
Ergod. Th. & Dynam. Sys. (1988), 8, 215-239
Printed in Great Britain

Geodesic flows of negatively curved
manifolds with smooth stable and

unstable foliations •
MASAHIKO KANAI

Department of Mathematics, Keio University, Yokohama 223, Japan

(Received 2 April 1987 and revised 20 August 1987)

Abstract. We are concerned with closed C°° riemannian manifolds of negative
curvature whose geodesic flows have C00 stable and unstable foliations. In particular,
we show that the geodesic flow of such a manifold is isomorphic to that of a certain
closed riemannian manifold of constant negative curvature if the dimension of the
manifold is greater than two and if the sectional curvature lies between —\ and —1
strictly.

0. Introduction
The geodesic flows of negatively curved manifolds have been investigated for a long
time as a main subject in dynamics and ergodic theory. In particular, in the 1960s,
Anosov [2] introduced the notion of the so-called Anosov flows by abstracting the
hyperbolic behaviour of the geodesic flows of negatively curved manifolds, and
showed that they possess a lot of beautiful properties such as ergodicity, structural
stability and the existence of periodic orbits. By definition, a smooth flow <p, on a
closed riemannian manifold V is called an Anosov flow, if there exists a <p,-invariant
linear splitting TV = E ~ + E° + E + of the tangent bundle of V satisfying the following
conditions:

(i) E° is the 1-dimensional subbundle of TV spanned by the vector field on V
that generates the flow <p,;

(ii) The subbundles E and E+ of TV are characterized by the inequalities

|d? , r | =s c, • e- c ' ' | r ! and \d<p_,t| < Cl • e^\t\

for £~e E~, £+ s E+ and t >0, where c, and c2 are positive constants.

The splitting TV = E~ + E°+ E+, which we call the Anosov splitting associated with
the Anosov flow <p,, is uniquely determined by <p,, and is continuous on V. Further-
more it is known that there are foliations W~ and %+ of V, called the (strongly)
stable and unstable foliations of <p,, which integrate the subbundles E~ and E+ of
TV respectively.

For a closed riemannian manifold M of negative curvature, it-js easy to see that
its geodesic flow <p, defined on the unit tangent bundle VM - {v e TM: \v\ = 1} of M
is an Anosov flow. The Anosov splitting TVM = E~ + E°+ E+ associated with the

t Dedicated to Professor Morio Obata on his 60th birthday.

https://doi.org/10.1017/S0143385700004430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004430


216 M. Kanai

geodesic flow <pt of M is sometimes called the Anosov splitting of M in brief. As
was already mentioned, the Anosov splitting of a closed riemannian manifold M
of negative curvature is continuous on VM. In addition, Hirsch-Pugh [10, 11] and
L. W. Green [8] proved independently that the Anosov splitting of M is of class
C1 if the sectional curvature K of M satisfies the pinching condition — 4 < K •- — 1
or if M is of dimension two. However we have no example of a negatively curved
manifold whose Anosov splitting is of class C2 other than the locally symmetric
spaces, and this leads us to propose

CONJECTURE 1. For a closed riemannian manifold M of negative curvature, if its
Anosov splitting is of class C2, then M should be locally symmetric.

Actually, E. Ghys [7] recently proved that the conjecture is true provided dim M =
2. (See also Hurder-Katok [12] for related topics in the case of dimension two.)
Our purpose in the present paper is to adduce other evidence which supports the
plausibility of the conjecture. More precisely we will prove

THEOREM. Let M be a closed Cx riemannian manifold of dimension greater than two.
Assume that the sectional curvature K of M satisfies the inequalities —\<K<—\,
and that the Anosov splitting of M is of class Cx. Then the geodesic flow <p, of M is
isomorphic to the geodesic flow $, of a certain closed riemannian manifold M of constant
negative curvature in the sense that there is a Cx diffeomorphism <$> of VM onto V^
such that <& o (pi = (pt o $ for all t e R.

In [12] Hurder and Katok especially proved that the C2-differentiability of the
Anosov splitting of a negatively curved surface always implies the C* - differentia-
bility, while Ghys has employed this result in the proof of his theorem mentioned
above. It seems that the 'regularity theorem' of Hurder-Katok is also the case with
higher dimensional negatively curved manifolds, though we are not able to prove
it. This is the reason why we have assumed the C^-differentiability of the Anosov
splitting in our theorem above.

With regard to the theorem together with Conjecture 1, it seems to be reasonable
to put forward

CONJECTURE 2. For a closed riemannian manifold M of negative curvature, if the
geodesic flow of M is isomorphic to that of a closed locally symmetric riemannian
manifold M of negative curvature, then M is isometric to M.

It should be noticed that a diffeomorphism <$>: VM -» V^ commuting with the
geodesic flows of M and M necessarily preserves the Anosov splittings of TVM and
TVfi and the canonical contact forms of VM and V'M (cf § 2.2). Therefore, under
the assumption in Conjecture 2, the geodesic flows of M and M art completely
isomorphic to each other as hamiltonian systems. In particular, the topological
entropy hlop(M) and the measure-theoretic entropy hmeas(M) = hmeas(M; /x) of the
geodesic flow of M (with respect to the Liouville measure fj. =Q /\(dQ)n, where
« + l = dim M and 0 denotes the canonical contact form of VM) coincide respec-
tively with those entropies h,op(M) and hmeas(M) of the geodesic flow of M. In
consequence, we have h,op(M) = hmeas{M) since h,op{M) = hmeas(M). Thus Conjee-
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ture 2 will follow from Mostow's rigidity theorem [18] (see also [16] in the case of
dimension two) and the conjecture of Katok [13] which claims that M is locally
symmetric provided that hwp(M) = hmeas(M). It is in fact proved by Katok [13] that
a closed surface M of negative curvature for which hwp{M) = hmeas(M) holds is of
constant curvature, and it follows that Conjecture 2 is valid in the case of dimension
two. See also Burns-Katok [4] for further information about related topics and
problems.

Now we exhibit here an outline of the proof of the theorem mentioned above.
Throughout this paper, all manifolds, maps and so forth are assumed to be differenti-
able of class Cx unless otherwise stated. We will begin the proof of the theorem
with the symplectic geometry. In particular we will concern ourselves with a symplec-
tic manifold (P, £1) equipped with lagrangian foliations &~ and 2F+ transverse to
each other: We call such a quadruplet P = (P,il, 2F~, &+) a bipolarized symplectic
manifold. Among the symplectic manifolds, bipolarized ones have the advantage
that they have canonically defined affine connections as we will see in § 1. In addition,
bipolarized symplectic manifolds naturally appear in the geometry of negatively
curved manifolds in the following way. Suppose that X is a simply connected
complete riemannian manifold with sectional curvature K<—1. Then, as we will
see in § 2, the unit tangent bundle V = Vx of X is fibred over the space P of the
geodesic lines in X so that each fibre is an orbit of the geodesic flow of X. The
exterior derivative d® of the canonical contact form 0 of V, which is invariant by
the geodesic flow, is pushed forward to a symplectic form Cl of P by the fibering
V-*P. Furthermore, through the projection of V onto P, the stable and unstable
foliations *%" and %+ of V, associated with the geodesic flow of X, descend to
foliations &~ and cF+ of P, which are easily seen to be transverse lagrangian foliations
of (P, fl). In consequence, we obtain the bipolarized symplectic manifold P =
(P, ft, &', 9+) associated with the negatively curved manifold X. Moreover, in the
case when X is the universal covering of a closed riemannian manifold M of
negative curvature whose Anosov splitting is C°°, the lagrangian foliations $F~ and
3F+ of P are smooth, and therefore the canonical connection V of P is well defined.
The most crucial part of the proof of the theorem is the fact that P is locally
symmetric with respect to V provided that the sectional curvature of M satisfies the
pinching condition - | < / C < - 1 : this fact will be proved in the last paragraph in
§ 2. This observation naturally leads us to the algebraic studies of affine (locally)
symmetric spaces of a certain kind. In particular in § 3 we will be interested in a
real Lie algebra g equipped with a linear decomposition g = h+p+p+ such that

and in the corresponding affine symmetric spaces. By T. Nagano and S. Kobayashi
[ 19,14], the simple Lie algebras g = h+ p~+ p+ equipped with linear decompositions
satisfying the above conditions are completely classified (cf. § 3.4). Appealing to
their classification together with some preliminary lemmas obtained in § 3, we will
be able to show in § 4 that the bipolarized symplectic manifold P obtained in the
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preceding argument is isomorphic to the bipolarized symplectic manifold P associ-
ated with a certain riemannian manifold X homothetic to the hyperbolic space.
Moreover it is possible to lift the isomorphism between P and P to a diffeomorphism
between the unit tangent bundles V of X and V of X so that the resulting
diffeomorphism of V onto V commutes with the geodesic flows of X and X. This
will prove the theorem.

It is possible to modify our arguments so that they yield a new proof of Ghys'
theorem in the case of dimension two.

