COLLINEATION GROUPS OF GENERALIZED
ANDRE PLANES

DAVID A. FOULSER

1. Introduction. In a previous paper (5), I constructed a class of
translation planes, called generalized André planes or A-planes, and discussed
the associated autotopism collineation groups. The main question unanswered
in (5) is whether or not there exists a collineation 5 of a A-plane I which moves
the two axes of II but does not interchange them.

The answer to this question is ‘‘no”’, except if II is a Hall plane (or possibly
if the order »n of II is 3%) (Corollary 2.8). This result makes it possible to
determine the isomorphisms between \-planes. More specifically, let II and
II’ be two \-planes of order # coordinatized by A-systems Q and @', respectively.
Then, except possibly if # = 34 II and I’ are isomorphic if and only if Q
and Q' are isotopic or anti-isotopic (Corollary 2.13). In particular, II is an
André plane if and only if Q is an André system (Corollary 2.14).

The A-planes II of (5) are very similar to the planes constructed by Ostrom
(8;10;11;12) by “replacing’ certain nets in a Desarguesian plane IT* (see § 3).
The results in this paper concerning \-planes are derived as a result of inter-
preting \-planes from Ostrom’s point of view. In particular, from a lemma of
Ostrom (Theorem 2.2), it follows that any collineation of a A-plane II has the
form n = ¢£7, where £ is a collineation of the underlying Desarguesian plane
IT*, and ¢ and % are mappings determined by field automorphisms
(Theorem 2.5). The results listed above, as well as the results of (5) concerning
the collineation group of II, follow directly from this form for 5. There is one
case (n = 3*) to which the proofs below do not apply. It seems probable that
this case is not an exception to the results of this paper (see the remarks
following the proof of Theorem 2.7).

I would like to express my appreciation to T. G. Ostrom for several helpful
conversations concerning his unpublished work at a recent conference in
Chicago.

2. The collineation group of II(Q)). In order to define the class of
generalized André systems, or \-systems (5), we introduce the following
notation. Let ¢ = p*, for p a prime, let n = ¢% and letf = ds. Let F = GF (n)
and let K = GF(g). Let w be a primitive root of F, let « be the automorphism
of F of order f defined by a: x — x?, and let p = «® so that p has order d. Let
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V be the vector space of ordered pairs (x,y) of elements of F. Thus, V is
a two-dimensional vector space over F, a 2d-dimensional space over K, and
a 2f-dimensional space over GF(p). If ¢ is an automorphism of F/K (i.e.,
if the fixed field of ¢ contains K), let ¢ be the following mapping of V,
6: (x, ) = (x, ().

Let A be an arbitrary mapping from F* (the set of non-zero elements of F)
into {p), the automorphism group of F/K. If A(«*) = p!, it is sometimes
convenient to write A(k) = ¢, i.e., to represent A as a mapping from 7,_; into
I;, where I, = {0, 1,...,2 — 1} is the set of least positive residues (mod z).
It is also convenient to define the index of an element m € F* as follows: if
m = o with B € I,;, then ind(m) = k. For @, b € F, define the binary
operation “0” by a 0b = a¢p*@(b), if ¢ 2 0, and 0 05 = 0. Finally, let Q be
the system Q = {F, +, o}.

Lemma 2.1. Q is a (left) quasi-field (or Veblen-Wedderburn system) if and
only if the mapping \: I,_1 — I, satisfies the following conditions:

(a) A0) = 0;
() If 2, j € Iy, and if < =3 (mod ¢! — 1), where ¢ = (d, \(2) — 7 (§)),
then 1 = j.

Proof. See (5, Lemma 2.1).

If X\ satisfies the conditions of the lemma, then Q = Q) will be called a
generalized André system, or a \-system. It is always possible to assume (after
normalizing \) that the M-system Q, has Kern K = GF(q) (5, 2.5). For the
\-system (Qh, define v to be the least integer in I,_; such that \ is periodic
(mod v); and define # = LCM (g* — 1), where ¢|/d and ¢ < d. Then vju from
Lemma 2.1(b). A \-system Q, with Kern K is an André system if and only if
i =7 (modgq — 1) implies A(2) = \(§), for 4, j € I,y; i.e., if and only if
vlg — 1 (5; § 3, example 1). The vector space V can be made into the affine
plane II(Q) coordinatized by a A-system Q, by defining the points of II(Q)
to be the elements (x,¥) of V, and the lines of II(Q) to be the solution sets
of the equations y = mox + b and x = ¢, for m, b, ¢ € Q; these lines will
be denoted by [m, b] and [c], respectively. The class € of lines of II(Q)
through the origin, O = (0, 0), consists of the lines [m, 0] and [0], for m € F.
II(Q) can be completed to a projective plane by adding the points (m) and
(o), m € F, » ¢ F, and the line [, = [«], in the usual manner.

