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Abstract

The withdrawal of water with a free surface through a line sink from a two-dimensional,
vertical sand column is considered using the hodograph method and a novel spectral
method. Hodograph solutions are presented for slow flow and for critical, limiting
steady flows, and these are compared with spectral solutions to the steady problem. The
spectral method is then extended to obtain unsteady solutions and hence the evolution
of the phreatic surface to the steady solutions when they exist. It is found that for each
height of the interface there is a unique critical coning value of flow rate, but also that
the value obtained is dependent on the flow history.
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1. Introduction

The problem of withdrawal of fluid from a porous medium has many applications in
reservoir engineering and aquifer sustainability. The extraction from layers of fluid of
different density or other property is of particular interest. The layers may be water of
different density or oil and water or natural gas. Previous work shows that fluid from
the layer in which the extraction point is placed will alone flow out so long as the flow
rate is beneath some critical value [2, 3, 7, 8, 16]. This process is very similar to the
problem of stratified withdrawal in surface water [9, 10, 20, 21].

For flow into a line sink in a domain that is unbounded horizontally, a phreatic
surface (interface) will not level off at a finite value of height due to the logarithmic
nature of the potential function and the surface boundary conditions that must be
imposed. McCarthy [15] computed solutions for a line sink in an unbounded
horizontal duct by applying pressure conditions at a finite horizontal distance from
the inlet. Zhang et al. [11, 25] considered this problem in a vertically confined
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two-dimensional aquifer and used hodograph and numerical methods to find limiting
solutions as the flow rate was increased where the interface attached to the horizontal,
impermeable boundary at some distance from the sink. Flows in which the limiting
steady flow rates were exceeded were computed by Yu [22] and also by Zhang
et al. [12, 26] and in three dimensions by Hocking and Zhang [13], and in these
papers there were two flowing layers of different density entering the sink. These
solutions approached the limiting single layer steady state as the flow rate decreased,
although there was some “noise” in the computations that did not allow an accurate
determination of the critical values. McCue and Forbes [6] studied a closely
related problem with two-dimensional flow due to a line source and a line sink in
a horizontally confined region to analyse the optimization of the mineral leaching
process.

Here, we investigate the simplified problem of two-dimensional flow into a line
sink in a vertical sand column of infinite depth but finite width. The two-dimensional,
unsteady problem was considered by Zaradny and Feddes [23] using finite-element
methods. Although there are many simplifications in this problem, it is a nice model
problem on which to perform some analysis of the physical processes.

The spectral method has recently been used with great success in dealing with
surface water hydrodynamics [14, 17] and has been employed to show some interesting
effects in plumes and interfaces. One of the purposes of the current work is to
determine the efficacy of using similar methods on groundwater flow problems. For
that reason, we have chosen a very simple geometry that will enable the computation
of some exact solutions for comparison with the method. The hodograph method can
be used to find “sub-critical” solutions [4, 18, 19] and also “critical” solutions that
appear to be the limiting possible steady flow in any given situation. These are used
to verify the spectral method, and then this technique is modified to consider unsteady
flows that reveal how the free surface approaches the steady state and what happens at
flow rates that exceed the maximum steady flow rate.

2. Formulation of the problem

We consider flow of water in a homogeneous, saturated, porous medium in a
two-dimensional, vertical column that is confined horizontally with width W = 2L,
with −L ≤ x ≤ L, that has an air–water interface (phreatic surface) at the top and is
unconfined below, as shown in Figure 1. Water is withdrawn through a line sink of
strength (total flux) m0 located at the origin. The flow will be assumed initially to be
steady, with water flowing upward from deep in the column to replenish that removed
through the sink. The problem could also be thought of as an infinite set of drains
separated by equal distances 2L, as considered by Childs [4], and with a capillary
fringe by Youngs [19]. In such a medium, the flow is described by Darcy’s law [1, 5],

q = −
κ

µ
∇φ, (2.1)
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Figure 1. Sketch defining the problem variables. The width is W = 2L and the outer edge of the phreatic
surface has elevation y = H. Total flux into the sink is m0, so the upward velocity from deep in the aquifer
is v = m0/(2L).

where q is the fluid velocity, κ is permeability, µ is viscosity, and φ is the piezometric
head, defined as

φ =
p
ρg

+ y. (2.2)

Here ρ is the fluid density, g is gravity, p is pressure and y is vertical elevation. In
addition, assuming incompressible flow, an equation for conservation of mass is given
by

∇ · q = 0. (2.3)

Combining equations (2.1) and (2.3) leads to Laplace’s equation for φ, that is,

∇2φ = 0, −L < x < L, y < S (x, t), t > 0,

where y = S (x, t) is the equation of the (unknown) surface of the saturated zone. There
is a line sink at the origin (0, 0), so that the piezometric head behaves as

φ→
m0

2π
log(x2 + y2)1/2 as (x, y)→ (0, 0)

where m0 is the strength of the sink.
There can be no flow through the impermeable boundaries at x = ±L, and, invoking

the left–right symmetry of the flow, we can write

φx(0, y, t) = φx(L, y, t) = 0 on y < S (x, t), t > 0,

and only consider the region 0 < x < L. Now, since the pressure on the free boundary
is constant, (2.2) can be written as

φ(x, S (x, t)) = S (x, t) on y = S (x, t), t > 0.