1. Canonical connections of bipolarized symplectic manifolds
The purpose of this section is to introduce an affine connection to each bipolarized
symplectic manifold in a canonical way. However, before doing that, we have to
make our terminology for symplectic geometry precise (cf. [24,1]). First of all, recall
that a symplectic manifold is an even-dimensional manifold P equipped with a
non-degenerate closed 2-form ft, which is called a symplectic form of P. For a
2«-dimensional symplectic manifold (P, ft), an n-dimensional submanifold L such
that i*ft = 0 for the inclusion i: L-» P is called a lagrangian submanifold of (P, ft).
A lagrangian foliation of (P, ft) is an n-dimensional foliation of (P, ft) all of whose
leaves are lagrangian submanifolds. A symplectic manifold endowed with a
lagrangian foliation is sometimes called a polarized symplectic manifold. By a
bipolarized symplectic manifold, we mean a quadruplet P = (P, ft, &~, SP+) consist-
ing of a manifold P, a symplectic form ft of P, and lagrangian foliations 9~ and
9*+ transverse to each other. Obviously the tangent bundle of a bipolarized symplectic
manifold P = (P, ft, &~, &+) carries the linear splitting TP=F' + F+ into the
tangent bundles F and F+ of the foliations !F~ and &+, and the symplectic form
ft satisfies the condition ft | F x F~ = ft | F + x F+ = 0.

In the definition of the canonical connection of a bipolarized symplectic manifold,
it will also be convenient to introduce the notion of a connection along a foliation.
To mention it, let P be a manifold, 3> a foliation of P with tangent bundle F, and
E a vector bundle over P. Then a connection V of the vector bundle E along the
foliation 2F assigns a section V^-q of E to each pair of smooth sections £ of F and
17 of E in the following manner, where / denotes an arbitrary smooth function on
P:

(i) V ^ is R-bilinear in £ and 77;

(ii) vf(V=fvfV, v((fn) = (tf)v+fv(v-
In other words, a connection of E along 3F is nothing but a standard linear connection

of the vector bundle E except the restriction that the covariant derivatives are

considered only in the directions tangent to leaves of the foliation 3F.

1.1.

To begin with, suppose that P is a manifold and & is a foliation of P : Denote the

tangent bundle of 3F by F, and the normal bundle of & by TP/ F. We can always

find local coordinates (p, q) = ( / ? , , . . . ,pm, qx,..., qn) of P such that ^ =

{q = const.} locally (i.e., each leaf of & is locally of the form {<?, = c o n s t , , . . . ,qn-
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constn}) and using these coordinates, we can define a connection V of the dual
bundle (TP/F)* of TP/F along the foliation 9, by Vdqt = 0 (i = 1 , . . . , n). It is
clear that this definition does not depend on the choice of the coordinates (p, q),
and therefore, the connection V is globally defined on P.

1.2.
(cf. Weinstein [23]). Next, let (P, fi) be a symplectic manifold, and ^ b e a lagrangian
foliation with tangent bundle F. Then the symplectic form fl yields the isomorphism
F = (TP/F)* given by f e F « f l ( ^ ) e (TP/F)*, and therefore, we obtain a connec-
tion V of F along & from that of (TP/F)* along &• defined in § 1.1. It is easy to
see that V is torsion-free and flat in the sense that V^rj — V^^ — [£, 17] = 0 and
[Vs^v]-V[(,v~i = Q f° r a n v smooth sections £ and TJ of F.
1.3.

Now suppose that P = (P, il, 9~, 3F+) is a bipolarized symplectic manifold: Denote
the tangent bundles of 2F~ and 3^ by F~ and F + , respectively. As was indicated
in § 1.2, we can define a connection V of F along &~ in a canonical manner.
Furthermore V always induces a connection V * of the dual bundle F~* along
&~. On the other hand, the lagrangian splitting TP = F~+F+ gives rise to the
isomorphism F+ = F~*, £e F+>—>fl(£, -)e F~*. Thus V * induces a connection
V"+ of F + along &~. The connections V++ of F+ along &+, and V+~ of F^ along
^ + are defined similarly. Combining these connections linearly, we obtain an affine
connection V of P:

V = V ^ + V~+ + V+- + V++. (1.1)

(This means that the connection V is given by V ^ = V̂ -~T7~ + VJ-+i7+ + Vj+~">7~ +
V^+rj+ for arbitrary vector fields £ and rj of P, where £~ and 17"" (resp. f+ and 17"1")
denote the F"-components (resp. F+-components) of £ and rj.) We call the affine
connection V of P defined in (1.1) the canonical connection of the bipolarized
symplectic manifold P. It is easy to see that the canonical connection V of P is
characterized by the following three properties among all the affine connections of
P: (i) V is torsion-free; (ii) The symplectic form Cl is parallel with respect to V, i.e.,
VO = 0; (iii) If / is a smooth function defined locally on P so that it is constant on
each leaf of &~ (resp. &+), then Vf df= 0 for any £ e F (resp. £ e F+). Furthermore
the curvature tensor R of the canonical connection V possesses the following
properties for any £~, 17" e F " and £+, 17"1" e F + :

R(r,TT) = R(r,T?+) = o. (1.2)

In particular, each leaf of the foliations &~ and !?+ is totally geodesic and flat.

2. Symplectic geometry of the space of the geodesies
We now turn to the study of manifolds of negative curvature from the viewpoint
of symplectic geometry. Our aims in the present section are to consfmct a bipolarized
symplectic manifold from a negatively curved manifold (§ 2.2), and to show that it
is locally symmetric with respect to its canonical connection under certain conditions
(§ 2.3): This is the most crucial part in the proof of our theorem.
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2.1.
In studying non-compact spaces, it is often helpful to take their compactifications
into consideration. In particular for manifolds of negative curvature their imaginary
boundaries are introduced in concrete forms to construct their compactifications,
and has been playing significant roles in geometry, topology and dynamics of
negatively curved manifolds. In this paragraph, we will briefly review the notion of
the imaginary boundary at infinity of a negatively curved manifold (see, for details,
Eberlein-O'Neill [6]). Suppose first that X is an (n + l)-dimensional simply con-
nected complete riemannian manifold with sectional curvature K < 0. By the Cartan-
Hadamard theorem, the exponential map exp: TXX->X of X at each point xeX
is a diffeomorphism, and in consequence, X is diffeomorphic to the euclidean space
R"+1. A ray in X is a geodesic of X parametrized by the arc length / e [0, oo), and
two rays rx and r2 in X are said to be asymptotic if dist ( r , (0, r2(')) is bounded in
t >0 : Asymptoticity is evidently an equivalence relation between rays in X. Intui-
tively speaking, each ray is directed towards a point at infinity, and two rays will
reach the same point at infinity if they are asymptotic. Hence the imaginary boundary
B of X at infinity is defined as the set of the asymptote classes of the rays in X:

fi = {the rays in X}/(to be asymptotic).

Let Vx = {ve TXX: \v\ = 1} be the set of unit tangent vectors of X at x e X, and for
each v e Vx, denote by Ax(v) e B the asymptote class represented by the ray expx tv,
t > 0. From the assumption on the curvature, it is derived that the map Ax: Vx -» B
is bijective, and that A"1 ° Ax: Vx -» Vy is a homeomorphism for any x, ye X. Thus
we can give B a topology by identifying B with any Vx (xeX) through the 1-1
correspondence Ax :VX->B. With respect to this topology, all of the maps AX:VX->B
(x £ X) are homeomorphisms, and in particular B is homeomorphic to the n-sphere.
Moreover B is attached to X to form a compactification X <J B of X homeomorphic
to the (n + l)-ball so that the map ex: Vx x (0, c c ] ^ ( X u B)\{x}, defined by ex(v, t) =
expx tv for t<oo and ex(v, t) = Ax{v) for ? = oo, is a homeomorphism. It is easy to
see that each isometric transformation of X has a natural extension to a homeo-
morphism of X u B onto itself.

Especially, consider the hyperbolic space H"+l (i.e., the simply connected com-
plete riemannian manifold of constant curvature -1 ) , that is realized by the so-called
Poincare model as the open unit disc {|.x| < 1} in the euclidean space R"+1 equipped
with a conformally deformed metric. The boundary sphere S" = {|JC| = 1} in R"+1 is
naturally identified with the imaginary boundary B of Hn+> at infinity. Furthermore,
in this case, the imaginary boundary has the following nice structures which cannot
be expected in general for the imaginary boundaries of manifolds of variable negative
curvature. One of them is the differentiable structure. In fact, for the hyperbolic
space H"+l, the family of maps Ax : Vx -» B has the property that AJ,[ ° Ax : Vx -> Vy

is always C°° for any x, y e Hn+\ and this gives the imaginary boundary B a natural
differentiable structure. It is easy to see that this differentiable structure of B
coincides with that of B induced by the identification of B with the sphere S" in
R"+1 in the Poincare model, and that the extension of every isometric transformation
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of H"+t to a homeomorphism of H"+1 u £ is actually a difleomorphism. In addition,
in the case of n + l > 3 , the imaginary boundary B=S"cR" + 1 of the hyperbolic
space has a canonical conformal structure induced from that of the euclidean space
R"*1, and for each isometric transformation of H"+1, its extension to B is a conformal
transformation. Furthermore, every conformal transformation of B is obtained in
this way. In other words, the conformal extension of each isometric transformation
of Hn+X gives an isomorphism of the isometric transformation group Iso(H"+1) of
the hyperbolic space H"+1 onto the conformal transformation group Con(B) of the
imaginary boundary B. These facts were extensively utilized in the proof of Mostow's
rigidity theorem [17,18].

