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GOING DEEP IN DIAGNOSTIC MODELING: DEEP COGNITIVE DIAGNOSTIC
MODELS (DEEPCDMS)
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Cognitive diagnostic models (CDMs) are discrete latent variable models popular in educational and
psychological measurement. In this work, motivated by the advantages of deep generative modeling and
by identifiability considerations, we propose a new family of DeepCDMs, to hunt for deep discrete diag-
nostic information. The new class of models enjoys nice properties of identifiability, parsimony, and inter-
pretability. Mathematically, DeepCDMs are entirely identifiable, including even fully exploratory settings
and allowing to uniquely identify the parameters and discrete loading structures (the “Q-matrices”) at
all different depths in the generative model. Statistically, DeepCDMs are parsimonious, because they can
use a relatively small number of parameters to expressively model data thanks to the depth. Practically,
DeepCDMs are interpretable, because the shrinking-ladder-shaped deep architecture can capture cognitive
concepts and provide multi-granularity skill diagnoses from coarse to fine grained and from high level to
detailed. For identifiability, we establish transparent identifiability conditions for various DeepCDMs. Our
conditions impose intuitive constraints on the structures of the multiple Q-matrices and inspire a genera-
tive graph with increasingly smaller latent layers when going deeper. For estimation and computation, we
focus on the confirmatory setting with knownQ-matrices and develop Bayesian formulations and efficient
Gibbs sampling algorithms. Simulation studies and an application to the TIMSS 2019 math assessment
data demonstrate the usefulness of the proposed methodology.

Key words: Bayesian inference, Bayesian network, cognitive diagnostic model, DeepCDM, deep gener-
ative model, deep learning, directed graphical model, identifiability, Q-matrix.

1. Introduction

Cognitive diagnostic models (CDMs), or diagnostic classification models (Rupp et al.,
2010; von Davier & Lee, 2019) , are powerful and popular discrete latent variable models in
educational and psychological measurement. Based on subjects’ item responses, a CDM enables
fine-grained diagnostic inference on multiple discrete latent attributes. Usually, each attribute is
assumed to be binary and carries a specific meaning such as the mastery/deficiency of a skill,
or the presence/absence of a mental disorder. In educational settings, the diagnostic feedback on
the skill attributes provides details about students’ weaknesses and strengths, and can facilitate
targeted instructions. In the past two decades, CDMs have attracted increasing research attention
(e.g., Chen et al., 2015; de la Torre, 2011; Henson et al., 2009; Junker and Sijtsma, 2001; Rupp
et al., 2010; von Davier, 2008; von Davier and Lee, 2019).

In the early years after the inception ofCDMs, theyweremostly applied to settings specifically
designed for a diagnostic purpose, such as the celebrated fraction-subtraction data first collected
and analyzed by Tatsuoka (Tatsuoka, 1983) . Recently, it is increasingly attractive to gear
the diagnostic modeling methodology to large-scale modern educational assessments, such as
the Trends in Mathematics and Science Study (TIMSS) or Programme for International Student
Assessment (PISA) (e.g., see Chen and de la Torre, 2014, George andRobitzsch, 2015, Gu andXu,
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2023, von Davier, 2008). These applications create new opportunities and also bring about new
challenges. For example, in the TIMSS 2019 eighth-grade math assessment, each item measures
multiple granularities of skills: Content / Cognitive as the general ability domains, Number /
Algebra / Geometry / Data and Probability as more specific skills under the Content domain,
Knowing / Applying / Reasoning as more specific skills under the Cognitive domain, etc. These
large-scale complex assessments call for new statistical and computational methods.

Reflecting on the current CDM (i.e., diagnostic modeling) literature, many studies adopt
the saturated model for the latent attributes, in which every configuration of the attributes has
a separate proportion parameter (e.g., Balamuta and Culpepper 2022; Chen et al., 2015, 2018,
2020; Fang et al., 2019; Gu and Xu, 2019; Xu and Zhang, 2016, 2018). Though being fully
flexible, the saturated attribute model is not parsimonious, because it requires exponentially many
parameters to describe the attribute distribution (2K − 1 ones for K binary attributes). This
lack of parsimony makes applying CDMs to modern high-dimensional-attribute settings very
challenging, both statistically and computationally. There exist a few important exceptions to
the saturated modeling practice, including the log-linear attribute model in Xu and von Davier
(2008), the higher-order IRT-based model in de la Torre and Douglas (2004), and the multivariate
probit model with one continuous factor in Templin et al. (2008). These models either include
parameters that are not straightforward to interpret (log-linear parameters in Xu and von Davier,
2008), or employ only a small number of continuous latent variables to model the attributes (de
la Torre & Douglas, 2004; Templin et al., 2008) .

The questions motivating this work are: Is there an even more flexible, yet still parsimo-
nious and interpretable way, to model the high-dimensional latent attributes? Is it possible to fully
retain the power and goal of diagnostic modeling, and provide discrete diagnoses in multiple
latent granularities (as desired in the aforementioned TIMSS application)? Is it possible to estab-
lish identifiability guarantees for such models with complex latent structures? To address these
questions, we propose a deep generative modeling framework for cognitive diagnosis, which fea-
tures multiple, potentially deep, entirely discrete latent layers. We name the new family of models
Deep Cognitive Diagnostic Models (DeepCDMs), to reflect that they can serve as tools to hunt
for deep diagnostic information. DeepCDMs enjoy several desirable properties simultaneously:
parsimony and richness, interpretability, and identifiability. We elaborate on these advantages in
the following.

First, DeepCDMs are statistically parsimonious yet have rich representational power. On
the one hand, the parsimony comes from that a DeepCDM avoid the exponential complexity of
parameters in the saturated attribute model. In fact, a DeepCDM requires only a quadratic or even
linear number of parameters with respect to the number of latent variables. Such a reduction of
parameter complexity does not come at the cost of a less suitable model. On the contrary, our
model is well motivated by the fact that the fine-grained latent attributes often have structured
dependence on each other due to some hidden mechanisms, for which the deep architecture
is well suited to model. Indeed, the TIMSS assessment in which each item targets multiple
skill granularities provides practical evidence for this argument. On the other hand, introducing
multiple, potentially deep, latent layers can greatly enhance the expressive and representational
power of a model, as widely recognized in the deep learning community (Bengio et al., 2013;
Goodfellow et al., 2016; Ranganath et al., 2015) .