Finally, water particles on the free surface must remain on the surface, leading to the
kinematic condition

S t + uS x − v = 0, on y = S (x, t), t > 0, 0 < x < L,
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which in terms of φ becomes

S t −
κ

µ
φxS x +

κ

µ
φy = 0 on y = S (x, t), t > 0, 0 < x < L.

Nondimensionalizing with respect to the width L and the volume flux m0, we find
the equation becomes

∇2φ = 0 (2.4)

with boundary conditions

φx = 0 on x = 0, x = 1, y < η(x, t), (2.5)
φ = η on y = η(x, t), 0 < x < 1, (2.6)
ηt − φxηx + φy = 0 on y = η(x, t), 0 < x < 1, (2.7)

and initial conditions

φ(x, η, 0) = η(x, 0) = H at t = 0, (2.8)

where η(x, t) is the nondimensional height of the free surface, y = H is its initial
elevation, and all variables are now written in nondimensional form. As the sink is
approached, the potential function, φ behaves as

φ→
m
2π

log(x2 + y2)1/2 as (x, y)→ (0, 0), (2.9)

where m is a nondimensional sink strength parameter,

m =
µm0

κL
.

Since the nondimensional width of the drain is 2 units and the total flux into the sink
is m, the upward velocity from deep in the aquifer must be v = m/2. The problem is,
therefore, to solve the system given by equations (2.4)–(2.8), subject to (2.9).

3. Hodograph solutions

The hodograph method [1, 2] can be used to obtain analytical solutions in porous
media flows involving a free surface. In this problem, there are two different types
of solutions that we may consider, one in which there is a steady-state solution with
a stagnation point above the sink and another in which the free surface forms a cusp
shape above the line sink. The cusped solution is unique in that it occurs at a single
value of flow rate, m, for a given geometrical configuration and is thought to represent
the limiting steady flow before the drawdown of the interface directly into the sink. In
the hodograph method, we introduce a mapping noting that for a steady flow ηt ≡ 0
and the kinematic condition (2.7) can be combined with the dynamic condition (2.6).
Differentiating along the free surface in terms of the arclength s,

φ′(s) = η′(s),
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Figure 2. Mappings used to obtain the hodograph solution for the sub-critical solution. The physical
z = (x + iy)-plane and the hodograph W = u − iv are linked via the w- and σ-planes to find an exact
expression for the flow.

where the ′ denotes the derivative with respect to the independent variable, we find
that

φxx′(s) + φyy′(s) = η′(x)
dx
ds
⇒ φx + φyη

′(x) = η′(x)

on y = η(x). Substituting into (2.7) with ηt ≡ 0 gives

φ2
x + φy(φy − 1) = 0 = u2 + v(v + 1). (3.1)

Therefore, if we define f (z) = φ + iψ to be a function in the complex z-plane, then
the points defined by (3.1) lie on a circle with centre (0, 1/2), and radius 1/2 in the
W = (u − iv)-plane, as shown in Figures 2 and 3. The function ψ(x, y) is the equivalent
of the streamfunction in surface water flows, and can be used to plot streamlines. The
important feature of using this technique is to map the region of interest to a region in
which the solution can be written down by inspection. In both sub-critical and critical
flow solutions described here, this turns out to be a half-plane containing appropriately
placed sources and sinks.

3.1. Sub-critical flow The particular solution for sub-critical flow that involves a
stagnation point on the surface is given by Childs [4] and Van Deemter [18], but

https://doi.org/10.1017/S1446181119000099 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000099


254 S. Al-Ali, G. C. Hocking and D. E. Farrow [6]

Figure 3. Mappings in the hodograph solution for the critical, cusped solution. The planes used are
named similarly to those in Figure 2 for consistency and to show the similarities.

we repeat the details here for completeness. The crucial feature of this process is
the mapping of the hodograph plane to the half-plane, and the main features are
demonstrated in Figure 2.