2.2.
Assume further that X is of curvature K < - 1 . Next we are going to construct a
bipolarized symplectic manifold P = (P, Cl, &~, &+) from X. Let V = Vx = \JxsX

 Vx
be the unit tangent bundle of X, and put P = {(b~, b+) e B x B: b~ ^ b+}. Note that
the assumption on the curvature implies the 'convexity' of the imaginary boundary
B of X: more precisely, the curvature assumption guarantees that for any distinct
points b~ and b+ of B there is a geodesic line / of X, unique up to the reparametriz-
ation, such that / ( / ( - • ^ i n X u B a s l-> ±oo. Thus the map n: V-» P, denned by
n(v) = (Ax(-v), Ax(v)) for ve Vx and xe X, constitutes an R-fibring of V over P.
In other words, P can be considered as the space of the geodesic lines in X. We
can also explain this by saying that the additive group R of the real numbers acts
on V as the geodesic flow, and P is identified with the orbit space R\ V with the
projection TT:V-*P = R\V. In particular, P has a unique differentiate structure
for which the projection -n: V -> P is smooth. Moreover we can introduce a symplectic
form Q on P in the following way. Denote by 0 the canonical contact form of V
(cf. [1]). Then Liouville's theorem claims that both 6 and its exterior derivative d@
are invariant by the geodesic flow, and therefore, dQ is pushed forward to P by
the projection n: V-> P so that the resulting 2-form ft on P, which is characterized
by d0 = ir*fl, is a symplectic form of P.

Now let <p, be the geodesic flow of X defined on the unit tangent bundle V of
X. Although X is non-compact, the Anosov splitting TV = E~ + E°+ E+ associated
with the geodesic flow <p, is canonically defined in a geometric way, and satisfies

\d<p,£\<const- e~'|f|, for £e£~, r>0;

|d<p_,£| < const • e~'|£|, for £e E+, t > 0.

Since the subbundles E~ and E+ of TV are invariant by the geodesic flow <p,, and
are transverse to the orbits of the geodesic flow <pt, they induce the continuous
splitting TP = F~ + F+ of the tangent bundle of P into the n-dimensional subbundles
F~ and F+. It is easy to see that this splitting of TP corresponds to the product
structure of P c: B x B. More precisely, through the projection TT : V-> P, the stable
and unstable foliations %~ and %+ of V tangent to E~ and E+ descend respectively
to the C° foliations &~ and 9+ of P which consist of the C-leaves (Bx{b+})nP
and ({6~}xB)nP (b*e B) respectively. For these foliations 9" and 9+ of P, we
have
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(2.2) LEMMA. Both SF~ and 3F+ are lagrangian foliations of (P, Cl), and in consequence,
P = (P, fl, cF~, 3F+) is a bipolarized symplectic manifold.

Proof. To show the lemma, it is sufficient to prove that f l |F* = 0, or equivalently
that d<d\E± = Q, where, as before, 0 denotes the canonical contact form of V. By
Liouville's theorem and the first inequality in (2.1) we immediately have

e
-2t< const • | d0 | \d<p&\ {dtp&l < const • \d®\|f,|

for | , , £ 2 e £ ~ and r > 0 . As |c?0| is bounded on V, we obtain d0(£, ,£2) = O by
letting / -»oo. D

One should notice that the argument employed in the proof of the lemma also
implies that 0 | (£~ + £ + ) = 0 for the canonical contact form 0 of V. On the other
hand, it is clear that Q((p') = 1 for the geodesic spray <p'= (d/dt)\,=0<p, on V, which
is by definition the vector field on V generating the flow (p, and spanning the
subbundle £° of TV. Thus the canonical contact form 0 of V is completely
determined by the Anosov splitting T V = £ ~ + £ ° + £ + , and hence only by the
geodesic flow <p,.

By virtue of Lemma (2.2), the canonical connection of the bipolarized symplectic
manifold P is defined provided that the Anosov splitting TV= E~ + £ ° + £ + of X
is of class C°\ Further in this case the foliations «?* of V and 9* of P are Cx,
and the imaginary boundary B of X at infinity has a C^-differentiable structure
so that the projections of P = Bx B\(the diagonal set) onto B are smooth.

2.3.
Now suppose moreover that X appears as the universal covering of a certain closed
riemannian manifold M of negative curvature. Of course we may assume, without
a loss of generality, that the sectional curvature K of M satisfies the inequalities

- A 2 < * : < - 1 (A>1). (2.3)

The fundamental group F of M acts on the universal covering X of M by the
isometric deck transformations, and therefore F also acts on V and P in a canonical
way: note that the induced actions on V and P can be introduced because the
action of F of X preserves all of the structures of X. In particular, the action of F
on P preserves the symplectic form O and the transverse lagrangian foliations &~
and 3>+ introduced in § 2.2: in other words, F acts on the bipolarized symplectic
manifold P = (P, O, 3F~, 9'+) by its automorphisms. In this situation, we have

(2.4) PROPOSITION. Assume that the Anosov splitting of M is of C°° and that A <§.
Then the canonical connection of the bipolarized symplectic manifold P is locally
symmetric; that is, VR = 0 for the canonical connection V of P and its curvature tensor
R.

Proof. First, note that the pinching condition (2.3) yields the following estimates

for the hyperbolicity of the geodesic flow <p, of X which improve the previous ones

(2.1):
const l-e A ' | f |<|d<p,£|< const • e '\g\, f o r £ e £ , / > 0 ;

(2.5)
const -e |f|?s\d<p^,g\<const • e |£|, f o r f e E , r > 0 .
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Furthermore, since the splitting TV=E~ + E°+E+ is <pt-invariant, (2.5) implies

const"1 • e'|f|<|d<p_,f|<const- eK'\%\, for f e £ ~ , f>0 ;

const"1 • e'|f|<|d<p,f|<const • eA'|f|, for £e E+, t>0.

Now define a (0, 4)-tensor field R o n P b y K(&, £>,£>, &) = ft(K(£i, &)£s, &) for
fi, & , & , & £ TF. Then R and its covariant derivative VR are tensor fields on P
which are invariant under the action of F, since F acts on P = {P, fl, SF', 3**) by its
automorphisms, and to prove the proposition it suffices to show that V R = 0 since
VQ, = 0. Let S = 77*(VR) be the pull-back of VR by the projection IT : V-+ P, which
is a (0, 5)-tensor field on V. Suppose that £7, f l . I J s E~ ar>d i?|, Tj^e E+. Since S
is if>,-invariant, (2.5) and (2.6) imply

< const • |S| • ldff.fr I \diP,G\ \dq>&\ \dip,f]+
x\ |d<p,T/J|

< const • | s | - i f , i k r l 1^1 h n 1^1 -e
(2A-3"

for / > 0. Since S is smooth on V, and is invariant under the action of F on V for
which the quotient F\ V is compact, \S\ is bounded on V. Thus by letting f->oo in
the above inequalities we have S(£ 7, £ 2, £3, vt, V2) = 0 in the case of gj, f J, £T £ £~
and TJ7, I ?^6 £ + . The other cases can be treated in the same way, and we obtain
S = 0, which obviously implies VR =0. •

Note that in the case of dim M = 2 the proposition is still valid without the
pinching condition on the curvature.

3. Algebraic studies of bipolarized symmetric spaces
In the last section, we found a locally symmetric bipolarized symplectic manifold
associated with a certain negatively curved manifold, and what we have to do in
the rest of the present paper is to determine its structure to conclude the theorem
mentioned in the introduction. We will begin the proof of the theorem with arguments
which do not require the symplectic form of the locally symmetric bipolarized
symplectic manifold under consideration, and this leads us to the following
definition. Suppose that P = (P,V, &~, if+) is a quadruplet consisting of a manifold
P, a torsion-free affine connection V of P, and two foliations 3>~ and &+ of P
transverse to each other with dim P = dim &" + dim 3F+. Then P is called a bipolarized
symmetric (resp. locally symmetric) space if the following three conditions are
satisfied:

(i) (P, V) is an affine symmetric (resp. locally symmetric) space;
(ii) The tangent bundles F and F + of the foliations 9" and 9+ are closed with

respect to the covariant derivative by V, that is, for any vector field £ of P
and a section 17* of F±, V^TJ* is again a section of F±;

(iii) The curvature tensor R of V satisfies R(£;~, r/") = R(£+, T?i) = 0 for £", 17~e
F and f, v

+eF+.
A bipolarized symplectic manifold which is symmetric (resp. locally symmetric)
with respect to its canonical connection is obviously a bipolarized symmetric (resp.
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locally symmetric) space because of (1.1) and (1.2). As we will see later, local
geometry of a bipolarized symmetric space is described by a real Lie algebra g
equipped with a linear decomposition g=h+p+p+ which satisfies the following
conditions:

(i) The splitting g = h+p +p+ obeys the bracket rules

(ii) The adjoint representation of the subalgebra h of g on p = p +p+ is faithful;
that is, for £ e h, [£, p] = 0 implies £ = 0;

(iii) There is an element 5 € h such that [5, £] = 0, — £ or £ according to whether
£e h, p~ or p + , respectively.

