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1. Introduction. In a previous paper (5), I constructed a class of 
translation planes, called generalized André planes or X-planes, and discussed 
the associated autotopism collineation groups. The main question unanswered 
in (5) is whether or not there exists a collineation rj of a X-plane II which moves 
the two axes of II but does not interchange them. 

The answer to this question is "no", except if II is a Hall plane (or possibly 
if the order n of II is 34) (Corollary 2.8). This result makes it possible to 
determine the isomorphisms between X-planes. More specifically, let II and 
II' be two X-planes of order n coordinatized by X-systems Q and Q', respectively. 
Then, except possibly if n = 34, II and II' are isomorphic if and only if Q 
and Q' are isotopic or anti-isotopic (Corollary 2.13). In particular, II is an 
André plane if and only if Q is an André system (Corollary 2.14). 

The X-planes II of (5) are very similar to the planes constructed by Ostrom 
(8; 10; 11 ; 12) by "replacing" certain nets in a Desarguesian plane II* (see § 3). 
The results in this paper concerning X-planes are derived as a result of inter­
preting X-planes from Ostrom's point of view. In particular, from a lemma of 
Ostrom (Theorem 2.2), it follows that any collineation of a X-plane II has the 
form rj = âi-T, where J is a collineation of the underlying Desarguesian plane 
II*, and â and f are mappings determined by field automorphisms 
(Theorem 2.5). The results listed above, as well as the results of (5) concerning 
the collineation group of II, follow directly from this form for 77. There is one 
case in = 34) to which the proofs below do not apply. I t seems probable that 
this case is not an exception to the results of this paper (see the remarks 
following the proof of Theorem 2.7). 

I would like to express my appreciation to T. G. Ostrom for several helpful 
conversations concerning his unpublished work at a recent conference in 
Chicago. 

2. The collineation group of II (Qx). In order to define the class of 
generalized André systems, or X-systems (5), we introduce the following 
notation. Let q = ps, for p a prime, let n = qd, and l e t / = ds. Let F = GF(n) 
and let K = GF(g). Let co be a primitive root of F, let a be the automorphism 
of F of order / defined by a: x —> xp, and let p = as so that p has order d. Let 
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V be the vector space of ordered pairs (x, y) of elements of F. Thus, V is 
a two-dimensional vector space over F, a 2d-dimensional space over K, and 
a 2/-dimensional space over GF(p). If a is an automorphism of F/K (i.e., 
if the fixed field of a contains K), let â be the following mapping of V, 
â: (x,y) -> (x, a(y)). 

Let X be an arbitrary mapping from F* (the set of non-zero elements of F) 
into (p), the automorphism group of F/K. If X(œk) = p\ it is sometimes 
convenient to write X(k) = t, i.e., to represent X as a mapping from In-\ into 
Id, where Iz = {0, 1, . . . , z — 1} is the set of least positive residues (mod z). 
I t is also convenient to define the index of an element m G F* as follows: if 
m — œk wTith k G In-u then ind(m) = k. For a, b £ F, define the binary 
operation " o " by a o b = apX(a)(6), if a ^ 0, and 0 o b = 0. Finally, let Q be 
the system Q = {F, + , o}. 

LEMMA 2.1. Q is a (left) quasi-field (or Veblen-Wedderburn system) if and 
only if the mapping X: JTw_i —> Id satisfies the following conditions: 

(a) X(0) = 0; 
(b) / / i, j G In-u and if i =j (modq* — 1), where t = (d, \(i) — X(j)), 

then i = j . 

Proof. See (5, Lemma 2.1). 

If X satisfies the conditions of the lemma, then Q = Q\ will be called a 
generalized André system, or a \-system. It is always possible to assume (after 
normalizing X) that the X-system Q\ has Kern K = GF(q) (5, 2.5). For the 
X-system Qx, define v to be the least integer in /w_i such that X is periodic 
(mod v); and define u — LCM(g* — 1), where t\d and / < d. Then v\u from 
Lemma 2.1(b). A X-system Q\ with Kern K is an André system if and only if 
i = j (mod q — 1) implies \(i) = \(j), for i, j Ç 7w-i; i.e., if and only if 
v\q — 1 (5; § 3, example 1). The vector space V can be made into the affine 
plane 11(C) coordinatized by a X-system Q, by defining the points of II (Q) 
to be the elements (x, y) of V, and the lines of II (Q) to be the solution sets 
of the equations y = m ox + b and x = c, for m, b, c £ Q\ these lines will 
be denoted by [m,b] and [c], respectively. The class Ë of lines of II(Q) 
through the origin, 0 = (0, 0), consists of the lines [m, 0] and [0], for m G F. 
II(<2) can be completed to a projective plane by adding the points (m) and 
(oo) ,mÇ T7, °° $ JP, and the line lœ = [<» ], in the usual manner. 