We note that in the physical z = (x + iy)-plane we can specify various quantitative
features of the velocity. In this case, the speed of flow must be zero at points F and
G, and it is clear that the horizontal component of velocity is zero on F to S , S to
J and I to G and thus lies on the vertical axis in the W = u − iv = − f ′(z)-plane (see
Figure 2). We can also say that the vertical component is positive, v > 0, on I to G and
J to S , while it must be negative, v < 0, on F to S . The free surface FG must lie on
the circle as described above. The incomplete circle GRF involves a cut as the air–
water interface becomes steeper, reaches a maximum slope of v/u, and then becomes
shallower to reach point F where the flow is stagnant. The point deep in the duct IJ
has a vertical upward flux of m/2 as the total flux m is split across a width of 2 from
the symmetry of the situation, and so in the hodograph plane this point appears on the
vertical axis. Clearly the speed of flow slows on the vertical “wall” at x = 1, eventually
slowing to zero at G, while it speeds up as the sink is approached from J to S , so that
the sink itself lies at |W | → ∞.

In order to best write down the solution, it is now necessary to map the hodograph
plane to the upper half-plane. In this case this is a mathematical transaction. To begin,
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the inversion of w = 1/(iW) = 1/(iu + v) maps the hodograph to the upper-half of w-
plane, involving a vertical cut w = −1 + ir, r ≥ cot θ, as shown, where θ is the angle of
the steepest point on the phreatic surface. The next step is the mapping

w = 1
2 (σ − 1)σ−1/2 cot θ − 1 = iz′( f ) (3.2)

to map to the half-plane as indicated. In this plane, we can write the potential function

f (z) = −
m
2π

[log(σ − σS ) − log(σ − σM)] (3.3)

that consists of a mathematical sink at σ = σS and a mathematical source at σ = σM .
The source point represents the point, IJ, deep in the aquifer from which the water is
replenished, but appears as a point in the σ-plane. It remains to compute the location
of the free surface from these computations, in other words, a bridge between z and f
via the mappings. One approach to this is to find

z′(σ) = z′( f ) f ′(σ),

the components of which can be determined from (3.2) and (3.3), leading to

z′(σ) =
mi
2π

(1
2

(σ − 1)σ−1/2 cot θ − 1
)(
−1

σ − σS
+

1
σ − σM

)
,

where
σS = κS +

√
κ2

S − 1

with κS = 1 + 2 tan2 θ, and σM satisfies

σM = κM +

√
κ2

M − 1

with κM = 1 + 2(1 + 2/m)2 tan2 θ.
This solution needs to be scaled with respect to the width of the drain, to compare

with the nondimensional width across the top of the drain, and so we note that the
“width” of the drain from the mapped form is

XL =
m
4

cot θ
(
σM − 1
√
σM

−
σS − 1
√
σS

)
,

and the total deflection of the phreatic surface is

YL =
m

2πXL
log

(
σM

σS

)
. (3.4)

The shape of the phreatic surface can be found from

x(σ) =
m

4πXL
cot θ

∫ σ

0

σ − 1
(−σ)1/2

( 1
σ − σM

−
1

σ − σS

)
dσ

=
m

2πXL
cot θ

[(
σM − 1
√
σM

)
tan−1

√
−σ

σM
−

(
σS − 1
√
σS

)
tan−1

√
−σ

σS

]
,
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y(σ) = −
m

2πXL

∫ σ

0

( 1
σ − σM

−
1

σ − σS

)
dσ

= −
m

2πXL
log

[(
σM − σ

σS − σ

)(
σS

σM

)]
,

noting that −∞ < σ < 0 corresponds to the phreatic surface. In addition, the distance
from the sink to the phreatic surface above the sink can be determined to be

∆yS F =
m
2π

cot θ
(
σS − 1
√
σS

coth−1 √σS −
σM − 1
√
σM

coth−1 √σM

)
, (3.5)

so that the total distance from the sink to the phreatic surface on the outer edge of
the drain (at point G) is ∆yS G = ∆yS F + YL from (3.5) and (3.4), respectively. These
solutions will be presented later in comparison with the steady solution obtained using
the spectral method.

3.2. Critical flow In the limit as the maximum slope angle approaches θ→ π/2, the
solution above approaches the critical case in which the solution cones into a vertical
cusp. Unfortunately, the limit as θ→ π/2 in the mapping (3.2) is not simple, and so
we describe the modification here that gives the critical flow case.