We call a real Lie algebra g = h+p~+p+ equipped with a linear decomposition
satisfying the above conditions (i)-(iii) a bipolarized symmetric Lie algebra, and the
purpose of this section is to study bipolarized (locally) symmetric spaces in terms
of bipolarized symmetric Lie algebras as preliminaries for the proof of the theorem.
It should be remarked that the latter conditions (ii) and (iii) are rather subordinate,
and are imposed on the bipolarized symmetric Lie algebras in order that we can
treat the non-semisimple case as well. In fact, they will be employed only in the
proofs of lemmas (3.5) and (3.6) in which we treat non-semisimple bipolarized
symmetric Lie algebras. In the case when g is simple, the condition (iii) is always
derived from (i), and more strongly in the case when g is simple, the condition (i)
implies both of (ii) and (iii). Concerned with (semisimple) Lie algebras g =
h+ p +p+ endowed with linear splittings satisfying the first condition (i), we should
refer to the works by Berger [3], Nagano [19], Kobayashi-Nagano [14], Tanaka
[21] and by others, which had been done in other contexts, but some of them are
still helpful in our discussions.

3.1.
In this paragraph, we will reveal the fundamental relation between bipolarized
symmetric spaces and bipolarized symmetric Lie algebras. First suppose that g =
h+p~ + p+ is a bipolarized symmetric Lie algebra, from which we are going to
construct a bipolarized symmetric space. Let cr be the involutive automorphism of
g defined by <x£ = £ for geh and cr£=— £ for f e p = p + p + , and take an analytic
group G with Lie algebra g so that the automorphism a is integrated to an involutive
automorphism 2 of G. Furthermore let H be the analytic subgroup of G correspond-
ing to the subalgebra h of g: H coincides with a connected component of the fixed
point set of 2, and consequently is closed in G. Thus we can form an affine symmetric
space (P = G/H, V) (cf. [15]). In addition, the abelian subalgebras p~ and p+ of g
induce a G-invariant splitting TP = F~ + F+ of the tangent bundle of P. Both F~
and F+ are integrable, and yield G-invariant foliations SF~ and ^ + of P tangent
to F~ and F+ respectively. It is easy to see that P = (P, V, &~, 3F+) is a bipolarized
symmetric space.

Next we conversely construct a bipolarized symmetric Lie algebra from a bipolar-
ized locally symmetric space. Let P = (P, V, 9~, S'+) be a bipolarized locally sym-
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metric space, and p a point of P. Denote by p± the tangent space of the foliation
&x at p, and by h the space of linear endomorphisms a of p = p~ + p+ = TPP satisfying
the following two conditions:

ap-^p-, ap+<=p+; (3.1.1)

aoR(lr,)-R(S,v)oa = R(a£v) + R(Z,aV) for £ TJ e p. (3.1.2)

In the latter cond'tion, R denotes the curvature tensor of P at p. Note that R(£, 17) e fc
for all £, Tjep. Now put g = h + p~ + p^, and define a Lie bracket operation [•,•]
o n g b y [ a , ^ ] = a » ) 3 - j 3 » a for a, /3 e A; [a, f] = af for a e A, £ e p ; and [f, TJ] =
— R{ij, v) f° r £ V eP- ^ is obvious that g = h + p~ + p+ is a bipolarized symmetric
Lie algebra. Moreover if P = (P = G/ H, V, SF~, ̂  ) denotes a bipolarized symmetric
space constructed from g as above, then P is locally isomorphic to P; that is, P is
covered by partially defined diffeomorphisms of P into P which send the affine
connection and the foliations of P to those of P.

3.2.
Now we are going to consider the space of the leaves of the foliation 5F~ or &+ of
a bipolarized symmetric space P = (P,V, ZF~, SP+). To begin with, let g = ft+ p + p +

be a bipolarized symmetric Lie algebra, and denote by S the element of h such that
ad(3)|fc = 0 and ad(5) |p* = ± l . Associated with it, there is a 1-parameter group
of the inner automorphisms <p, = Exp t ad (5) ( l e R ) of g such that <pt^ = f, e~ '£ or
e'f according to whether f eg, p or p + , respectively. For every ideal a of g, these
automorphisms <p, give rise to the splitting

a = (hr^a) + {p~na) + (p+na). (3.2)

In fact, a is invariant by <pM and for f = £°+ |~ + £ + e a (^°eh,Cep±) it follows
that e~'(p,g= e~'g°+ e~2'£~ + g+ e a. By letting r-»oo we obtain ^ + E a, and in a similar
way we have $~ e a, and in consequence £°e a. This shows (3.2).

Take an analytic group G and its closed subgroup H with Lie algebras g and h
asin§ 3.1 to form a bipolarized symmetric space P = ( P = G/H, V, ^~, ^ + ) . Further-
more let H* be the analytic subgroup of G corresponding to the subalgebra
h± = h + p± of g. Then the coset space B± = G/H± is naturally considered as the
space of the leaves of the foliation &*. The present paragraph is devoted to the
study of the topological structure of B*, and it is done by dividing the arguments
into two cases according to whether g is semisimple or not.

Semisimple case. First suppose that g is semisimple. In this case we can immediately
show that both H and H+ are closed in G: in fact H± coincides with a connected
component of the normalizer {g e G: ad {g)p± <= p*} of p± in G (cf. Tanaka [21]).
Thus B± = G / / / * is a homogeneous manifold. Furthermore we have

(3.3) LEMMA. The universal coverings of B~ and B+ are diffeomorphic to a certain
compact riemannian symmetric space Bo. Furthermore Bo is not irreducible (i.e., admits
a nontrivial decomposition Bo= B, x • • • x Bk) unless g is simple.

Proof. As was indicated by Kobayashi-Nagano [14], it follows from the assumption
of semisimplicity that there exists a Cartan decomposition g = k +1 of g with k being
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a maximal compact subalgebra of g, such that

h = (hnk) + (hnl), p = (pnk) + (pnl), (3.4)

where p=p~ + p+ as before. Moreover it is not hard to see that, for any Cartan
decompositions g'—ki + lx and g = k2 + l2 of g satisfying the condition (3.4), there
is an automorphism of g which sends kx and lx onto k2 and l2 respectively and keeps
h and p invariant. Now let K be the compact analytic subgroup of G with Lie
algebra k, and as in § 3.1 denote by a the involutive automorphism of the Lie algebra
g characterized by cr\h = l and a\p = -l. Then by (3.4), k is invariant by a, and
therefore the automorphism S of C that integrates a keeps K invariant and fixes
K n H. Thus we obtain a compact riemannian symmetric space K/ K n H. Further-
more (3.4) implies that all of the projections pnk^p±, pnl-^p± into p~ and p+

are bijective (cf. [14] again), and it follows that the restricted action of K(c G) on
the homogeneous space 5 * = G / / / * is transitive, and that knh = knh±. Thus B±

is identified with the homogeneous space K/ K n H*, while K/K n H± is finitely
covered by the compact riemannian symmetric space K/KnH. In consequence,
the universal covering of B± is diffeomorphic to the universal covering Bo of
K/K n H, which is of course a riemannian symmetric space in itself.

To prove the second assertion, assume further that g is not simple: let g =
gi+ • • - + gv ( f > l ) be a decomposition of g into prime ideals. Recall that g^ =
(hng^) + (p~ngfi) + (p+ n j j by (3.2). This means that g^ is a bipolarized sym-
metric Lie algebra in itself. Thus each gM again carries a Cartan decomposition
&.=*M + /M wit" hngfi=(hnkj + (hnlj and pngIM = (pnkli) + (pnlll). Now
put k = &! + • • • + *„ and / = /, + • • • + /„. Then g = k + l is a Cartan decomposition
of g that satisfies the condition (3.4). In particular (3.4) implies k = (kn h) + (knp).
Furthermore knp admits the ad (kn h)-invariant splitting kr>p = (k,np) + - • • +
(kvnp), and in consequence the adjoint representation of knh on knp is not
irreducible. Hence the riemannian symmetric space Bo is not irreducible. •

Non-semisimple case. Next we consider the case when g is not semisimple. In this
case we should assume that G is simply connected. Under this assumption the
automorphisms <p, of g induce a 1-parameter group of automorphisms <t>, of G with
(d4>,)i = <pt. The fact we have to prove first is

(3.5) LEMMA. Both H~ and H+ are closed in G.