Let IT* be the Desarguesian affine plane defined by V as a two-dimensional
vector space over F. That is, the points of II* are the elements of V; and the
lines of IT* are the solutions of the equations y = mx 4+ b and x = ¢ (for
m, b, ¢ € F), which will be denoted by [m, b]* and [c]¥, respectively. The
class ©* of lines of II* through (0, 0) consists of the lines [m, 0]* and [0]*,
m € F. In the projective completion of II*, the points (m)* and («)*, and
the line [.* = [» ]* are added to IT*.

Note. The “‘+” will distinguish the Desarguesian plane II* and its lines,
from the \-plane II(Q) and its lines.
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TueEOREM 2.2 (12, Lemma 1). Let n be a non-singular semi-linear trans-
formation of V over K. Let MM, be the set of those lines of ©* which are mapped
onto lines of ©* under n. Finally, let T be the maximal proper dwisor of d. If
|M,| > ¢¢ + 1, in particular if |IM,| > ¢¥2 + 1, then n is a Desarguesian
collineation of TI* (i.e., n ts semi-linear over F).

Proof. The proof follows from Lemmas 2.3 and 2.4.
Lemma 2.3. If |, = 3, then |IM,| = ¢* + 1 for some t which divides d.

LemMa 2.4. Assume that n (in (2.2)) fixes the Desarguesian lines [0, 0%,
[1, 01*, and [0]*. Let M, = {m € F: [m,0] € M,}. Then M, is a subfield of F
which contains K.

Proof. Since 7 fixes the subspacesy = 0, x = 0,andy = x of V/, thengasa
2d-dimensional semi-linear transformation over K has the form

1: (%, 3) = (o (x), e (¥)),

where ¢ is a d-dimensional semi-linear transformation of F over K. The
mapping of F, m: x — mx, is a linear transformation of F, for m & F.

For m € M,, let k£ be defined by #: [m, 0]* — [k, O]*. Then 75(x, mx) =
n(x, m(x)) = (o(x), om(x)) = (o(x), ko(x)); thus k& = gme=t. If m, € M,
with 9: [m,, O* — [k, O]* for 2 = 1, 2, then m1 + m2 € M, and m,m. € M,
For example, to show that mims € M,, consider the line [mim2, 01*. Applying 7,
(%, mimax) = (o(x), omima(x)) = (oc(x), M"Mo(x)). Since ms° = ky,
i = 1,2, then W,°Ms" = kiks = kiks. Hence, n: [myms, O] — [Eiks, 01%; thus
myms € M,. Therefore, M, is a subfield of F. Since ¢ is a semi-linear trans-
formation over K, K C M,.

To prove Lemma 2.3, assume that |IN,| = 3. Let /;and // for ¢ = 1, 2, 3 be
three lines of M, and their images under 7, respectively. Since these six lines
are Desarguesian lines, there exist Desarguesian collineations r; and r, of IT*
such that

71t [0, O] — Iy, [O]* — 1, [1,0]* — 15
and
Ta: ll, d [0, O]*, lzl — [0]*, l3/ Ed [1, O]*.

Further, let o' = 7op71. Thus, 3’ satisfies the hypothesis of Lemma 2.4. More-
over, ' maps a Desarguesian line / onto some other Desarguesian line if and
only if » maps the Desarguesian line 7,;(/) onto a Desarguesian line; i.e.,
[M,] = |M,’|. By Lemma 2.4, |IM,/| = |M,| + 1 = ¢* + 1, where ¢t/d.

THEOREM 2.5. Let IL(Q)) be a proper N-plane of order n = ¢°, with Kern K =
GF(q), and exclude the cases ¢ = 3 or 4, and d = 2 or 4. Let n be a collineation
of IL(Qx) which fixes (0, 0). Then there exists a Desarguesian collineation & of 1I*
(which fixes (0,0)), and automorphisms o and v of F/K, such that n = 7£6.
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Note. In the exceptional case n = 32, the collineation group of the nearfield-
André-Hall plane of order 9 is discussed in (1); see also (4, 3.10). For the case
¢ = 3 and d = 4, see the remarks following the proof of Theorem 2.7. The
cases ¢ = 4 and d = 2 or 4 are not exceptions to any of the results after
Lemma 2.6; see the proof of Theorem 2.7.