Second, DeepCDMs are mathematically identifiable under intuitive conditions on the deep
generative structure. Identifiability means that the parameters can be uniquely determined from
the observed distribution. It is a highly desirable property and a prerequisite for valid statistical
estimation. Recently, there have been an emerging literature addressing the identifiability issues
of CDMs (Chen et al., 2020; Culpepper, 2019b; Fang et al., 2019; Gu & Xu, 2019, 2020; Xu,
2017; Xu & Zhang, 2016) . However, all of these works focus on the saturated attribute model.
It is unknown what conditions can ensure identifiability when higher-order latent structures are
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present in a CDM. We establish identifiability for various DeepCDMs with an arbitrary number
of latent layers. Our identifiability conditions impose intuitive constraints on the between-layer
graph structures captured by multiple “Q-matrices”. These conditions directly inform how to
design a DeepCDM—a ladder/pyramid shaped sparse graphical model, with the observed item
responses occupying the bottom layer, and increasingly smaller sizes of latent layers when going
deeper (see Fig. 1).

Third, DeepCDMs are practically interpretable. The shrinking-ladder-shaped probabilistic
graphical model can capture cognitive concepts and provide diagnostics from coarse to fine
grained, and from high level to detailed. In a DeepCDM, when climbing up the ladder and going
deeper, concepts become increasingly abstract and general, capturing the big picture of knowl-
edge; when stepping down the ladder and going shallower, concepts become increasingly concrete
and specific, capturing the fine-grained details of knowledge. Therefore, the proposed DeepCDM
framework can characterize a complete picture of one’s knowledge structure and provide diagnos-
tic feedback in multiple different resolutions, with each layer offering one particular resolution.
Such diagnostic information can facilitate more effective multi-resolution interventions than tra-
ditional CDMs with a saturated attribute model.

In summary, this paper makes the following contributions in theory, methodology, and com-
putation. First, we introduce a deep generative modeling framework for cognitive diagnosis for
the first time, and propose a general class of interpretable and parsimonious DeepCDMs. Second,
we develop identifiability theory for various DeepCDMs, applicable to both confirmatory and
fully exploratory settings. Our identifiability conditions provide insights into what deep genera-
tive graph one can fundamentally uncover in a DeepCDM: a shrinking latent ladder when going
deeper. Third, we propose Bayesian formulations and Gibbs sampling algorithms for various
DeepCDMs. In this initial paper, our Bayesian inference methods are developed for the confir-
matory setting with known and fixed Q-matrices. Our algorithms enforce certain monotonicity
constraints on parameters and produce interpretable estimation results.

The rest of this paper is organized as follows. Section2 reviews existingmodeling approaches,
proposes the general DeepCDM framework, and gives various specific examples. Section3 pro-
poses transparent identifiability conditions for various DeepCDMs and discusses their practical
implications. Section4 develops the Bayesian formulations of various DeepCDMs and their cor-
responding Gibbs sampling algorithms. Section5 conducts simulations studies that corroborate
the identifiability theory and demonstrate the performance of the proposed algorithms. Section6
applies the DeepCDM methodology to data extracted from the TIMSS 2019 math assessment.
Finally, Sect. 7 provides concluding remarks. The proofs of theorems and Gibbs sampling details
are included in the Supplementary Material.

2. Deep Discrete Latent Variable Modeling for Diagnostic Purposes

2.1. Existing Approaches to Latent Attribute Modeling

A traditional CDM consists of two parts in the model: the measurement part and the latent
part. The measurement part describes how the observed responses measure the latent attributes,
and is closely related to the concept of theQ-matrix (Tatsuoka, 1983) . Various diagnostic goals
have led to different specificmeasurement models, including the Deterministic Input Noisy output
“And” gate model (DINA; Junker and Sijtsma, 2001), the Deterministic Input Noisy output “Or”
gate model (DINO; Templin and Henson, 2006), the main-effect diagnostic models (de la Torre,
2011; DiBello et al., 1995; Maris, 1999) , and the all-effect general diagnostic models (de la
Torre, 2011; Henson et al., 2009; von Davier, 2008) . We defer introducing the details of these
measurement models to Sect. 2.3. Next, we briefly review existing models for the latent part in a
CDM; that is, models for the latent attributes.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 04:44:42, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


YUQI GU 121

We focus on the commonly considered case of binary attributes. Denote the i th subject’s
latent attribute profile by Ai = (Ai,1, . . . , Ai,K ), then each Ai takes one of the |{0, 1}K | = 2K

possible configurations. In the current literature of CDMs, the most widely used model for the
latent attributes is the saturatedmodel (Chen et al., 2015, 2018, 2020; Fang et al., 2019; Gu&Xu,
2019; Xu & Zhang, 2016) , which assumes that each binary pattern α ∈ {0, 1}K has its separate
proportion parameter pα with P(Ai = α) = pα . These proportion parameters satisfy that pα ≥ 0
and

∑
α∈{0,1}K pα = 1. Though being fully flexible and general, the saturated attribute model is

not parsimonious, because it requires 2K proportion parameters in π , an exponential parameter
complexity.

There exist two important approaches for modeling the binary attributes through a higher-
order model. One approach is the higher-order latent trait model (HO-CDM) proposed by de la
Torre and Douglas (2004), which uses one or more continuous latent variables to explain the
binary attributes through an IRT-type model. In the unidimensional case, each student is assumed
to have a higher-order continuous ability θi , conditioned on which the attributes Ai1, . . . , AiK are
independently generated through a Rasch, 1PL, or 2PL model (also see the GDINA R package
and Ma and de la Torre, 2020). See more discussions on the connections and differences between
the HO-CDM and DeepCDMs in Sect. 5. Another approach proposed by Templin et al. (2008)
employs the multivariate probit model with a one-dimensional continuous factor. This approach
assumes that each binary attribute Ai,k is obtained via dichotomizing a Normal random variable
ηi,k by a cut-off point, and the K Normal variables (ηi,1, . . . , ηi,K ) are generated via a factor
analysis model. Both of these two approaches use a small number of continuous latent variables
to model the binary attributes.