Let II* be the Desarguesian affine plane defined by F as a two-dimensional 
vector space over F. That is, the points of II* are the elements of V; and the 
lines of II* are the solutions of the equations y = mx + b and x = c (for 
m, b, c G F), which will be denoted by [m, b]* and [c]*, respectively. The 
class S* of lines of II* through (0, 0) consists of the lines [w, 0]* and [0]*, 
m G i7. In the projective completion of II*, the points (m)* and (°°)*, and 
the line Zœ* = [°° ]* are added to II*. 

Note. The "*" will distinguish the Desarguesian plane II* and its lines, 
from the X-plane II (Q) and its lines. 
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THEOREM 2.2 (12, Lemma 1). Let rj be a non-singular semi-linear trans­
formation of V over K. Let SDt, be the set of those lines of S* which are mapped 
onto lines of Ê* under rj. Finally, let t be the maximal proper divisor of d. If 
12^1 > Q* + 1> in particular if |5D?J > qd/2 + 1, then 77 is a Desarguesian 
collineation of II* {i.e., 77 is semi-linear over F). 

Proof. The proof follows from Lemmas 2.3 and 2.4. 

LEMMA 2.3. 7f |9)î,| ^ 3, then |3W,| = g' + 1 /0f ^wg / which divides d. 

LEMMA 2.4. Assume that 77 (w (2.2)) fixes the Desarguesian lines [0, 0]*, 
[1, 0]*, and [0]*. Let Mv = [m G i?: [w, 0] G 2W,}. Then Mv is a subfield of F 
which contains K. 

Proof. Since 77 fixes the subspaces y = 0, x = 0, and j = x of F, then 77 as a 
2d-dimensional semi-linear transformation over K has the form 

77: (x,y) -» (o-(x), c(y)), 

where o- is a ^-dimensional semi-linear transformation of F over K. The 
mapping of F, in: x —» wx, is a linear transformation of F, for m G F. 

For m G M„ let k be defined by 77: [m, 0]* —» [k, 0]*. Then 77 (x, wx) = 
rj (x, m{x)) = (<r(x), <rin{x)) = (o-(x), fe<r(#)); thus k = afh(j~l. If m, G M„ 
with 77: [ra<, 0]* —» [&*, 0]* for i = 1, 2, then Wi + m2 G -M", and mim2 G -M",. 
For example, to show that WiW2 G Af„ consider the line \m\m<i, 0]*. Applying 77, 
77(x, m\m2x) = (o-(x), aMim2{x)) = (o-(x), m ^ m i ^ x ) ) . Since m£ = kh 

i = 1, 2, then mfm<£ = k1k2 = &1&2. Hence, 77: [mun2, 0]* —> [kik2, 0]*; thus 
Wiw2 G Mv. Therefore, Mv is a subfield of F. Since cr is a semi-linear trans­
formation over K, K Cl Mv. 

To prove Lemma 2.3, assume that |3W,| è 3. Let lt and / / for i = 1, 2, 3 be 
three lines of SO?,, and their images under 77, respectively. Since these six lines 
are Desarguesian lines, there exist Desarguesian collineations n and r2 of II* 
such that 

n: [ 0 ,0 ]*^ /x , [0]*->/2, [ l , 0 ] * - > / 3 

and 
r2: W -> [0, 0]*, U -> [0]*, W -» [1, 0]*. 

Further, let 77' = T277n. Thus, 77' satisfies the hypothesis of Lemma 2.4. More­
over, 77' maps a Desarguesian line / onto some other Desarguesian line if and 
only if 77 maps the Desarguesian line n ( / ) onto a Desarguesian line; i.e., 
|2»,| = |2K,'|. By Lemma 2.4, |2K,'| = \Mj\ + 1 = g' + 1, where t\d. 

THEOREM 2.5. Let H{Q\) be a proper \-plane of order n = qd, with Kern K = 
GF{q), and exclude the cases q = 3 or 4, and d = 2 or 4. Let 77 be a collineation 
ofIL{Q\) which fixes (0, 0). Then there exists a Desarguesian collineation £ of II* 
{which fixes (0, 0)), and automorphisms a and r of F/K, such that 77 = f£ô\ 
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Note. In the exceptional case n = 32, the collineation group of the nearfield-
André-Hall plane of order 9 is discussed in (1) ; see also (4, 3.10). For the case 
q = 3 and d = 4, see the remarks following the proof of Theorem 2.7. The 
cases g = 4 and d = 2 or 4 are not exceptions to any of the results after 
Lemma 2.6; see the proof of Theorem 2.7. 

Proof. The n + 1 lines of II (Q) which contain (0, 0) can be divided into d 
classes 9lM, 0 ^ / x ^ d — 1, as follows. 