Observing the velocity along the solid boundaries of the flow domain, we notice
that the boundary at x = 0 beneath the sink, S J, corresponds to the line JS in the
w-plane, as u = 0, m/2 < v < ∞, noting that v→∞ as the sink is approached. The
boundary at GI has u = 0 and 0 < v < m/2, so corresponds to GI in the W-plane. The
line x = 0 above the sink S F in the z-plane corresponds to S F in the W-plane, where
−∞ < v < −1, and v = −1 corresponds to the cusp point on the free surface. The point
G at z = 1 + iH also has the property that u = v = 0, and is a stagnation point, while the
point IJ at v = m/2 corresponds to the point deep in the aquifer from which the water
emanates. The mappings required are shown in Figure 3.

As above, we now proceed to map the W-plane to the upper-half of the σ-plane via
an intermediate mapping, so that the solution for the sink flow can be written down.
Mapping w = −i/W = −iz′( f ) to the w-plane as shown in Figure 3, and then the w-
plane to the lower-half of σ-plane with

σ = (w + 1)2 ⇒ w = −1 + σ1/2,

we can write the solution for the sink flow in the σ-plane. In the σ-plane, the complex
potential for flow into the sink can be written as

f (σ) =
m
2π

(log(σ − 1) − log(σ − κ2)),

where κ = (1 + 2/m), which corresponds to a source at σ = κ2 and a sink at σ = 1. As
above, this source represents the flow from deep in the aquifer at IJ. Therefore, we
can find

z′(σ) = z′( f ) f ′(σ) = −
mi
2π

(−1 + σ1/2)
( 1
σ − 1

−
1

σ − κ2

)
.
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Figure 4. Interface shapes for the hodograph critical flow solutions for m = 4, 3, 2, 1, 0.5. The shape is
a typical cusp shape. Higher m occurs when the surface is at a greater height above the sink, indicating
more suction is required.

From this equation we obtain the distance from the sink to the surface, S F, as

∆yS F = −
m
2π

∫ 1

0
(σ1/2 − 1)

( 1
σ − 1

−
1

σ − κ2

)
dσ

= −
m
2π

[
log

(
κ2 − 1

4κ2

)
+ 2κ tanh−1(1/κ)

]
,

and the shape of the phreatic surface can be found from

x(σ) =
m
2π

∫ σ

0
(−σ)1/2

( 1
σ − 1

−
1

σ − κ2

)
dσ

=
m
π

(
κ tan−1

√
−σ

κ2 − tan−1 √−σ
)
,

y(σ) =
m
2π

∫ σ

0

( 1
σ − 1

−
1

σ − κ2

)
dσ

=
m
2π

log
( 1 − σ
1 − σ/κ2

)
,

noting that −∞ < σ < 0 corresponds to the surface.
Figure 4 shows several solutions for different values of m. As the critical height of

the interface increases, a larger m value is required to pull the interface down into the
cusp shape.

4. Steady sub-critical solutions

The cusped coning solution is often cited to be the maximum flow at which steady
solutions exist [8, 15, 24, 25]. If the flow rate becomes higher then the surface draws
down directly into the sink, and if there is a layer of fluid of different density above
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then it will begin to flow into the sink [26]. In this section we will use a spectral method
to compute flows in which the flow rate is below the critical value. A verification that
the maximal flow corresponds to the critical hodograph solutions is obtained if the
maximal value of m for each steady-state solution matches the corresponding critical
case.

The method is to find a solution as a combination of a flow in the vertical column
plus a spectral component that satisfies all but the surface conditions on y = η(x).

The steady version of equations (2.4)–(2.8) is
∇2φ = 0, (4.1)

φx = 0 on x = 0, x = 1, y < η(x), (4.2)
φ = η on y = η(x), 0 < x < 1, (4.3)

φxηx − φy = 0 on y = η(x), 0 < x < 1. (4.4)
The two-dimensional column solution will provide the solution for flow with no free
surface, but will ensure the satisfaction of all of the conditions except for those on the
free surface. We choose to write

φ = φD + Φ, (4.5)
where φD is the flow from a vertical column into a line sink. Noting that Φ is an even
function, we choose the form

Φ = a0 −
m
4

y +

∞∑
k=0

akeλkη cos(λk x) where λk = kπ. (4.6)

The coefficients ak, k = 0, 1, 2, . . . , will be determined by the conditions on the flow.
The term −m/4 is required to obtain the correct flux into the sink. As y→ −∞, φD
approaches −m/4, and so the combination gives upward flux of m/2, since the total
flux into the centrally located sink is m over a width of 2 units (by symmetry). Above
the height of the sink, this term cancels the downward flux from φD, in this case m/4.
Thus the flux into the sink is m/2, with all of the water coming up from below, since
there is no recharge at the phreatic surface. Ultimately we will need to determine the
coefficients ak = 0, 1, 2, . . . that satisfy the free surface conditions. To proceed from
here, we must find the solution for flow in a vertical duct.