Other than the higher-order latent variablemodels, the independencemodel and the log-linear
model have alsobeen considered formodeling the attributes (Maris, 1999;Xu&vonDavier, 2008)
. The independence attribute model is often overly simplistic in practice. The log-linear model
in Xu and von Davier (2008) is flexible, but employs parameters that are not straightforward to
interpret. Another different model for the latent attributes is the attribute hierarchymethod (AHM;
Gierl et al., 2007, Templin and Bradshaw, 2014). The AHM assumes that the mastery of certain
skill attributes is a prerequisite for that of others. As pointed out by Rupp et al. (2010), the existing
AHMs are pattern classification approaches rather than probabilistic measurement models.

2.2. The New DeepCDM Framework

Motivated by the appeal to perform diagnostic modeling at multiple granularities, we propose
the deep cognitive diagnostic modeling framework. We adopt the probabilistic graphical model
(Koller&Friedman, 2009;Wainwright et al., 2008) terminology, specifically, a directed graphical
model, to rigorously define a DeepCDM. Graphical models use a graph as the basis for compactly
encoding a complex joint distribution of high-dimensional random variables. In the graphical
representation, the nodes correspond to the random variables, and the edges correspond to direct
probabilistic interactions between them.

A general directed acyclic graph (DAG; also called a Bayesian network as in Pearl (1988)) is
defined as follows. In aDAG, every edge has a direction, and there are no directed cycles. DAGs are
well suited to model the generative mechanism and causal relations involving latent variables; see
the book Almond et al. (2015) for using Bayesian networks in educational assessment. Consider
M random variables X1, . . . , XM as M nodes in a DAG. If there is a directed edge from X� to
Xm , then X� is said to be a parent of Xm and Xm a child of X�. Let pa(m) ⊆ {1, . . . , M} be the
set of indices of all parents of Xm . Then, according to the general definition of a DAG, the joint
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Figure 1.
A ladder-shaped three-latent-layer DeepCDM. Gray nodes are observed variables, and white nodes are latent ones.
Multiple layers of binary latent variables A(1), A(2), and A(3) successively generate the observed binary responses R.
Binary matrices Q(1), Q(2), and Q(3) encode the sparse connection patterns between adjacent layers in the graph.

distribution of the X1, . . . , XM factorizes as:

P(X1, . . . , XM ) =
M∏

m=1

P(Xm | Xpa(m)), (1)

where P(Xm | Xpa(m)) is the conditional distribution of Xm given its parent variables Xpa(m). The
graph structure of a DAG encodes rich conditional dependence and independence relations among
the node variables, as can be checked by examining (1). If a DAG consists of latent variables, then
these latent variables need to be marginalized out in the joint distribution (1) in order to obtain
the marginal distribution of the observed variables.

We next introduce the formulation and notation of a general DeepCDM. At the bottom layer
of a DeepCDM are the observed response variables to the J items, R = (R1, . . . , RJ ). The first
(i.e., shallowest) latent layer adjacent to the bottom layer collects the most fine-grained latent
attributes, A(1) = (A(1)

1 , . . . , A(1)
K1

). Note that a CDM with a saturated attribute model stops
here and assumes the K1 attributes can be arbitrarily dependent on each other. In contrast, we
model the generating mechanism of the attributes through deeper latent layers. In a D-latent-layer
DeepCDM, denote the dth latent layer (counting from the bottom) by A(d) = (A(d)

1 , . . . , A(d)
Kd

)

for each d = 1, 2, . . . , D. All edges in a DeepCDM are pointing in the top-down direction,
only potentially between two adjacent layers. See Fig. 1 for an example of a DeepCDM with
D = 3. The definition in (1) also implies that all the variables in any specific layer of a DeepCDM
are conditionally independent given the variables in the above layer. Such a graphical model
intuitively describes how the more specific latent skills are successively generated by the more
general higher-level latent “meta-skills”. To fully realize the diagnostic goal, aDeepCDMassumes
all latent variables to be discrete. Later, our identifiability theory will reveal that there should be
smaller and smaller latent layers when going deeper; that is, K1 > K2 > · · · > KD , another
intuitive constraint.

A key feature of a DeepCDM is themultiple “Q-matrices” at different depths of the graphical
model, as in Fig. 1. In traditional cognitive diagnosis, the Q-matrix (Tatsuoka, 1983) is an
important object that describes how the items measure the latent attributes. For example, if J
items are designed to measure K latent attributes, then the Q-matrix Q = (q j,k) has size J × K ,
in which q j,k = 1 or 0 indicates whether or not the j th item measures (i.e., directly depends
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on) the kth latent attribute. Recall that the edges in a graphical model exactly captures the direct
dependence between variables, so q j,k = 1 or 0 also reflects whether or not the kth latent node is a
parent of the j th observed node in the graph. In other words, the traditionalQ-matrix summarize
the sparse bipartite graph pattern between the latent attribute layer and the observed layer. This
graphical perspective implies that a DeepCDM with D latent layers should require D matrices,

Q(1), Q(2), . . ., Q(D), to summarize the graph structure. In particular, Q(1) =
(
q(1)
j,k

)
has size

J × K1 and resembles the traditional Q-matrix; whereas for each d = 2, . . . , D, the Kd−1 × Kd

matrix Q(d) =
(
q(d)
k,�

)
is similar in spirit to Q(1), but describes how the variables in the (d − 1)th

latent layer depend on those in the layer above, the dth latent layer. Graphically, the entry q(d)
k,� = 1

or 0 indicates whether or not latent variable A(d)
� is a parent of latent variable A(d−1)

k . In this work,
we will focus on developing estimation methods for the confirmatory DeepCDMs, where the
Q-matrices are assumed to be fixed and known.

