+) 0 K*(D ) 

K*(C0(R
d {))®K*(C0(R

d ' ) ) 

= K; *+d-\ (C) © K *+<l-\ ( Q 

by the stability of AT-theory and the Bott periodicity theorem [30, 22] 
and 

J + K #*(C*(G)) = K*(CQ(Ra^1)) = K.. *+d+\ ( Q 

while 

K*(C*(F)) = K*(C0(R
d)) = K^d(C) 

by Connes's Thorn isomorphism theorem [4] and the Bott periodicity 
theorem. 

If d is even, we get the 6-term exact sequence 

K0(t) KQ{IT) 

(5.1) 

K0(D) = ()• 

A : , ( C * ( F ) ) = o-

>KQ(C*(G)) = 0 - -K0(C*(F)) = Z 

•KX(C*(G)) ^,(D) = z e z 

while if J is odd, we get the 6-term exact sequence 

*o(0 

K0(D) = z e z-

(5-2) fi, 

K}(C*(F)) 

-K0(C*(G)) 

K{){7T) 

~K0(C*(F)) = 0 

-A-,(C*(C)) = 0 - • * . ( / ) ) = (X 

K\{*) K\U) 

where 80 and 8l are the exponential map and the index map, 
respectively. 

We claim that under suitable identification of D+ and D_ with 
C0(R

d~]) 0 K as in 2.12, the map K}(i) sends («, m) in Z 0 Z - AT,(Z>) to 
n — m in Z ~ i^|(C*(G) ) if dim(G) is odd, and the map K0(L) sends («, m) 
in Z 8 Z - ^o(^) t o w in Z - K0(C*(G) ) if dim(G) is even. 

In fact, by the diagram in 2.12, we get that 

K*(CQ(RJ-{) ® K) 0 K*(C0(R
d ') ® K) ~ A,(D) • 

K*(0 

**(0 
A:*(C0(RJ ') ® K) e /c , (c 0 (R^ 1 ) ® K> ^ K * ( D ) -

^ * ( C * ( C ) ) 

*K*(C*(G)) 

commutes, where/sends (/?, m) to (m, /?) for m and « in K*(C0(R
C ) 0 

K). So (m, rc) is in Ker(A^(t) ) if and only if («, m ) is in Ker(AT*(£) ). Clearly 
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if Ker(g) ~ Z for a homomorphism g from Z © Z onto Z and Ker(g) is 
symmetric in Z © Z, then 

Ker(g) = { («, A) | « is in Z} 

(since the generator of Ker(g) must be symmetric, say (m, m), and m must 
be 1 or — 1 for (Z © Z)/Ker(g) ~ Z has no torsion element). Thus we 
know that the kernel of Kdim^G,(t) from 

*d i m ( C)(£) ^ Z © Z 

to 

*dim(G)(C*(G) ) = Z 

is { (A, «) |« is in Z}. So ^dim(G)(0 s e n ds (n, m) in 

^dim(C)(^) — Z © Z 

to A? — m (or m — w) in 

Z - *d im(C,(C*(G) ). 

Since i(^(C*(G) ) is a free abelian group for all G in T, by the universal 
coefficient formula [23, 24] we get 

KK\C*(F), C0(X))^ Ex t (C*(n Q ( J O ) 

^ H o m ^ C W U i l i ) ) ) 

© Hom(Ar
1 (C*(F) ), A: G (^ ) X 

where the last identification y is implemented by sending an extension 

0 -> Z) -> C -> C*(F) -> 0 

to (60, 5,) where S0 and 5j are the exponential map and the index map for 
the extension. Since 

Hom(Kdim(G) + 1(C*(F) ), Kdim(G)(D) ) - Hom(Z, Z © Z) 

- Z © Z 

and 

Hom(Kdim(C)(C*(^) ), Kd,m(G) + i(D)) ~ Hom(0, 0) ~ 0, 

we get 

KK](C*(Fl C0(X) ) - Z © Z 

for any non-abelian G in T, and the extension 

0 -» Z) = C0(X) ® K - > C*(G) -> C*(F) -> 0 

corresponds to the generator (1, 1) (or (— 1, — 1) ) of Ker(ATdim((-;)(i) ). 
Thus we get 
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5.3. THEOREM. For any non-abelian G in T, the extension 

0 -> D ~ C0(X) ® K -> C*(G) -> C*(F) -> 0 

gotten in 2.7 corresponds to the element (1, I) in 

z e z - KK\C*(F\ C0(X)) 

(under a suitable identification of C0(X+) ® K a«d C0(X_) ® K w/7/z 
C0(Rdim(6)~2) ® K). In particular, this extension does not split. 