Proof. The n + 1 lines of II(Q) which contain (0, 0) can be divided into d
classes My, 0 = u = d — 1, as follows.

No = {[m, 0]: A\(m) = 0} U {[0,0],[0]} and N, = {[m, 0]: N\(m) = u}

for 0 < u < d. Here, ) is the mapping of O, A: Q\* — I;. Thus, N, is the set
of lines whose slopes are inverse images of u under \; N, in addition, contains
the axes. Of course, N, may be empty (if u 5% 0). Suppose that exactly T of
the classes 9, are non-empty.

For each u; and we (0 < uy, w2 < d), let Ny, ., be the set of lines of N,
which are mapped into R,, by 5. Choose p1 and p2 so that N, ., is maximal,
and let W = N0 Clearly, M| = (n + 1)/72 from the definition of 7.

Lemma 2.6 below shows that, except possibly if ¢ = 3 or 4 and d = 2 or 4,
M| > ¢7 + 1, where { is the maximal proper divisor of d. This lemma permits
the application of Theorem 2.2, as follows.

Let ¢ and 7 be defined by ¢ = p~#1and 7 = p*?, and let £ = 771y~ L. Then £
maps at least || Desarguesian lines onto Desarguesian lines. Let / € M and
let I/ = 5(l). Suppose that I = [m, 0] and /' = [k, 0] (if [ or I = [0], then a
similar argument holds). Consider what £ does to the Desarguesian line
[o(m), OFF = {(x, o(m)x)}:

£ (x, 0 (m)x) —— (x, mo—i(x)) = (%, mp™ (x)) = (x,m 0x) —— (&, k 0 &)

= (&, k7 (Z) ; (&, 771(R)T).

That is, for each line [m, 0] (or [0]) of N, £ maps the corresponding Desar-
guesian line [o(m), 0]* (or [0]*) onto a Desarguesian line. Since || > ¢¢ + 1
by Lemma 2.6, then Theorem 2.2 implies that £ is a Desarguesian collineation
of IT*, and hence n = 7¢6, as required.

LeEmMMA 2.6. Let Q\ be a proper \-system of order n = ¢°, with Kern K =
GF(q). However, exclude the cases ¢ = 3 or 4 and d = 2 or 4. Let N be the set
of lines of T1(Q\) defined in the proof of Theorem 2.5. Then |N| > ¢¢ + 1, where
I is the maximal proper divisor of d.

Proof. (1) Since T =d and =
(¢ + 1)/d* > ¢°/d? and ¢** + 1 = ¢* +
that ¢%/d? = ¢** + 1, i.e., that ¢*?/d* =

d/2, then [N| = (¢¢+ 1)/T% =
1. Hence, it is sufficient tro pove

1+ (1/¢"7).
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(2) Consider the function f(x) = (¢*/?)/«x?, for fixed ¢ and x > 0. Then
f'(x) >0, ie., f(x) is increasing, for x > 4/In g. Moreover, the function
g(x) = 14 (1/¢*?) is decreasing for all x. To prove that f(d) = g(d) for
fixed ¢ and for d = d,, it is sufficient to check that dy > 4/In ¢ and that
f(dy) = g(do).

(3) Let d =2 and ¢ = 5. Then clearly ¢%/d* = ¢ + 1, as required in
part (1).

(4) Letd = dy = 4, and let ¢ = 5 in part (2). Then dy > 4/In g; f(do) =
q?/16 = 25/16; g(do) = 1 + 1/¢> < 26/25; and hence f(d¢) = g(dy). There-
fore, ¢¥/2/d* = 1 + (1/¢%?), as required.

(5) Let Qx be an André system and d > 2. Then \, as a mapping from I,_i,
is periodic (mod ¢ — 1);see § 2 and (5, § 3, example 1). Therefore, " < ¢ — 1.
Hence, as in part (1) above, |M| = (n+1)/T?2 = (n+1)/(¢g — 1) If
d = 4, then [N| = (¢° + 1)/(g — 1)2 > ¢¥? 4+ 1 follows from the inequalities:

@+ D/G=D> @ =D/@=D =¢+g 4. +g+1
> = g g — 1= (g — D"+ 1).