According to the general definition of DAGs in (1) and the DeepCDM setting specified in
the last paragraph, the joint distribution of all the variables, including the latent ones, is

P(R,A(1), . . . ,A(D)) = P(R | A(1),Q(1)) ·
D∏

d=2

P(A(d−1) | A(d),Q(d)) · P(A(D));

(2)

where P(R = r | A(1),Q(1)) =
J∏

j=1

P
CDM(R j = r j | A(1), Q(1)), and (3)

P(A(d−1) = α(d−1) | A(d),Q(d)) =
Kd−1∏

k=1

P
CDM(A(d−1)

k = α
(d−1)
k | A(d), Q(d)), (4)

where we make explicit how the different Q-matrices appear in different factors in the joint
distribution. The generic superscript “CDM” in the conditional distributions in (3) and (4) means
that the conditional distribution conforms to a cognitive diagnostic model, in each layer of the
potentially deep generative process. Marginalizing out all the latent variables A(1), . . . ,A(D) in
(2) gives the marginal distribution of the observed response vector R:

P(R = r) =
∑

α(1)

· · ·
∑

α(D)

P(R = r,A(1) = α(1), . . . ,A(D) = α(D)), (5)

where r is an observed response pattern, and α(d) is a latent pattern for the dth latent layer. This
work focuses on binary observed and latent variables with r ∈ {0, 1}J and α(d) ∈ {0, 1}Kd , where
each observed variable denotes the correct/wrong response and each latent variable denotes the
presence/absence of a skill or a meta-skill.

Wemodel the latent variablesA(D) in the deepest latent layer of a DeepCDM using a categor-
ical distribution, similar to traditional CDMs. Specifically, we allow for two possible generating
mechanisms for A(D) and A(D−1) | A(D): the pyramid mechanism and the ladder mechanism. In
the pyramid case, A(D−1) follows a latent class model (Goodman, 1974) with A(D) serving as
the latent class variable; in this case KD = 1 and A(D) ranges in {1, . . . , B} for some integer B.
In the ladder case, A(D−1) follows yet another CDMwith A(D) serving as the highest order latent
traits; in this case KD > 1 and A(D) ∈ {0, 1}KD . Both mechanisms still use fully discrete latent
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variables and their corresponding distributions are:

P(A(D) = α) =
{

π ladder
α , ∀α ∈ {0, 1}KD , in a ladder-shaped DeepCDM;

π
pyramid
α , ∀α ∈ {1, . . . , B}, in a pyramid-shaped DeepCDM.

(6)

The proportion parameters satisfy
∑

α∈{0,1}KD π ladder
α = 1 or

∑B
b=1 π

pyramid
b = 1. Now we have

completed specifying a general DeepCDM.
It is worth noting that in the literature of factor analysis of continuous data, hierarchical factor

models (Schmid&Leiman, 1957) or higher-order factormodels (Yung et al., 1999) are important
and popular models that also contain multiple layers of factors. These models belong to the family
of using continuous linear latent factors to model continuous responses, in which the statistical
dependence among variables can be just summarized as covariance or correlation matrices. By
contrast, the proposed DeepCDMs are a family of higher-order discrete latent variable models
for discrete data. DeepCDMs can model various nonlinear and non-additive relationships among
variables, e.g., DeepDINAwith the interaction term of higher-order attributes and DeepLLMwith
the logistic link. These complex dependencies cannot be simply summarized by covariance or
correlation matrices as in hierarchical continuous linear factor models in Schmid and Leiman
(1957) and Yung et al. (1999).

2.3. Specific Examples of DeepCDMs

This subsection provides various specific examples of DeepCDMs under the general frame-
work put forth in Sect. 2.2. Recall Equation (2) states that the joint distribution of all variables
factorizes into the product of layerwise conditional distributions. As the superscript “CDM” in
the conditional distributions in (3)–(4) implies, each conditional distribution conforms to a CDM.
With a slight abuse of notation, we next also write the observed layer R as A(0), so that all of
the layerwise conditionals can be written uniformly as P(A(d−1) | A(d),Q(d)), for d = 1, . . . , D.
In the following, we define specific DeepCDMs based on which diagnostic model the layerwise
conditionals follow.

Example 1. (DeepDINA) The DINA model proposed by Junker and Sijtsma (2001) is a popular
and fundamental model that adopts the conjunctive assumption. DINA assumes that students are
expected to answer an item correctly onlywhen they possess all required attributes of the item (i.e.,
the item’s parent attributes in the graphical model). Our DeepDINAmodel adopts the conjunctive
assumption for each layer’s conditional distribution. In particular, the conditional distribution of
A(d−1)
j given its parent variables is

P
DINA(A(d−1)

j = 1 | A(d) = α, Q(d), c(d), g(d))

= (1 − s(d)
j ) · 1

(
α � q(d)

j

)
+ g(d)

j · 1
(
α � q(d)

j

)
(7)

where the notation “�”means “elementwisely greater than or equal to”, and “�”means otherwise.

The 1(·) denotes a binary indicator function. The parameters s(d) = (s(d)
1 , . . . , s(d)

Kd−1
) and g(d) =

(g(d)
1 , . . . , g(d)

Kd−1
) can be thought of as “quasi” slipping and guessing parameters, respectively.

The interpretation of DeepDINA in an educational context is that, students are expected to master
a skill (or a meta-skill) only when they possess all its higher-order parent skills in the probabilistic
graphical model. Similar to Junker and Sijtsma (2001), we assume g(d)

j < 1− s(d)
j for each j and

d. This constraint can be interpreted as: comparing the subjects who master all the parent skills
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of an attribute A(d−1)
j and the subjects who do not, the former ones have higher probability of

mastering this skill A(d−1)
j itself.

The interpretationofDeepDINA inExample1 that students are expected tomaster a skillwhen
possessing all its higher-order parent skills may appear similar to the attribute hierarchy method
(AHM; Gierl et al., 2007, Templin and Bradshaw, 2014). However, we point out that the AHM
and DeepCDMs are not directly comparable, because the former assumes that the attributes can
be directly connected to items whereas the latter assume high-order latent structures organized in
multiple layers. Another modeling difference is that DeepDINA does not impose hard constraints
on which attribute patterns are permissible as in AHMs. The quasi-guessing parameters g(d) in
DeepDINA the probabilities that a student masters lower-level skills even when lacking their
parent meta-skills.