Remark. (1) This generalizes a result of Kasparov's, the non-splitting of 
the sequence 

0 -» (C0(R) 0 C0(R) ) 0 K -> C*(//) -> C0(R
2) -» 0 

for the 3-dimensional Heisenberg Lie group H [13, 23, 31]. 
(2) By Corollary 7.5 of [25], we have C*(G)+ KK-cquivalent to C(S") 

for any ^-dimensional simply connected solvable Lie group G, since their 
A'-groups are the same. This says, among other things, that 

i ^ (C*(G) + , A) ~ KK(C(Sn), A) and 

KK(A, C*(G) + ) ~ KK(A, C(Sn) ) 

for any (separable, nuclear) C*-algebra A. So C*(G)^ is not much 
different from the algebra of continuous functions on a sphere as far as 
KK-theory is concerned and we may think of C*(G)+ (with G simply 
connected solvable) as a "non-commutative sphere" from this point of 
view. 

Now we are ready to prove the main theorem of this paper. 

5.4. THEOREM. For any G in I\ the cancellation law holds for projections 
of dimension = CG over C*(Gy where 

CG = max{cansr(C(Sr(G)) ), sK,sr(C(S , (6 )) ) }. 

In other words, we have 

cansr( C*(G) + ) ^ CG. 

Proof. By Lemma 5.2, we only need to consider projections of 
dimension greater than 0 over C*(G) +. 

We consider the abelian case first. 
If G is abelian, say G = R ,̂ then r(G) = d and C*(G) ~ C()(R

J), so 

C*(G)+ ~ C0(R^)+ ~ C(SJ). 

The theorem follows from the definition of cansr. 
Now we shall prove the theorem by induction on dim(G). 
If dim(G) = 1, then G equals R and the theorem holds. 
Suppose that the theorem holds for all G in T with dim(G) = d. 
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Let dim(G) = d + 1. Since the theorem has been shown to hold in the 
abelian case, we may assume that G is non-abelian. Thus G = Rl Xa R for 
some non-trivial a, and by 2.7 and 2.10, we have the exact sequence 

0 -> D -^ C*(G) ^ C*(F) -> 0 

for some F in T with 

r(F) = r(G) and dim(F) = dim(G) - 1 = d. 

We shall use the notations introduced right after Lemma 5.2. 
By the induction hypothesis, the cancellation law holds for projections 

of dimension â CF = CG over C*(F) + , since r(<7) = A*(F). 

(1) If d is even, we have an exact sequence 

0 -> K0(D) ~ 0-^-IK0(C*(G) ) ~ 0 - ^ ^ # 0 ( C * ( F ) ) ^ Z 

as in the diagram (5.1). Clearly K0(7r) is the zero homomorphism, so by 
Lemma 5.1, every projection of dimension = CG over C*(G)+ is unitarily 
equivalent over C*(G)+ to some projection in ^(Proj00(Z) + ) ). So in order 
to consider the cancellation law for projections of dimension = CG over 
C*(G) , we only need to consider projections of dimenion ^ CG in 
^(Proj^Z)4^) ). Let p and q be in Proj00(Z) + ) such that t(/?) and i{q) are 
stably equivalent in Proj00(C*(G') + ). Then 

(*o(0 X [/>] ) = \<P) ] = K?) ] = (*o(0 X fo] ) 

in #0(C*(G) + ). But A"o(0 from 

tf0(Z) + ) - Z 

to 

K0(C*(G) + ) ^ Z 

is the identity map since 

Ko(D)~0~Ko(C*(G)). 

Thus [p] = [q] in K0(D
 + ) , i.e., /? and g are stably equivalent over D + . By 

4.5, we get/7 and q unitarily equivalent over Z) + , hence over C*(G) + . Thus 
the cancellation law holds for projections of dimension i? CG over 
C*(G)+ if dim(G) is odd. 

