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Mediation analysis plays an important role in understanding causal processes in social and behavioral
sciences. While path analysis with composite scores was criticized to yield biased parameter estimates
when variables contain measurement errors, recent literature has pointed out that the population values
of parameters of latent-variable models are determined by the subjectively assigned scales of the latent
variables. Thus, conclusions in existing studies comparing structural equation modeling (SEM) and path
analysis with weighted composites (PAWC) on the accuracy and precision of the estimates of the indirect
effect in mediation analysis have little validity. Instead of comparing the size on estimates of the indirect
effect between SEM and PAWC, this article compares parameter estimates by signal-to-noise ratio (SNR),
which does not depend on the metrics of the latent variables once the anchors of the latent variables are
determined. Results show that PAWC yields greater SNR than SEM in estimating and testing the indirect
effect evenwhenmeasurement errors exist. In particular, path analysis via factor scores almost always yields
greater SNRs than SEM. Mediation analysis with equally weighted composites (EWCs) also more likely
yields greater SNRs than SEM. Consequently, PAWC is statistically more efficient and more powerful than
SEM in conducting mediation analysis in empirical research. The article also further studies conditions
that cause SEM to have smaller SNRs, and results indicate that the advantage of PAWC becomes more
obvious when there is a strong relationship between the predictor and the mediator, whereas the size of the
prediction error in the mediator adversely affects the performance of the PAWC methodology. Results of
a real-data example also support the conclusions.

Key words: factor-score regression, structural equation modeling, indirect effect, measurement reliability,
signal-to-noise ratio.

1. Introduction

Mediation analysis facilitates the understanding of the process of the causal effect of a pre-
dictor on the outcome variable and plays an important role in studying the effect of intervention
(see, e.g., Hayes, 2018; MacKinnon, 2008; Zhang & Yang, 2020). Because data in social and
behavioral sciences are often observational and typically contain measurement errors, structural
equation modeling (SEM) has been believed a better method for conducting mediation analysis
than path analysis1 with weighted composites (PAWC). In this article, we show that this belief is
not true in general. Instead of comparing the two classes of methods by the size of their parameter
estimates, we propose to use signal-to-noise ratio (SNR) to measure the efficiency of the estimates

Correspondence should be made to Ke-Hai Yuan, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Email: kyuan@nd.edu

1Because themediator is a dependent variable in one regressionmodel and a predictor in another regressionmodel, the
technique for mediation analysis is better regarded as path analysis although least-squares regression is used in estimating
the path coefficients when the analysis is conducted via manifest variables.
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of the indirect effect and show that PAWC performs better than SEM under the new measure. We
will formally define the concept of SNR in the following section and show that it is directly related
to the statistical power in detecting the existence of an indirect effect. Because statistical power
is a top concern in mediation analysis, via the analysis of the results under many conditions, we
will also identify key factors that cause the differences of the SNRs between different methods.

Measurement errors cannot be avoided with observational data. When predictors contain
measurement errors, regression analysis via composites tends to yield estimates that are inconsis-
tent with those among latent variables. By explicitly modeling measurement errors, the method of
SEM can consistently estimate the values of the coefficients that govern the relationship among
the latent constructs as well as other parameters of the model. However, model misspecification
also cannot be avoided in practice (e.g., Box, 1979;MacCallum, 2003), which will result in biased
representations of the theoretical constructs by the latent variables as well as parameter estimates
that are systematically different from their counterparts under a correctly specified model (Yuan
et al. 2003). Thus, we regard both latent variables and weighted composites as approximations to
the theoretical constructs. But we do not explicitly consider the issue of model misspecification
in this article, and the setup implicitly favors the SEM methodology.

Croon (2002) discussed issues in statistical modeling when latent variables are replaced
by factor scores or composites. A consequence of the replacement is that the path coefficients
under PAWC are systematically different from their counterpart under latent-variable models, as
has been noted in textbooks (Allen & Yen, 1979; McDonald, 1999) . However, because latent
variables in social and behavioral sciences typically do not carry units, we have to assign a scale to
each latent variable for an SEM model to be identified. For an exogenous latent variable, this can
be done by fixing the factor loading of one of its indicators at 1.0 or by fixing the variance of the
latent variable at 1.0. But the choice between the two is arbitrary (e.g., Bentler, 2006). The scale
of an endogenous latent variable is typically aligned to one of its indicators by fixing the factor
loading at 1.0. Still, the choice of the indicator as well as the value of 1.0 are arbitrary. Each of the
listed arbitrarinesses makes the values of the path coefficients among the latent variables artificial
(Yuan&Deng, 2021; Yuan&Zhang, 2023) . Similarly, the scales of weighted composites can also
be chosen artificially (e.g., sum score versus average score), and the values of the corresponding
regression coefficients depend on the chosen scales. In addition, for the value of a path coefficient
defined under a latent-variable model, one can obtain an identical value under regression analysis
using weighted composites by adjusting the scales of the composites, and vice versa (see, e.g.,
Hoshino & Bentler, 2013; Skrondal & Laake 2001; Yuan & Deng, 2021; Yuan & Zhang, 2023).
Consequently, the differences in parameter estimates between SEM and PAWC are artificial rather
than substantively grounded. Such an observation leaves more space for researchers to select a
method according to a specific purpose. In particular, we should choose a method that has the
greatest statistical power if the interest is to detect the existence of a mediation relationship among
the theoretical constructs. Our study in comparing the SNRs for the estimates of the indirect effect
is a clarification of the issues discussed byCroon (2002), especially formediation analysis in social
and behavioral sciences where measurements typically contain errors and do not have predefined
metrics.

For mediation analysis, Ledgerwood and Shrout (2011) compared SEM and path analysis via
average item scores with respect to bias and standard errors (SEs) of parameter estimates. They
used “accuracy” and “precision” to substitute for bias and SEs, and their Monte Carlo results
showed that SEM yields estimates with greater accuracy but less precision. While Ledgerwood
and Shrout’s findings are interesting, they have little validity. This is because both the values of
parameter estimates and their SEs under both SEM and PAWC depend on the subjectively chosen
scales of the involved variables, as noted above. In addition, Ledgerwood and Shrout (2011) only
considered indicators whose true-score variances are equal and so are the error variances, termed
as parallel tests or measurements (Allen & Yen, 1979). Because, with parallel indicators, the
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average scores attainmaximum reliability (Bentler, 1968; Yuan&Bentler, 2002) and the estimates
of the path coefficients and their SEs depend on the reliabilities of the composites (Cochran,
1970; Fuller, 1987) , the results of Ledgerwood and Shrout (2011) are of little generalizability. For
the same reason, direct parameter comparison between SEM and PAWC for moderated-mediation
analysis is not well-grounded either (Cheung & Lau, 2017) .

There has been a great interest in determining the existence of a mediation effect. This is
typically done by a null-hypothesis statistical test (NHST) for the indirect effect of the predictor
on the outcome variable via the mediator, or by using the confidence interval (CI) approach to
inference (MacKinnon et al., 2002; Shrout & Bolger, 2002) . Other approaches of quantifying
mediation effects also exist (e.g., Fairchild et al., 2009; Lachowicz, Preacher & Kelley, 2018; Liu
et al., 2024; Preacher & Kelley, 2011). The focus of this article is on the SNR for estimating the
indirect effect. Since the power of NHST is directly related to SNR, our aim is to identify the
methods that yield the greatest SNRs.We will not study type I errors because they can be properly
controlled via the bootstrap or Monte Carlo methods (see, e.g., Efron & Tibshirani, 1993; Hayes
& Scharkow, 2013; Miocevic et al., 2018; Yuan & Hayashi, 2003; Yuan, Zhang & Zhao, 2017).
Readers interested in bootstrap methods for type I error control in mediation analysis are referred
to MacKinnon et al. (2002) and Tibbe and Montoya (2022). Because the bootstrap methods are
nonparametric, the validity of their findings is expected to hold regardless of the size of the SNRs
for estimators of the indirect effect. We will discuss how SNR is related to the width of confidence
intervals and statistical power in the following section.

Our interest in SNR for mediation analysis by different methods is motivated by a recent
study by Yuan and Fang (2023) who showed that, conditional on the weights, the SNR for the
regression coefficient between two latent variables under SEM ismathematically smaller than that
under regression analysis via the Bartlett- or regression-factor scores. When sampling errors in
weights are considered, the average SNR for the estimated regression coefficient using theBartlett-
factor scores becomes even greater. Since SNR plays a pivotal role in NHST, we are interested
in whether the finding in Yuan and Fang (2023) still holds for the indirect effect in mediation
analysis. It turns out that the mathematics in analytically studying the SNR for the indirect effect
is much more complicated than that for the regression coefficient between two latent variables,
due to the confounding effects with correlated variables. So we will use a mixed approach by first
driving the asymptotic covariance matrix of parameter estimates and then numerically compare
the resulting SNRs by different methods. Different SNRs will also be compared empirically via
Monte Carlo simulation.

In sum, the purpose of this article is to rigorously compare PAWC against SEM with respect
to the SNRs of the indirect effect in mediation analysis. Our contributions include: (1) Noting that
it is not meaningful to compare the sizes of parameters between SEM and PAWC for mediation
analysis with theoretical constructs; (2) proposing to use the size of SNR tomeasure the efficiency
of different methods in conducting mediation analysis; (3) rigorously studying the performances
of SEMand PAWC in estimating and testing the indirect effect with respect to SNR; (4) identifying
the causes for the SNR difference between SEM and PAWC for the indirect effect in mediation
analysis; and (5) developing a formula to account for the effect of the estimated weights in the
Bartlett-factor scores for computing the standard errors of the indirect effect inmediation analysis.
We will conduct the study by combining analytical results with numerical analysis. Analytical
results are presented in the following section, and numerical results are presented in a subsequent
section. Factors that contribute to the advantage and disadvantage of PAWC are examined in
a follow-up section. A real-data example comparing the different approaches are provided in a
separate section.Discussion and recommendations are offered in the concluding section. Technical
details of the analytical results are given in appendices.
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2. Analytical Formulas of Signal-to-Noise Ratios

In this section, we will first define the concept of SNR (signal-to-noise ratio) and then present
its formulation and computation for the indirect effects under SEM and PAWC. Themain task is to
relate the SNRs under PAWC to parameters under SEM.We will only consider the condition with
normally distributed data since the widely used normal-distribution-based maximum likelihood
(NML)method for SEM is known to yieldmost efficient parameter estimates, which correspond to
the greatest SNR. If SEM does not have an obvious advantage over PAWC under such a condition,
thenSEMmaybe even less desirable formediation analysiswhendata are not normally distributed.
We will further discuss this issue in the concluding section.

There are two scenarios for computing the SNRs under PAWC. The first one is when the
weights in the formulations of the composites are considered as given or the analysis is conditional
on a particular set of estimated weights. Examples of this type include treating factor scores as
observed data (see, e.g., DiStefano et al., 2009) in the analysis or when the sum score or equally
weighted composites (EWCs) are used. It also includes cases when items are weighted according
to design or theoretical consideration. The second scenario accounts for the sampling errors in the
estimated weights, which includes cases when factor scores are computed from sample to sample
as in Monte Carlo study or analysis via the bootstrap methodology.