Example 2. (DeepDINO) The DINO model proposed by Templin and Henson (2006) adopts a
disjunctive assumption and assumes that subjects are expected to provide a positive response to
an item as long as they possess at least one parent attribute. The DeepDINO model adopts the
layerwise disjunctive assumption and has the following conditional:

P
DINO(A(d−1)

j = 1 | A(d) = α, Q(d), c(d), g(d))

= (1 − s(d)
j ) · 1

(
αk = 1 for some k for which q(d)

j,k = 1
)

+ g(d)
j · 1

(
αk = 0 for all k for which q(d)

j,k = 1
)

. (8)

As DINO is often applied to psychiatric diagnosis, the new DeepDINO can also be interpreted in
this context as follows: patients are expected to exhibit a symptom (or meta-symptom) as long as
they possess one of its higher-level “parent” symptoms or mental disorders.

Example 3. (Main-effect DeepCDMs) We use “Main-effect DeepCDMs” to generically refer to
DeepCDMs in which the layerwise conditionals follow a main-effect diagnostic model. Specifi-
cally, a main-effect diagnostic model assumes that the probability of A(d−1)

j = 1 depends on the
main effects of those parent attributes through a link function f (·):

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(
β

(d)
j,0 +

∑Kd

k=1
β

(d)
j,k

{
q(d)
j,kαk

} )
. (9)

Note that not all the β
(d)
j,k in the above equation are needed in the model specification. Only if

q(d)
j,k = 1 will the corresponding β

(d)
j,k be incorporated in the model. When the link function f is

the identity, (9) gives the additive cognitive diagnosis model (ACDM; de la Torre, 2011); when f
is the inverse logit function, (9) gives the Logistic Linear Model (LLM; Maris, 1999); yet another
parametrization of (9) gives rise to the reduced reparameterized unified model (R-RUM; DiBello
et al., 1995).

Example 4. (All-effect DeepCDMs) We use “All-effect DeepCDMs” to refer to DeepCDMs in
which the layerwise conditionals follow an all-effect diagnostic model. An all-effect diagnostic
model assumes that the probability of A(d−1)

j = 1 depends on all of the possible main effects and
interaction effects of the parent attributes:

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(
β

(d)
j,0 +

∑Kd

k=1
β

(d)
j,k

{
q(d)
j,kαk

}
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+
∑

1≤k1<k2≤Kd
β

(d)
j,k1k2

{
q(d)
j,k1

αk1

} {
q(d)
j,k2

αk2

}
+ · · · + β

(d)
j,12···Kd

∏Kd

k=1

{
q(d)
j,kαk

} )
. (10)

Similar to Example (3), not all the β-coefficients in the above equation are needed to specify the
model. In particular, if q(d)

j contains K j ones, then 2K j parameters are needed in (10). When
the link function f is the identity, (9) gives the Generalized DINA model (GDINA; de la Torre,
2011); when f is the inverse logit, (9) gives the log-linear CDM (LCDM; Henson et al., 2009);
see the general diagnostic model (GDM) framework in von Davier (2008).

The parameters c(d) and g(d), d = 1, . . . , D in Examples 1–2 and β(d), d = 1, . . . , D in
Examples 3–4 are continuous parameters that help specify the conditional distribution of the binary
variables in a DeepCDM. When d = 1, these parameters just resemble the item parameters in a
traditional CDM. In a DeepDINA or DeepDINO, the number of continuous parameters required
to model the latent attributes is 2

∑D−1
d=1 Kd + 2KD − 1, while in a main-effect DeepCDM, this

number is at most
∑D−1

d=1 Kd(Kd+1 + 1) + 2KD − 1. We will discuss more about the remarkable
reduction of parameter complexity in a DeepCDM in the end of Sect. 3, after our identifiability
conditions imply upper bounds for K1, . . . , KD .

We emphasize that the most flexible feature of the DeepCDM framework is that different
diagnostic models (including DINA, DINO, main-effect, and all-effect) can be flexibly combined
in different layers of a DeepCDM. For example, in some practical applications, it may be desirable
to adopt the most general all-effect diagnostic model for the bottom data layer for its flexibility
in modeling the effects of the fine-grained attributes, whereas adopt the simpler main-effect or
DINA model in the deeper latent layers for their parsimony and interpretability. We call such
DeepCDMs the Hybrid DeepCDMs. Hybrid DeepCDMs allow to balance the expressivity and
parsimony of a model, and offer a wide range of possibilities to construct a specific diagnostic
model based on substantive considerations.

The proposedDeepCDMs cover the latent treemodels (Mourad et al., 2013) as a special case.
In a latent tree model, each variable has at most one parent in a tree graph; whereas a DeepCDM
allows for a general DAG, in which each variable can have multiple parents (e.g., variable A(1)

2
in Fig. 1). In terms of the generative model, a pyramid-shaped DeepCDM is closely related to the
Bayesian Pyramid proposed in Gu and Dunson (2023) and can be viewed as the latter adapted for
diagnostic modeling goals. While the Bayesian Pyramid was implemented under the main-effect
model and applied to extract genetic latent traits fromDNA nucleotide sequences (Gu&Dunson,
2023) , the DeepCDM framework is motivated by the need to hunt for deep diagnostic information
and provides useful psychometric tools to this end. To better serve this goal, we develop a suite
of methods and algorithms applicable to various layerwise diagnostic modeling assumptions; see
Sect. 4 for details.

3. Identifiability Theory of DeepCDMs

Recently, there has been an emerging literature addressing the identifiability issues of CDMs
(Chen et al., 2020; Culpepper, 2019b; Fang et al., 2019; Gu&Xu, 2019, 2020, 2021; Xu&Zhang,
2016; Xu, 2017) . However, all of the above works focus on the saturated attribute model. The
only exception in the CDM literature is Gu and Xu (2022), which establishes identifiability of
hierarchical CDMs under attribute hierarchies; but as aforementioned, a CDM with an attribute
hierarchy is a not a fully probabilistic measurement model, so their corresponding identifiability
conditions do not apply to DeepCDMs. In this section, we propose transparent identifiability
conditions for various DeepCDMs. In the most general exploratory model settings, our theory
guarantees the identifiability of all Q-matrices Q(1), . . . ,Q(D) and all continuous parameters in
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themodel.When theQ-matrices are known as in the confirmatory settings, all of our identifiability
conclusions still directly apply.