The complex potential for such a flow is easily shown to be

fD =
m
2π

log
[
2i sin

(
πz
2

)]
,

for which φD, the real part, is

φD =
m
2π

log
[
4 cosh2

(
πy
2

)
− 4 cos2

(
πx
2

)]1/2
.

A natural choice for the form of the shape of the free surface is

η = H +

∞∑
k=0

bk cos(λk x) where λk = kπ, (4.7)

since this is compatible with the form of φ, where the coefficients bk, k = 1, 2, 3, . . . ,
are to be determined.
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4.1. Linear steady solution The form of φ given by (4.5) with (4.6) is such that all
conditions (2.5)–(2.7) are satisfied, except those on the unknown surface, y = η(x). In
general, to find the shape of the surface is a nonlinear problem, but if we assume the
disturbance of the surface to be relatively small, we can compute a linearized solution
by considering the disturbance about the mean height y = H.

The linearized conditions on y = H are

η = φ on y = H, 0 < x < 1, (4.8)
φy = 0 on y = H, 0 < x < 1. (4.9)

Noting that

φy = φDy −
m
4

+

∞∑
k=0

akλkeλkHcos(λk x) when y = H,

where

φDy (x, y) = −
m
8

( sinh(πy)
cosh2(πy/2) − cos2(πx/2)

)
,

the unknown coefficients ak, k = 0, 1, 2, . . . , can be found using orthogonality in (4.9),
as Φy(x,H) = −φDy(x,H), leading to

ak = −
2

λkeλkH

∫ 1

0
φDy(x,H) cos(kπx) dx, k = 1, 2, . . . .

However, it is possible to compute this solution exactly. Using a variation on the
mapping fD that includes an image sink at y = 2H gives a complex potential function
for the linearized problem, fLIN, that satisfies (4.9) exactly, namely,

fLIN =
m
2π

log[(1 − e−iπz)(eiπz − e−2πH)],

of which the real part is

φLIN =
m
4π

log[((e−πy + Aeπy) cos(πx) − A − 1)2 + ((e−πy − Aeπy) sin(πx))2],

where A = exp(−2πH). Then, applying (4.8), the shape of the surface for any m and H
can be found to be

ηLIN = H +
m
4π

log
[A + 1 − 2e−πH cos(πx)

2e−πH + A + 1

]
.

This solution can be compared to the full nonlinear solution.

4.2. Nonlinear solution In the full problem, we need to solve the system (4.1)–
(4.4). In principle, we can use the same approach, but the orthogonality of the
components no longer holds, because all of the calculations must now be performed
on y = η(x) rather than on y = H (as in the linear case).
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The equation for η(x, t) (4.7) is equally appropriate here, and substituting for this
and φ in the pressure condition (4.3), multiplying by cos λ jx and integrating from 0 to
1 gives an integral expression for the coefficients, b j, j = 1, 2, . . . , as

N∑
k=1

bk

∫ 1

0
cos(λk x)cos(λ jx) dx + H

∫ 1

0
cos(λ jx) dx

−

∫ 1

0

(
φD +

∞∑
k=0

akeλkη cos(λk x)
)
cos(λ jx) dx = 0

for each j = 1, 2, . . . , N, after truncating the series to N terms. Exploiting the
orthogonality of the eigenfunctions, we find(

1 +
m
4

)
H − a0 −

∫ 1

0

(
φD +

∞∑
k=0

ak e λkη cos(λk x)
)

dx = 0 (4.10)

and

1
2

(
1 +

m
4

)
b j −

∫ 1

0

(
φD +

∞∑
k=0

akeλkηcos(λk x)
)
cos(λ jx) dx = 0, j = 1, 2, . . . ,N − 1.

(4.11)
This provides us with N equations, but we have 2N unknowns in the a j, b j, and so
we can invoke a similar process for the kinematic condition (4.4). Noting that the
derivative of (4.7) is

η′(x) = −

∞∑
k=0

bkλksin(λk x),

and φx can be found by differentiating the function (4.5) with respect to x,

φx = φDx −

∞∑
k=0

akλkeλkηsin(λk x),

we can employ these substitutions in (4.4). Applying the operation as above, it follows
that ∫ 1

0

(
φDy +

∞∑
k=0

akλkeλkηcos(λk x)
)

cos(λ jx) dx

−

∫ 1

0

(
φDx +

∞∑
k=0

akeλkηλksin(λk x)
)( ∞∑

k=0

bkλksin(λk x)
)

cos(λ jx) dx = 0,

j = 1, 2, . . . ,N. (4.12)

This provides a further N equations, and so the combination of (4.10), (4.11) and (4.12)
gives 2N nonlinear equations for the 2N unknowns.