(2) If J is odd, we have an exact sequence 

0 -* KX(C*(F) ) ^ Z l-+K0(D) - Z 8 Z ^ ^ ^0(C*(G) ) 

~ Z-^-LK0(C*(F) ) - 0 

as in the diagram (5.2). Clearly K0(TT) is the zero homomorphism, so by 5.1 
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and 4.4, every projection of dimension i^ Cc over C*(G) is unitarily 
equivalent over C*(G) to some projection in ^STroj^Z) ) ). 

By 4.6, we have an explicit isomorphism T' identifying K()(D ) with 

z e z e z = K0(Q e K\S+) e K\S_). 

Note that the homomorphism KQ(L) sends (/:, n, m) in 

^()(Z)+) ~ A:0(C) e Z e Z 

to (k, n — m) in 

K0(C*(G)+) ^ K0(C) © tf0(C*(G) ) =* Ao(C) © Z, 

as we saw just before Theorem 5.3. 
Since the cancellation law holds for all projections over D+ by 4.5, 

every projection/? over D+ is characterized up to unitary equivalence over 
D+ by 

[p] = (dim(/>), T+(p), T_(p)) in K0(/) + ) 

= A:0(C) e A:1 (5+) e K\S_) - Z e Z e Z. 

For such /?, we have 

* O ( 0 ( L P ] ) = (dim(/>), r+(/>) - r_(/»)) 
in 

z e z - A:0(Q e A:0(C*(G) ) - A:0(C*(G)+). 

It remains to show that, for any two standard projections p and pf of 
dimension ^ Q ; over Z)+, if t(p) and i(/?') are stably equivalent over 
C*(G) + , then t(p) and *(/?') are unitarily equivalent over C*(G) + . 

For any such p and /?', we have 

*()(0( [p] ) = MP) } = K / 0 1 = *o(0( [/>'] ) 

in #0(C*(G) + ); hence 

dim(/>) = dim(//) and r+(/>) - 7L(p) = T+(p') - T_(pf) 

in Z - A:G(C*(G) ). Let 

k = dim(/?) = dim(//) ^ C6. 

Suppose that we can find u" in J^(C*(G) + ) for arbitrarily large n such 
that 

t/'(x) = W"(JC) 0 v"(x) for all JC in * - 5, 

where w" is in ^.(L+) and v" is in K. ,(L + ), and 

K i d = (7V(P) - T+{p% T_(p) - T_(p')) 

in Z © Z ^ Kl(S). Let /? be large enough that p and /?' are in 
SProj/?(C*(G) + ). Since 
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(U"qpu" ]){x) = (w"(x) © v"(x) )(/, e o„_A) 
(w"(x)~l © v"(x)~x) 

for all x in X — B, we can find some/?'' in SProj/7(Z) + ) such that 

V = u"qpu"~X. 

Note that p" is unitarily equivalent to 

qp„ = « " ^ i / " - ' , 

hence unitarily equivalent over C*(G)+ to q and hence to/?. Let u be in 
^ ( ( Q C * ) ® K) + ) such that 

uq u~ = Ik © On_k and u\x_B = w © v 

for some w in Ĵ .( (Ch(X - B) ® K) + ) and v in Vn_k(Ch(X - B) ® K) + ). 
Then [w|s] = T(p). Since 

(uu"~x)qp„(uu"~^)~x = uqpu~x = Ik © 0„_A. and 

uu"~\__B = ww"~] © vv""1, 

we get 

T(p") = [ ( H V ' - ' ) | , ] = [W\s] ~ [w"\s] = T(p) - [w' = [(ww"~])\s] = [w\s] - [w"\s] = T(p) ~ 

= (T+(p) - (T+(p) - T+(p')\ 

T-{p) ~ (T-(p) 

= (T+(p'\ 71 (/>')) = T(p') 

K\S). Since 

T-(p'))) 

in Z © Z 

dim(//') = dim(/?) = A: = dim(p') and T(p") = T(p'), 

by Proposition 4.6 we get [/?"] = [//] in K0(D
 + ) . So by Theorem 4.5, we 

get p" unitarily equivalent over Z)+ to p'. Thus /? is unitarily equivalent 
over C*(G)+ t o / . 

Thus, in order to prove the theorem, we need only to find such a u 
with 

[Ms] = (T+(P) - T+{p'\ T_(p) - T_{p')). 