2.1. Signal-to-Noise Ratio (SNR)

For a parameter estimate θ̂ based on a sample of size N , let θ be the expected or asymptotic
value of θ̂ , and SDθ = [Var(√N θ̂ )]1/2 be the square root of the variance of √

N θ̂ , termed as the
standard deviation of θ̂ in this article. We define the SNR of θ̂ as

τ = θ/SDθ . (1)

Note that the SNR in (1) depends on the population distribution of the sample based on which
θ̂ is computed in addition to the estimation method used to obtain θ̂ . However, SNR does not
depend on the scales of the involved variables for all sensible estimation methods. For example, if
θ = μ is the mean of a univariate population represented by x and θ̂ = x̄ is the sample mean, then
τ = μ/σ does not depend on the scale of x , where σ is the population standard deviation of the
random variable x . Similarly, if θ is the regression coefficient of y on x and θ̂ is obtained by least
squares or a robust method, then the corresponding τ does not depend on the metric of either x or
y. For latent variables in an SEM model whose scales are fixed by letting one of their loadings at
1.0 or by setting their variances at 1.0, then τ remains the same for all parameter estimates when
the chosen loadings or variances are reset at any other positive values. Also, τ (asymptotically)
does not depend on the sample size N or (with finite samples) depends little on the sample size N .
This is because SEθ = [Var(θ̂)]1/2 is inversely proportional to N 1/2 for essentially all parameter
estimates (Casella & Berger, 2002; Ferguson, 1996) , and SDθ = √

NSEθ effectively removes
the dependence on N .

While the SNR is a stand-alone concept, it can be regarded as a generalization to τ = μ/σ

for the sample mean θ̂ = x̄ and applies to any parameter estimate. The concept SNR facilitates
comparison of the goodness of parameter estimates by different methods as well as comparison
of findings by different researchers who might have scaled variables differently in their studies.

Since τ is the expected value of θ̂ over its SD, an estimator with a greater SNR has a smaller
relative error. Consequently, statistical testing based on a parameter estimate with a greater SNR
corresponds to a sampling distribution with a greater non-centrality parameter (NCP) when the
hypothesis H0: θ = 0 does not hold. Among estimates of θ by different methods, the α-level
confidence interval (CI) for θ based on an estimate with a greater SNR will be shorter if the
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estimates are made equal by rescaling the related variables. Thus, test statistics or inference via
CI based on parameter estimates with greater SNRs will be statistically more powerful.

When θ = μ is the population mean of a univariate sample, the corresponding SNR can
be estimated by τ̂ = x̄/s = t/

√
N , where t = √

N x̄/s is the student t-statistic for testing H0:
μ = 0. Let the z-statistic for θ̂ be defined as z = θ̂/SE, then the corresponding τ can be estimated
as τ̂ = z/

√
N . However, the SNR intends to serve as a measure of the goodness of an estimator

rather than serving as a test statistic. In particular, the SNR is a population quantity that does not
depend on sample size. In contrast, the p-value, power of a test statistic, and the NCP for testing
H0: θ = 0 typically depend on sample size.

Note that the SNR in Eq. (1) is a standardized difference between θ and 0. A multivariate
version of SNRwas given in Yuan and Fang (2023), which is essentially theMahalanobis distance
between vectors θ and 0 weighted by the precision matrix [Cov(√N θ̂)]−1.

SEM and path analysis with differently weighted composites represent different estimation
methods, and consequently, they correspond to different SNRs. The following sections will be
around comparing the SNRs of parameter estimates by these methods for mediation analyses,
with the indirect effect being the focal parameter.

2.2. Indirect Effect Under SEM

Let x, y1 and y2 be vectors of mean-centered indicators, and we have the following latent-
variable model for studying the indirect effect

x = λxξ + ex , y1 = λy1η1 + ey1 , y2 = λy2η2 + ey2 , (2)

η1 = γ1ξ + ζ1, η2 = β1η1 + γ2ξ + ζ2, (3)

where λx , λy1 and λy2 are vectors of factor loadings; ex , ey1 , and ey2 are vectors of errors that
are independent from each other and from the latent variables ξ , η1 and η2; and the residuals ζ1
and ζ2 are independent with the predictors in the same equation. With mean-centered indicators,
all the latent variables, errors and residuals have mean zero; Cov(ex ) = �x , Cov(ey1) = � y1
and Cov(ey2) = � y2 are diagonal matrices; Var(ζ1) = σ 2

ζ1
and Var(ζ2) = σ 2

ζ2
. In the context of

mediation analysis under SEM, η1 is a latent mediator, and the interest is the indirect effect of ξ

on η2 via η1, quantified by the product γ1β1.
Suppose there are px , py1 and py2 indicators in x, y1 and y2, respectively. We let σ 2

ξ =
Var(ξ) = 1.0 and the first loadings in λy1 and λy2 be 1.0 for the purpose of model identification.
Then, there are q = 2(px + py1 + py2)+3 model parameters in Eqs. (2) and (3). Let θ denote the
vector of the q parameters, andwewill refer to θ as the base parameters.With normally distributed
data, θ can be efficiently estimated by NML. Let γ̂1 and β̂1 be the NML estimates of γ1 and β1,
respectively. The indirect effect is then estimated as γ̂1β̂1, whose population counterpart is γ1β1.

We need the SD of the NML estimate γ̂1β̂1 in order to compute the corresponding SNR
according to Eq. (1). For the q estimates in θ̂ , their covariance matrix is consistently estimated by
the inverse of the information matrix (i.e., the matrix of the expected values of the 2nd derivatives
of the log likelihood function multiplied by −1). The diagonal elements of this covariance matrix
are used to compute the default standard errors (SEs) of θ̂ in SEM software (e.g., Bentler, 2006;
Rosseel, 2012). Let

V =
(

vgg vgb

vbg vbb

)
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be the covariance matrix of (γ̂1, β̂1)
′, which is just a sub-matrix of the covariance matrix of θ̂ .

Then, the asymptotic SE for the NML estimate γ̂1β̂1 of the indirect effect can be obtained by the
so-called delta-method (Ferguson, 1996) , which is given by

SEγ1β1 = (β2
1vgg + γ 2

1 vbb + 2β1γ1vgb)
1/2. (4)

Note that γ̂1 and β̂1 are correlated in general (i.e., vgb �= 0) evenwhen x, y1 and y2 are all normally
distributed; and vgg , vbb and vgb are functions of θ , not just functions of γ1 and β1. With Eq. (4),
the SD of γ̂1β̂1 is given by:

ωγ1β1 = √
NSEγ1β1 , (5)

which is a function of the base parameters in θ alone (unrelated to N ) and can be evaluated via
Eqs. (4) and (5). Thus, with normally distributed data, the SNR corresponding to the indirect
effect under SEM is defined as:

τγ1β1 = γ1β1

ωγ1β1

. (6)

We will refer to τγ1β1 as the population or asymptotic SNR under SEM in the following presen-
tation.

Another SNR for the indirect effect might be defined via Eq. (3) alone, with τ0 = γ1β1/ω0,
whereω0 is the standard deviation of γ̃1β̃1 corresponding to path analysis when the latent variables
ξ , η1 and η2 are literally available (e.g., in Monte Carlo studies). However, this SNR has little to
do with testing the significance of γ̂1β̂1 under SEM. This is because in practice the relationship
among latent variables can only be estimated by including the measurement model in Eq. (2).
Even in the extreme case when the numbers of indicators (px , py1 and py2 ) for all the latent
variables become infinitely large, the SDs of the NML estimates γ̂1 and β̂1 are still greater than
those when latent variables are literally obtainable (Yuan & Fang, 2023) . The reason for this is
that the number of factor loadings and error variances under SEM proportionally increases with
px , py1 and py2 . As the number of indicators increases, the information gained is mostly used by
estimating these model parameters.

2.3. Indirect Effect Under PAWC Conditional on Weights

We derive the formula for computing the SNR of the indirect effect under PAWC in this
subsection, where weights are held constant. Specific forms of composites will be considered in
the next section when the SNRs are numerically compared. Let wx , wy1 and wy2 be vectors of
weights corresponding to the indicators x, y1 and y2, respectively. Corresponding to the model
in Eqs. (2) and (3), let ξ̂ = w′

xx/(w
′
xλx ), η̂1 = w′

y1y1/(w
′
y1λy1) and η̂2 = w′

y2y2/(w
′
y2λy2) be

the weighted composites, where the role of w′λ in the denominators is to make the resulting
composites to have a 1-1 link with the latent variables (i.e., ξ̂ = ξ + e

ξ̂
, η̂1 = η1 + eη̂1 , and

η̂2 = η2 + eη̂2 ). Such a rescaling does not affect the SNR for the indirect effect under PAWC.
Note that hats are used to distinguish the weighted composites from the error-free latent variables
and, for the purpose of studying the population SNR, the weights are still at the population level
instead of empirically estimated. For the weighted composites, we have the following models for
mediation analysis

η̂1 = aξ̂ + e1, η̂2 = bη̂1 + cξ̂ + e2, (7)
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and the product ab is commonly called the indirect or mediation effect. However, the value of ab
depends on the scales of the weighted composites the same way as γ1β1 depends on the scales
of the latent variables. The SNR will remove such dependency by accounting for the sampling
errors in the estimate âb̂.

Because ξ̂ , η̂1 and η̂2 are derived from Eqs. (2) and (3), we need to relate the value of ab
to the base parameters in θ . It follows from the forms of the composites that their variances are
given by

σ 2
ξ̂

= Var(ξ̂ ) = σ 2
ξ /ρ

ξ̂
, σ 2

η̂1
= Var(η̂1) = σ 2

η1
/ρη̂1 , and σ 2

η̂2
= Var(η̂2) = σ 2

η2
/ρη̂2 , (8)

where σ 2
ξ , σ 2

η1
and σ 2

η2
are the variances of ξ , η1 and η2; and ρ

ξ̂
, ρη̂1 and ρη̂2 are the reliability

coefficients of ξ̂ , η̂1 and η̂2, respectively. Because the functional forms of these coefficients are
not essential in understanding the development, they are given in Appendix A presented at the
end of the article. Note that we used σ 2

ξ = Var(ξ) instead of replacing its value by 1.0 for the
purpose of clarity. Because measurement errors are independent with the latent constructs, the
covariances among the composites are given by:

σ ˆξ η̂1
= Cov(ξ̂ , η̂1) = γ1σ

2
ξ , σ ˆξ η̂2

= Cov(ξ̂ , η̂2) = (β1γ1 + γ2)σ
2
ξ ,

ση̂1η̂2 = Cov(η̂1, η̂2) = β1σ
2
η1

+ γ1γ2σ
2
ξ .

(9)

Thus, the population value of a in Eq. (7) is given by

a = σ ˆξ η̂1
/σ 2

ξ̂
= ρ

ξ̂
γ1. (10)

It is obvious that a = γ1 when ρ
ξ̂

= 1. However, a < γ1 in general. Yuan and Fang (2023)
showed that the SNR of â by LS regression is always greater than its SEM counterpart when
factor scores are used in the regression model, and we will also numerically illustrate this in the
next section.

The method of LS regression allows us to obtain the population values of b and c using the
standard formula β = �−1

11 σ 12, where �11 is the covariance matrix of the involved predictors
and σ 12 is the vector of covariances between the predictors and the dependent variable. With the
variances and covariances in Eqs. (8) and (9), together with the formula for inverting a 2 × 2
matrix in Eq. (B5) of Appendix B, we have

(
b
c

)
= 1

σ 2
ζ1

/(ρ
ξ̂
ρη̂1

) + γ 2
1 σ 2

ξ [1/(ρ
ξ̂
ρη̂1

) − 1]

(
γ1(β1γ1 + γ2)σ

2
ξ (1/ρ

ξ̂
− 1) + β1σ

2
ζ1

/ρ
ξ̂

γ1(β1σ
2
η1

+ γ1γ2σ
2
ξ )(1/ρη̂1

− 1) + γ2σ
2
ζ1

/ρη̂1

)
.(11)

Equations (10) and (11) relate the values of the regression coefficients under PAWC to those under
SEM. When ρ

ξ̂
= ρη̂1 = 1, b = β1 and c = γ2. However, with ξ̂ and η̂1 containing errors, the

value of b is also affected by the values of γ1 and γ2 in addition to the value of β1. In particular,
b is not necessarily smaller than β1 due to ξ and η1 being correlated when γ1 �= 0.