The function fsolve in MATLABTM was used to solve this nonlinear system of
equations. Once the coefficients of the series have been obtained, it is possible to
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Table 1. Fourier coefficients, ak, for the potential function, φ(x), for different values of number of
coefficients, N, for the case of mmax = 2.34 and H = 0.84. This case is close to the critical case. Coefficents
are converged to 4 decimal places by N = 30, and are effectively zero by a20 for this situation.

Fourier series coefficients, ak

ak N = 10 N = 20 N = 30 N = 40 N = 50 N = 100

a1 −0.0307 −0.0307 −0.0307 −0.0307 −0.0307 −0.0307
a2 −0.0125 −0.0125 −0.0125 −0.0125 −0.0125 −0.0125
a3 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006
a4 −0.0029 −0.0029 −0.0029 −0.0029 −0.0029 −0.0029
a5 −0.0014 −0.0014 −0.0014 −0.0014 −0.0014 −0.0014
a6 −0.0008 −0.0008 −0.0008 −0.0008 −0.0008 −0.0008
a7 −0.0005 −0.0005 −0.0005 −0.0005 −0.0005 −0.0005
a8 −0.0003 −0.0003 −0.0003 −0.0003 −0.0003 −0.0003
a9 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002
a10 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002
a20 0 0 0 0 0
a30 0 0 0 0
a40 0 0 0
a50 0 0
a100 0

compute the numerical values for the shape of the free surface η(x). Integration was
performed using Gaussian quadrature. The convergence of the coefficients in the series
is shown in Tables 1 and 2. It is clear that the series have both converged to 4 decimal
places by the 30th coefficient, and are zero to 4 decimal places by ak, k = 40, so that
no more than N = 50 is required to obtain converged solutions. Graphically, these
sub-critical solutions agree exactly with those of the sub-critical hodograph method.

4.3. The results The results of some of the steady solutions are shown in Figure 5,
along with their linear counterparts (dashed lines), for the case where the mean
surface height is H = 0.5 and m = 0.5, 1, 2. It is clear that as m increases the linear
solution varies more from the full nonlinear solutions, but this comparison verifies the
implementation of the scheme to be correct. For any fixed mean water surface height,
H, there are multiple steady solutions as m increases, but only up to a maximum value
of mmax. As the height H decreases, this critical value of mmax decreases as would be
expected since less pressure variation is required to pull down the surface. The largest
value of m (m = 2) shown in Figure 5 is not far from the limiting value for existence
of the steady state, and it has the characteristic shape of a pre-coning surface. This
suggests that there is a maximum flow rate beyond which the surface draws down into
the sink.

Figure 6 shows a comparison of the steady surface shape for several values of m
compared with the cusped hodograph solution at the same value of H. It seems that the
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Figure 5. Comparison of steady free surface shapes for a mean surface height of H = 0.5 and values of
flow m = 0.5, 1 and 2. The dashed lines are the linear solution, the solid the full nonlinear. The case m = 2
is just below the maximal steady state. The sub-critical hodograph solutions agree to graphical accuracy
with the spectral solutions.

Table 2. Fourier coefficients, bk, for the surface shape, η(x), for different values of number of coefficients,
N, for the case of mmax = 2.34 and H = 0.84. This case is close to critical. Coefficents are converged to 4
decimal places by N = 30, and are effectively zero by b30 for this situation.

Fourier series coefficients, bk

bk N = 10 N = 20 N = 30 N = 40 N = 50 N = 100

b1 −0.1672 −0.1677 −0.1677 −0.1677 −0.1677 −0.1677
b2 −0.0438 −0.0442 −0.0442 −0.0442 −0.0442 −0.0442
b3 −0.0166 −0.0169 −0.0169 −0.0169 −0.0169 −0.0169
b4 −0.0084 −0.0087 −0.0087 −0.0087 −0.0087 −0.0087
b5 −0.0053 −0.0056 −0.0056 −0.0056 −0.0056 −0.0056
b6 −0.0036 −0.0038 −0.0039 −0.0039 −0.0039 −0.0039
b7 −0.0024 −0.0027 −0.0027 −0.0027 −0.0027 −0.0027
b8 −0.0016 −0.0019 −0.0019 −0.0019 −0.0019 −0.0019
b9 −0.0011 −0.0014 −0.0014 −0.0014 −0.0014 −0.0014
b10 −0.0008 −0.001 −0.0011 −0.0011 −0.0011 −0.0011
b20 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001
b30 0 0 0 0
b40 0 0 0
b50 0 0
b100 0

surface shapes of the steady solutions approach the shape of the cusped (hodograph)
solution as the maximal m is approached. The sub-critical hodograph solution and the
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Figure 6. Steady, sub-critical interface shapes with an outer height of H = 0.44 and deepening as m
changes from m = 0.4, 0.8 to 0.95, compared with the critical hodograph surface with the cusp shape at
m = 1.