Ifd =3,thenf=1,and [N| = (¢*+ 1)/(¢g—1)2>¢ +1 =g+ L

If Qu is a A-system with d a prime, then Q, is also an André system. This is
true since \, as a mapping from I, to I, is always periodic (mod #), where
u =LCM(¢* — 1) for¢d,0 <t < d (5,24). Ifdisa prime, thenu = ¢ — 1,
and therefore M\ is periodic (mod ¢ — 1) which implies that Qy is an André
system (5, § 3, example 1).

Thus, parts (3)—(5) above prove Lemma 2.6 for the cases ¢ = 5 and d = 2,
and for the cases in which d is a prime, d > 2.

(6) Let ¢ = 2. Part (2) applies to the case ¢ = 2 and d = 30; i.e., let
dy = 30 in part (2) and check that dy > 4/In 2 and that f(dy) = g(d,). For
d < 30 and ¢ = 2, no Msystem has Kern K = GF(2) (5, Lemma 3.4). For,
in order that the Kern be GF(2), d must have at least three distinct prime
factors and in particular, d = 30. (I do not know whether any \-system
exists with Kern GF(2).) Hence, Lemma 2.6 is true for ¢ = 2.

(7) Let ¢ = 4. Part (2) applies if d = 5 and part (5) applies for d = 3.
The cases d = 2 and 4 are excluded. However, the case ¢ = d = 4 actually
satisfies Theorem 2.5 as follows. If 5 fixes or interchanges the axes, then
Theorem 2.5 follows from the description of the autotopism and anti-auto-
topism collineations of II(Q\) in (5). Otherwise, Lemma 2.6 can be proved
directly; see the proof of Theorem 2.7.

(8) Let ¢ = 3. Part (2) above applies to the cases d = 8, and part (3)
applies to the cases d = 3, 5, and 7.

The case ¢ = 3 and d = 6 can be excluded as follows. If 7" =< 5, then
¢%/T* =z 3%/25 > 3%+ 1 = ¢g¥% 4 1, as required.

Now assume that 7 = 6. Since T = |Image \|, then T = 6 implies that
X\ maps I,—; onto Ig. Choose ¢z and j € I,y such that A(¢) = 1 and \(j) = 5
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in I¢. From Lemma 2.1(a), A(0) = 0. Applying Lemma 2.1(b) to ¢ and
0 € I, it follows that ¢ = (6,1 — 0) = 1, and hence 7 # 0 (mod 3’ — 1);
thus ¢ is an odd integer. Similarly, applying Lemma 2.1(b) to j and 0 implies
that j is an odd integer. Next, assume that A(k) = 0 for 2 € I,_,. Applying
Lemma 2.1(b) to k and < implies that k is an even integer. Similarly, if A\ (k) = 2
or if N(k) = 4, then applying Lemma 2.1(b) to %k and %, or to & and j, respec-
tively, implies that % is an even integer. Finally, if A\(k) = 3 choose u € I,_;
so that A(z) = 2. Applying Lemma 2.1(b) to % and » implies that & is an
odd integer.

To complete the proof in this case, let 2 and k' € I,_; such that
k = k' (mod 8). Assume that A(k) = A(k’). If & and &’ are both odd, then
A(k) and N (k") are distinct integers in the set {1, 3, 5}. Applying Lemma 2.1(b)
to k and %/, where t = (6, \(k) — A(#')) = 2, it follows that & = %/, and
hence A(k) = A(E’). Similarly, if £ and &’ are both even, then \(k) = \(%').
Therefore, M is periodic (mod 8). Hence, A induces a mapping from I onto I,
and therefore at least one integer u; € I is the image of two or more elements
in Is. The corresponding class M, contains at least 2- (3° — 1)/8 = 182 lines.
Therefore, % (= maximal N, ,,) satisfies|N| = 182/7 = 182/6 > 3¢ + 1 = 28,
Thus Lemma 2.6 holds for ¢ = 3 and d = 6.

The remaining cases d = 2 and 4 are excluded.

THEOREM 2.7. Let TI(Q\) be an arbitrary proper \-plane of order n = ¢°,
with Kern = GF(q). Exclude the case ¢ = 3, d = 4. Suppose that n is « col-
lineation of 11 which fixes (0, 0) and which moves (0) to (a) with a % 0 or ».
Then d = 2, so that \ is periodic (mod ¢ — 1), and one of the following con-
ditions 1s satisfied:

(a) there are exactly q — 2 4's in I,y with N(z) = 0; or

(D) there are exactly ¢ — 2 4's in I,y with \(3) = 1.

COROLLARY 2.8. If an arbitrary proper \-plane II(Q\) has a collineation
moving (0) to (a) with a % 0, or o, then I(Q\) s a Hall plane, or possibly
qg =3 and d = 4.