9îo = {[m,0]: \(m) = 0} U {[0,0], [0]} and 9^ = {[m, 0]: X(m) = M} 

for 0 < ix < d. Here, X is the mapping of Q\, X: Qx* —» 7d. Thus, 5RM is the set 
of lines whose slopes are inverse images of /JL under X; 9io, in addition, contains 
the axes. Of course, 9^ may be empty (if \x ̂  0). Suppose that exactly T* of 
the classes 9lM are non-empty. 

For each /xi and /x2 (0 ^ /xi, /x2 < d), let iVM1,M2 be the set of lines of 9 ^ 
which are mapped into 9lM by rj. Choose /*i and /x2 so that 9lMlfM2 is maximal, 
and let 9t = 9ï„lfM2. Clearly, \3l\ = (w + l ) / r 2 from the definition of T. 

Lemma 2.6 below shows that, except possibly if q = 3 or 4 and d = 2 or 4, 
1911 > #* + 1, where / is the maximal proper divisor of d. This lemma permits 
the application of Theorem 2.2, as follows. 

Let a and r be defined by a = p~fil and r = p^2, and let £ = f-1^-1. Then £ 
maps at least |9Î| Desarguesian lines onto Desarguesian lines. Let / £ 9Î and 
let V = rj (/). Suppose that / = [m, 0] and V = [k, 0] (if / or V = [0], then a 
similar argument holds). Consider what £ does to the Desarguesian line 
[o-(w), 0]* = {(x, o-(m)x)}: 

( 7 _ 1 *7 

£: (x, a(m)x) > (x, wa-_1(x)) = (x, mpMm)(x)) = (x, m o x) > (x, b x ) 

= (x, kr(x) > (x, r~l(k)x). 

That is, for each line [m, 0] (or [0]) of 5ft, £ maps the corresponding Desar­
guesian line [o"(w), 0]* (or [0]*) onto a Desarguesian line. Since |9l| > ql + 1 
by Lemma 2.6, then Theorem 2.2 implies that £ is a Desarguesian collineation 
of II*, and hence rj = T%â, as required. 

LEMMA 2.6. Let Q\ be a proper X-system of order n = qd, with Kern K = 
GF(q). However, exclude the cases q = 3 or 4 and d = 2 or 4. Let 5ft be the set 
of lines of II (Q\) defined in the proof of Theorem 2.5. Then |9t| > ql + 1, where 
t is the maximal proper divisor of d. 

Proof. (1) Since T ^ d and I ^ d/2, then |5ft| ^ (qd + 1)/T2 ^ 
(qd + l)/d2 > qd/d2, and qd/2 + 1 ^ q< + 1. Hence, it is sufficient tro pove 
that qd/d2 ^ qd/2 + 1, i.e., that qd/2/d2 è 1 + ( W / 2 ) . 
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(2) Consider the function f(x) = (qx/2)/x2, for fixed g and x > 0. Then 
/ ' (x) > 0, i.e., f(x) is increasing, for x > 4/ln q. Moreover, the function 
g(x) = 1 + (l/qx/2) is decreasing for all x. To prove that f(d) ^ g(d) for 
fixed q and for d ^ d0, it is sufficient to check that d0 > 4/ln q and that 

f(do) è g (do). 
(3) Let d = 2 and g ^ 5. Then clearly gd/d2 ^ g + 1 , as required in 

part (1). 
(4) Let d ^ do = 4, and let g ^ 5 in part (2). Then d0 > 4/ln g; /(d0) = 

g2/16 ^ 25/16; g (do) = 1 + 1/g2 ^ 26/25; and hence f(d0) ^ g(d0). There­
fore, qd/2/d2 è 1 + ( W / 2 ) , as required. 

(5) Let <2\ be an André system and d > 2. Then X, as a mapping from In-i, 
is periodic (mod q — 1) ; see § 2 and (5, § 3, example 1). Therefore, T ^ q — 1. 
Hence, as in part (1) above, |9t| £ (» + l ) / r 2 ^ (n + l ) / (g - l ) 2 . If 
d ^ 4, then |5«| ^ (g<* + l ) / (g - l ) 2 > qd/2 + 1 follows from the inequalities: 

(qd + l ) / (2 - 1) > (<Z* ~ l ) / (2 - 1) = Q*-1 + <f~2 + . . . + g + 1 
> ^/2+l _ gtf/2 + q _ 1 = (j _ l)(^/2 + !), 

If d = 3, then ? = 1, and |5R| ^ (g3 + l ) / (g - l ) 2 > ql + 1 = q + 1. 
If Qx is a X-system with d a prime, then Q\ is also an André system. This is 

true since X, as a mapping from 7n_i to Jd, is always periodic (mod it), where 
u = LCM(g* - 1) îort\d,0 < t < d (5, 2.4). If d i s a prime, then u = g - 1, 
and therefore X is periodic (mod q — 1) which implies that Q\ is an André 
system (5, § 3, example 1). 