It follows from Eqs. (10) and (11) that, under PAWC, the indirect effect of ξ̂ on η̂2 via η̂1 is
given by:

ab = ρ
ξ̂
ρη̂1

γ1[γ1(β1γ1 + γ2)σ
2
ξ (1 − ρ

ξ̂
) + β1σ

2
ζ1

]
σ 2

ζ1
+ γ 2

1 σ 2
ξ (1 − ρ

ξ̂
ρη̂1)

. (12)
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Equation (12) implies that ab = γ1β1 when ρ
ξ̂

= ρη̂1 = 1. But ab is not necessarily smaller than
γ1β1 even when ρ

ξ̂
and ρη̂1 are both less than 1.0.

For mediation analysis with weighted composites, the sample variances of the LS estimates â
and b̂ are obtained via the standard formula of regression analysis. Their population counterparts
follow from the replacement of the sample variances-covariances by the population variances-
covariances. Appendix B contains the details relating the variances of â and b̂ to the base param-
eters in θ . In particular, the variances of

√
Nâ,

√
Nb̂ and

√
Nĉ are, respectively, given by

ω2
aw = ρ

ξ̂
σ 2

η1

(ρη̂1σ
2
ξ )

− ρ2
ξ̂
γ 2
1 , ω2

bw = σ 2
e2

σ 2
η1

/ρη̂1 − ρ
ξ̂
γ 2
1 σ 2

ξ

, and ω2
cw = σ 2

e2σ
2
η1

σ 2
ξ σ 2

η1
/ρ

ξ̂
− ρη̂1γ

2
1 σ 4

ξ

,

(13)

where σ 2
e2 is the variance of e2 of the 2nd regression model in Eq. (7). The subscript w in Eq. (13)

is to indicate that the variance is computed conditional on weights. As a function of the base
parameters in θ the expression of σ 2

e2 is rather complicated, and we leave it to Appendix B.

Conditional on weights, the population values of the SNRs of the LS estimates â, b̂ and ĉ can
be directly computed according to Eq. (1) via the formulas in Eqs. (10), (11) and (13) together
with the results in Eqs. (B3), (B9) and (B10) of Appendix B, respectively. These will be compared
against those of the NML estimates of γ1, β1 and γ2 in the following section. Our main interest
is the SNR for the estimate âb̂. It can be shown that â and b̂ are independent when x, y1 and y2
are jointly normally distributed, while b̂ and ĉ are correlated in general. Using the delta-method
(Ferguson, 1996) , the variance of

√
Nâb̂ is given by:

ω2
abw = a2ω2

bw + b2ω2
aw, (14)

which does not depend on N and can be computed via the formulas in Eqs. (10), (11) and (13).
When evaluated at the output of path analysis, ω̂abw/

√
N is essentially the SE given by Sobel

(1982). While the distribution of âb̂ is not symmetric, the SNR

τabw = ab

ωabw

= (1/τ 2aw + 1/τ 2bw)−1/2 (15)

plays a pivotal role in the NHST of ab = 0 regardless of the methods being used (e.g., bootstrap,
Monte Carlo, asymptotics), where τaw = a/ωaw and τbw = b/ωbw. We will refer to τabw in
Eq. (15) as the population or asymptotic SNR under PAWC conditional on weights.

2.4. Indirect Effect Under PAWC with Estimated Weights

Except forEWCsor studieswhereweights of composites canbe assigneda priorior according
to design, the optimal weights may need to be estimated from the observed data. Then sampling
errors in the observed data will affect the properties of the weighted composites and the size of the
resulting SNRs under PAWC. However, even for factor scores whose corresponding ŵx , ŵy1 and
ŵy2 have analytical forms, quantifying the effect of sampling errors on the estimated weights and
the resulting âb̂ is rather involved and is also beyond the immediate interest of the current article.
Appendix C contains the development leading to a formula for computing the asymptotic variance
of

√
Nâb̂ when Bartlett-factor scores (BFSs) are used in PAWC, where weights are computed
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via the NML estimates of a confirmatory factor model. Let this variance be ω2
abŵ

. Then, the
corresponding SNR is given by

τabŵ = ab

ωabŵ

, (16)

where the ŵ in the subscript indicates that sampling errors in ŵ are accounted for in the formulation
of τabŵ. We will refer to τabŵ in Eq. (16) as the population or asymptotic SNR under PAWC with
estimated weights.

3. Numerical Comparison

In this section, we numerically compare the τγ1β1 in Eq. (6), the τabw in Eq. (15), and the
τabŵ in Eq. (16) as well as their empirical counterparts when the SDs in the three equations are
obtained empirically. We will first describe the conditions under which the population values of
the base parameters in θ are obtained, and then present the results of numerical comparison.

Equally weighted composites (EWCs) and factor scores (FSs) are most widely used in
research (DiStefano et al., 2009) . For items containing measurements errors, the properties
of the EWCs are well understood in psychometrics (e.g., Allen & Yen, 1979; Widaman & Rev-
elle, 2023). Properties and applications of FSs have also been thoroughly studied and documented
(Hoshino & Bentler, 2013; Lawley & Maxwell, 1971; Schuster & Lubbe, 2020) ). In particular,
EWC and FS represent the two extremes of weighted composites, the former does not consider
the psychometric properties of individual items at all whereas the later optimally assigns weights
to items to achieve maximum reliability. As we have shown, the SNR for the indirect effect under
PAWC depends on the reliability of the composites being used. Consequently, path analysis via
FSs is expected to yield the greatest SNR on average, while path analysis with EWCs is expected
to yield the least favorable SNRs among all PAWCs. Our study of PAWC is also via the two types
of composites. BecauseBartlett-factor scores (BFSs) and regression-factor scores are proportional
to each other and are equivalent in conducting path analysis (Yuan & Deng, 2021) , we will
choose the BFSs in our study. There are other type of composites in addition to the EWCs and
factor scores (see, e.g., Cho & Choi, 2020; Hwang et al., 2021; McDonald, 1996). While their
psychometric properties are less known for measurements that contain errors, we expect that their
reliabilities are somewhere between those of the EWCs and BFSs, and path analysis via these
composites is expected to perform in between.

3.1. Design of Conditions

While the number of indicators can be arbitrary in practice, most studies contain three ormore
indicators for each latent variable. Thus, we choose px = py1 = py2 = 3. The results in Yuan and
Fang (2023) suggest that regression analysis via weighted composites has more advantage over
SEM as the number of indicators increases. Other numbers of indicators had also been used in our
study and the results showed patterns as expected. That is, as the number of indicators increases,
PAWChas evenmore advantage over SEM than in the results reported below.AppendixD contains
supporting results with px = py1 = py2 = 10, and additional discussions.

With 3 indicators for each latent variable, the model under SEM has q = 21 base parameters.
A random sample of size 21 is drawn from the uniform distribution on [0, 1]. By adding the
value of 0.2 to each of these 21 numbers to avoid the case for a parameter value to be too close
to zero, the resulting 21 values are used as the population values of the 21 base parameters.
Using independent replications, Nc = 1000 sets of population values of the base parameters are
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obtained.The1000×21values of the base parameters togetherwith theSAScode that generates the
parameters are in supplementary material https://www3.nd.edu/~kyuan/mediation1000c/. Each
set of 21 values represents a condition for the population θ . Note that the population values of a,
b, c as well as the variances of ξ̂ , η̂1, η̂2, e1 and e2 in Eq. (7) are determined by the 21 population
values of the base parameters in θ according to the formulas developed in the previous section.

3.2. Population SNR

We have two population τ for path analysis with the BFSs. One is conditional on weights
held at the population values, and the other is by considering the errors in weights analytically.
Thus, for each set of the population values of the 21 base parameters in θ , four different τ are
evaluated. They are (1) the SNR τγ1β1 under SEM according to Eq. (6); (2) the SNR τabw under
path analysis via Bartlett-factor scores with populationweights (paBFS(w)) according to Eq. (15);
(3) the SNR τabŵ under path analysis viaBartlett-factor scoreswith estimatedweights (paBFS(ŵ))
by Eq. (16); and (4) the SNR τab under path analysis via equally weighted composites (paEWC)
according to Eq. (15). Consequently, we have 1000 values of τγ1β1 , and 1000 values of τab by
paBFS(w), paBFS(ŵ), paEWC, respectively. Note that the weights in paBFS(w) as well as the
SDs for computing the population τ s are all based on the true or population values of the 21 base
parameters. Corresponding to the values of the SNR for the indirect effect, we also have 1000
values of the SNRs corresponding to γ̂1, γ̂2 and β̂1 as well as those corresponding to â, ĉ and
b̂, respectively. These are also based on the true/population values of the 21 base parameters. As
we shall see, the ranges of the SNRs are rather wide, and we hope that they cover most of the
conditions in empirical data analysis.

Table 1 contains the minimum value, maximum value, median, and the mean of the 1000
SNRs under each method. The parallel summary statistics for the SNRs corresponding to the
estimates of (γ1, γ2, β1) and (a, c, b) are also reported in the table for additional information. For
communication, the largest SNR value for each parameter among the four methods is put in bold
while the smallest one is underlined. The SD and coefficient of variation (CV) of these SNRs
across the 1000 conditions are included as well to understand the spread of the SNRs, although
the differences among the values of the τ under each method are not due to sampling error. It
follows from the first two columns of the numbers in Table 1 that the 1000 conditions cover a
wide range of SNRs for each method. In particular, the range of τγ1β1 is from 0.045 to 0.598; and
those of τab are 0.108 to 717, 0.109 to 0.865, and 0.104 to 0.701 corresponding to paBFS(w),
paBFS(ŵ), and paEWC, respectively.

According to Table 1, the SNRs by SEM have the smallest values in mean, median, and SD
for the parameters γ1β1(ab), γ1(a), γ2(c), and β(b) across the 1000 conditions. The SNRs by
SEM also have the smallest minimum and maximum values for γ1β1(ab), γ2(c), and β(b) across
the 1000 conditions. In contrast, the SNRs by paBFS(ŵ) have the largest values in mean, median
and SD for parameters ab(γ1β1), a(γ1), and b(β), while the SNRs by paBFS(w) have the largest
value in mean and median for the parameter c(γ2). The ratios of the median of τab by paBFS(w),
paBFS(ŵ), and paEWC to that of τγ1β1 are, respectively

median(τab)/median(τγ1β1) = 1.487, 1.544, 1.417; (17)

while the means of τab by paBFS(w), paBFS(ŵ), and paEWC to that of τγ1β1 are respectively

mean(τab)/mean(τγ1β1) = 1.443, 1.523, 1.362. (18)

Thus, SEM is the least efficient method in estimating and testing the indirect effect. However, the
SNRs by SEM for the indirect effect, γ2(c), and β1(b) have the largest relative spread as reflected
by the values of CV.
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Table 1.
Population signal-to-noise ratios (SNR, τ ) by four methods across 1000 conditions: minimum, maximum, median, mean,
standard deviation (SD) and coefficient of variation (CV).

Method SNR Min Max Median Mean SD CV

SEM τγ1 0.134 0.989 0.470 0.472 0.179 0.379
τγ2 0.032 0.812 0.269 0.297 0.155 0.522
τβ1 0.042 0.962 0.271 0.302 0.162 0.536
τγ1β1 0.045 0.598 0.237 0.251 0.105 0.418

paBFS(w) τa 0.137 1.392 0.525 0.548 0.234 0.427
τc 0.096 1.199 0.448 0.472 0.189 0.400
τb 0.110 1.775 0.567 0.592 0.244 0.413
τab 0.108 0.717 0.353 0.362 0.130 0.360

paBFS(ŵ) τa 0.137 2.096 0.527 0.590 0.307 0.520
τc 0.094 1.449 0.436 0.464 0.197 0.425
τb 0.109 2.643 0.568 0.616 0.289 0.469
τab 0.109 0.865 0.366 0.382 0.150 0.392

paEWC τa 0.119 1.266 0.482 0.502 0.213 0.424
τc 0.094 1.156 0.424 0.445 0.173 0.388
τb 0.106 1.650 0.543 0.567 0.230 0.406
τab 0.104 0.701 0.336 0.342 0.123 0.361

SEM = structural equation modeling, paBFS (w) = path analysis by Bartlett-factor scores with population
weights, paBFS (ŵ) = path analysis by Bartlett-factor scores with estimated weights, paEWC = path analysis
with equally weighted composites.
The largest value among the four methods is in bold while the smallest is italicized.