Proof of Corollary 2.8. From Theorem 2.7, d = 2, and hence Q, is an André
system. Conditions (a) and (b) imply that one net of order /% + 1 has been
replaced in the Desarguesian planes II* and (II*), respectively, to use
Ostrom’s terminology. Finally, that II is a Hall plane follows from Ostrom’s
proof (12; 14) of the following theorem: every finite Hall plane is an André
plane; see also (3; 5, 7.6) for other proofs of this theorem. Alternatively,
Albert and Hughes (5, 7.6) have shown that II is a Hall plane if Q, satisfies
condition (a). It is straightforward to show that if Q, satisfies (b), then Q\
is isotopic to a A-system which satisfies (a), by using (5, 7.3), and hence II is
a Hall plane.

Proof of Theorem 2.7. Exclude for the moment the cases ¢ = 3 or 4 and
d = 2 or 4. Let 5 be a collineation of II(Q\) which fixes (0, 0) and maps (0)
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to (a) and (=) to (b), with @ 3 0 or . Then, since II(Q\) has no ((«), [0])-
elations, it follows that b % 0 or « (5, 6.1). From Theorem 2.5, = ¢4,
for ¢ a Desarguesian collineation of IT*, and r and ¢ automorphisms of F/K.
Since ¢ is a non-singular semi-linear transformation of 1 over F, ¢ can be
represented as follows:

2.1 - [au amjl'
2.1 E= 0 am

where (a;;) is a non-singular matrix with elements from F, and v is an
automorphism of F (v is applied to both components of a vector (x,y) € V).
Notice that since n maps (0) — (a), (o) — (b) with @,b % 0, =, then
a;; #0,for 1 £4,j < 2. For £ as given in (2.1), n = 7£¢ acts as follows on
the points of T

(2.2) n(x,y) = (y(aux + a120(y)), v (anx + a2 (y))).

Let #: (m) — (m'), for m and m' ## ©. Then n(x,mox) = (x',m ox'),
and (2.2) implies that:

(2.3) mox =m' " y(anx + are0(m o x)) = ry(aux + axnc(mox)),

for x € F. Applying 7! to (2.3) and rewriting, one derives:

(2.4) b1M™) (%) + bop™apM™ () = byr(x) + barapr™ (x),
for all x, and for all m such that m, m' % (), where
(2.5) by =yt (m)pM™ (ann), by = 7 (m") M) (a12) M0 (m),

l)g = T(agl), and b4 = T(agz)TU(m).

Jote. (2.3)—(2.5) hold for m or m' = 0 if pM® is defined to be any auto-
morphism of F/K.
At this point, a well-known result is required.

LemMa 2.9 (2, p. 35, Corollary to Theorem 12). Lef oy, . . ., o4 be distinct
automorphisms of a field F, and let by, . .., by € Fsuch that 3 5_1b0:(x) =0
for all x € F. Then by = ... =0, = 0.

Now, (2.4) has the form:

(24:/) b10’1(x> + b20’2(3€) bl bgo'g(x) - b40’4(9€) =0

for b; € F and o; automorphisms of F (1 =7 =< 4). Applying Lemma 2.9 to
this equation, the following four cases for the ,'s must be considered:

(1) bl = —bz, b3 = —bq, and pMm) = 0'_1;

(2) by = b3, by = by, and ™) = 7;

(3) by = by, by = b3, PM™) = 76p*™ and (ep*™)?2 = I;

(4) b1+ by = b3 + by, PM™ = ¢t and pP™ = 7.

To see this, first note that if m and m’ % o, then either all the ,’s are
non-zero; or m = 0, or m’ = 0, and in these two cases, exactly two b,’s are
zero.
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Now, suppose that the o,'s are all distinct in (2.4’). Then Lemma 2.9
implies thatb; = ... = by = 0, which is false. Next, suppose that o, = o2 = o3
and oy is distinct. Then Lemma 2.9 implies that b, = 0, and hence exactly
one other b, is zero. Thus, one of the cases (1)-(3) applies. Now, assume that
o1 = 02, 03 = a4, and o1 % o3. Then case (1) applies. Finally, if ¢; = a5 =
o3 = o4, then case (4) applies. Similarly, the other possibilities for (2.4')
which are allowed by Lemma 2.9 are contained in the cases (1)-(4).

LeEMMA 2.10. If m’ % 0 or =, then either pM™" = 1 or pPP™) = 7o, where y* = I.