Figure 7. Maximum flow rate mmax obtained using the spectral method for different heights compared
with the critical hodograph solution for the same surface heights. The solid line is the critical hodograph
solution. It is clear that the maximal steady state agrees very well with the cusped, drawdown solution.
The maximal sub-critical hodograph solutions match almost exactly with the critical solution curve.

spectral steady solutions are graphically identical, but the spectral method does not
converge for very steep interface shapes as the limit is approached.

The values of the maximum flow rate mmax for different surface heights compared
with the hodograph solution are shown in Figure 7. As H increases, the value of
mmax for the steady solutions obtained with the spectral method drop a little below
the critical hodograph solutions, but in general the steady solutions exist up until the
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formation of the cusped solution and not beyond. This result is as expected, but we can
consider the behaviour at higher values of flow rate, m, by examining unsteady flows.

5. Unsteady flow

We have obtained solutions to the steady problem using both the hodograph method
and the spectral method, and shown that the upper flux limit of these corresponds
closely to the cusped hodograph solutions. In order to consider what happens at higher
flow values, m, we can adapt the method to derive an unsteady solution procedure.
To do this, we can use the same basic formula as the steady problem but allow
the coefficients to become functions of time. Time variation can be determined via
equation (2.7). Differentiating the now time-varying version of η gives

ηt(x, t) = H′(t) +

∞∑
k=0

b′k(t)cos(λk x), λk = kπ,

and, substituting into (2.7) and using orthogonality where appropriate, we find

H′(t) = −
m
4
−

∫ 1

0

(
φDy +

∞∑
k=0

akλk eλkηcos(λk x)
)

dx

+

∫ 1

0

(
φDx +

∞∑
k=0

ak eλkηλksin(λk x)
)( ∞∑

k=0

bkλk sin(λk x)
)

dx (5.1)

and

1
2

b′j(t) = −

∫ 1

0

(
φDy +

∞∑
k=0

akλk eλkηcos(λk x)
)

cos(λ jx) dx

+

∫ 1

0

(
φDx +

∞∑
k=0

ak eλkηλksin(λk x)
)( ∞∑

k=0

bkλksin(λk x)
)

cos(λ jx) dx,

j = 1, 2, . . . ,N. (5.2)

The values of b j(t), j = 1, 2, . . . , N are then updated simultaneously with the
dynamic condition in the form of (4.10) and (4.11) to find the new values of a j(t), j =

1, 2, . . . , using a fourth-order Runge–Kutta scheme. Again, fsolve must be used to
find the values of a j(t), j = 1, 2, . . . , at each step.

At t = 0, η = H, and b j(0) = 0, j = 1, 2, . . . , N, so invoking orthogonality at this
initial time,

a j(0) = −2
∫ 1

0
φD(x,H)eλ jHcos(λ jx) dx

are the initial values for j = 1, 2, 3, . . . , N. H(t) is again the mean height of the free
surface.
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5.1. Linear solution Just as in the steady situation, we can compute a simplified
linear solution by making the calculations at y = H(t) as time proceeds. This is a
reasonable assumption so long as the deflection of the surface is only small. In that
case, the linearized equations are

ηt = −φy(x,H(t)),

which leads to

H′(t) = −
m
4
−

∫ 1

0
φDy(x,H) dx,

b′j(t) = −2
∫ 1

0
φDy(x,H) cos(λ jx) dx − a jλ jeλ jH , j = 1, 2, . . . ,N,

and also

a0 =

(
1 +

m
4

)
H −

∫ 1

0
φD(x,H) dx,

a j = b j

(
1 +

m
4

)
e−λ jH − 2e−λ jH

∫ 1

0
φD(x,H) cos(λ jx) dx, j = 1, 2, . . . ,N.

Thus we can step through time using numerical integration and the results can be
compared with the full nonlinear solution. Using this approach, every value of H has
a steady solution for any m (although some may be unrealistic with the surface located
below the sink) and the numerical scheme approaches the linear steady-state solutions
as obtained above. An interesting feature of these unsteady, linear solutions is that the
mean height of the interface remains constant, so that the surface at the outer edge rises
up while the point above the sink is pulled downward. This slightly surprising result
suggests that for any situation there are multiple solutions that depend on the location
of the interface before the flow begins. It also suggests that the critical condition will
depend to some extent on the flow history.