3.1. Sharp Strict Identifiability Result for DeepDINA

DINA is one of the most basic and popular models in cognitive diagnosis. We estab-
lish sharp necessary and sufficient conditions for identifying the exploratory DeepDINA. Here,
“exploratory” means that theQ-matricesQ(1), . . . ,Q(D) are not assumed to be known and fixed.
Such an identifiability notion will be the most flexible and useful one in practice; see identifi-
ability results for exploratory diagnostic models with a saturated attribute model in Chen et al.
(2015), Xu and Shang (2018), Culpepper (2019b), Chen et al. (2020), and Gu and Xu (2021).
Denote the parameter space for the deep proportion parameters πdeep by �2KD−1 = {πdeep

α�
:

∑2KD−1
�=1 π

deep
α�

= 1, πdeep
α�

> 0}; throughout this work, we assume π
deep
α�

> 0 holds for every
deep latent pattern α� ∈ {0, 1}KD . This is a common assumption also adopted for single-latent-
layer CDMs. We next define the strict identifiability.

Definition 1. (Strict Identifiability) An exploratory DeepCDM model is said to be strictly iden-
tifiable, if the distribution of the observed vector R in (5) uniquely determines all of the follow-
ing: all continuous parameters in the layerwise conditional distributions, the deepest proportion
parameters πDeep, and allQ-matrices at different depthsQ(1), . . . ,Q(D), up to some column/row
permutation.

The identifiability notion in Definition 1 that each Q-matrix is identifiable up to some col-
umn/row permutation is a trivial and inevitable phenomenon when there exist multiple latent
variables; see Chen et al. (2015) and Xu and Shang (2018).

Next, we summarize the existing necessary and sufficient identifiability conditions for the
traditional DINAmodelwith a saturated attributemodel. These conditionswill also play important
roles in the identifiability of DeepDINA. Specifically, the following conditions (C), (R), and (D)
are known to be necessary and sufficient for strict identifiability of DINA, both in the confirmatory
case with a known Q-matrix (Gu & Xu, 2019) and in the exploratory case with an unknown
Q-matrix (Gu & Xu, 2021) :

(C) Completeness. A Q-matrix with K columns contains an identity submatrix IK after
some row permutation. That is, the Q can be row-permuted to be Q = [IK , (Q∗)	]	.

(R) Repeated-Measurement. Each of the K attributes is measured by at least three items.
(D) Distinctness. Assuming Condition (C) holds, after removing the identity submatrix IK

from Q, the remaining submatrix Q∗ contains K distinct column vectors.

We will call the above three conditions the C-R-D conditions for short. Our next theorem
establishes sharp identifiability result for the exploratory DeepDINA with an arbitrary depth D,
by providing the necessary and sufficient conditions on the multiple Q-matrices.

Theorem 1. [DeepDINA] Consider a ladder-shaped exploratoryDeepDINAmodelwith D latent
layers and D between-layer Q-matrices Q(1), . . . ,Q(D). The model is strictly identifiable if and
only if each Q(d), d = 1, . . . , D, satisfies the C-R-D conditions.

The conditions in Theorem 1 are also necessary and sufficient for identifying the DeepDINO
model introduced in Example 2, because of the duality between DINA and DINO (Chen et
al., 2015) . The sharp identifiability conditions in Theorem 1 put transparent constraints on the
Q-matrices, and equivalently, transparent constraints on the between-layer graphical structures.
In a graphical model, define Xm to be an exclusive child of X� if the former has the latter has its
only parent. The deep C-R-D conditions in Theorem 1 can be translated into graphical language as
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follows: each latent variable in the deep graphical model should have at least one exclusive child
(Condition (C)) and at least three children in total (not necessarily all exclusive; Condition (R)) in
the layer below; and after removing one exclusive child for each latent variable, the remaining sets
of children of the Kd latent variables in the dth latent layer should be mutually distinct (Condition
(D)) for d = 1, . . . , D.

Example 5 illustrates the theoretical result in Theorem 1.

Example 5. Consider a DeepDINA model with D = 2, and two Q-matrices Q(1), Q(2):

Q(1) =

⎛

⎜
⎜
⎜
⎜
⎝

I5
0 0 0 0 1
1 1 0 1 0
1 0 1 1 0
0 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

9×5

, Q(2) =

⎛

⎜
⎜
⎜
⎜
⎝

1 0
0 1
1 0
0 1
1 1

⎞

⎟
⎟
⎟
⎟
⎠

5×2

.

It is easy to verify that bothQ(1) andQ(2) satisfy the C-R-D conditions. Therefore, a ladder-shaped
DeepDINAmodelwith J = 9observed responsevariables, K1 = 5finest-grained latent attributes,
and K2 = 2 meta latent attributes in the deepest layer, is strictly identifiable. The identifiable
quantities include Q-matrices Q(1), Q(2), deepest proportion parameters π

deep
4×1 , (quasi-)slipping

and guessing parameters at both layers (s(1)9×1, g(1)
9×1) and (s(2)5×1, g(2)

5×1).

As can be seen from the toy example in Example 5, we have J > K1 > K2 under the
identifiableDeepDINA there. In general, if aQ-matrix of size J×K satisfies theC-R-Dconditions,

then there is a natural constraint on how large K can be with respect to J : J > K +
⌈
log2(K )

⌉

(Gu&Xu, 2021) . This means in an identifiable DeepDINA, the sizes of the layers in the graphical

model should satisfy J > K1 +
⌈
log2(K1)

⌉
, and Kd−1 > Kd +

⌈
log2(Kd)

⌉
for d = 2, . . . , D.

This suggests an increasingly shrinking ladder architecture of the latent layers when going deeper.

3.2. Strict Identifiability Result for General DeepCDMs

This subsection provides fully general strict identifiability conditions for an arbitrary Deep-
CDM. These conditions are also applicable to Hybrid DeepCDMs introduced in Sect. 2.3. From
the identifiability result for DeepDINA in Theorem 1, one can see that it is those between-layer
Q-matrices that drive and deliver identifiability. In fact, this is correct intuition that applies much
more broadly. Next, we formalize this intuition by establishing a general identifiability result for
an arbitrary DeepCDM.