Thus, parts (3)-(5) above prove Lemma 2.6 for the cases g ^ 5 and d ^ 2, 
and for the cases in which d is a prime, d > 2. 

(6) Let g = 2. Part (2) applies to the case g = 2 and d ^ 30; i.e., let 
d0 = 30 in part (2) and check that d0 > 4/ln 2 and that f(d0) ^ g(d0). For 
d < 30 and g = 2, no X-system has Kern K = GF(2) (5, Lemma 3.4). For, 
in order that the Kern be GF(2), d must have at least three distinct prime 
factors and in particular, d ^ 30. (I do not know whether any X-system 
exists with Kern GF(2).) Hence, Lemma 2.6 is true for g = 2. 

(7) Let g = 4. Part (2) applies if d ^ 5 and part (5) applies for d = 3. 
The cases d = 2 and 4 are excluded. However, the case g = d = 4 actually 
satisfies Theorem 2.5 as follows. If rj fixes or interchanges the axes, then 
Theorem 2.5 follows from the description of the autotopism and anti-auto-
topism collineations of H(Q\) in (5). Otherwise, Lemma 2.6 can be proved 
directly; see the proof of Theorem 2.7. 

(8) Let q = 3. Part (2) above applies to the cases d ^ 8, and part (3) 
applies to the cases d = 3, 5, and 7. 

The case q = 3 and d = 6 can be excluded as follows. If T ^ 5, then 
qd/T2 ^ 36/25 > 33 + 1 = qd/2 + 1, as required. 

Now assume that T = 6. Since T = |ImageX|, then T = 6 implies that 
X maps 7w_i onto 1%. Choose i and j £ In-\ such that \(i) = 1 and \(j) = 5 
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in 76. From Lemma 2.1(a), X(0) = 0. Applying Lemma 2.1(b) to i and 
0 G Jn_i, it follows that t = (6, 1 - 0) = 1, and hence i ^ 0 (mod 3< - 1); 
thus i is an odd integer. Similarly, applying Lemma 2.1(b) to j and 0 implies 
that j is an odd integer. Next, assume that X(k) = 0 for k £ In-\> Applying 
Lemma 2.1 (b) to k and i implies that k is an even integer. Similarly, if X (k) = 2 
or if X(&) = 4, then applying Lemma 2.1(b) to k and i, or to k and j , respec­
tively, implies that k is an even integer. Finally, if \(k) = 3 choose u Ç In-\ 
so that \(u) = 2. Applying Lemma 2.1(b) to k and u implies that k is an 
odd integer. 

To complete the proof in this case, let k and kr G In-i such that 
k = k' (mod 8). Assume that \(k) ^ \(kf). If k and kf are both odd, then 
\{k) and \{k') are distinct integers in the set {1, 3, 5}. Applying Lemma 2.1 (b) 
to k and k\ where t = (6, X(ife) - X(&')) = 2, it follows that ife = k', and 
hence X(&) = X(&')- Similarly, if k and kf are both even, then X(&) = X(^')-
Therefore, X is periodic (mod 8). Hence, X induces a mapping from Is onto JO, 
and therefore at least one integer /zi 6 76 is the image of two or more elements 
in Jg. The corresponding class 5ftM1 contains at least 2- (36 — l ) / 8 = 182 lines. 
Therefore, 5ft (= maximal %ltll2) satisfies \Sfl\ ^ 182 / r = 182/6 > 37 + 1 = 28. 
Thus Lemma 2.6 holds for q = 3 and d = 6. 

The remaining cases d = 2 and 4 are excluded. 

THEOREM 2.7. Let II (Qx) ^^ ^^ arbitrary proper \-plane of order n = qd, 
with Kern = GF(g). Exclude the case q = 3, d = 4. Suppose that r) is a col-
lineation of U which fixes (0, 0) and which moves (0) to (a) with a 7e 0 or oo. 
ZTzew d = 2, so that X is periodic (mod g — 1), and one 0/ /&e following con­
ditions is satisfied: 

(a) there are exactly q — 2 i's in Iq-i with X(i) = 0; or 
(0) there are exactly q — 2 i's in 7ff_i w7& X(i) = 1. 

COROLLARY 2.8. If an arbitrary proper \-plane II (Q\) has a collineation 
moving (0) to (a) with a 9^ 0, or 00, //^^ n (Q\) is a Hall plane, or possibly 
a = 3 and d = 4. 