Table 2.
Pairwise comparison of the population signal-to-noise ratios (SNR, τ ) by four methods over 1000 conditions.

a(γ1) c(γ2) b(β1) ab(γ1β1)

τpa B F S(w) > τSE M 1000 1000 1000 894
τpa B F S(ŵ) > τSE M 914 997 1000 938
τpaEWC > τSE M 676 995 999 786
τpa B F S(ŵ) > τpa B F S(w) 721 366 681 867
τpaEWC > τpa B F S(w) 0 188 238 73
τpaEWC > τpa B F S(ŵ) 87 333 226 73

SEM = structural equation modeling, paBFS (w) = path analysis by Bartlett-factor scores with population
weights, paBFS (ŵ) = path analysis by Bartlett-factor scores with estimated weights, paEWC = path analysis
with equally weighted composites.

An interesting phenomenon is that τabŵ has greater mean and median than τabw. This is
because the estimated weights result in âb̂ that has a smaller SD in most of the conditions, due
to the terms B12 = B′

21 in Eq. (C14) being negative. Similar phenomena were observed and
discussed in Pierce (1982) and Yuan and Jennrich (2000). This is good news since we typically
have to estimate the weights for the BFS in practice, and the property enhances our chance to
detect the indirect effect.

The SNRs under each of the 1000 conditions are further compared across the different meth-
ods. Table 2 contains the frequency of the pairwise comparison on the values of the population
SNRs. Across the 1000 conditions, the SNRs for γ1(a), γ2(c), and β1(b) by SEM are always
smaller than those by paBFS(w). Across the 1000 conditions, SEM yields smaller SNRs for the
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indirect effect than paBFS(w), paBFS(ŵ) and paEWC 894, 938 and 786 times, respectively. The
method paBFS(w) yields smaller SNRs for the indirect effect than paBFS(ŵ) 867 times. The
results of pairwise comparison among the other methods in Table 2 are also consistent with those
in Table 1.

The results in Tables 1 and 2 generalize the results in Yuan and Fang (2023), where, for a
model with two latent variables, regression analysis via BFSs is shown to have mathematically
greater SNR than SEM. While path analyses via weighted composites may not always yield
greater SNR for the indirect effect than SEM, they outperform SEM for most of the conditions. In
particular, even paEWC outperforms SEM 786 times out of the 1000 conditions, and the average
SNR for the indirect effect under paEWC is 1.362 times that under SEM.

3.3. Empirical SNR

For the validity of the asymptotic results presented in the previous subsection, we compare
them against their empirical counterparts at N = 200, which represents a relatively small sample
size for proper use of the SEM methodology. The rationale for not considering an even smaller
N is that SEM may meet non-convergences, which will interfere with the results of the study. In
addition, since we already have 1000 conditions of population θ , the condition of N = 200 at
each of the 1000 population θ not only allows us to see the effect of a finite N but also permits us
a manageable scope of study for a thorough analysis.

For each of the Nc = 1000 conditions described in Sect. 3.1, a sample of size N = 200 is
drawn from the corresponding normal population N (0,�c), where �c is the covariance matrix
corresponding to a given condition. For this sample, estimates γ̂1, γ̂2, β̂1 are obtained by the NML
method of SEM, and so is the product term γ̂1β̂1. Bartlett-factor scores are computed via the NML
estimates of factor loadings and error variances, and followed by LS estimation of the model in
Eq. (7). Estimates of â, ĉ and b̂ are consequently obtained and so is âb̂. Denote the estimate of a
parameter by a particular method as θ̂ . We replicated this process Nr = 1000 times for each of
the Nc = 1000 conditions, resulting in independent values θ̂i , i = 1, 2, . . ., Nr . The empirical
SNRs are obtained as:

τ̂ = θ̄

SDθ

,

where θ̄ = ∑Nr
i=1 θ̂i/Nr and SDθ = N 1/2SEθ with SEθ = [∑Nr

i=1(θ̂i − θ̄ )2/(Nr − 1)]1/2. In
addition to the empirical SNRs with estimated weights, we also computed the empirical SNRs
with weights held at the population values under paBFS(w), and paEWC. Thus, we have total
of four empirical SNRs at each of the Nc conditions. They are, respectively, (1) SEM, (2) path
analysis via BFS with population weights, (3) path analysis via BFS with estimated weights, and
4) path analysis with equally weighted composites.

Table 3 contains the summary statistics for the empirical SNRs over the Nc = 1000 condi-
tions. Parallel to Table 1, the largest value of each parameter among the four methods is boldfaced
and the smallest one is underlined. According to Table 3, the empirical SNRs by SEM have the
smallest mean and median across the 1000 conditions, while they have the largest CVs for three
out of the four parameters. In Table 3, the ratios of median and mean of τ̂ab by paBFS(ŵ) over
those of τ̂γ1β1 are 1.769 and 1.716, respectively, greater than their asymptotic counterparts in
Eqs. (17) and (18).

Table 4 contains the results of pairwise comparisonof the empirical SNRsby the fourmethods.
Out of the 1000 conditions, the values of τ̂ by SEM are smaller than those by paBFS(w) and
paBFS(ŵ) 945 and 975 times, respectively. Even path analysis with equally weighted composites
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Table 3.
Empirical signal-to-noise ratios (SNR, τ̂ ) by four methods across 1000 conditions, and the τ̂ at each condition is evaluated
via 1000 replications: minimum, maximum, median, mean, standard deviation (SD) and coefficient of variation (CV).

Method SNR Min Max Median Mean SD CV

SEM τ̂γ1 0.131 0.986 0.464 0.467 0.179 0.384
τ̂γ2 0.043 0.795 0.235 0.271 0.156 0.575
τ̂β1 0.049 0.914 0.237 0.275 0.159 0.579
τ̂γ1β1 0.037 0.566 0.201 0.218 0.106 0.485

paBFS(w) τ̂a 0.133 1.401 0.526 0.544 0.232 0.427
τ̂c 0.093 1.160 0.445 0.468 0.187 0.400
τ̂b 0.107 1.771 0.562 0.587 0.243 0.415
τ̂ab 0.105 0.717 0.348 0.358 0.130 0.364

paBFS(ŵ) τ̂a 0.109 2.093 0.521 0.583 0.307 0.526
τ̂c 0.112 1.448 0.426 0.456 0.196 0.430
τ̂b 0.122 2.639 0.562 0.606 0.287 0.473
τ̂ab 0.118 0.873 0.356 0.374 0.149 0.397

paEWC τ̂a 0.133 1.276 0.481 0.500 0.212 0.424
τ̂c 0.113 1.132 0.422 0.441 0.171 0.388
τ̂b 0.120 1.662 0.540 0.562 0.229 0.407
τ̂ab 0.118 0.687 0.334 0.338 0.123 0.363

SEM = structural equation modeling, paBFS(w) = path analysis by Bartlett-factor scores with population
weights, paBFS(ŵ) = path analysis by Bartlett-factor scores with estimated weights, paEWC = path analysis
with equally weighted composites.
The largest value among the four methods is in bold while the smallest is italicized.

Table 4.
Pairwise comparison of the empirical signal-to-noise ratios (SNR, τ̂ ) by four methods over 1000 conditions, and the τ̂ at
each condition is evaluated via 1000 replications.

a(γ1) c(γ2) b(β1) ab(γ1β1)

τ̂pa B F S(w) > τ̂SE M 989 1000 1000 945
τ̂pa B F S(ŵ) > τ̂SE M 903 998 1000 975
τ̂paEWC > τ̂SE M 729 994 999 861
τ̂pa B F S(ŵ) > τ̂pa B F S(w) 668 284 591 804
τ̂paEWC > τ̂pa B F S(w) 13 201 244 93
τ̂paEWC > τ̂pa B F S(ŵ) 120 380 267 109

SEM = structural equation modeling, paBFS (w) = path analysis by Bartlett-factor scores with population
weights, paBFS (ŵ) = path analysis by Bartlett-factor scores with estimated weights. paEWC = path analysis
with equally weighted composites.

yields greater SNR (τ̂ab) than SEM 861 times out of the 1000 conditions. The three methods of
PAWC also clearly outperform SEM for the other three parameters with respect to SNR.

The results in Tables 3 and 4 are consistent, and they showed that SEM is the least effi-
cient/powerful method for the purpose of detecting the existence of an indirect effect in mediation
analysis.

3.4. Graphical Comparison

For information about the overall distribution of the SNRs of the indirect effect over the
Nc = 1000 conditions, Fig. 1 contains the scatter plots of the empirical SNRs (τ̂ ) at N = 200
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Figure 1.
Empirical signal-to-noise ratio (SNR, τ̂ ) against population SNR (τ ) for estimating and testing the indirect effect in
mediation analysis, over 1000 conditions.

against their population/asymptotic counterparts (τ ). The dotted line in each plot is the x = y
line, and the solid line is the regression line of the values in the vertical axis against those in
the horizontal axis. The R-square of the regression line is also included in the figure. Figure1a
indicates that there exist sizeable differences between the empirical τ̂γ1β1 and their population
counterpart τγ1β1 for some conditions, with the majority satisfying τ̂γ1β1 > τγ1β1 . In contrast, for
the three PAWC methods, the two versions of the SNR agree well at N = 200. In particular,
the R-squares for the three methods of PAWC are all above 0.99, although the weights under
paBFS(ŵ) were computed from a confirmatory factor model under the SEM method.

The larger differences between τ̂γ1β1 and τγ1β1 in Fig. 1a than those between τ̂ab and τab in
Figs. 1b–d reflect the sizes of sampling errors between the two classes of methods. Regression
analysis yields parameter estimates that are unbiased,which is a finite-sample property. In contrast,
SEM only yields parameter estimates that are consistent, which is an asymptotic property. The
patterns in Fig. 1 suggest that we might need a much greater sample size for the SEM method to
yield a τ̂ having the same accuracy as the PAWC counterpart.

Figure 2 contains the scatter plots of τ̂ab against τ̂γ1β1 over the 1000 conditions, where the
dotted and solid lines serve the same functions as in Fig. 1. It is easy to see that most of the points
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Figure 2.
Empirical signal-to-noise ratio (SNR, τ̂ ) for estimating and testing the indirect effect in mediation analysis: Path analysis
with weighted composites against SEM over 1000 conditions.

in Fig. 2a–c are above the x = y line, especially those in Fig. 2a and b. The values of the R2

in Fig. 2 are rather small though, implying that many factors might contribute to the differences
between τ̂γ1β1 and τ̂ab. In particular, τ̂ab can be much greater than τ̂γ1β1 when the values of the
later are small.

The values of τ̂ab among path analyses with differently weighted composites in Fig. 3 are
rather close. The largest value of R2 in Fig. 3 (0.974) is between paBFS(w) and paEWC, which
might be because both their weights are held constant. Note that most of the points in each of the
plots in Fig. 3 are above the x = y line. But Fig. 3b and c contains points that are clearly below
the x = y line, indicating the existence of unfavorable conditions for paBFS(ŵ) as compared
against paBFS(w) and paEWC. We will further study the causes for the differences between τ̂ab

and τ̂γ1β1 in the next section.