Proof. To see this, we first show that Lg n L^ = {o}, where o = H denotes the origin
of the symmetric space P= G/ H, and Lo the leaf of the foliation 3F* passing through
o. Since the automorphisms <&, of G fix H, they descend to a 1-parameter group of
automorphisms ^ , of P, which fix the origin o, keep LQ and LQ invariant, and
contract LQ and expand LQ for t > 0. Thus, if there were a point p ̂  o in P lying
in LQ and LQ simultaneously, then ty,'s would move p along Lo since pe L^ and
along LQ since p e Lo, a contradiction. Hence we have Lo n L% = {o}. Note that this
also implies that for any leaves L of &~ and L+ of ̂ + their intersection L~ n L+

contains at most one point. Now we turn to the proof of the lemma. For this purpose
it suffices to show that the leaves of the foliations &~ and 2F+ are closed in P.
Assume on the contrary that a leaf L~ of SF' is not closed in P. Take an accumulating
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point p of L~ that does not belong to L , and let U be a 'flow box' of the foliation
pair (3F~, 3^+) around p: by definition, U is a neighbourhood of p where local
coordinates p7, • • •, P~m, pt, • • •, Pn of P are defined so that each leaf of SF* is of
the form {pf = const,} in U. Then L should intersect the leaf {pi = const;} of 5F+

infinitely many times, but this contradicts the previous assertion. Thus the leaves
of the foliations &~ and 2F+ are closed in P, and consequently, the subgroups H
and H+ are closed in G. •

The above lemma guarantees that B± = G/ H± is a homogeneous manifold, and
concerned with the topology of B± we have

(3.6) LEMMA. Either B~ or B+ is non-compact unless g is semisimple.

Proof. Since g is not semisimple, g has an abelian ideal a^O. Recall (3.2): a =
(hna) + (p~ n a) + (p+ na). First we show that p ^ n a ^ O or p+ n a ̂ 0. Assume
on the contrary that pn a = p+ n a = 0. In this case, we have [hna, p~] c p~ n o = 0
and similarly [h n a, p+] = 0, which imply that h n a = 0 (recall the second condition
in the definition of bipolarized symplectic Lie algebras); but this contradicts a^O.
Thus we have either p'na^O or p + n a / 0 . For simplicity assume p + n a ^ 0 .
Now let A be the analytic subgroup of G corresponding to the abelian ideal a
of g. Then G/A is a simply connected analytic group as we have been assum-
ing that G is simply connected. Its Lie algebra splits as g/a =
(h/h n a) + (p~/p~ n a) + (p+/p+ r\ a), and satisfies the first and the third conditions
in the definition of the bipolarized symmetric Lie algebras. In particular, the
arguments in the proof of lemma (3.5) fully work, and imply that the analytic
subgroup H~/H~n A of G/A with Lie algebra h~Ih~ n a = (h/h n a) + (p~/p~ n a)
is closed in G/A. Thus we can form the homogeneous space (G/A)/(H~/H n A),
over which B~ = G/ H is naturally fibred with fibres being homeomorphic to
A/AnH~. Hence, to show the non-compactness of B , it suffices to prove that
A/An H~ is non-compact. Recall that a = (hr\ a) + {p~ n a) + (p+ n a) is abelian,
and therefore A is also abelian. Furthermore A is simply connected since so is G.
Thus A is isomorphic to a linear space, and the analytic subgroup AnH~ of A
with Lie algebra an h~ = (hr>a) + (p~na) is isomorphic to a linear subspace.
Consequently A/An H s= Rm with m = dim (p+n a) >0, and A/AnH~ is non-
compact. This proves the lemma. •

3.3.
Here we give two examples of bipolarized symmetric Lie algebras g = h+p~+p+

and the associated bipolarized symmetric spaces (P, V, 5F", ̂ + ) which will play
important roles in the proof of our theorem. In particular, we are interested in the
'transverse geometry' of the leaves of the foliation 3F+, and to explain it more
precisely, we have first to introduce a notion in the theory of foliations. Suppose
generally that P is a manifold foliated by transverse foliations SF' and ^ + with
dim P = dim ^ +dim ^ + , and let />, and p2 be arbitrary points -.of P lying on the
same leaf L~ of 3>~: denote by L\ (i = 1, 2) the leaf of 3*+ passing through p,. Then,
corresponding to each homotopy class of curves in IT combining px and p2, there
is a diffeomorphism <p of a neighbourhood U, of p, in Lf onto a neighbourhood
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U2 of p2 in L2 such that <p(pt) = p2 and that <p(q,) = q2 for ^ e Ui (/ = 1, 2) if and
only if <?! and g2 lie on the same leaf of SF~. We call such a partially defined
diffeomorphism <p between leaves of &+ a canonical transformation of SF* along &'.
In exhibiting examples of bipolarized symmetric spaces (P, V, 9~, &+) below, we
will try to make clear what kind of geometry of the leaves of &+ is preserved by
the canonical transformations of 2F+ along &~. Of course, as is expected from the
definition of canonical transformations itself, this is closely related to the G-invariant
geometry of the space B = G/H~ of the leaves of the foliation &~ introduced in
the previous paragraph.

Example 1 (Projective geometry). First we give an example concerned with the
projective geometry. To begin with, let

g = sl(n + 1; R) = {a e gl(n + 1; R): trace a = 0}

be the real unimodular Lie algebra, where gl(n; R) denotes the Lie algebra of n x n
matrices with real entries, and consider its linear decomposition into the subspaces

/i = -jl " ): aegl(n;R), A e R, trace a + A = 0

P =

It is easy to check that g = h+p +p^ is a bipolarized symmetric Lie algebra. Now
let P = (P = G/H, V, S'", 3F+) be the associated bipolarized symmetric space, where
G = SL{ n + 1; R) is the real unimodular group, and H is the closed analytic subgroup
of G with Lie algebra h which is isomorphic to the identity component GL+(n; R)
of GL(n; R). In this case, we can show that the corresponding homogeneous space
B = G/H~ introduced in § 3.2 is diffeomorphic to the n-sphere. To see this, first
recall that G = SL(n + l;R) acts linearly on the euclidean space R"+1, while the
standard sphere 5" is considered to be embedded in R"+l by S"={ |x |= l} . In
addition, S" can be identified with the space of rays in R"+1 starting from the origin,
and this identification gives rise to an action of G on S" which is easily seen to be
projective. Moreover it is clear that the isotropy subgroup of the action of G on S"
at the point ' ( 0 , . . . , 0, 1) 6 5" coincides with the subgroup H~ of G. Thus 5" can
be considered as the homogeneous space B~ = G/H~. These observations imply
further that, for the projection of P= G/ H onto B~ — G/ H = S", its restriction to
each leaf L+ of 3>+ (equipped with the induced affine connection) is a projective
diffeomorphism into B~. Thus the projective geometry of the leaves of ^ + is
preserved by the canonical transformations of &+ along 3>~.

Example 2 (Conformal geometry). The second example we are going to exhibit is
related to the conformal geometry, and arises as the geometry at infinity of the space
of constant negative curvature. Consider the real simple Lie algebra
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with

1

0

1

0

1

egl(n + 2; R),e =

which carries the linear decomposition g = h+p + p + with

'0 0 A\
h=U 0 a 0 : ' a + a = 0 , A 6

0 0/

Again it is easy to see that g = h+p + p + is a bipolarized symmetric Lie algebra.
Now put G = SO0(n + 1,1), the identity component of the lorentzian orthogonal
group O(n + l , l ) = {ge GL(n + 2; R): 'geg = e}, and let / / be the analytic subgroup
of G with Lie algebra h which is isomorphic to the Lie group CO(n) =
{Ag:ge SO(n), A >0}. Then the conformal structure of p+ denned by the inner
product ( | + , T)+) = Y.1 = \ itvt(^+, T?+ep+) is ad (H)-invariant; that is, for every
heH, there is a constant K > 0 such that (ad (h)g+, ad (h)r)+) = K(£ + , T?+) for all
f+, r j+6p+. Moreover it is easy to see that this is the unique ad (H)-invariant
conformal structure of p+. Hence, for the bipolarized symmetric space P =
(P= G/ H, V, &~, 9+) associated with g, the tangent bundle F + of the foliation 9+

has a unique G-invariant conformal structure, which automatically gives the leaves
of cF+ conformal structures. Now we show that these conformal structures of the
leaves of SF+ are preserved by the canonical transformations of 9+ along ^~. First
recall the Minkowski space Rn+11 which is, by definition, the («+2)-dimensional
euclidean space endowed with the lorentzian metric ds2 = dx2

0+- • - + dx2
n-dx2

n+u

where x = (x 0 , . . . ,xn+1) denotes the canonical coordinate system. We regard the
standard sphere S" as being embedded in the Minkowski space R"+1>I by Sn =
{*o+- • ' + x2

n-x
2
n+l =0}n{xn + i = 1}. Each point of S" corresponds to the light-like

line in R"+l1 passing through the origin and itself. On the other hand, the group
G = SO0(n + 1, 1) acts on R"+11 by linear isometries, and the action keeps the light
cone {XQ+- • - + x^ -x^ + 1 = 0} invariant. Thus G acts also on the sphere S", and the
action preserves the induced conformal structure of S" c R""1"11 and is transitive on
S". Moreover the isotropy subgroup of the action at ' ( 1 , 0 , . . . j-Q, 1) 6 S" coincides
with the analytic subgroup H of G with Lie algebra h — h+p, and therefore the
homogeneous space B = G/ H , which has been identified with the space of the
leaves of the foliation 3P~, is diffeomorphic to the n-sphere. Now it is not hard to
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see that the restriction of the projection of P = G/ H onto B=G/H=S" to a
leaf L+ of 9>+ is a conformal diffeomorphism of the leaf L+ (equipped with the
conformal structure described earlier) onto B . This shows that the canonical
transformations of-iF+ along &~ preserve the conformal structures of the leaves of
&+.