Proof of Corollary 2.8. From Theorem 2.7, d = 2, and hence Q\ is an André 
system. Conditions (a) and (b) imply that one net of order -y/n + 1 has been 
replaced in the Desarguesian planes II* and p(II*), respectively, to use 
Ostrom's terminology. Finally, that II is a Hall plane follows from Ostrom's 
proof (12; 14) of the following theorem: every finite Hall plane is an André 
plane) see also (3; 5, 7.6) for other proofs of this theorem. Alternatively, 
Albert and Hughes (5, 7.6) have shown that II is a Hall plane if Q\ satisfies 
condition (a). I t is straightforward to show that if Q\ satisfies (b), then Q\ 
is isotopic to a X-system which satisfies (a), by using (5, 7.3), and hence II is 
a Hall plane. 

Proof of Theorem 2.7. Exclude for the moment the cases q = 3 or 4 and 
d = 2 or 4. Let 77 be a collineation of II (<2x) which fixes (0, 0) and maps (0) 
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to (a) and (°°) to (b), with a ^ O o r œ. Then , since II (Çx) has no ( ( » ) , [0])-
elations, it follows t h a t 6 9e- 0 or œ (5, 6.1). F rom Theorem 2.5, 77 = f£<7, 
for £ a Desarguesian collineation of II*, and r and o- au tomorphisms of F/K. 
Since £ is a non-singular semi-linear t ransformation of V over F, £ can be 
represented as follows: 

/ 0 1 \ v #11 #12 

L a 2 1 &22J 

where ( a ^ ) is a non-singular matr ix with elements from F, and 7 is an 
automorphism of F (7 is applied to both components of a vector (x, 3/) Ç V). 
Notice t h a t since 97 maps (0) —> (a) , ( œ ) —» (6) with a , M 0 , 00, then 
dij 9e 0, for 1 ^ i, j S 2. For £ as given in (2.1), 77 = r^â ac ts as follows on 
the points of V: 

(2.2) r](x, y) = (y(anx + ai2<r(y)), Ty(a2iX + a22a(y))). 

Let rj: (m) —> (m'), for m and m' 9e °°. Then rj(x,mox) = ( x ' , r f o x ' ) , 
and (2.2) implies t ha t : 

(2.3) mf oxr = m'pK{m')y{anX + aV2<j(m o x ) ) = ry{a2ix + a22a(m ox)), 

for x £ F. Applying 7 - 1 to (2.3) and rewriting, one derives: 

(2.4) blP^m^(x) + & 2 p X ( w W ( w ) ( * ) = hr(x) + Z>4r<rpx«(x), 

for all x, and for all m such t h a t m,m! 9e- ( °° ) , where 

/o KN 6 l = 7 - 1 ( w / ) p X ( w , ) ( a n ) , ^2 = 7 - 1 K ) p X ( " ' ) ( ^ i 2 ) p X ( m ' V ( m ) , 
(2.5) 

63 = r ( a 2 i ) , and bA = r(a 2 2)ro-(w). 

Afa/e. (2.3)-(2.5) hold for w or w ' = 0 if pX(0) is defined to be a n y au to­
morphism of F/K. 

A t this point, a well-known result is required. 

L E M M A 2.9 (2, p . 35, Corollary to Theorem 12). Let ai, . . . , ak be distinct 
atitomorphisms of a field F, and let bu . . . , bk G F such that J^k

i=i b^^x) = 0 
for all x G F. Then bi = . . . = bk = 0. 

Now, (2.4) has the form: 

(2.4') bi<ri(x) + b2a2(x) — bzas(x) — bAa±(x) = 0 

for bt Ç F and 0^ automorphisms of F (1 ^ i ^ 4 ) . Applying L e m m a 2.9 to 
this equation, the following four cases for the b/s mus t be considered: 

(1) &! = -b2, bd = - i 4 , and p x « = cr-1; 
(2) h = 63,62 = &4, and px(m') = r ; 
(3) h = 64, ^2 = i 8 , PX(W'} = T(7P

X(W> and (<7P
X«)2 = / ; 

(4) bx + b2 = 63 + &4, PX(W) = o - 1 and pX ( w , ) = r. 
T o see this, first note t h a t if m and m! 9^ °°, then either all the b/s are 

non-zero; or m = 0, or m' = 0, and in these two cases, exactly two b/s are 
zero. 
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Now, suppose that the a/s are all distinct in (2.40. Then Lemma 2.9 
implies that 6i = . . . = 64 = 0, which is false. Next, suppose that vi = a2 = (73 

and (74 is distinct. Then Lemma 2.9 implies that 64 = 0, and hence exactly 
one other bt is zero. Thus, one of the cases (l)-(3) applies. Now, assume that 
o-i = o-2, 0-3 = (TA, and ci ^ o-3. Then case (1) applies. Finally, if (n = er2 = 
(73 = (74, then case (4) applies. Similarly, the other possibilities for (2.4') 
which are allowed by Lemma 2.9 are contained in the cases ( l ) - (4) . 