4. Causes of the SNR Differences

In this section, we examine parameters/factors that cause the difference τd = τab − τγ1β1 of
the SNRs. We will use the empirical τ̂d = τ̂ab − τ̂γ1β1 to act as the representative of τd for the
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Figure 3.
Empirical signal-to-noise ratio (SNR, τ̂ ) for estimating and testing the indirect effect in mediation analysis: Pairwise
comparison of path analyses with weighted composites over 1000 conditions.

following reasons: (1) There exist sizeable differences between τ̂γ1β1 and τγ1β1 due to sampling
errors. (2) By working with τ̂d , we can directly study the causes of the observed differences, and
the finding would be more informative in explaining the performances of different methods in
practice.

Note that τ̂ab varies with the weighted composites used in conducting the mediation analysis
while τ̂γ1β1 is always computed followingNML estimation of the SEMmodel.Without ambiguity,
we distinguish the different τ̂d by the methods under which the composites are obtained, and our
presentation and discussion are also labeled according to the corresponding PAWC methods.
Because all the 21 base parameters may contribute to the values of the SNRs of â, b̂ as well as
those of the consequent âb̂, we will only identify those that have most salient effect on τ̂d . For
such a purpose, we also include candidates that are known to affect the values of a, b and the SDs
of their estimates. They are the reliability coefficients of ξ̂ , η̂1 and η̂2, the reliability coefficients
of the nine individual indicators, and the four SNRs of the involved parameter estimates γ̂1, β̂1,
â and b̂. So there are a total of 37 (=21+3+9+4) potential predictors of τ̂d . We use the population
values of these potential predictors for more valid results and will refer them as covariates. Note
that the 21 base parameters in θ and the 9 individual reliability coefficients do not change with
the formulations of the composites. But the SNRs of â and b̂ change with the weighting method
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Table 5.
Covariates that have squared correlations with the empirical SNR difference (τ̂d = τ̂ab − τ̂γ1β1 ) greater than 0.05 across
1000 conditions, the listed method corresponds to τ̂ab , while τ̂γ1β1 always corresponds to SEM.

Covariate paBFS (w) paBFS (ŵ) paEWC

γ1 0.732 0.776 0.726
τa 0.687 0.773 0.666
τγ1 0.678 0.782 0.671
ρy1 0.302 0.340 0.254
ρη̂1

0.244 0.293 (0.220)
ρη̂2

0.230 0.284 0.228
ρy4 (0.220) 0.268 (0.187)
τb (0.207) 0.268 (0.187)
ρ
ξ̂

−0.253 (−0.094) −0.250

σ 2
ζ1

−0.437 −0.389 −0.449
τβ1 −0.437 −0.298 −0.486

The squared values of the numbers in the parentheses are less than 0.05. paBFS (w) = path analysis byBartlett-
factor scores with population weights, paBFS (ŵ) = path analysis by Bartlett-factor scores with estimated
weights, paEWC = path analysis with equally weighted composites. The listed covariates are identified from
a total of 37 candidates of population parameters. The SNRs τa and τb as well as the reliabilities ρ

ξ̂
, ρη̂1

and ρη̂2
are evaluated according to the weights under each method.

and so do the reliability coefficients of ξ̂ , η̂1 and η̂2. We will use τγ1 , τβ1 , τa , and τb to denote the
SNRs corresponding to γ̂1, β̂1, â, and b̂, respectively.

The correlation between τ̂d and each of the 37 covariates across the 1000 conditions was
computed first, and covariates that have squared correlations (r2) greater than 0.05 are reported2

in Table 5. There are 9, 10, and 8 covariates with r2 > .05 for methods paBFS(w), paBFS(ŵ) and
paEWC, respectively. For a balanced table and/or fine information, the correlations of the shared
covariates with r2 ≤ .05 are put in parentheses. According to the table, parameters γ1, τγ1 , and τa

correlate most with τ̂d for all the threemethods, although the orders of the size of their correlations
are different. Such a pattern is expected since τd = 0 when γ1, τγ1 or τa equal 0. However, τβ1

is negatively correlated with τ̂d whereas τb is positively correlated with τ̂d . Such a phenomenon
might be due to the effect of the error term ζ1 whose variance is negatively correlated with τ̂d .
Note that y1 is the anchor3 for η1 under SEM, and the reliability of the anchor (ρy1 ) has been
shown to be inversely proportional to the sizes of the SEs of γ̂1 and β̂1 (Yuan & Zhang, 2023) .
Table 5 indicates that a greater ρy1 also enhances the advantage of PAWC.

The reason for τ̂d to be negatively correlated with σ 2
ζ1

is because τ̂ab decreases faster than

τ̂γ1β1 as σ 2
ζ1
increases, although τ̂γ1β1 also decreases at the same time. It can be shown analytically

that both the variances of γ̂1 and â go to infinity as σ 2
ζ1
increases while holding other parameters

constant. It is interesting that τ̂d correlates positively with ρη̂1 and ρη̂2 but negatively with ρ
ξ̂
.

Results by separate calculation indicate that ρ
ξ̂
, ρη̂1 and ρη̂2 are positively correlated with both

τ̂γ1β1 and τ̂ab. However, the correlations of ρη̂1 and ρη̂2 with τ̂ab are greater than with τ̂γ1β1 while
it is the opposite for ρ

ξ̂
. Similarly, τβ1 , γ1, τγ1 , τa , τb, ρy1 and ρy4 are also positively correlated

with both τ̂γ1β1 and τ̂ab, and the correlation of τβ1 with τ̂γ1β1 is greater than with τ̂ab while it is
the opposite for the other covariates.

2The value of.05 is arbitrary, and a smaller value will result in more salient covariates.
3An indicator is called an anchor if its loading is fixed at 1.0 to identify the scale of a latent variable.
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Table 6.
Results for the five best subsets of predictors of the empirical SNR differences τ̂d = τ̂ab − τ̂γ1β1 , and the listed method
corresponds to τ̂ab while τ̂γ1β1 is always obtained under SEM.

paBFS (w) paBFS(ŵ) paEWC
#pre R2 Pred Coef R2 Pred Coef R2 Pred Coef

1 0.536 1 −0.074 0.611 1 −0.097 0.528 1 −0.085
γ1 0.308 τγ1 0.536 γ1 0.295

2 0.720 1 0.052 0.728 1 0.120 0.722 1 0.040
γ1 0.306 ρ

ξ̂
−0.356 γ1 0.293

σ 2
ζ1

−0.179 τγ1 0.609 σ 2
ζ1

−0.178

3 0.786 1 0.229 0.761 1 0.179 0.786 1 0.190
ρ
ξ̂

−0.254 ρ
ξ̂

−0.339 ρ
ξ̂

−0.233

γ1 0.308 τγ1 0.575 γ1 0.294
σ 2
ζ1

−0.178 σ 2
ζ1

−0.079 σ 2
ζ1

−0.175

4 0.804 1 0.193 0.780 1 0.143 0.875 1 0.002
ρ
ξ̂

−0.261 ρ
ξ̂

−0.346 τγ1 0.262

γ1 0.309 τγ1 0.576 τβ1 −0.646
γ2 0.055 γ2 0.057 τb 0.371
σ 2
ζ1

−0.177 σ 2
ζ1

−0.079 σ 2
ζ1

−0.030

5 0.810 1 0.163 0.794 1 0.101 0.878 1 0.018
ρ
ξ̂

−0.257 ρ
ξ̂

−0.230 τγ1 0.159

γ1 0.283 τγ1 0.295 τβ1 −0.582
γ2 0.054 γ1 0.169 τb 0.330
σ 2
ζ1

−0.196 γ2 0.061 γ1 0.077

ρy1 0.093 σ 2
ζ1

−0.118 σ 2
ζ1

−0.055

paBFS(w)=path analysis by Bartlett-factor scores with population weights, paBFS(ŵ)=path analysis by
Bartlett-factor scores with estimated weights, paEWC=path analysis with equally weighted composites.

Note that γ1, τγ1 and τa are closely related and so are τβ1 and τb. Similarly, ρy1 and ρη̂1 are
strongly correlated and so are ρy4 and ρη̂2 . The covariates identified in Table 5 do not contribute to
the values of τ̂d = τ̂ab − τ̂γ1β1 independently. We next identify the covariates that jointly affect the
values of τ̂d most. We use best-subset regression for such a purpose, and predictors are selected
from the 37 covariates (21 base parameters, 4 component SNRs, and 12 reliability coefficients).
Table 6 contains the results of the top five best subsets in predicting τ̂d corresponding to the
methods paBFS(w), paBFS(ŵ) and paEWC. For each subset, Table 6 also includes the list of
the selected predictors, the corresponding regression coefficients, and the value of the R2 of the
resulting regression model. As expected, covariate τγ1 is first selected for paBFS(ŵ) while γ1 is
first selected for the other two methods. The list of most effective predictors changes as more
covariates enter the model. For all the models, γ1, τγ1 , and τb positively predict τ̂d , whereas ρ

ξ̂
,

σ 2
ζ1
, and τβ1 negatively predict τ̂d . These are consistent with the bivariate relationships reported in

Table 5. A new covariate in Table 6 is γ2, which positively predicts the value of τ̂d weakly when
τ̂ab is estimated by paBFS(w) and paBFS(ŵ). With 5 predictors, the R2 for the three methods are
respectively 0.810, 0.794 and 0.878, implying that major variance of τ̂d has been accounted for
by the identified predictors.

The covariates being selected most frequently in Table 6 are σ 2
ζ1
(11 times), followed by γ1

(10 times), ρ
ξ̂1
(8 times), τγ1 (7 times), and γ2 (4 times). Except for the new covariate γ2, all the

coefficients in Table 6 also have the same signs as those for the bivariate correlations in Table 5.
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According to the results inTable 6, path analyseswithweighted composites tend to outperform
SEMwith respect to SNR for the indirect effect when values of γ1, τγ1 or τa are large, while SEM
might perform reasonably well when the values of σ 2

ζ1
and ρ

ξ̂
are large. However, it is rare for

SEM to yield a greater SNR than paBFS(w) or paBFS(ŵ), although it is more likely for SEM to
be superior to paEWC.

5. A Real-Data Example

MacKinnon (2008) contains an example that studies themediation effect of the extent towhich
coaches’ intolerance of steroids affects players’ intentions to use steroids via their perceptions
about the lack of severity of steroid use. With nine variables, the data were from N = 547 high
school football players who were measured before the football season, immediately after the
season, and several months after the end of the season. Table 7.3 of MacKinnon (2008) contains
the EQS (Bentler, 2006) code for estimating the mediation model with three constructs, coachs’
intolerance, perceived lack of severity of steroid use, and intention to use steroids. Each construct
is measured by three indicators. According to MacKinnon, Coachs’ intolerance was measured
at time 1 and by questionnaire items: coach1–I have talked with at least one of my coaches
about different ways to get stronger instead of using steroids, coach2–On my team there are rules
against using steroids, and coach3–If I were caught using steroids, I would be in trouble with my
coaches. The construct perceived lack of severity of steroid use was measured at time 2 and by
questionnaire items: perception1–The bad effects of anabolic steroids go away as soon as you
stop using them, perception2–Only a few people who use anabolic steroids ever have any harmful
or unpleasant side effects, and perception3–Anabolic steroids are not dangerous if you use them
only a few months each year. The construct intention to use steroids was measured at time 3 by
items: intent1–I intend to try or use anabolic steroids, intent2–I would be willing to use anabolic
steroids to know how it feels, and intent3–I am curious to try anabolic steroids. The path diagram
representing the latent-variable model is given in Fig. 4, which is a graphical representation of the
EQS code in Table 7.3 of MacKinnon (2008).