But T+(p) — T+(pf) = T_(p) — 7]_ (/?'). So it remains to show that, 
for all m in Z, there are some n in N and u in Vn(C*(G) + ) such 
that u(x) = w(x) © v(x) for all x in X — B and some w in J^(L ) and v in 
j;,_A.(L+), with [w|s] - (m, m) in Z © Z ~ A^S). (Note that n can be 
arbitrarily large by replacing u by u © /y for large TV.) But it is sufficient to 
prove this for m = 1 since if w(x) = w(x) © v(x) for x in I - 5 and [H | S ] 
= (1, 1), then 
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um(x) = wm(x) © vm(x) for x in X - B and 

WW = KMsT] = "«Ms] = (w, " 0 in K\S). 

Let/? in SProj,7(D ) be a representative (e.g./?(, ^® lk_l as constructed 
in Section 4) of (k, 1, 1) in Z © Z © Z — A:o(7r ), i e - r ' 0 ) = (^ ^ ]) 
as in 4.6. Then since 

[lip) ] = K0(L)( [p] ) = (k9 0) = [Ik] in Ao(C*(G) + ), 

so *(/?), and hence i{qp), are stably equivalent over C*(G)+ to 7A. Hence 
there are some N in N and some u' in VN+U(C*(G) + ) such that 

u\IN © i(qp) )(uT] = IN © 4 © 0„_*. 

(We may need to enlarge n at this point.) So for x in X — 7?, we have 
M'(JC) = W '(JC) © V'(JC) for some w' in VN+k(L+) and v' in J/_A(L+) , 
since 

(Jw 0 «(^) )(*) = 7W © / , © 0„_A for x\nX- B. 

Clearly 

dim(/yV © p) = N + /c and q,^p = IN © ^ , 

so we have 

[H/ | S ] = T(IN ®p) = T(IN) + T(p) = 0 + 7Xp) = (1, 1) 

in ^(CCS) ® K) — ̂ ( 5 ) . But since W is in VN+k(L+\ not in ^ ( L + ) , i/ is 
not what we are looking for. But by considering the connected stable rank 
of L + , we may reduce the size of W in some sense. In fact, by 3.25, 

sK,sr(L+) ë sKlSr(C*CF) + ). 

But either F is non-abelian and hence 

sK lSr(C*(F)+) % 1 

by 3.24, o r f = Rr{G) and hence 

sK ]Sr(C*(F)+) = sK{sr(C(Sr{G))). 

In any case, k ^ sK^s^L-^). Thus by the definition of sK,sr, we get that W 
is connected to w © IN by a path in VN + k(L

+) for some w in Ï^.(L+). 
Hence w'\s is connected to w|ç © 7^ by a path in VN+k( (C(S) ® K) + ), so 
M 5 ] = H 5 ] in K\S). 

Now we are going to construct u in J^(C*(G) + ) from w. By enlarging «, 
we may assume that n ^ 2k. Since w © w~] is connected to 72A by the 
path 

(w 0 \ / c o s ( 0 - s inOOUl 0 \( cos(t) s'm(t)\ 
V0 l / \ s i n ( 0 cos(0 A o w _ 1 A ~ s i n ( / ) cos(f)/ 
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(/ in [0,77/2] ), we get (w ( 
Vn((C(S)® K) + ), with 

Un = I„ and u} 

In-2k) \s connected to In by a path ut in 

(w e/„ -2k )\s-

Let 

u(x) 

h 
uM(x/\x\ ) 

w(x) © W(JC)" -2A-

if |JC| = 0, 

if 0 < \x\ ^ 1, 

if W > 1. 

Then u is an element of J^(C*(<7) + ), since w © w ] © /̂7-2A- *S m K/(^+) 
and w coincides with w © w 

-l 
I n-2k. on X - B. 

Since w (or w ' © 7„_2A.) is in Vk(L^) (or ^ _ A ( Z / ) ) with 

[w\s] = [w'\s] = (1, 1) in A^OS), and 

u(x) = w(x) © (w ln-2k )(x) for x i n X £, 

the u constructed above is what we are looking for. 