LEMMA 2.10. Ifm,9z£0orcof then either px<m') = r or px<w') = T\f/, where \j/2 = I. 

Proof. If m! satisfies case (1), then m' = 0, pX(m) = a~1
1 and b% = — bt 

implies that m = (r~1( — a2i/a22). For if m' ^ 0, then b\ — —b2 implies that 
m = (7_1( — au/au), and hence det(a^) = 0, which is false since TJ is non-
singular. Similarly, case (2) implies that m = 0, px<m'> = r, and m' = 
7^(^2 i /an) . 

From Lemma 2.9 and (2.2), if 77: (00) —> (m'), then m' = Ty(a22/ai2) and 
pX(m') _ T> Similarly, if 77: (m) —> (00), then m = v~l{ — ai\/ai2) and 
pX(m) = ^ 

Finally, if 17: (w) —> (w') with m' 7^ 0 or 00, then cases (3) and (4) apply, 
and either px<m') = T (case (4)) or pMm'} = r^ (case (3)), where \//2 = 7. 

LEMMA 2.11. d = 2. 

Proa/. Let J = {pX(w): m G F*}. From Lemma 2.10, J = {r,rf}. Since Q 
is a X-system, then 7 Ç / ; in particular, for ra = 1 £ F*, pX(1) = 7. Hence, 
either r = 7 or r = ip~l and r2 = 7. In either case, the automorphism subgroup 
3 of F/K generated by J has order 1 or 2. Since Q is a proper X-system with 
Kern K = GF(g), then |3?| = d = 2. 

To complete the proof of Theorem 2.7, let d = 2 so that <2 is an André 
system. Since J = {pX(w): m Ç i7*} = {r, ri/'} from Lemma 2.10, and since 
13| = 2 (because Q is a proper X-system and 7 G 7), we have that ^ = p. 
Further, px<m') = r except when ra' satisfies case (3). 

In case (3), ^ = (7px<m\ px<m'> = r^, &i = 64, and b2 = 63. Hence, 
7~1(w /)r^(aii) = T(a22)Ta(m) and y~l(mf)T\p(ai2)<TTyl/{rn) = r(a2i). Cancel­
ling r and eliminating y~l(mf) (since ra' 5̂  0), we derive: 

a22a(m) a2\ m 

iK^n) ~ yKai2)<r\fr(m) ' 

i.e., 

(2.6) mq+1 = k for & as defined above. 

Since |7| = 2, (2.6) must have solutions for m, in which case there exist 
exactly q + 1 solutions. If r = 7, then since Q is an André system, there 
exists exactly one io € 7ff_i such that X(i0) = 1, and for the other g - 2 i's 
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(in Jç-i), X(i) = 0 (case (a) for Theorem 2.7). Similarly, if r = p, then 
case (b) applies. 

If q = 3 or 4 and d = 2, then condition (a) or (b) of Theorem 2.7 is satisfied 
since q — 1 is small, and thus in these cases II(Q) is a Hall plane. 

Next, let q = 4 and d = 4. I t is sufficient to show that rj has the form 
rj = f£(7 with £ Desarguesian. Since g = 4 and d = 4, then g' + 1 = 17, and, 
moreover, from (5, § 3, example 5) u = q2 — 1 = 15; therefore X is periodic 
(mod 15). Since 15/4 > 3, then some 31 » (see the proof of Theorem 2.5) 
contains at least 4-17 lines, excluding [0] and [0, 0]; hence, either \3l^,v\ > 17 
for some v, and Lemma 2.6 is satisfied, or |9ÎM,,;| = 17 for each v. Now, choose v 
such that rj maps [0] or [0, 0] onto $ft„. Then £ = ^"rjp-» maps the 17 Desar­
guesian lines of p—/x(9^M^) onto Desarguesian lines. In addition, the 
Desarguesian line [0] or [0, 0], which 77 maps into 31 v, is mapped by £ onto a 
Desarguesian line. Hence, £ maps at least 18 > ql + 1 Desarguesian lines 
onto Desarguesian lines. By Theorem 2.2, £ is a Desarguesian collineation, 
as required. 

Finally, let q = 3 and d = 4. If Theorem 2.7 is false for Q, then techniques 
similar to those above for qd = 44 show that T = 4 and that each inverse 
image under X has order 20. From (5, § 3, example 5), X is periodic (mod 8), 
and in fact there are 36 possible systems, and less than 36 isotopism classes, 
to consider. I t seems very unlikely that any of these systems violate 
Theorem 2.7. 