Figure 4.
Coachs’ intolerance of steroids affect players’ intention via their perception.
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FollowingMacKinnon (2008), we will treat the sample covariance matrix as from a normally
distributed population. We first fit a confirmatory factor model (CFM) to the nine variables, and
the CFM is statistically equivalent to the mediation model in Fig. 4. The likelihood ratio statistic
and fit indices for the CFM are Tml = 29.111 (d f = 24), CFI=.997 (Bentler, 1990) and RMSEA
= 0.020 (Steiger & Lind, 1980) , indicating that the model fits the data very well. The top part of
Table 7 contains the estimates of the parameters of the model, where each factor variance is fixed
at 1.0. With the same notation for latent variables as in Eq. (2), all the estimated factor loadings
(λ) and error variances (ψ) are statistically significant at 0.05 level according to z ∼ N (0, 1),
whereas the estimate of the correlation between η2 and ξ is not significant (zφη2ξ = −1.666).

The estimates of the factor loadings and error variances are further used to compute Bartlett-
factor scores, and PAWCs are subsequently conducted. The z-statistic for each path coefficient
in the regression models (see Eq. 7) are obtained, so are those for the indirect effect âb̂, with
SEs being computed using the delta method. Based on the Monte Carlo results in the previous
section with N = 200, the asymptotic SEs should provide good approximation to the true SEs
at N = 547. We will not separately reporting the empirical SNRs for this example, because they
can be easily obtained by dividing the absolute value of the z-statistics by

√
N .

The lower part of Table 7 contains the results of mediation analysis by the four methods
examined previously. All the z-statistics for the indirect effect γ1β1(ab) are significant, and
the one by SEM is the smallest. The largest z-statistic or SNR for the indirect effect is given
by paBFS(ŵ). The z-statistics for parameters γ1(a) and β1(b) by SEM in Table 7 are also the
smallest. It is interesting that ĉ and γ̂2 have different signs, while neither of them is statistically
significant. Such a phenomenon might deserve a focused study.

The results in Table 7 follow the same pattern as presented in Tables 1 to 4. That is, the SEM
method does not show an advantage over PAWC for mediation analysis in terms of SNR or the
z-statistic.

6. Conclusion and Discussion

Based on the fact that values of the parameters in a latent-variable model are determined
by scales of the latent variables that are subjectively assigned, recent literature has pointed out
that bias in parameter estimates by PAWC is artificial rather than substantive. Consequently, for
the purpose of confirming the existence of an indirect effect in conducting mediation analysis,
methods should be evaluated according to their corresponding SNRs. To advance knowledge
in this direction, we showed that PAWC tends to yield greater SNR for the indirect effect than
the SEM methodology. In particular, paBFS (ŵ) most likely yield greater SNRs for the indirect
effect than SEM. We also examined parameters/factors that cause SEM to have smaller SNRs,
and results indicate that the advantage of PAWC becomes more obvious when there is a strong
relationship between the latent predictor and the mediator, whereas the size of the prediction error
in the mediator adversely affects the performance of the PAWC methodology.

SEM and PAWC are two widely used classes of methods in social and behavioral sciences.
The strength of SEM is in yielding test statistics that convey the goodness of the overall model
structure as well as consistent parameter estimates governing the structural relationship of the
latent variables and indicators, assuming the model is correctly specified. The strength of PAWC
is in yielding parameter estimates with larger SNRs and in prediction of individuals. Even if
prediction or endorsing a mediation relationship is of primary interest, SEM still offers valuable
information regarding the structural validity and reliability of individual indicators, as well as
their dimensionality. These are key features of a measurement scale. For researchers who are
interested in mediation analysis and also in the overall structure of the indicators, we recommend
applying path analysis with the Bartlett-factor scores following the analysis under SEM.
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Note that Bartlett-factor scores and regression-factor scores enjoy a property of attaining the
maximum reliability. Because the reliabilities of composites are positively related to the SNR of
the indirect effect and the coefficient of determination (R2) for the regression models in Eq. (7),
we suspect that other effect size measures in mediation analysis (e.g., Fairchild et al., 2009; Liu et
al., 2024; MacKinnon, 2008; Lachowicz et al., 2018; Preacher & Kelley, 2011) also benefit from
the use of the Bartlett- or regression-factor scores.

We only studied SNRs under the normality assumption for the observed variables. With
nonnormally distributed data, SEs of parameter estimates under SEM can be strongly affected
by the distribution of the data, especially heavy tails. SEs of the regression coefficients are also
affected by nonnormality of the sample, but the effect is lessened by averaging over the indicators.
We expect that PAWC will have even more advantage over SEM when data are of heavy-tails,
while more research is needed in this direction.

For variables without predefined metrics, we noted that the values of parameters or their
estimates between SEM and PAWC are not comparable, due to arbitrary rescaling by individual
researchers. A commonly used technique is to standardize all the variables with the hope that
the resulting parameter estimates become comparable. Standardizations might facilitate result
comparison across different studies with the same dataset or different samples targeted for the
same population within SEM or within the PAWC framework. However, the technique does not
facilitate result comparison between SEM and PAWC, because standardizing a manifest variable
under PAWC does not necessarily correspond to a proper standardization of the latent variable
whenever measurement error exists, as implied by x = ξ + ex . In addition, whenever variables
have predefined metrics, standardizations often render results that are hard to interpret, as in a
model for the relationship between weight and heights. More discussion on the issues are given
in Yuan and Zhang (2023).

We did not study the effect of model misspecification on τγ1β1 and τab. This is because
SEM has the option of specifying cross-loadings and error-covariances but PAWC does not. The
inclusion of cross-loadings or error-covariances can increase or decrease the value of the path
coefficients among the latent variables (Yuan et al. 2003), whereas PAWC will have to reflect the
additional association via the path coefficients. Thus, it is not a fair comparison for the two classes
of methods when error covariances or cross-loadings are included in the latent-variable model.
But it would be informative to study the effect of model misspecification on the SNRs when both
classes of models ignore correlated errors or cross-loadings.

In this article, we only studied composites whose weights are explicit functions of the base
parameters. There are other types of composites whose weights are implicit functions of the base
parameters (see, e.g., Cho & Choi, 2020; Hwang et al., 2020; McDonald, 1996). We suspect that
path analysis with these composites also yields greater average SNRs than SEM in estimating
and testing the indirect effect, while their performances may vary, depending on the reliabilities
of the particular composites. Additional studies are needed for more refined comparisons.
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Appendix A. Reliabilities of Weighted Composites

This appendix contains the formulas for computing the variances of η1 and η2, and the reliability
coefficients of weighted composites ξ̂ , η̂1 and η̂2. These are used to evaluate the SNR τab under
PAWC. Throughout the three appendices, we use σ 2 and ω2 for variances and σ and ω for
covariances, with the subscripts indicating the involved variables or the corresponding parameters
being estimated.
It follows from Eq. (3) and the independence of ζ1 and ζ2 with the corresponding predictors in

the same equation that the variances of η1 and η2 are given by

σ 2
η1

= γ 2
1 σ 2

ξ + σ 2
ζ1

,

and

σ 2
η2

= β2
1σ

2
η1

+ γ 2
2 σ 2

ξ + 2β1γ2Cov(η1, ξ) + σ 2
ζ2= β2

1 (γ
2
1 σ 2

ξ + σ 2
ζ1

) + γ 2
2 σ 2

ξ + 2β1γ1γ2σ
2
ξ + σ 2

ζ2= (β1γ1 + γ2)
2σ 2

ξ + β2
1σ

2
ζ1

+ σ 2
ζ2

.

According to Eq. (2) and the formulations of weighted composites introduced in Sect. 2.3, we
have

ξ̂ = w′
xx

w′
xλx

= ξ + w′
xex

w′
xλx

,

η̂1 = w′
y1y1

w′
y1λy1

= η1 + w′
y1ey1

w′
y1λy1

,

η̂2 = w′
y2y2

w′
y2λy2

= η2 + w′
y2ey2

w′
y2λy2

.

Standard covariance algebra shows that the reliabilities of ξ̂ , η̂1 and η̂2 are, respectively, given by

ρ
ξ̂

= σ 2
ξ

σ 2
ξ + w′

x�xwx/(w′
xλx )2

= σ 2
ξ (w′

xλx )
2

σ 2
ξ (w′

xλx )2 + w′
x�xwx

,

ρη̂1 = σ 2
η1

σ 2
η1

+ w′
y1� y1wy1/(w′

y1λy1)
2 = σ 2

η1
(w′

y1λy1)
2

σ 2
η1
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,
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and

ρη̂2 = σ 2
η2

σ 2
η2

+ w′
y2� y2wy2/(w′

y2λy2)
2 = σ 2

η2
(w′

y2λy2)
2

σ 2
η2

(w′
y2λy2)

2 + w′
y2� y2wy2

.

Note that we fixed the variance of ξ and the loadings of the first indicators in y1 and y2 at 1.0 in
the development of the article, and the value of 1.0 and the chosen indicators do not affect the
values of the three reliability coefficients.

Appendix B. Asymptotic Variances of â, b̂, ĉ and âb̂ by PAWC Conditional on Weights

In this appendix, we derive the formulas for the asymptotic variances of â, b̂, ĉ and âb̂ by relating
them to the base parameters in θ under Eqs. (2) and (3). Formulas for evaluating the resulting
SNRs depend on these variances.
According to the LS method for regression analysis via Eq. (7), the variance of â is given by

σ 2
â = σ 2

e1

Nσ 2
ξ̂

, (B1)

where N is the sample size, σ 2
ξ̂

= Var(ξ̂ ) is given by Eq. (8), and σ 2
e1 is the variance of the error

term e1 in Eq. (7). It follows from LS regression that σ 2
e1 equals the normal-distribution-based

conditional variance of η̂1 given ξ̂ . Accordingly,

σ 2
e1 = Var(η̂1) − [Cov(η̂1, ξ̂ )]2/Var(ξ̂ ) = σ 2

η1
/ρη̂1 − ρ

ξ̂
γ 2
1 σ 2

ξ , (B2)

where the second equal sign follows from the results in Eqs. (8) and (9). The variance ω2
aw =

Var(
√

Nâ) in Eq. (13) is obtained by combining the results in Eqs. (B1), (B2) and (8). Conse-
quently, the squared SNR for the LS estimate â is

τ 2aw = γ 2
1

γ 2
1 [1/(ρ

ξ̂
ρη̂1) − 1] + σ 2

ζ1
/(ρ

ξ̂
ρη̂1σ

2
ξ )

. (B3)

When ρ
ξ̂

= ρη̂1 = 1, ω2
aw = σ 2

ζ1
/σ 2

ξ , and τ 2aw = γ 2
1 σ 2

ξ /σ 2
ζ1
.

We next obtain the formula for the standard deviations of b̂ and ĉ. According to the LS method,
the variance of e2 in Eq. (7) equals the normal-distribution-based conditional variance of η̂2 given
(η̂1, ξ̂ ). That is

σ 2
e2 = σ 2

η̂2
−

(
ση̂2η̂1 σ

η̂2 ξ̂

) (
σ 2

η̂1
σ

η̂1 ξ̂

σ 2
ˆξ η̂1

σ 2
ξ̂

)−1 (
ση̂2η̂1

σ
η̂2 ξ̂

)
. (B4)

Using the results in Eqs. (8), (9) and the textbook formula for the inverse of a 2 × 2 matrix, we
have

(
σ 2

η̂1
σ

η̂1 ξ̂

σ 2
ˆξ η̂1

σ 2
ξ̂

)−1

= 1

σ 2
ξ σ 2

η1
/(ρ

ξ̂
ρη̂1) − γ 2

1 σ 4
ξ

(
σ 2

ξ /ρ
ξ̂

−γ1σ
2
ξ

−γ1σ
2
ξ σ 2

η1
/ρη̂1

)
. (B5)
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Combining Eqs. (B4) and (B5), we can rewrite σ 2
e2 as

σ 2
e2 = σ 2

η2
/ρη̂2 − 1

σ 2
ξ σ 2

η1
/(ρ

ξ̂
ρη̂1) − γ 2

1 σ 4
ξ

{
(β1σ

2
η1

+ γ1γ2σ
2
ξ )2σ 2

ξ /ρ
ξ̂

−2γ1(β1γ1 + γ2)(β1σ
2
η1

+ γ1γ2σ
2
ξ )σ 4

ξ + (β1γ1 + γ2)
2σ 4

ξ σ 2
η1

/ρη̂1

}

= σ 2
η2

/ρη̂2 − 1

γ 2
1 σ 2

ξ [1/(ρ
ξ̂
ρη̂1) − 1] + σ 2

ζ1
/(ρ

ξ̂
ρη̂1)

{
(β1σ

2
η1

+ γ1γ2σ
2
ξ )2(1/ρ

ξ̂
− 1)

+γ 2
1 (β1γ1 + γ2)

2σ 4
ξ (1/ρη̂1 − 1) + β2

1σ
4
ζ1

+ (β1γ1 + γ2)
2σ 2

ξ σ 2
ζ1

/ρη̂1

}
.