3.4.
The proof of our theorem, which will be done in the following section, requires the
classification of the simple bipolarized symmetric Lie algebras. Fortunately, in [19]
and [14] Nagano and Kobayashi gave the complete classification of them. In
particular we will make use of their classification in the following form:

(3.7) PROPOSITION (see [19,14]). Suppose thatg = h+p+p+ is a simple bipolarized
symmetric Lie algebra such that the associated homogeneous space B1 = G/ H1 intro-
duced in § 3.2 is covered by the sphere. Then g is isomorphic to either of the bipolarized
symmetric Lie algebras given in Examples 1 and 2 of § 3.3.

In deriving the proposition from the classification of Kobayashi-Nagano, recall
that B± is covered by a compact riemannian symmetric space Bo (Lemma (3.3)),
for, in the classification table of Kobayashi-Nagano, they describe the compact
riemannian symmetric spaces Ba associated with the Lie algebras at the same time:
by picking up from the classification table the biopolarized symmetric Lie algebras
for which the associated riemannian symmetric spaces are homeomorphic to the
sphere, we conclude the proposition.

4. Construction of an isomorphism between geodesic flows
In the preceding sections we have prepared for the proof of the theorem below that
is our main subject in the present paper, and we are now in the position where the
proof is to be completed.

(4.1) THEOREM. For a closed riemannian manifold M of dimension greater than two,
if its sectional curvature satisfies the pinching condition - j < X s l , and if the Anosov
splitting ofM is of class Cx, then the geodesic flow <p, ofM is isomorphic to the geodesic
flow <p, of a certain closed riemannian manifold M of constant negative curvature; that
is, there exists a diffeomorphism $ of VM onto V'$ such that <i>° <p, = $, ° <J> for all t e R.

Throughout this section suppose that M is a closed riemannian manifold of
dimension n +1 > 3 which satisfies the conditions in the theorem, and let X be the
universal covering of M on which the fundamental group V = 7r,(M) of M acts by
the deck transformations. Denote by P = (P, fi, S>~, 2F+) the bipolarized symplectic
manifold constructed from X. Note that the foliations 3>~ and Sf+ have smooth
tangent bundles F~ and F+ since the Anosov splitting of M is smooth. Further
recall that P is locally symmetric with respect to its canonical connection V (Proposi-
tion (2.4)), and therefore P = (P, V, 9~, 9+) is a bipolarized locally symmetric space
in the sense of § 3.

4.1.
As we have already seen in § 3.1, we can construct a bipolarized symmetric Lie
algebra g = h+p +p+ from the bipolarized locally symmetric space P =
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(P, V, &~, &+), and then a bipolarized symmetric space P = (P=G/H, V, # " , # + )
from g: in the case when g is not semisimple, take the 1-connected Lie group G so
that we can apply Lemmas (3.5) and (3.6). Then we can find a developing map

. A < *

V: P^ P which preserves the affine connections and the foliations of P and P, since
P is locally modeled on P, and is simply connected. (Note that P is not simply
connected in the case of n + 1 =2: this is the reason why we have been assuming
that n + l>3 . ) Now P is fibred over B with the projection (b~,b+)e P =
Bx B\(diagonal)i->bTe B so that each fibre is a leaf of the foliation ZF*, while
P = G / H is a fibre bundle over the homogeneous space B ± = G/H* whose fibres
are the leaves of the foliation &* (cf. § 3.2). Thus we obtain an induced developing
map ty*: B -> B*, which is actually a covering map since B is compact. This especially
excludes the case that g is not semisimple: otherwise, either B or B^ would be
non-compact by Lemma (3.6), in contradiction to the fact that ty±:B^>B± is a
covering. Furthermore g is simple: In fact, a is covered by a compact riemannian
symmetric space Bo, which would not be irreducible if g were not simple (Lemma
(3.3)), while B 1 is covered by B which is difteomorphic to the sphere. Hence g is
actually simple, and we can apply Proposition (3.7) to g = h+p +p+ to conclude
that we have only two possibilities g = si (n + 1; R) and g = so (n + 1, 1).

Now we show that g is never isomorphic to sl{n + l; R). Assume on the contrary
that g = sl(n + l;R). In this case we can choose SL(n + l; R)/GL+(n; R) as the
model space P. The canonical transformations of 9+ along &~ preserve the projective
structures of the leaves of 9>+ (recall Example 1 of § 3.3). Note that this is also the
case with P = (P,^/, !¥~, 9+) since P is locally isomorphic to P. Thus the projective
structures of the leaves of 9^ can be pushed forward to B by the fibring P->
B, (b~, b+)<-^b+, so that B is projectively equivalent to the standard n-sphere and
that the action of the fundamental group T of M on B preserves the projective
structure. However, this is a contradiction for the following reason. The action of
each element y e F\{1} on the imaginary boundary B at infinity has the characteristic
property that there are distinct two fixed points b~, b+ e B of y such that ykb^> £>*
as k -> ±oo for every b e B\{b~, b+} (cf. [6]). On the other hand, we can find a closed
geodesic c in B that does not pass through b~; this is possible because B is
projectively equivalent to the standard sphere. Then, by taking /c>0 large enough,
ykc is a closed geodesic of B enclosed in an arbitrarily small neighbourhood of b+:
This is of course impossible, and consequently, we can exclude the case of g =
$/(n + l ;R).

4.2.
The argument above shows that g = so(n + l, 1), and therefore we may set P =
SO0(n + l, \)/CO(n) as in Example 2 of § 3.3. Our next purpose is to show that
developing map ty: P-> P is in fact bijective. First note that the model space P is
also constructed from the hyperbolic space H"+1 as in the manner of § 2.2, and
especially is of the form P = S" x S"\(diagonal), where the M-sphere 5" is considered
as the imaginary boundary of the hyperbolic space H"+ 1 at infinity. It is obvious
that the developing map ^ of P into P is given by V(b~, b+) = (*~fc~~, V+b+) for
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(b~, b+)e P = Bx5\(diagonal), where ^~ and ^ + are diffeomorphisms of B onto
S". In particular, it is clear that ty is injective since so are ^~ and ty+. We are now
going to prove that ^~ = ̂ + in order to see the surjectivity of ^ . For each element
y of the fundamental group F of M that can be simultaneously considered as an
automorphism of P = (P, V, &~, 9+), f °y»f~' is a partially denned automorphism
of P = (P, V, &~, ?P+), which is uniquely extended to a globally defined automorph-
ism t(y) of P (the extension is possible because P is simply connected and complete
with respect to the connection V). Thus we have a faithful discrete representation
i of T into the automorphism group Aut (P) of P. Put f = i(F) c Aut (P).

On the other hand, it is easy to see that there are canonical isomorphisms among
the isometric transformation group Iso(H"+1) of the hyperbolic space Hn+\ the
conformal transformation group Con(S") of the imaginary boundary S" of H"+1

equipped with the standard conformal structure, and the automorphism group
Aut(P) of P;

Iso(Hn+1) = Con(Sn)=Aut(P). (4.2)

The first isomorphism is introduced in accordance with the fact that each isometric
transformation g of H"+1 is naturally extended to a conformal transformation of
the imaginary boundary S" at infinity (cf. §2.1), while the second isomorphism
assigns each conformal transformation h of S" the automorphism h of P defined
by h(b~,b+) = {hb~,hb+) for (b~,b+)eP. By means of these isomorphisms, the
group F can be considered as a discrete subgroup of each of those transformation
groups appearing in (4.2).