Let G = Rd Xa R be non-abelian in T with d odd. From the proof of 5.4, 
we can get an explicit description of a generator of KX(L). Before we do 
that, we shall compute K*(L) first. Note that 

E = C0(X - B) ® K ~ C0(S X [1, oo) ) 0 K 

^ C0([l , oo)) ® C(S) ® K 

is a contractible C*-algebra. So K0(E) = KX(E) = 0. Thus from the 
following 6-term exact sequence 

tfo(£) = °" 

*,(C*(F)) 

**0(L)" ^ 0 ( C * ( F ) ) = K}(C) = 0 

^ A : , ( L ) « * — ^ i ^ ) = o 

we get K0(L) = 0 and K}(L) = Z. 

5.5. COROLLARY. IfG = RJXaR is non-abelian in T with d odd, and if F 
is related to G as in 2.7, then a generator of K\(L) = Z is given by a w in 
UCi{L+) such that [w\s] = (1, 1) in K](S) = Z © Z. 

Proof The existence of such a w has been proved in the proof of 5.4. 
If u is a generator of Z ~ KX(L) and u is in UU(L + ) , then 

[w] = m[w] = [ww] in KX(L) for some m in Z. 

Thus w © IN-C and ww © /yv_/; are connected by a path ut in 
for some large JV; hence w|s © IN-C , is connected to (w|v)"

? © 7V_„ 
by the path M,|5 in c/A,( (C(S) ® K) + ). So 
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(1, 1) = [w\s] = [ (u\s)
m] = m[u\s] in K\S) ~ Z 0 Z 

Hence m = 1 or — 1, so [w] = [w] or — [w], which is certainly a generator 
of #,(L). 

The following corollary generalizes 1.3. 

5.6. COROLLARY, (a) The cancellation law holds for all projections over 
C*(G)+ with G in r and r(G) = 1, 2, or 4. 

(b) The cancellation law holds for projections of dimension = 2 over 
C*(G)+ with G in r and r(G) = 3. 

(c) For any G in T, the cancellation law holds for projections of dim = M(i 

over C*(G) , where 

MG = max{tsr(C0(R" (6)_1)), csr(C0(R /(6)) ) - 1} 

= [(r(G) - l)/2] + 1. 

Proof (a) Apply 5.4, 5.2 and 3.22. 
(b) Apply Theorem 5.4 and 3.22. 
(c) We shall first show that 

max[ t s r (C(^ - 1 ) ) , csr(C(^) ) - 1} = [(</ - l)/2] + 1 

for all d in N, to justify the last equality in the statement. By Theorem 3.4 
and example (1) following Theorem 3.8, we have 

(i) tsr(C(S0)) = 1 and csr(C(S])) = 2, 

(ii) t s r ( C ( ^ - 1 ) ) = [(d - l)/2] + 1 and 

csr (C(^) ) ^ [ (d + l)/2] + 1 = [ (d - l)/2] + 2 if d ^ 2. 

The equality follows. 
By 3.21(4), we have 

s K ^ C O S ' ' ^ ) ) ë csr(C(S'iC)) ) - 1, 

and by 3.21(2), we have 

cansr(C(Sr(c;)) ) ^ tsrCCOS'*6'*"1) ). 

Thus CG ^ MG for all G in T, and the statement follows from 5.4. 

Remark. (1) In Section 6, we shall show that the cancellation law fails 
for projections of dimension one over C*(<7)+ for some G in T with 
r(G) = 3. 

(2) By 2.11 and 5.6(a), we can find infinitely many G in F with dim(G) 
arbitrarily high such that the cancellation law holds for all projections 
over C*(G)+ (cf. 1.3(2)). 

By 4.7, the proof of 5.4, and 5.6(a), we get 
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5.7. THEOREM. The semigroup of unitary equivalence classes of projections 
over C*(G) , for a non-abelian group G in T with r(G) — 1, 2, or 4, is 
isomorphic to {0} U (Z © N) //dim(G) is even and to {0} U N ifdim(G) 
is odd. 

6. Cancellation law for the case of simply connected nilpotent Lie groups 
of dimension no greater than four. In this section, we shall solve 
completely the cancellation problem over C*(G) for all simply connected 
nilpotent Lie groups of dimension ^ 4. 

As we have seen in Section 1, the groups G = R Xa R in T are classified 
(up to isomorphism) by the (strictly upper triangular) Jordan canonical 
form of the generator of the action a, that is, 

in ̂ ( R ) . 