(B6)

According to the formula for LS regression, the covariance matrix of h = √
N (b̂, ĉ)′ is given by

Covh = σ 2
e2

(
σ 2

η1
/ρη̂1 γ1σ

2
ξ

γ1σ
2
ξ σ 2

ξ /ρ
ξ̂

)−1

= σ 2
e2

σ 2
ξ σ 2

η1
/(ρ

ξ̂
ρη̂1) − γ 2

1 σ 4
ξ

(
σ 2

ξ /ρ
ξ̂

−γ1σ
2
ξ

−γ1σ
2
ξ σ 2

η1
/ρη̂1

)
.

Thus,

ω2
bw = Var(

√
Nb̂) = σ 2

e2

σ 2
η1

/ρη̂1 − ρ
ξ̂
γ 2
1 σ 2

ξ

, (B7)

ω2
cw = Var(

√
Nĉ) = σ 2

e2σ
2
η1

σ 2
ξ σ 2

η1
/ρ

ξ̂
− ρη̂1γ

2
1 σ 4

ξ

, (B8)

and

ωbcw = Cov(
√

Nb̂,
√

Nĉ) = − γ1σ
2
e2

σ 2
η1

/(ρ
ξ̂
ρη̂1) − γ 2

1 σ 2
ξ

.

The squared SNRs for b̂ and ĉ follow from the results in Eqs. (11), (B7) and (B8), and they are,
respectively,

τ 2bw = (σ 2
η1

/ρη̂1 − ρ
ξ̂
γ 2
1 σ 2

ξ )[γ1(β1γ1 + γ2)σ
2
ξ (1/ρ

ξ̂
− 1) + β1σ

2
ζ1

/ρ
ξ̂
]2

σ 2
e2{σ 2

ζ1
/(ρ

ξ̂
ρη̂1) + γ 2

1 σ 2
ξ [1/(ρ

ξ̂
ρη̂1) − 1]}2 , (B9)

τ 2cw = (σ 2
ξ σ 2

η1
/ρ

ξ̂
− ρη̂1γ

2
1 σ 4

ξ )[γ1(β1σ
2
η1

+ γ1γ2σ
2
ξ )(1/ρη̂1 − 1) + γ2σ

2
ζ1

/ρη̂1 ]2
σ 2

η1
σ 2

e2{σ 2
ζ1

/(ρ
ξ̂
ρη̂1) + γ 2

1 σ 2
ξ [1/(ρ

ξ̂
ρη̂1) − 1]}2 . (B10)

It follows from Eq. (14) that the squared SNR for the indirect effect âb̂ can be computed as

τ 2abw = (ab)2

a2ω2
wb + b2ω2

aw

= (1/τ 2aw + 1/τ 2bw)−1, (B11)

where τ 2aw and τ 2bw are given in Eqs. (B3) and (B9), respectively. The result in Eq. (15) is obtained
by taking the square root of the expression in (B11).
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Appendix C. Asymptotic Variance of âb̂ Under Path Analysis Via Bartlett-Factor Scores with
Estimated Weights

In this appendix, we derive a formula of the asymptotic variance of the indirect effect âb̂
for the model in Eq. (7) when ξ̂ , η̂1 and η̂2 are the Bartlett-factor scores (BFS). In partic-
ular, we will consider the effect of the sampling errors in the estimated weights ŵx , ŵy1

and ŵy2 used in computing ξ̂ , η̂1 and η̂2, respectively. To conform with the terminology of
BFS, we reformulate the model in Eq. (2) as a confirmatory factor model with parameters
θ = (λ′

x ,λ
′
y1,λ

′
y2 , φξη1 , φξη2 , φη1η2 ,ψ

′
x ,ψ

′
y1 ,ψ

′
y2)

′, where λx , λy1 and λy2 are vectors of factor
loadings for x, y1 and y2, respectively; Var(ξ) = Var(η1) = Var(η2) = 1, and the φs are the
correlations among the latent variables; ψ x , ψ y1 and ψ y2 are the vectors of the diagonal elements
of the error-variance matrices �x , � y1 , and � y2 , respectively. We use � = �(θ) to represent the
covariance structure of the confirmatory factor model. For clarity, we will use θ0 to denote the
population value of θ in this appendix.
Let u = (x′, y′

1, y
′
2)

′ represent the population distribution N (μ,�). Let ui , i = 1, 2, . . ., N , be
a random sample of u, with S being the sample covariance matrix. Fitting �(θ) to S using the
NML method, the resulting estimate of θ is denoted as θ̂ . The weights ŵx , ŵy1 and ŵy2 in the
formulations of the BFS are functions of θ̂ , and are given by the form

ŵz = (λ̂
′
z�̂

−1
z λ̂z)

−1�̂
−1
z λ̂z, (C1)

where λ̂z is the vector of the estimated factor loadings and �̂z is the matrix of the estimated error
variances, with z representing the block of indicators x, y1 and y2, respectively. The resulting
ξ̂ = ŵ′

xx, η̂1 = ŵ′
y1y1 and η̂2 = ŵ′

y2y2 are then used in Eq. (7), which is estimated by the LS

method. The LS estimates of a, b and c are denoted by â, b̂ and ĉ, respectively.
We can also compute the BFSs for (ξ, η1, η2) jointly. When there is no cross-loading or error

covariance in the model, the jointly computed weight vector for each latent variable will be
the same as in (C1). We will not consider cross-loadings or error covariances in the current
development.

Appendix C.1. Asymptotic Expansion of the Estimated Weights

Let σ be the vector obtained by stacking the columns in the lower-triangular part of �, denoted
as σ = vech(�). The sample counterpart of σ is s = vech(S). Note that both s and σ are p∗ × 1
vectors, where p∗ = p(p + 1)/2 with p = px + py1 + py2 . Let Dp be the duplication matrix
and V = 0.5D′

p(�
−1 ⊗ �−1)Dp, where ⊗ is the notation for the Kronecker product (see, e.g.,

Schott, 2017, pp. 315–346). Then it follows from equation (13) of Yuan et al. (2002) that the NML
estimate θ̂ of θ can be expressed as

√
N (θ̂ − θ0) = (σ̇ ′Vσ̇ )−1σ̇ ′V

√
N (s − σ ) + op(1), (C2)

where σ̇ is the derivative matrix σ̇ (θ) = ∂σ (θ)/∂θ ′ evaluated at the population value θ0, and
op(1) is a term that approaches zero in probability. Note that

S =
N∑

i=1

(ui − ū)(ui − ū)′/(N − 1) =
N∑

i=1

(ui − μ)(ui − μ)′/N + Op(1/N ), (C3)

Downloaded from https://www.cambridge.org/core. 06 Jan 2025 at 07:30:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


1000 PSYCHOMETRIKA

whereμ = E(ui ) and Op(1/N ) is a term such that N Op(1/N ) = Op(1) is bounded in probability
(see chapter 14 of Bishop, Fienberg&Holland, 1975). Sinceweworkwith centralized data in both
SEM and factor-score regression, we can assume μ = 0 for simplicity without loss of generality.
Combining Eqs. (C2) and (C3), we have

√
N (θ̂ − θ0) = (σ̇ ′Vσ̇ )−1σ̇ ′V 1√

N

N∑
i=1

(ti − σ ) + op(1), (C4)

where ti = vech(uiu′
i ).

Let w = (w′
x ,w

′
y1 ,w

′
y2)

′. We need a counterpart of Eq. (C4) for ŵ = (ŵ′
x , ŵ

′
y1 , ŵ

′
y2)

′, which
are functions of θ̂ . With Eq. (C1), it follows from the rules of matrix differential that

dwz = −(λ′
z�

−1
z λz)

−1[2(dλ′
z)�

−1
z λz − λ′

z�
−1
z (d�z)�

−1
z λz](λ′

z�
−1
z λz)

−1�−1
z λz

+ (λ′
z�

−1
z λz)

−1[−�−1
z (d�z)�

−1
z λz + �−1

z (dλz)]
= [−2(dλ′

z)wz + λ′
z�

−1
z (d�z)wz]wz + [−�−1

z (d�z)wz + (λ′
z�

−1
z λz)

−1�−1
z (dλz)]

= wz[−2w′
z(dλz) + λ′

z�
−1
z (d�z)wz] + [−�−1

z (d�z)wz + (λ′
z�

−1
z λz)

−1�−1
z (dλz)].

Thus,

ẇzλ = ∂wz

∂λ′
z

= −2wzw′
z + (λ′

z�
−1
z λz)

−1�−1
z

and

ẇzψ = ∂wz

∂ψ ′
z

= {w′
z ⊗ [(wzλ

′
z − I)�−1

z ]}Lz,

where Lz = ∂vec(�z)/∂ψ ′
z with vec(·) being the notation for vectorization (see, e.g., Schott,

2017, p. 324), and I is an identity matrix of size pz (=px , py1 or py2 ). Note that Theo-
rem 8.11 of Schott (2017) was used in obtaining the expression for ẇzψ . Thus, with θ ′ =
(λ′

x ,λ
′
y1 ,λ

′
y2 , φξη1 , φξη2 , φη1η2 ,ψ

′
x ,ψ

′
y1 ,ψ

′
y2), we have

ẇ(θ) = ∂w
∂θ ′ =

⎛
⎝ ẇxλ 0xy1 0xy2 0x3 ẇxψ 0xy1 0xy2
0y1x ẇy1λ 0y1y2 0y13 0y1x ẇy1ψ 0y1y2
0y2x 0y2 y1 ẇy2λ 0y23 0y2x 0y2 y1 ẇy2ψ

⎞
⎠ ,

where the boldfaced 0 are matrices of 0 with dimensions indicated by the subscripts. Note that√
N (θ̂ − θ0) = Op(1). It follows from the mean value theorem that

√
N (ŵ − w) = √

N [w(θ̂) − w(θ0)] = ẇ(θ̄)
√

N (θ̂ − θ0) = ẇ
√

N (θ̂ − θ0) + op(1), (C5)

where ẇ(θ̄) is a matrix such that each row of ẇ(θ) is evaluated at a vector θ̄ that lies between θ̂

and θ0, and ẇ = ẇ(θ0). Combining Eqs. (C4) and (C5) yields

√
N (ŵ − w) = ẇ(σ̇ ′Vσ̇ )−1σ̇ ′V 1√

N

N∑
i=1

(ti − σ ) + op(1). (C6)
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Equation (C6)will be used to characterize the asymptotic effect of ŵ on the estimate β̂ = (â, ĉ, b̂)′
and the corresponding âb̂ in the following subsections.