Now put f=ty+°('ty~)~l which is a diffeomorphism of the imaginary boundary
S" onto itself. Then we can show that

/ ° y = y ° / for all ye fcCon(5" ) . (4.3)

In fact, for y = i(y)et (yeT), it holds that

(yb~, yb+) = y(b~, b+) = *° r r ' ( 6 " , b+)
= (rp-oro(rp-)-1fc-,rp+cro(^+)-1fc + )

for (b+, b~)e P, where yet is considered as an element of Con (Sn) in the first
term, and as an element of Aut (P) in the second, while yeF is considered as an
automorphism of P in the third term, and as a diffeomorphism of B in the last:
this implies that

as an element of Con (5"), and in consequence, we have (4.3).
Next consider f as a discrete subgroup of Iso (H"+>): Y is torsion-free since so

is F, and therefore we can form a complete riemannian manifold M = Y\Hn+x of
constant curvature — 1. Furthermore the manifolds M and M, which are both
aspherical, have the isomorphic fundamental groups f and Y. Thus M is homotopy
equivalent to M, and we have Hn + ,(M; Z2) = Hn+l{M; Z2) = Z2. This means that

-A A

M is closed. Hence we have proved that Y is a uniform lattice of the Lie group
Iso(//"+1) with « + l > 3 .
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In this situation, Mostow's rigidity theorem claims that the diffeomorphism / of
A

S" satisfying the condition (4.3) with the uniform lattice F is a conformal transforma-
tion of S" ([17,18]; see also [22, 20]). Thus / induces an isometric transformation
/ o f H"+1 such that f°y= f / for all y e f c Iso (H"+1). On the other hand, it is
well known that there is no such isometric transformation of H"+l other than the
identity map. Thus we have / = id, and/ = ^ + ° (¥")" ' = id. This shows that V~ = V+,
which immediately implies the surjectivity of ^ .

In a summary we have

(4.4) LEMMA. Under the preceding assumptions, there exists an isomorphism ty of
(P,V,&-,&+) onto (P, V, #" , # + ) .

4.3.
A A A A A

Recall that the affine connection V of the bipolarized symmetric space (P, V, 3>~, 5F )
is the canonical connection of the bipolarized symplectic manifold (P, ft, ^~, ^F+)
that can be constructed from the hyperbolic space H"+\ while the bipolarized
symplectic manifold (P, ft, ^~, 5F+) was constructed from the universal covering X
of M. Here we are going to show that the isomorphism ^ of (P, V, 9~, 3F+) onto
(P, V , # " , ^ + ) also preserves the symplectic forms ft of P and ft of P up to
multiplication by a constant, and for this purpose, we first show the following
lemma. Recall that P=G/H with G = SO0(n + 1,1) and H = CO(n).

(4.5) LEMMA. Every G-invariant exact symplectic form on P is a constant multiple of
the symplectic form ft.

Proof. In the case of n +1 # 3, it follows from elementary algebraic computation
that the Ad (H)-invariant symplectic forms on the subspace p = p' + p+ of the Lie
algebra g = h + p +p+ of G are unique up to the multiplication by constants. This
immediately implies the lemma without any use of the assumption of exactness. On
the contrary, the uniqueness of this kind does not hold for n + 1 = 3: more precisely,
if n +1 = 3, the G-invariant closed 2-forms on P form a 2-dimensional linear space.
However, it is still possible, and is not hard to prove the lemma under the assumption

A

of exactness, because the second homology of P is nontrivial when n + 1 = 3 (recall
that P is homeomorphic to S" x S"\(diagonal), and in consequence homotopy
equivalent to S"). •

The proof of the lemma in the case of n + 1 = 3 is basically due to A. Katok who
kindly pointed out the importance of exactness to the author.

Now let ft' = ^ " ' * n be the pull-back of Vt by the diffeomorphism ^P"1 of P on
A A

P. Then fT is parallel with respect to the canonical connection V of P, since ^ and
its inverse preserve the connections of P and P. This especially implies that ft' is
G-invariant. Thus we can apply the above lemma to ft', and conclude that ft' =

A A A A A A

const • ft. On the other hand, the bipolarized symplectic manifold P = (P, ft, 9>~, 9 )
is constructed from the hyperbolic space Hn+\ Thus, a suitable-homothetic change
of the metric of H" + 1, which also changes the symplectic form ft by multiplication
by a constant, ensures that ^ is an isomorphism between the bipolarized symplectic
manifolds P = (P,ft, &~, &+) and P = (P, ft, #~, # + ) . Let X be the riemannian
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manifold homothetic to H"+l whose associated bipolarized symplectic manifold P
is isomorphic to P under ^ .

4.4.
Let V= Vx — {v e TX: \v\ = 1} be the unit tangent bundle of the universal covering
X of M, which is fibred over P so that each fibre is an orbit of the geodesic flow
(p, of X. Also let V = V x be the unit tangent bundle ofthe riemannian manifold X.
We are now going to lift the isomorphism * : (P, H, &~, &+) -> (P, fi, #", #+) to a
diffeomorphism <f>: V-> V which commutes with the geodesic flows <p, of X and cp,
of X For a while, identify P = (P, O, ^" , Sf+) with P = (P, H, #~, #+) under the
isomorphism 1P.

To begin with, recall that the connected component G = Iso0 (X) = SO0 (n + 1,1)
ofthe isometric transformation group Iso (X) of X acts on V and on P= P naturally.
These actions give rise to natural embeddings ofthe Lie algebra g = so (n + l, 1) of
G into the Lie algebra X(V) of the vector fields on V, and into the Lie algebra

= 3£(P) ofthe vector fields on P=P: for each f eg, denote by £e£(V) and
3E(P) the corresponding elements. On the other hand, let TV =

E~ + E + E be the Anosov splitting associated with the geodesic flow (/?, of X. We
introduce a function a:gx V-» R which is characterized by the following condition:
for each £eg and ueV, a(£;,v)<p'(v) is the ££-component of g(v)eTeV =
£5 + £^+ E£, where <p'= (d/dt)\l=0<p, denotes the geodesic spray on V that spans
the 1-dimensional subbundle E° of TV. It is easy to see that for each feg the
function a(£ •) on V is constant along each orbit ofthe geodesic flow <p, of X, and
therefore a is reduced to a function on g x P = g x P, which is denoted by the same
symbol o. For each £e g, let â  be the function on P = P defined by a$(p) = a(£ /?)
for p e P.

In addition, let TV= £" + £'0+£'+ be the Anosov splitting associated with the
geodesic flow tp, of X: note that with respect to the R-fibring 77: V-» P, £° is the
vertical subbundle of TV that is spanned by the geodesic spray <p'= (d/dt)\l=0<p,,
while £ = £~ + £+is horizontal. For each £eTP= TP, denote by £*e £ the horizon-
tal lift of (by 77:

(4.6) LEMMA. The mapping g -> 3£( V), £>-> | = f* + (af ° TT)<P' 0/ the Lie algebra g of
G into the Lie algebra ?i{V) ofthe vector fields on V is a Lie algebra monomorphism.

Proof. Recall that the symplectic form fl on P is the push-forward of the exterior
derivative d® of the canonical contact form 0 of V by the projection TT: V-> P.
Moreover, as we have seen in § 2.2, 0(<p') = 1 holds for the geodesic spray <p', and
the subbundle £ = £" + £ + of TV is characterized by 0 |£=O. Thus a standard
formula for the R-fibring V-» P yields

[£? ,#] = [ f i , f 2 ]*-n(£i ,k)? ' for ^,(2eX(P) = 3i(P). (4.7)
Furthermore the equation of the same form holds also for the fibring V-> P = P,
and it implies

dav(i)-daf(ri) - « „ , , , = fl(£ij) for £ T / G £ , (4.8)
A. • *

since the mapping g^X( V), g^> f is a Lie algebra homomorphism. Now it follows

https://doi.org/10.1017/S0143385700004430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004430


Geodesic flows of negatively curved manifolds 235

easily from (4.7) and (4.8) that the mapping g-»3£(V) defined by £>-»£ =
£* + (af°ir)<p' is actually a Lie algebra homomorphism. •

One should notice that it has been possible to prove the lemma because the
isomorphism ^ of P onto P preserves the symplectic forms of P and P.

It is also easy to see that for each (eg the corresponding vector field £ on V is
complete. Thus the embedding j»-»3E( V) of the Lie algebra g obtained in Lemma
(4.6) induces an action of the Lie group G on V, and the action satisfies the following
conditions:

The action of G on V is transitive; (4.9.1)

The action commutes with the geodesic flow <p, of X; that is, g°<p, = <p, ° g for all

geG and teR, (4.9.2)

The Anosov splitting TV= E~ + E°+E + is invariant under the action.
(4.9.3)

Of course the original action of G on V satisfies the corresponding conditions, and
especially by (4.9.1) we obtain a diffeomorphism <J> of V onto V which possesses
the following properties:

<$> is a lift of ¥ ; i.e., -fr ° <J> = ̂  ° 77 for the projection rr: VH> P and TT: V-> P.
(4.10.1)

<J> is G-equivariant; i.e., 4>°g = g°<I> for all g e G; (4.10.2)

$ commutes with the geodesic flows of X and X; i.e., 4>°<p, = $ta<$>; (4.10.3)

<t> maps the Anosov splitting T V = £ ~ + £ ° + £ + of X to the Anosov splitting

TV=E- + E°+E^ of X. (4.10.4)

4.5.
By means of the isomorphism^ of P = (P,£l,& , &+) onto P = (P, O, # , # + ) , the
fundamental group T of M, which acts on P by automorphisms, has a faithful
representation 1 into the automorphism group Aut(P) of P defined by i(y) =
\poyo\iA-1