Since we can easily enumerate all possible strictly upper triangular Jordan 
canonical forms (up to permutations of columns and rows) of size no more 
than three, namely 

(0)'(2 SMo J M ° ° °)(° ° o)m d(o ° l) 
w u/ w u/ yQ 0 0 / \ 0 0 0 / \ 0 0 o/ 

the groups of dimension no more than 4 in T are classified into seven 
non-isomorphic groups, namely, R, R , R , H (the 3-dimensional 
Heisenberg Lie group), R4, H X R and R3 X8 R, where 

8(t)(x,y, z) = (JC, tx -f ^ , (^2/2)JC + ty + z). 

All of these are in T, and computation shows that 

r(R) = 1, r(R2) = r(H) = r(R3 X8 R) = 2, 

r(R3) = r(H X R) = 3 and r(R4) = 4. 

So by 5.6(a), the cancellation law holds for all projections over C*(G)+ if 
G = R, R2, // , R3 X6 R, or R4. By 1.3(2) it holds if G = R3. 

By 5.6(b), the cancellation law holds for projections of dimension ^ 2 
over C*(H X R) .So it remains to classify all projections of dimension 
one over C*(H X R) + up to unitary equivalence. 

By computation, we have the exact sequence 

0 -> D = (C0(R2) 0 C0(R
2) ) ® K -^ C*(H X R) 

-^ C*(R3) = C0(R
3) -> 0 

as in 2.7 for G = H X R. Since 

A:0(CG(R3) ) = 0 and cansr(Q(R3) ) = 0, 

sU 
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we know that every projection over C*(H X R) is unitarily equivalent 
over C*(H X R) to some projection over D+ by Lemma 5.1. 

In the following, we shall use the same notations as used in Section 5 for 
this special case. 

As we have seen in Section 4, projections p over Z)+ are determined 
by 

T\p) = (dim(/>), r+(/>), T_(p) ) in Z 0 Z 0 Z - K0(D
 + ) 

up to unitary equivalence (over Z>+), and we have a projection p{nm) 

in Proj2(D
 + ) of dimension one (since K is stable) over D+ such that 

T(p{nm)) = (H, w) for each (w, m) in 

Z © Z - ^ ( S ) ^ A^COS) ® K), 

where 5 is the disjoint union of the unit circles in those two R"'s. So the 
set 

{/wJ (n> m > i s i n *!(s> - z e z> 
is a complete set of representatives for the unitary equivalence classes of 
1-dimensional projections over D +. 

Now we want to show that p^nm) is unitarily equivalent over 
C*(H X R) + top(n,M) if and only if («, w) - (w', m'). 

Indeed, ifp^nm) is unitarily equivalent over C*(// X R) + lop(n,^m,y then 
by the discussion before 5.3, we have 

(1, n - m) = K0(t)([p(nm)]) = K0(i)([p{n,M)]) = (1, ri - m') 

and we can find u in UN(C*(H X R) + ) for some large N such that 

u(%um) ® 0N-2)u~l = q{nW) © 0 N „ 2 

where #,„ . is defined to be qn . So 

u(x) = w(x) 0 V(JC) for all x in X - B 

for some v in UN_}(C*(H X R) + /C0(£) ® K) and w in i/,(C* 
(H X R) + /C0(£) ® K), since 

(%um) © CW_2)(^) = (/, © O,) © 0 „ _ 2 = (q(l,M) © Oyv_2)(x) 

for xin X - B. Let w' in ^ ( (Ch(X) ® K) + ) be such that 

u\q{n'M)®oN^2y-x =ixeoN-l9 

u'(x) = w'(x) © v'(x) for i in I - 5, 

and 

u\ex(x) ) = /yy for all x. 

Then 

K U = np{n>M)) = (*'>m') in K^s) = z © z 
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Since 

{u'u)(q{um) ® 0N„2)(u
fuyx = / , 0 0N.} and 

(u'u)\x_B = d v V ) 9 ( v ' v ) , 

we get [ (w'w) | s ] = T(p{nm)) by remark (3) following Theorem 4.5. So 

(//, ni) + [u>|v] = [H/|V] + [w\s] 

= [(w'w) | s ] - T(p{nm)) = (n, m\ 

that is, M v ] = (« - /?', m - m') in A'1 (S) = Z 0 Z. (Note that 
/7 — A?' = m ~ m' since n — m — rï — m'.) Now by Corollary 5.5, we 
have 

[vv 0 /,] = A* - A?' - m - m' in Z — /^(L4") 

since MnxR = 2. 
If (/2, w) ^ (A?', ra'), then 

[w] = [w © /,] ¥= 0 in Z - K,(L+) . 