Appendix C.2. The Asymptotic Covariance Matrix of β̂

We will obtain the asymptotic variance of β̂ = (â, ĉ, b̂)′ in this subsection. Let

gi1(β,wx ,wy1 ,wy2) = (w′
xxi )[w′

y1yi1 − a(w′
xxi )], (C7)

gi2(β,wx ,wy1 ,wy2) = (w′
xxi )[w′

y2yi2 − c(w′
xxi ) − b(w′

y1yi1)], (C8)

gi3(β,wx ,wy1 ,wy2) = (w′
y1yi1)[w′

y2yi2 − c(w′
xxi ) − b(w′

y1yi1)], (C9)

and gi = (gi1, gi2, gi3)
′. When ξ̂ , η̂1 and η̂2 are Bartlett-factor scores, with

ḡN (β,wx ,wy1 ,wy2) = 1

N

N∑
i=1

gi (β,wx ,wy1 ,wy2),

the LS estimate β̂ for the model in Eq. (7) satisfies

ḡN (β̂, ŵx , ŵy1 , ŵy2) = 0,

which is an estimating equation. The theory of estimating equation also implies that

E[ḡN (β0,wx ,wy1 ,wy2)] = 0,

where β0 = (a, c, b)′ that are given by a = (w′
x�xxwx )

−1(w′
x�xy1wy1) and

(
c
b

)
=

(
w′

x�xxwx w′
x�xy1wy1

w′
y1�y1xwx w′

y1�y1y1wy1

)−1 (
w′

x�xy2wy2
w′

y1�y1y2wy2

)
.

Because the ŵs are obtained using the NML estimates of confirmatory factor model, they are
consistent for w = w(θ0). The theory of estimating equation also implies that β̂ converges to β0.
We will call β0 the population value of β̂, which is the same as the population value defined in
the main body of this article by assuming that ŵ equals its population counterpart.

We will use the technique of estimating equation to obtain the asymptotic covariance matrix
of

√
N β̂, which is further used to obtain the asymptotic variance of âb̂. Since the interest is

in estimating β and characterizing the distribution of β̂, wx , wy1 , and wy2 are called nuisance
parameters. A systematic study of estimating equation with nuisance parameters is given by Yuan
and Jennrich (2000), and the development in this subsection can be regarded as an application
of their development. For this application, we need the derivatives of ḡN (β,wx ,wy1 ,wy2) with
respect to the involved parameters, and they are given by

CNβ = ∂ ḡN

∂β ′ = − 1

N

N∑
i=1

⎛
⎝w′

xxix′
iwx 0 0

0 w′
xxix′

iwx w′
xxiy′

i1wy1
0 w′

y1yi1x′
iwx w′

y1yi1y′
i1wy1

⎞
⎠
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CNw = ∂ ḡN

∂w′ = 1

N

N∑
i=1

⎛
⎝ ri1x′

i − aw′
x (xix′

i ) w′
x (xiy′

i1) 0
ri2x′

i − cw′
x (xix′

i ) −bw′
x (xiy′

i1) w′
x (xiy′

i2)−cw′
y1(yi1x′

i ) ri2y′
i1 − bw′

y1(yi1y′
i1) w′

y1(yi1y′
i2)

⎞
⎠ ,

where ri1 = w′
y1yi1 − a(w′

xxi ), ri2 = w′
y2yi2 − c(w′

xxi ) − b(w′
y1yi1). Note that E(ri1x′

i ) = 0,
E(ri2x′

i ) = 0 and E(ri2y′
i1) = 0. It follows from the law of large numbers that

CNβ = Cβ + op(1), CNw = Cw + op(1),

where

Cβ = −
⎛
⎝w′

x�xxwx 0 0
0 w′

x�xxwx w′
x�xy1wy1

0 w′
y1�y1xwx w′

y1�y1y1wy1

⎞
⎠ (C10)

and

Cw =
⎛
⎝ −aw′

x�xx w′
x�xy1 0

−cw′
x�xx −bw′

x�xy1 w′
x�xy2

−cw′
y1�y1x −bw′

y1�y1y1 w′
y1�y1y2

⎞
⎠ . (C11)

According to the theory of estimating equation (Yuan & Jennrich, 2000) , there exists

√
N (β̂ − β0) = −C−1

β [√N ḡN (β0,wx ,wy1 ,wy2) + Cw

√
N (ŵ − w)] + op(1). (C12)

If follows from Eqs. (C6) to (C12) that, for the LS estimate β̂, we have

√
N (β̂ − β0)

L→ N (0,	), (C13)

where
L→ is the notation for convergence in distribution and

	 = C−1
β (B11 + B12 + B21 + B22)C

−1
β

′
, (C14)

with

B11 = E{gi (β0,wx ,wy1 ,wy2)g
′
i (β0,wx ,wy1 ,wy2)},

B12 = B′
21 = E{gi (β0,wx ,wy1 ,wy2)(ti − σ )′]Vσ̇ (σ̇ ′Vσ̇ )−1ẇ′C′

w,

and

B22 = Cwẇ(σ̇ ′Vσ̇ )−1σ̇ ′VE[(ti − σ )(ti − σ )′]Vσ̇ (σ̇ ′Vσ̇ )−1ẇ′C′
w.

We next obtain the analytical forms of B11, B12 and B22. Note that, with normally distributed
u, there exists (see, e.g., Yuan & Bentler, 1999)

E[(ti − σ )(ti − σ )′] = 2D+
p (� ⊗ �)D+′

p = V−1, (C15)
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where D+
p is the generalized inverse of Dp. Thus,

B22 = Cwẇ(σ̇ ′Vσ̇ )−1ẇ′C′
w. (C16)

Equation (C15) can also be used to obtain the analytical forms of B11 and B12. Note that, with
ui = (x′

i , y
′
i1, y

′
i2)

′, we can write the functions gi j in (C7) to (C9) as

gi1 = [(w′
x , 0, 0)(uiu′

i )(−aw′
x ,w

′
y1 , 0)

′ = c′
1vec(uiu′

i ) = c′
1Dpti ,

gi2 = [(w′
x , 0, 0)(uiu′

i )(−cw′
x ,−bw′

y1 ,w
′
y2)

′ = c′
2vec(uiu′

i ) = c′
2Dpti ,

gi3 = [(0,w′
y1 , 0)(uiu′

i )(−cw′
x ,−bw′

y1 ,w
′
y2)

′ = c′
3vec(uiu′

i ) = c′
3Dpti ,

where c′
1 = [(−aw′

x ,w
′
y1 , 0) ⊗ (w′

x , 0, 0)], c′
2 = [(−cw′

x ,−bw′
y1 ,w

′
y2) ⊗ (w′

x , 0, 0)] and c′
3 =

[(−cw′
x ,−bw′

y1 ,w
′
y2) ⊗ (0,w′

y1 , 0)]; and Theorem 8.11 of Schott (2017) was used for the 2nd
equal sign in the above equations. Thus, we have

gi (β,wx ,wy1 ,wy2) = ChDpti = ChDp(ti − σ ),

where Ch = (c1, c2, c3)′, and the second equal sign follows from the fact that E(gi j ) = 0. Thus,

B11 = E(gig′
i ) = ChDp E[(ti − σ )(ti − σ )′]D′

pC
′
h = ChDpV−1D′

pC
′
h, (C17)

and

B12 = ChDp E[(ti − σ )(ti − σ )′]Vσ̇ (σ̇ ′Vσ̇ )−1ẇ′C′
w = ChDpσ̇ (σ̇ ′Vσ̇ )−1ẇ′C′

w. (C18)

The formulas in Eqs. (C10)–(C18) are used to numerically evaluate the population signal-to-noise
ratio in Sect. 3 of the article.

Appendix C.3. The Asymptotic Variance of âb̂

We obtain the asymptotic variance of âb̂ in this subsection, and the so-called delta method
will be used for the purpose (see, e.g., Ferguson, 1996). With the result in (C13) and (C14), let
	 = (ω jk), which is a 3 × 3 matrix. We have the following result

√
N (âb̂ − ab)

L→ N (0, ω2
abŵ

),

where

ω2
abŵ

= b2ω11 + 2abω13 + a2ω33.

The signal-to-noise ratio (SNR) for ab under BFS regression with estimated weights is then given
by

τabŵ = ab/ωabŵ. (C19)

Note that, when ŵ = w, the 	 in equation (C14) is reduced to 	 = C−1
β B11C

−1
β

′
. Then the τabŵ

in (C19) becomes identical to the τabw in Eq. (15).
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Table D.
Pairwise comparison of the population signal-to-noise ratios (SNR, τ ) by four methods over 1000 conditions (px = 10,
py1 = 10, py2 = 10).

a(γ1) c(γ2) b(β1) ab(γ1β1)

τpa B F S(w) > τSE M 1000 1000 1000 955
τpa B F S(ŵ) > τSE M 1000 1000 1000 1000
τpaEWC > τSE M 933 1000 1000 805
τpa B F S(ŵ) > τpa B F S(w) 1000 761 856 1000
τpaEWC > τpa B F S(w) 0 171 236 136
τpaEWC > τpa B F S(ŵ) 0 152 139 43

SEM = structural equation modeling, paBFS (w) = path analysis by Bartlett-factor scores with population
weights, paBFS (ŵ) = path analysis by Bartlett-factor scores with estimated weights, paEWC = path analysis
with equally weighted composites.

Appendix D. Appendix Comparison of the SNRs by SEM and PAWC with
px = py1 = py2 = 10

In Sect. 3 of the article we stated that, as the numbers of indicators increase, PAWC will have
more advantages over SEM with respect to the SNRs for parameter estimates. This appendix
provides the support for the statement, by considering conditions with 10 indicators for ξ , η1 and
η2, respectively (i.e., px = py1 = py2 = 10). With p = 30 variables for the mediation model
in Eqs. (2) and (3), the vector θ has 63 base parameters. Parallel to the conditions in Sect. 3, a
random sample of size 63 is drawn from the uniform distribution on [0, 1]. By adding 0.2 to each
of the 63 numbers, the resulting 63 values are used as the population values of θ . By independent
replications, Nc = 1000 sets of population values of θ are obtained. Corresponding to each vector
θ of 63 numbers, the population values of the SNRs (τ ) for γ̂1, γ̂2, β̂1 and γ̂1β̂1 under SEM are
subsequently obtained using the formulas presented in Sect. 2 of the article. Population values of
the SNRs for â, ĉ, b̂ and âb̂ under PAWC are also obtained by paBFS(w) (Bartlett-factor scores
with population weights), paBFS (ŵ) (Bartlett-factor scores that accounts for the sampling errors
in the estimated weights), and paEWC (equally weighted composites), respectively (Table D).

Table D displays the results of pairwise comparison of the SNR (τ ) values by the four methods
for each of the 1000 conditions, parallel to those in Table 2. With paBFS(ŵ) corresponding to
greater values of τ than SEM uniformly across the 1000 conditions on all the four parameters,
the results show that PAWC outperforms SEM more frequently at px = py1 = py2 = 10 than at
px = py1 = py2 = 3. For estimating the indirect effect, the method paBFS(w) outperforms SEM
955 times out of the 1000 conditions at px = py1 = py2 = 10, whereas the number was 894
times in Table 2. Comparing the results of Table D against those of Table 2 indicates that paEWC
also gains more advantages over SEM at px = py1 = py2 = 10.

Suppose all the factor loadings in Eq. (2) are held constant (e.g., λ j = λ = 0.55, j = 1, 2, · · · ,
p) and so are the error variances (e.g., ψ j = ψ = .60, j = 1, 2, · · · , p). It can be shown that,
with fixed values of γ1, γ2, β1, σ 2

ζ1
= Var(ζ1) and σ 2

ζ2
= Var(ζ2) in Eq. (3), the SNRs for the path

coefficients and the indirect effect by all the methods will increase as px , py1 and py2 increase.
It can also be shown that the reliabilities of ξ̂ , η̂1 and η̂2 under PAWC will approach 1.0 as px ,
py1 and py2 go to infinity, and PAWC will yield values of SNRs equal to those when the latent
variables (ξ , η1 and η2) are literally observed. They are also the maximum possible values of the
SNRs for the direct and indirect effects. However, SEM will never be able to achieve such values
due to estimating the increasing number of factor loadings and error variances.
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