Proof. If m' satisfies case (1), then m' = 0, p*™ = ¢=1 and b; = —by
implies that m = ¢~1(—as/as). For if m’ 5 0, then b; = —b, implies that
m = ¢~1(—an/a12), and hence det(a;;) = 0, which is false since 5 is non-
singular. Similarly, case (2) implies that m =0, ™) =7, and m' =
YT ((121/(111) .

From Lemma 2.9 and (2.2), if 9: () — (m'), then m’' = 7y (ag/a12) and
pr™) = 7. Similarly, if #9: (m) - (), then m = o7'(—ay/a12) and
MM = g1,

Finally, if 9: (m) — (m’) with m' £ 0 or =, then cases (3) and (4) apply,
and either p*™"? = 7 (case (4)) or pM™) = ¢ (case (3)), where y? = I.

LeMMmA 2.11.d = 2.

Proof. Let J = {p*™:m € F*}. From Lemma 2.10, J = {r, 7¢}. Since Q
is a A-system, then I € J; in particular, for m = 1 € F*, p»® = I, Hence,
eitherr = Torr = Yy~tand 72 = I. In either case, the automorphism subgroup
& of F/K generated by J has order 1 or 2. Since Q is a proper \-system with
Kern K = GF(g), then |§] = d = 2.

To complete the proof of Theorem 2.7, let d = 2 so that Q is an André
system. Since J = {p*™:m € F*} = {r, 7y} from Lemma 2.10, and since
|¥| = 2 (because Q is a proper A-system and I € J), we have that ¢ = p.
Further, p*™) = 7 except when m’ satisfies case (3).

In case (3), ¥ = op*™, ™) = 7y by = by, and by = b;. Hence,
i)t (an) = r(as)re(m) and vy~ 1(m')r¢(a1s)ory(m) = 7(aqs). Cancel-
ling 7 and eliminating y~1(m’) (since m’ # 0), we derive:

990 (m) — Qs .
) Ylau)  Y(aw)oy(m)’
ie.,
. -1 dzlil/(au):l .
. m-ym) = o [0221//(012) =k
ie.,
(2.6) m®*1 = k for k as defined above.

Since |J| = 2, (2.6) must have solutions for m, in which case there exist
exactly g + 1 solutions. If 7 = I, then since Q is an André system, there
exists exactly one 49 € I,_; such that A(¢y) = 1, and for the other ¢ — 2 7’s
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(in I,_1), N(3) =0 (case (a) for Theorem 2.7). Similarly, if 7 = p, then
case (b) applies.

If ¢ = 3or4and d = 2, then condition (a) or (b) of Theorem 2.7 is satisfied
since ¢ — 1 is small, and thus in these cases II(Q) is a Hall plane.

Next, let ¢ = 4 and d = 4. It is sufficient to show that  has the form

= 7t with & Desarguesian. Since ¢ = 4 and d = 4, then ¢/ + 1 = 17, and,
moreover, from (5, § 3, example 5) u = ¢> — 1 = 15; therefore \ is periodic
(mod 15). Since 15/4 > 3, then some N, (see the proof of Theorem 2.5)
contains at least 4 - 17 lines, excluding [0] and [0, 0]; hence, either |N,,,| > 17
for some », and Lemma 2.6 is satisfied, or |N,,,| = 17 for each ». Now, choose »
such that  maps [0] or [0, 0] onto N,. Then & = s~*55~* maps the 17 Desar-
guesian lines of =#(M,,,) onto Desarguesian lines. In addition, the
Desarguesian line [0] or [0, 0], which # maps into 9,, is mapped by £ onto a
Desarguesian line. Hence, £ maps at least 18 > ¢’ + 1 Desarguesian lines
onto Desarguesian lines. By Theorem 2.2, ¢ is a Desarguesian collineation,
as required.

Finally, let ¢ = 3 and d = 4. If Theorem 2.7 is false for Q, then techniques
similar to those above for ¢¢ = 4* show that 7" = 4 and that each inverse
image under \ has order 20. From (5, § 3, example 5), \ is periodic (mod 8),
and in fact there are 36 possible systems, and less than 36 isotopism classes,
to consider. It seems very unlikely that any of these systems wviolate
Theorem 2.7.

COROLLARY 2.12. Exclude the case ¢ = 3, d = 4. Let 1L be a proper \-plane
which is not a Hall plane, coordinatized by the \-system Q. Let G be the group of
all collineations of 11, T the translation group, and A the group of autotopism and
anti-autotopism collineations of X. Then G0y = A, and G = T-4; cf. (5, § 6).