For the full nonlinear problem, solutions will not exist for sufficiently large m, as
the sink draws the phreatic surface downward into the sink. No solutions of the linear
equations are shown, but at smaller values of m and larger H they follow the nonlinear
solutions closely, thus verifying the nonlinear method. However, the drawdown cannot
be determined by the linear solutions, and so, just as for the steady case, we must
consider the full nonlinear solution.

5.2. Nonlinear solution In the nonlinear problem, we have the same steps as for
the linear, but the equations must be determined on y = η(x, t) rather than on y = H(t).
We step through time using a fourth-order Runge–Kutta scheme for equations (5.1),
(5.2) and (4.10), (4.11). The values of the coefficients a j, j = 1, 2, 3, . . . , must be
computed iteratively at each sub-step of the Runge–Kutta scheme. At any time, the
value of H(t) is close to the average height of the surface.
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Figure 8. Surface shapes at times t = 0.2, 0.4, 0.6, 0.8, 1.0 for H = 0.5, m = 1.0. The dashed line is the
steady state solution for this value of m. The surface is clearly approaching the steady solution as t→∞.
The central dip increases in depth as time increases while the outer edges rise, but movement slows as the
steady solution is approached.

In principle, the method can be used to solve for any flow rate and any starting
values. The first results sought were those in which the initial height and value of m
were such that the free surface should approach a steady-state solution. Figure 8 shows
this convergence for the case H = 1, m = 1, with the dip in the centre growing until it
reaches the steady solution. In all cases of sub-critical m the surface rapidly evolved
to the steady-state solution for the corresponding parameter values. Interestingly, for
all of these cases the mean height of the surface remained the same and the phreatic
surface simply adjusted to satisfy the pressure condition, exactly as in the case of the
linear solutions. This is reasonable, as the infinite depth of the column allows the water
to flow upward from below the sink to maintain the level. These solutions provide a
nice verification of the method.

The real interest here is in what happens if the flow value m is above the expected
steady limit. A series of simulations was performed and it was found that if such a
value was chosen, the middle of the free surface continued to travel downward towards
the outlet point until the method failed, even as the outer edge rose slightly as in the
sub-critical cases. The elevation of the deepest point on the surface for a starting depth
of H = 0.5 as a function of time for several different values of flow rate m is shown
in Figure 9. At this value of H the limiting steady state solution is at m = 1.3. At
smaller values of m the deepest point levels off, while for values greater than m = 1.3
it continues to travel downward with higher speed. The value at m = 1.5 is only just
above the highest steady value, and so appears to level off, but the surface continues to
travel downward until the method fails. The curves for m = 1.5, 2.0 and 2.5 terminate
at the points at which the method fails to converge. The likely reason for the failure is
that the middle of the interface moves extremely fast and is essentially singular in time.
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Figure 9. The elevation of the deepest point on the surface as a function of time for different values of
m = 0.5, 1.0, 1.5, 2.0, 2.5. The limiting steady solution for this case is when m = 1.32, between the cases
m = 1.0 and m = 1.5. Values of m smaller than this level off with time, while those at larger m continue
to travel downward.

It is very difficult to capture this moment in the code without using exceptionally small
time steps. The failure is characterized by the formation of oscillations of numerical
origin on the interface close to the outer edges.

6. Conclusion

The withdrawal of water through a line sink from within a two-dimensional vertical
column of infinite depth containing some porous medium is considered. Hodograph
solutions are presented for both sub-critical and critical steady solutions, and compared
to a spectral method that has been used to solve both the steady and unsteady versions
of the problem. The spectral and hodograph solutions are in excellent agreement
for sub-critical flow rates. Clearly, this situation is slightly unrealistic, but could be
a model for withdrawal near to the interface in a stratified aquifer of great depth.
However, more importantly, the model clearly identifies the important factors in the
process and the behaviour of the interface as water is withdrawn.

In all unsteady simulations, the mean level of the phreatic surface or interface
remains approximately constant, except in cases where a steady solution does not
exist. If the flow rate is sufficiently small, the surface simply adjusts to the steady-
state solution, while if it is large enough the middle of the surface pulls down in
a narrowing cone at an approximately linear rate until it draws into the sink. The
existence of steady solutions at many different heights for different values of flow
rate strongly suggests that the steady solution that is finally “chosen” depends on
the history of the flow. Therefore, in order to determine which steady solution will
evolve it is important to know the history. The drawn-down (cusped) solutions, on the
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other hand, are unique for each value of H, as illustrated by the hodograph solution.
Therefore, if the starting conditions are such that the interface lies above the line given
by the hodograph solutions in Figure 7, that is, the initial H value is below the value of
the critical coning solution, then the outcome will almost certainly be coning, leading
to drawdown of the interface.
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