Theorem 2. (General DeepCDM) Consider an exploratory general DeepCDM with D latent
layers and D between-layer Q-matrices Q(1), . . . ,Q(D). Either Condition (S) or Condition (S ∗)
below suffices for strict identifiability of the model.

(S) Each Q(d) can be written as Q(d) = [IKd , IKd , IKd , (Q(d)∗)	]	 after some col-
umn/row permutation, whereQ(d)∗ is an arbitrary (Kd−1−3Kd)×Kd matrix (potentially
empty).
(S ∗) This condition is the combination of both (S1 ∗) and (S2 ∗) below.

(S1 ∗) Each Q(d) can be written as Q(d) = [IKd , IKd , (Q(d)∗)	]	 after some
column/row permutation, where Q(d)∗ is an arbitrary matrix (potentially empty).
(S2 ∗) For any two different Kd-dimensional latent patterns αc, α� ∈ {0, 1}Kd , there
exists some j > 2Kd such that P(A(d−1)

j = 1 | A(d) = αc, Q(d), θ (d)) 
=
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P(A(d−1)
j = 1 | A(d) = α�, Q(d), θ (d)), where θ (d) generically denotes continuous

parameters required to fully specify the conditional distribution.

Remark 1. Condition (S) in Theorem2 is similar to the conditions in Theorem4 inGu andDunson
(2023) for identifying the Bayesian Pyramid model there. Condition (S∗) in Theorem 2 relaxes
the requirement onQ-matrices compared to Condition (S), and impose an additional requirement
on the conditional probabilities to establish identifiability. Condition (S∗) is similar to conditions
(C1) and (C2) in Culpepper (2019b) imposed on the traditional Q-matrix, which were proposed
to identify an exploratory diagnostic model for ordinal responses with a one-latent-layer saturated
attribute model.

Theorem 2 is fully general and is applicable regardless of which specific diagnostic model
each layer in a DeepCDM follows. According to the conditions in Theorem 2, the sizes of the
layers in the graphical model should satisfy J > 2K1, and Kd−1 > 2Kd for d = 2, . . . , D, which
also suggests an increasingly shrinking sparse latent ladder when going deeper.

Comparing the conditions in Theorems 1 and 2, one can see that the general sufficient con-
ditions for an arbitrary DeepCDM are stronger than those needed for identifying the DeepDINA.
The next proposition further guarantees that if a DeepCDM consists of a mix of DINA-layers
and main-effect/all-effect layers, then those Q-matrices corresponding to the DINA-layers only
need to satisfy the weaker C-R-D conditions, instead of the stronger Conditions (S) or (S ∗) in
Theorem 2.

Proposition 1. (Hybrid DeepCDM) Consider a Hybrid DeepCDM with D latent layers and D
between-layer Q-matrices Q(1), . . . ,Q(D). If each Q(d) satisfies the identifiability conditions for
the specific diagnostic model that A(d−1) | A(d) follows (i.e., C-R-D for DINA, (S) or (S ∗) for
main-effect or all-effect model), then the entire DeepCDM is strictly identifiable.

Proposition 1 reveals a key technical insight that our identifiability proofs leverage. That is,
identifiability of DeepCDMs can be examined and established in a layer-by-layer manner, from
the bottom up. This seemingly intuitive argument is rigorously true thanks to the probabilistic
formulation of the directed graphical model and the discreteness nature of all the latent variables.
See the proof of Theorem 1 in the Supplementary Material for details.

3.3. Generic Identifiability of Main-Effect and All-Effect DeepCDMs

Strict identifiability is the strongest possible identifiability notion, requiring parameters to be
everywhere identifiable in their parameter space T . A slightly weaker notion called generic iden-
tifiability (Allman et al., 2009) , instead requires parameters to be identifiable almost everywhere
in T , allowing identifiability to fail on a measure-zero subsetN of T . As pointed out by Allman et
al. (2009), generic identifiability often suffices for real data analyses purposes and is a very useful
identifiability notion in practice. In the CDM literature, Gu and Xu (2020) and Chen et al. (2020)
proposed generic identifiability conditions for variants of CDMs with a saturated attribute model.
Next, we build on the existing generic identifiability conditions to establish generic identifiability
of main-effect and all-effect DeepCDMs.We define themain-effect-based DeepCDMs as follows.

Definition 2. (Main-effect-based DeepCDMs) A DeepCDM is said to be “main-effect-based”,
if the layerwise conditional distribution can be written as:

P(A(d−1)
j = 1 | A(d) = α, Q(d), β(d)) = f

(∑Kd

k=1
β

(d)
j,k

{
q(d)
j,kαk

}
+ · · ·

)
.

where f (·) is a link function, and the “ · · · ” refers to potentiallymore terms such as the interaction-
effects of the αk’s and the intercept.
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Note that DeepDINA and DeepDINO are not main-effect-based DeepCDMs, because they
do not contain the main-effect coefficients such as those β

(d)
j,k in Definition 2. These main-effect

coefficients are essential to generic identifiability and allow for relaxing the condition that each
Q(d) should contain a submatrix IKd (Chen et al., 2020; Gu & Xu, 2020) . We next formally
define and establish generic identifiability of main-effect-based DeepCDMs.

Definition 3. Define the allowable constrained parameter space for β(d) in Definition 2 under the
binary matrix Q(d) as

	main(β
(d); Q(d)) = {β(d)

j,k 
= 0 if q(d)
j,k = 1; and β

(d)
j,k = 0 if q(d)

j,k = 0}. (11)

The continuous parameters and the Q-matrices are said to be generically identifiable if the set of
unidentifiable continuous parameters has measure zero with respect to the Lebesgue measure on
their parameter space ∪D

d=1	main(β
(d); Q(d)) ∪ �2KD−1.

Theorem 3. Consider a main-effect-based DeepCDM. Suppose each Q(d) can be written as
Q(d) = [(Q(d)

1 )	, (Q(d)
2 )	, (Q(d)∗)	]	 after some column/row permutation and satisfies the

following conditions. Then, the main-effect-based DeepCDM is generically identifiable.