CoRrOLLARY 2.13. Exclude the case ¢ = 3, d = 4. Two \-planes I (Q) and
II(Q"), are isomorphic if and only if the \-systems Q and Q' are isotopic or
anti-isotopic.

Proof. If TI(Q) is a \-plane coordinatized by the A\-system Q, then II(Q) has
((0, [0])-homologies and ((), [0, 0])-homologies which are not involutions.
If II(Q) is not a Hall plane, then any collineation of II(Q) either fixes or
interchanges (0) and («). Hence, if TI(Q) is coordinatized with respect to
different axes, then the resulting ternary system is not a \-system. If ¢ is an
isomorphism from II(Q) to II(Q’) and the planes are not Hall planes, then &
must map the axes of II onto the axes of II'. Hence, Q and Q’ are isotopic or
anti-isotopic (5, § 4).

If IT and 1" are Hall planes, then Q and Q' each must satisfy either condition
(a) or (b) of Theorem 2.7. As in the proof of Corollary 2.8, Q and Q’ are isotopic.

COROLLARY 2.14. Let IL(Q) be a proper \-plane coordinatized by the \-system Q.
Then 11(Q) s isomorphic to an André plane if and only if Q is an André system,
even for the case ¢ = 3 and d = 4.
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Proof. Apply Corollary 2.13 and (5, 7.3 and 7.4): if the A-system Q is
isotopic or anti-isotopic to an André system, then Q is an André system. If
II(Q) is a Hall plane, then d = 2 and every A-system is an André system.
Finally, let ¢ = 3 and d = 4. From the proof of Lemma 2.6 (part (5)), or
from the remarks in the proof of Theorem 2.7, if Oy is an André system, then
no collineation of II(Q\) can move (0) and (=), except possibly to interchange
them. Hence, as in the proof of Theorem 2.5, if II(Q)) is isomorphic to II(Q’)
for Q' a A-system, then Q' is isotopic or anti-isotopic to Q», and hence Q' is
an André system.

3. Miscellaneous examples. Theorem 2.7 implies the following result
about the special class of N\-planes II(Q,) described in (6).

LemMa 3.1. (1) TI(Q,) is wsomorphic to an André plane if and only 1f glg — 1.

(2) Exclude the case ¢ = 3, d = 4. If g = d, then there exist ¢(d)/s ordyp
non-isomorphic planes, 11(Qy), where ¢ is the Euler function, and § = 1 or 2;
see (6, following 3.7). If g < d, then there exist ¢(d)¢p(g)/28 ord,p non-iso-
morphic planes 11(Q,). Moreover, if g1 5= gs, then 1(Q,,) is not isomorphic to
I(Qy.)-

Proof. (1) Use Corollary 2.14 and the fact that Q, is an André system if
and only if glg — 1.

(2) Use Corollary 2.13 and the description of the isotopism classes for Q,
(6,3.11, 3.14, and 4.8). Finally, for g1 ¥ g, Q,, and Q,, are not isotopic (6, 4.7).

Lemma 3.1 shows that there is a large number of non-isomorphic planes,
even in the class {II(Q,)}. A better indication of the large number of M-planes
is given by the following lemma.

LEMMA 3.2. Let n = p’ = ¢%, and let d = ¢', for ¢ a prime. Exclude the case
g = 3,d = 4. Let r be defined by

—1
r = (Z (]Ck> — 2t.
k=0

Then there exist at least ¢’/2f(n — 1)? non-isomorphic \-planes of order n
whose Kerns contain GF (q).

Proof. There exist ¢ distinct A\-systems of order #» with Kerns containing
GF(q) (5, 3.3). From (5, 5.12) there exist at most 2f(z — 1)? systems in an
(isotopism, anti-isotopism)-class. Hence, the result follows from Corollary 2.13.
As an example, let ¢ = 5, ¢ = 3, and ¢t = 2. In this case, there exist at least
3% non-isomorphic A-planes of order n = 5°.

Finally, let us indicate the relation of the class of A\-planes to a sub-class of
planes which Ostrom constructed by a ‘‘homology-type replacement’” of
certain nets of the Desarguesian plane II* (10; 11; 12). This construction
consists of replacing certain Desarguesian lines, y = mx of II*, by lines of the
form y = ma,(x), to obtain a new plane II (here o,, is an automorphism of F).
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The plane II has the property that the ((0, 0), /.*)-homologies of IT*, namely
the mappings (x, y) — (ax, ay) for @ # 0 in F, are also collineations in II.
From the form of the new lines, it is not surprising that II is a A-plane.