COROLLARY 2.12. Exclude the case q = 3, d = 4. Let n be a proper \-plane 
which is not a Hall plane, coordinatized by the X-system Q. Let G be the group of 
all collineations of II, T the translation group, and A the group of autotopism and 
anti-autotopism collineations of II. Then G(o,o) = A, and G = T-Â; cf. (5, § 6). 

COROLLARY 2.13. Exclude the case q = 3, d = 4. Two \-planes II(Q) and 
n(<2'), are isomorphic if and only if the X-systems Q and Qf are isotopic or 
anti-isotopic. 

Proof. If II(<2) is a X-plane coordinatized by the X-system Q, then II(Q) has 
((0> [0])-homologies and ( ( » ) , [0, 0])-homologies which are not involutions. 
If n(Q) is not a Hall plane, then any collineation of II(Q) either fixes or 
interchanges (0) and (°°). Hence, if II (Q) is coordinatized with respect to 
different axes, then the resulting ternary system is not a X-system. If a is an 
isomorphism from 11(C) to II(Q') and the planes are not Hall planes, then a 
must map the axes of II onto the axes of IE'. Hence, Q and Qf are isotopic or 
anti-isotopic (5, §4) . 

If II and II' are Hall planes, then Q and Qf each must satisfy either condition 
(a) or (b) of Theorem 2.7. As in the proof of Corollary 2.8, Q and Qf are isotopic. 

COROLLARY 2.14. Let 11(C) be a proper X-plane coordinatized by the X-system Q. 
Then U(Q) is isomorphic to an André plane if and only if Q is an André system, 
even for the case q = 3 and d = 4. 
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Proof. Apply Corollary 2.13 and (5, 7.3 and 7.4): if the X-system Q is 
isotopic or anti-isotopic to an André system, then Q is an André system. If 
II(<2) is a Hall plane, then d = 2 and every X-system is an André system. 
Finally, let q = 3 and d = 4. From the proof of Lemma 2.6 (part (5)), or 
from the remarks in the proof of Theorem 2.7, if Q\ is an André system, then 
no collineation of U(Q\) can move (0) and (°° ), except possibly to interchange 
them. Hence, as in the proof of Theorem 2.5, if II(Q\) is isomorphic to II(Q') 
for Q' a X-system, then Qf is isotopic or anti-isotopic to Q\, and hence Q' is 
an André system. 

3. Miscellaneous examples. Theorem 2.7 implies the following result 
about the special class of X-planes H(Qg) described in (6). 

LEMMA 3.1. (1) U(Qg) is isomorphic to an André plane if and only if g\q — 1. 
(2) Exclude the case q = 3, d = 4. If g = d, then there exist <t>{d)/b or&ap 

non-isomorphic planes, H(Qd), where <j> is the Euler function, and 8 = 1 or 2; 
see (6, following 3.7). If g < d, then there exist <t>(d)<j>(g)/2b ordgp non-iso­
morphic planes U(Qg). Moreover, if gi 9e g2, then U(Qgi) is not isomorphic to 
n(&2). 

Proof. (1) Use Corollary 2.14 and the fact that Qg is an André system if 
and only if g\q — 1. 

(2) Use Corollary 2.13 and the description of the isotopism classes for Qg 

(6, 3.11, 3.14, and 4.8). Finally, forgi ^ g2, Qgi and Qg2 are not isotopic (6, 4.7). 
Lemma 3.1 shows that there is a large number of non-isomorphic planes, 

even in the class \U(Qg)}. A better indication of the large number of X-planes 
is given by the following lemma. 

LEMMA 3.2. Let n = pf = qd, and let d = c\ for c a prime. Exclude the case 
q = 3, d = 4. Let r be defined by 

r=(zV)-2*. 
Then there exist at least cr/2f(n — l ) 2 non-isomorphic X-planes of order n 

whose Kerns contain GF(g). 

Proof. There exist cr distinct X-systems of order n with Kerns containing 
GF(g) (5, 3.3). From (5, 5.12) there exist at most 2f(n — l ) 2 systems in an 
(isotopism, anti-isotopism)-class. Hence, the result follows from Corollary 2.13. 
As an example, let q — 5, c = 3, and / = 2. In this case, there exist at least 
396 non-isomorphic X-planes of order n = 59. 

Finally, let us indicate the relation of the class of X-planes to a sub-class of 
planes which Ostrom constructed by a "homology-type replacement'' of 
certain nets of the Desarguesian plane II* (10; 11; 12). This construction 
consists of replacing certain Desarguesian lines, y = mx of II*, by lines of the 
form y = m<rm (x), to obtain a new plane II (here <rm is an automorphism of F). 
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The plane II has the property that the ((0, 0), lœ*)-homologies of II*, namely 
the mappings (x, y) —> (ax, ay) for a ^ 0 in F, are also collineations in II. 