But by the fact that K*(E) = 0 as explained before Corollary 5.5, we have 
the exact sequence 

0 = K,(E) -» K,(L + ) =* Z-^l^,(C0(R3) + ) 

=* Z -» K„(£) = 0; 

hence A ,̂(p) is an isomorphism. Thus p(w) in (/|(C0(R ) ) represents a 
non-zero element of K,(C0(R3) + ) ^ Z. But 

7r()(t/1(C()(R
3) + ) ) = ITI(UX(C)) = TT3(S

}) = 0, 

so every element in c/,(C0(R ) + ) represents the zero of Ar,(C0(R ) + ) ^ Z. 
Thus we get a contradiction. So (n, m) — (n\ m') as claimed. 

Thus {p{nj)1)\n and m are in Z) is indeed a complete set of inequivalent 
representatives for unitary equivalence classes of 1-dimensional projec­
tions over C*(H X R) + . 

By Lemma 5.2, the only 0-dimensional projection over C*(// X R ) f 

isO. 
Since the cancellation law holds for projections of dimension = 2 over 

C*(// X R) + , and since 

= (dim(pM)) © /A) , T+(p{nS)) © lk) - T^P{nS)) © /A.) ) 

= (1 + A, /? - 0) 

- (1 + A-, w) 
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in Z 0 Z — K0(C*(H X R)+) for any k in N and n in Z, we get that 

{ / V o ) e / > i s i n z ) 
is a complete set of representatives for the equivalence classes of 
(k + l)-dimensional projections over C*(// X R) + for any k in N. 

Remark. For /c in N and m, ^ in Z, we have 

W/W> © '*) 1 = C1 + ^ 7V(/W.> © 7A) - r_ (/>„,,„> © h) ) 
= ( l + / c , /7 — m) 

= MP( W - W l 0)©/ J ] 

in K0(C*(H X R) + ) - Z 0 Z . Since 

1 + A: â 2 and cansr(C*(// X R) + ) ^ 2, 

we getp(nm) © Ik unitarily equivalent over C*(H X R) + top{n_nu{)) © Ik. 

In #0(Z) + ) ^ Z © Z © Z, we have 

= (1 + k, n9 m) + (1 + À:', n\ rri) 

= (2 + k + k', n + n\ m + m') 

= \.P(n+n\m + m') © ^A+A'+ll 

for all non-negative integers k and A:' and all n, n\ m, and rri in Z. Since 
k + /c' 4- 1 â 1, we have/? ( w 4 V w + m ' ) © lk+k> + \ unitarily equivalent over 
C*(// X R) + t o ^ + ^ . ^ . ^ o , © / A + A ' + I by the above remark. 

Summarizing the above, we get 

6.1. THEOREM. Let G be a simply connected nilpotent Lie group of 
dimension = 4 other than H X R. Then the cancellation law holds jor all 
projections over C*(G) . 

6.2. THEOREM. (1) cansr(C*(// X R) + ) = 2, that is, the cancellation law 
holds for projections of dimension = 2 over C*(H X R) , but fails for 
projections of dimension one. 

(2) The projections 0, p^nmy and p^l0) © Ik, with n, m in Z and k in N, 
form a complete set of representatives for the unitary equivalence classes oj 
projections over C*(H X R) , endowed with the following abelian semigroup 
structure: 

P(n,m) © P(n'M) = P(n + n' -m-m',0) © 7 1 ' 

P(tum) © (P(n\0) © h) = P(n + n'-m,0) © 7A + h 

(/V0) © h) © (/V,0) © 7A') = ^(/i+ «',()) © A + A ' + b 

and 0 w //?£ additive unit. 
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Thus, the cancellation problem is completely solved for projections over 
C*(G)+ with G a simply connected nilpotent Lie group of dimension ^ 4. 
By 5.7, the proof of 6.1, and 6.2, the classification of unitary equivalence 
classes of projections over such algebras is also complete. 
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