THEOREM 3.3. Let I be a plane which can be obtained from the Desarguesian
plane TI* be a series of disjoint, restricted homology-type replacements, as des-
cribed above. Then 11 is isomorphic to a \-plane.

Proof. Since the lines of II have the form x = 0,y = 0, and y = ma,(x) for
m € F* the point (1, 1) is on some line ¥y = o1(x). Let I’ be the image of TI
under the mapping ¢;7%: (x,y) — (¥, o7 1(y)). The lines of II' have the form
x=0,v=09=mr) for m € F*¥ and 7, an automorphism of F, where
71 = 1. Define \: F* — (p) by \(m) = 1, and define m o x = mp*™ (x) =
mr,(x). Then { F, +, o} = Q\isa quasi-field coordinatizing I, since 1 o x = x.
From Lemma 2.1, { F, +, o} isa A\-system, and hence I’ is a A-plane. Therefore.
II is isomorphic to the A-plane IT'.

The ((0,0) — I.*)-homology (x,y) — (ax, ay) of II* induces a collineation
in the \-plane II’ as follows:

3.1) (x,9) — (ax, o(a)y) for ¢ an automorphism of F.

This condition can be used to determine which A-planes occur in Ostrom’s
construction.

THEOREM 3.4. Exclude the case ¢ = 3, d = 4. Suppose that the \-plane 1I,
coordinatized by the \-system Q, is tsomorphic to a plane 11 obtained from ihe
Desarguesian plane TI* by “‘restricted homology-type replacement’’. Then there
exists a N-system Q' = Q\' isotopic to Q such that \' satisfies the following con-
dition for some p (0 = u < f):

(3.2) N (k) = N (k4 v(@® — pu)) (modd) for k, v € I

Proof. Let " = II(Q)') be the A-plane isomorphic to II, as in the proof of
Theorem 3.3. Then II’ is isomorphic to II, and by Corollary 2.13, Q" and Q are
isotopic or anti-isotopic. Further, the mappings (3.1), for a € F*, are collinea-
tions of Q’, and hence for each a 0, m’ 0 (ax) = o(a)- (m o x) determines
m' as a function of m (for all x). This condition is easily shown to be equivalent
to (3.2), by using Lemma 2.9.

There are some A-planes which are not isomorphic to planes constructed
from II* by homology-type replacement. For example, let ¢ = 3, d = 12,
g =4,andlet Qx = Q, (6); i.e., for k € I,y let # = k (mod g) with &’ € I,.
Define A (k) = k’. Let I = II(Q,) and let us consider whether II itself can be
obtained from II* by homology-type replacement. If so, then two lines of II
which intersect a line of IT* non-trivially have intersections of the same dimen-
sion over K. However, [w, 0] and [w=2%, 0] in II intersect [w, 0]* in IT* in
subspaces of dimension 1 and 3, respectively, over K. Moreover, in this
example, II(Q,) is not isomorphic to a plane obtained from II* by homology-
type replacement. For if so, then Theorem 3.4 and (6, 4.8) imply that Q, is
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isotopic to a A-system which satisfies (3.2), for some u. By using the definition
of Q, and (5, 5.5), the general condition for two \-systems to be isotopic, it is
easy to check that no isotope of Q, satisfies (3.2) for any u (it is sufficient to
check ¢ = 0 and 1).

On the other hand, as Ostrom (11) pointed out in a special case, any
\-plane, II(Q)), can be obtained from II* by replacing certain ‘‘André-type”’
nets, but not necessarily by a homology-type replacement.

LeMMA 3.5. Let TL(Qy) be an arbitrary N-planewith Kern K. Let N* and N be
the nets in I1* and IL(Q\), respectively, consisting of all lines with slopes m such
that ind m = 6 (mod ¢ — 1), for fixed 5. Then N is a replacement for N* (N and
N* are not necessarily distinct).

Added in proof. Recently, Theorem 2.7 and Corollary 2.8 (including the
case ¢ = 3, d = 4) have been proved independently by M. L. Narayana Rao
(A4 conjecture of D. R. Hughes in \-planes, to appear), based on a paper of
F. W. Wilke (4 class of translation planes and a conjecture of D. R. Hughes,
to appear). Further, Rao and J. L. Zemmer have answered the question in the
proof of Lemma 2.6 (part (6)) by constructing A-systems with GF (2) as the
Kerns (4 question of Foulser on \-systems of characteristic two, to appear in
Illinois J. Math.).
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