From the form of the new lines, it is not surprising that II is a X-plane. 

THEOREM 3.3. Let U be a plane which can be obtained from the Desarguesian 
plane II* be a series of disjoint, restricted homology-type replacements, as des­
cribed above. Then U is isomorphic to a \-plane. 

Proof. Since the lines of II have the form x = 0, y = 0, and y = m<rm(x) for 
m G F*j the point (1, 1) is on some line y = ai(x). Let U' be the image of II 
under the mapping âi~x: (x, y) —> (x, <r-1(:y)). The lines of II ' have the form 
x = 0, y = 0, y — mrm{x) for m £ F* and rm an automorphism of F, where 
n = 1. Define X: F* —> (p) by X(m) = rm, and define m o x = mpX{m)(x) = 
mrm{x). Then {F, + , o} = <2\ is a quasi-field coordinatizing 11', since 1 o x — x. 
From Lemma 2.1, {F, +, o} is a X-system, and hence 11' is a X-plane. Therefore. 
II is isomorphic to the X-plane 11'. 

The ((0, 0) — /œ*)-homology (x, y) —» (ax, ay) of II* induces a collineation 
in the X-plane 11' as follows: 

(3.1) (x, y) —» (ax, cr(a)y) for o- an automorphism of i7. 

This condition can be used to determine which X-planes occur in Ostrom's 
construction. 

THEOREM 3.4. Exclude the case q = 3, d = 4. Suppose that the \-plane n , 
coordinatized by the \-system Q, is isomorphic to a plane II obtained from the 
Desarguesian plane II* by urestricted homology-type replacement11. Then there 
exists a \-system Qf = Q\ isotopic to Q such that X' satisfies the following con­
dition for some n (0 ^ ^ < f) : 

(3.2) X'(&) ss \'{k + v(q*W - p»)) (mod d) for k, v Ç 7w_i. 

Proof. Let II7 = U(Q\) be the X-plane isomorphic to II, as in the proof of 
Theorem 3.3. Then 11' is isomorphic to II, and by Corollary 2.13, Qf and Q are 
isotopic or anti-isotopic. Further, the mappings (3.1), for a G F*, are collinea­
tions of Qf, and hence for each a ^ 0, m' o (ax) = a (a) • (m o x) determines 
m' as a function of m (for all x). This condition is easily shown to be equivalent 
to (3.2), by using Lemma 2.9. 

There are some X-planes which are not isomorphic to planes constructed 
from II* by homology-type replacement. For example, let q = 3, d = 12, 
g = 4, and let Q\ = Qg (6) ; i.e., for k G 7„_i, let k' = k (mod g) with k' Ç /<,. 
Define X(&) = &'. Let II = IL(Q0) and let us consider whether II itself can be 
obtained from II* by homology-type replacement. If so, then two lines of II 
which intersect a line of II* non-trivially have intersections of the same dimen­
sion over K. However, [œ, 0] and [o>-25, 0] in II intersect [œ, 0]* in II* in 
subspaces of dimension 1 and 3, respectively, over K. Moreover, in this 
example, H(Q0) is not isomorphic to a plane obtained from II* by homology-
type replacement. For if so, then Theorem 3.4 and (6, 4.8) imply that Q0 is 
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isotopic to a X-system which satisfies (3.2), for some M- By using the definition 
of Qg and (5, 5.5), the general condition for two X-systems to be iso topic, it is 
easy to check that no isotope of Qg satisfies (3.2) for any fi (it is sufficient to 
check M = 0 and 1). 

On the other hand, as Ostrom (11) pointed out in a special case, any 
X-plane, II (Q\), can be obtained from II* by replacing certain "André-type" 
nets, but not necessarily by a homology-type replacement. 

LEMMA 3.5. Let U(Q\) be an arbitrary \-planewith Kern K. Let N* and N be 
the nets in II* and II (Q\), respectively, consisting of all lines with slopes m such 
that ind m = ô (mod a — 1), for fixed 5. Then N is a replacement for iV* (N and 
N* are not necessarily distinct). 

Added in proof. Recently, Theorem 2.7 and Corollary 2.8 (including the 
case q = 3, d = 4) have been proved independently by M. L. Narayana Rao 
(A conjecture of D. R. Hughes in X-planes, to appear), based on a paper of 
F. W. Wilke (̂ 4 class of translation planes and a conjecture of D. R. Hughes, 
to appear). Further, Rao and J. L. Zemmer have answered the question in the 
proof of Lemma 2.6 (part (6)) by constructing X-systems with GF(2) as the 
Kerns {A question of Foulser on \-systems of characteristic two, to appear in 
Illinois J. Math.). 
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