GAut(P) for y e T c Aut(F): put f = i ( r ) . The isomorphism ^ : P ^ P is
clearly t-equi variant in the sense that 9 ° y = L{J)°^ for all ye Y. Furthermore the
automorphism group Aut (P) = Aut (P, O, ^~, 2F+) of P is canonically isomorphic
to the isometry group Iso (X) of X, where X denotes, as in §§ 4.3-4.4, the riemannian
manifold homothetic to the hyperbolic space H"+ 1 for which P is the associated
bipolarized symplectic manifold. Thus f can be simultaneously considered as a
discrete subgroup of Iso (X), and therefore acts on the unit tangent bundle V= V$
of X in the canonical way. On the other hand, the group F, which acts on X by
the isometric deck transformations, has a canonical action on the unit tangent bundle
V= Vx of X. Our purpose here is to deform the lift <t>: V -» V of ̂  constructed in
the previous paragraph to an t-equivariant diffeomorphism of V onto V so that it
still commutes with the geodesic flows of X and X. -

Let / be the involution of V defined by Iv = -v for ve V, and let / be the
corresponding involution of V. It is clear that

I°<p-,°I = tp, and I°$_t°I = $, for/eR, (4.11)
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where <p, and tp, denote the geodesic flows of X and X respectively. First we are
going to deform the diffeomorphism <$>: VH> V so that

$,°<$> = <$>°(p, and /°<t> = fl>°/. (4.12)

Notethat / i s a lift of the involution J of P = Bx B\(diagonal) defined by J(b~, b+) =
(b+,b~) for b,b+eB with b~?^b+. Similarly / is a lift of the involution J of
P = S" x S"\(diagonal) defined in the same way, where S" denotes the imaginary
boundary of X at infinity. Furthermore, the diffeomorphism ty of P onto P is the
'product' of a diffeomorphism of B onto S" by itself (see § 4.2), and in consequence,
^ commutes with the involutions of P and P; i.e., 7 ° ^ = ^ °7 . Since O is a lift of
ty, there is a function / : V '-» R such that

I°®(v) = <pfu,)°<&°I(v) for r e V. (4.13)

Now together with (4.10.3), (4.11) and (4.13) we have

and therefore we obtain f°<p,(v) =f(v) for all ve V and /£ R; that i s , / is constant
on each orbit of the geodesic flow <p,. Secondarily we will show that / is constant
on each leaf of the stable and unstable foliations W and <?+ of V which integrate
the subbundles E and E+ of TV respectively. Fix ve V and put a =f(v). For the
diffeomorphisms /°<t> and <pa°<3>°I of V onto V, we have

d(I o<i>)(i) = d(<pa°<&° IM) + df(i)<p' f o r£eT ,V

by (4.13), where <p' denotes the geodesic spray on V. Further, by (4.10.4), both of
these diffeomorphisms /°<t> and ipa°<t>°/ of V onto V send the subbundles E~ and
E+ of TV to the subbundles E+ and £~ of TV respectively; that is, d(I°<t>)($),
d((pa°(£>°I)(g)E Er whenever (e £*, and therefore dfii) = Ofor ^G E*. This means
t h a t / i s constant along the leaves of the foliations %~ and c£+, and in consequence
that / i s constant on V. S e t / = T on V, and replace O by <pT/2°<&. Then it is obvious
that <$> satisfies the condition (4.12).

Next we prove that the diffeomorphism $ of V onto V satisfying (4.12) is
i-equivariant. Since $ is a lift of the t-equivariant diffeomorphism NC of P onto P,
there is a funct ion/ :Fx VH> R such that t(y)°<$>(v) = <pnyJ_.)°<i>°y(v) for yeY and
t; e V. However, for each y e F, we can prove, by using (4.12) and (4.10.4) as before,
that the function f(y, •) on V is constant. Put / ( y ) =/ (y , •), and consider / as a
function on F. It is obvious that

L(y)°<i> = <pfly}°<&°y f o r y e F , (4.14)

and our purpose here is to show t h a t / = O . Take •yeF\{l}. Then there is a vector
v 6 V and T> 0 such that

yv = (pTv, y(-v) = <p-T(-v), (4.15)

since M = F\X is a closed manifold: In fact, it suffices to take a unit vector v tangent
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to the geodesic line in X that is invariant under the isometric action of y on X.
The action of y on P fixes the point n(v) of P, where 77: V^> P denotes the projection,

A A

and therefore the point ^°TT(U) of P is fixed by the action i(-y) on P. Thus, for
•y = i(y) and for v = <t>(v), there is a constant T such that

yv = $fv, y{-v) = $_f{-v). (4.16)

From (4.14)-(4.16) and (4.12), we have

$ f(v) = y{v) = L{y)°<fr{v) = $f(y)°®° y(v)

= $ny)°®° <pT{v) = $f{y)<> $T
o<b(v) = $ny)+T{v),

and in consequence it follows that

f=f(y)+T. (4.17)

Similarly (4.12) and (4.14)-(4.16) imply that

<P-t (-v) = y(-v) = i(y)°I°$>(v) = i(y)°<$>°I(v)

= <pf(y)°®° y(-v) = $Ay)°<&° <p-T(-v)

= $fiy)0(f>-Ta^{-V) = $f(y)-T{-V),

and we have

-t=f(y)-T. (4.18)

It is an immediate consequence of (4.17) and (4.18) tha t / (y) = 0 for y e F, and this
shows that <t> is t-equivariant.

A

Now Theorem (4.1) follows immediately. In fact, consider F as a discrete subgroup
A A A A . * A

of the isometric transformation group Iso (X) of X, and put M = Y\X: M is a
A A

closed riemannian manifold of constant negative curvature (cf. § 4.2), and F\ V
A

coincides with the unit tangent bundle VM of M, while VM = F\ V obviously. Thus
A

the i-equivariant diffeomorphism $ of V onto V descends to a diffeomorphism of
A

VM onto VM that commutes with the geodesic flows of M and M. This proves
Theorem (4.1).
4.6.
Here is a digression on another topic concerning the geodesic flows of negatively
curved manifolds. First of all, recall that the geodesic flow <p, of a riemannian
manifold M is said to be smoothly conjugate (resp. topologically conjugate) to the
geodesic flow $, of another riemannian manifold M if there is a diffeomorphism
(resp. homeomorphism) <$> of VM onto V^ such that each orbit of tp, is mapped to
an orbit of tp, by 4> with orientations preserved. Although smooth conjugacy is in
general a weaker condition than isomorphism between geodesic flows in the sense
of Theorem (4.1), the previous arguments in §§4.3-4.5 yield

(4.19) PROPOSITION. For a closed riemannian manifold M of negative curvature, if
the geodesic flow <p, of M is smoothly conjugate to the geodesic flow <p, of a certain
closed riemannian manifold M of constant curvature —1, then <p, is isomorphic to <p,
by changing the metric of M suitably homothetically.

Note that, modulo Conjecture 2 we have posed in the introduction, M is to be
A

homothetic to M under the assumption in the proposition. In contrast, M. Gromov

https://doi.org/10.1017/S0143385700004430 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004430


238 M. Kanai

[9] proved that the fundamental group of a closed riemannian manifold of negative
curvature determines its geodesic flow up to topological conjugacy: more precisely,
his result claims that, for two closed riemannian manifolds M and M of negative
curvature, their geodesic flows are topologically conjugate to each other whenever
the fundamental group of M is isomorphic to that of M. Thus, in Proposition (4.19),
the assumption of the smoothness of the conjugacy is never removed.

Proof. First note that the fundamental groups of M and M are isomorphic to each
other. Put F = TTX{M), F = 7r,(M), and let i :F-»F be an isomorphism. The smooth
conjugacy between VM and V& is lifted to an t-equivariant smooth conjugacy from
the unit tangent bundle V of the universal covering X of M onto the unit tangent
bundle V of the hyperbolic space H"+] which covers M isometrically. Moreover
this conjugacy descends to an i-equivariant diffeomorphism ^ of P onto P preserv-
ing the foliations &* of P and #* of P, where P = (P,fl, &~, &+) and P =
(P, Cl, !¥~, 3'+) denote the bipolarized symplectic manifolds associated with X and
Hn+l respectively. Now let V and V be the canonical connections of P and P, and
let h = ( ^ ' ^ V - V be the second fundamental form of the diffeomorphism^"1: P-*
P. h is a F-invariant (1, 2)-tensor field on P, and therefore an argument employed
in the proof of Proposition (2.4) implies that h should vanish on P. Thus ^ is an
i-equivariant isomorphism of (P, V, &~, ZF+) onto (P, V, 9>~, &+). Then it follows
from the arguments in §§ 4.3-4.5 that the geodesic flow of M is isomorphic to that
of M provided that the metric of M is changed homothetically so that P =
(P, Q, 3F~,&+) and P = (P, O, # " , # + ) are isomorphic to each other under the
diffeomorphism Nf. D
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