(G1) Each Q(d)
m (m = 1, 2) has size Kd × Kd and takes the following form:

Q(d)
m =

⎛

⎜
⎜
⎜
⎝

1 ∗ · · · ∗
∗ 1 · · · ∗
...

...
. . .

...

∗ ∗ · · · 1

⎞

⎟
⎟
⎟
⎠

, m = 1, 2; d = 1, . . . , D.

That is, Q(d)
1 and Q(d)

2 each has all the diagonal entries equal to one, whereas any
off-diagonal entry is free to be either one or zero.

(G2) The (Kd−1 − 2Kd) × Kd submatrix Q(d)∗ in Q(d), d = 1, . . . , D, satisfies that each
column contains at least one entry of “1”.

Theorem 3 significantly relaxes the strict identifiability conditions in Theorem 2, by not
requiring any Q(d) to contain an identity submatrix IKd . Note that these generic identifiability
conditions in Theorem 3 also imply a shrinking latent ladder when going deeper, because (G1)
and (G2) implicitly requires J > 2K1 and Kd > 2Kd+1 for d = 1, . . . , D − 1.

The natural upper bounds on the values of K1, K2, . . . given by all of our identifiability
conditions further confirms the statistical parsimony of DeepCDMs. For example, in a two-latent-
layer DeepCDMwith K1 = 7 latent variables in the shallower latent layer and K2 = 2 ones in the
deeper layer (which is the scenario in the real data analysis in Sect. 6), the number of parameters
required by DeepLLM is

∑K1
k=1(

∑K2
�=1 q

(2)
k,� +1)+2K2 −1, which is at most 24, and that required

by DeepDINA is 2K1 + 2K2 − 1 = 17, whereas the number of parameters required in a saturated
attribute model would be 2K1 − 1 = 127. Such a remarkable reduction of parameter complexity
facilitates applying DeepCDMs when there is a large number of fine-grained latent attributes but
a relatively small sample size.

The easily understandable and intuitively interpretable identifiability conditions presented in
this section are an appealing property of DeepCDMs. We next provide some insights into our
proof strategy. The reason why we can establish identifiability in a layer-by-layer manner is two-
fold. First, in a multilayer directed graphical model, when arrows are all top-down and only occur
between adjacent layers, marginalizing out all the latent variables deeper than the shallowest layer
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result in a marginal restricted latent class model (RLCM; Gu and Xu, 2020; Xu, 2017). Once the
proportion parameters for this RLCM are identifiable, this shallowest latent layer’s distribution is
uniquely identified and can be theoretically treated as if observedwhen investigating identifiability
of deeper layers. Second, we exploit one key property of existing identifiability theory of RLCMs
– identifiability holds under conditions on the Q-matrix for arbitrary marginal distributions
of the latent attributes. This property allows us to extend the identifiability conclusion to very
flexible deep models since deeper layers could induce quite complex marginal dependencies
among the latent attributes. Although proving identifiability is not technically very challenging
upon realizing the above two key facts, we believe that uncovering these two facts to rigorously
show identifiability still contributes to our understanding about CDMs and their potential.

On a related note, the HO-CDMproposed by de la Torre and Douglas (2004) is a very popular
and widely used high-order CDM. However, whether and when parameters in a general HO-CDM
with multiple higher-order continuous latent traits are fully identifiable is still unknown. So there
currently lacks a rigorous statistical justification for valid parameter estimation in that model.
To our best knowledge, DeepCDMs are the first higher-order CDMs that are shown to be fully
identifiable.

4. Bayesian Inference for DeepCDMs

Recently, Bayesian formulation and estimation of CDMs have gained increasing interest; see
Culpepper (2015), Chen et al. (2018), Fang et al. (2019), Chen et al. (2020), and Liu et al. (2020),
among others. Bayesian approaches can incorporate prior beliefs into the model formulation,
and quantify the statistical uncertainty through the posterior distributions. Moreover, in the CDM
context, Bayesian estimation algorithms can conveniently incorporate meaningful constraints into
the posterior sampling process, including the monotonicity constraints on the model parameters
(Culpepper, 2015) and the identifiability constraints on the Q-matrix (Chen et al., 2018) .

In this section, we propose Bayesian formulations for several DeepCDMs and develop their
corresponding efficient Gibbs sampling algorithms. As mentioned earlier, in this work we focus
on developing Bayesian inference methods for the confirmatory setting with fixed and known
Q-matrices. For simplicity of presentation but without loss of generality, this section focuses on
two-latent-layer DeepCDMs. We point out that all of our Bayesian inference procedures can be
extended to a DeepCDM with more latent layers; this is the case thanks to both the conditional
independence of non-adjacent layers in a DeepCDM and our layerwise Gibbs sampling steps.
Now consider a two-latent-layer DeepCDM with K1 fine-grained attributes and K2 deeper meta
attributes. With a sample of size N , denote the N × K1 first-layer latent attribute matrix by (a(1)

i j ),

and denote the N × K2 second-layer latent variable matrix by (a(2)
i j ). Denote the i th row of these

two matrices by a(1)
i and a(2)

i , respectively. Let θ (d) generically denote the continuous parameters
needed to specify the conditional distribution A(d−1) | A(d).

4.1. Bayesian Inference for DeepDINA

For any positive integer M , we denote [M] = {1, . . . , M}. The following continuous param-
eters are needed to specify a two-latent-layer DeepDINA: item parameters θ (1) = (s(1)J×1, g(1)

J×1),

quasi-item parameters θ (2) = (s(2)K1×1, g(2)
K1×1), and deep proportion parameters πdeep =

(π1, . . . , π2K2 ). Consider a sample of size N and denote the observed N × J data matrix by
R = (ri j ). Define a K2-dimensional vector v(2) = (2K2−1, 2K2−2, . . . , 20)	, then v(2) induces
a bijection between the binary patterns and integers (Culpepper, 2019a) , and we define binary
patterns α1, . . . ,α2K2 ∈ {0, 1}K2 such that α	

� v(2) = � − 1, for � = 1, . . . , 2K2 .
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When Q(1) and Q(2) are fixed, DeepDINA has the following model formulation,

ri j | a(1)
i , q(1)

j , θ (1) ∼ Bernoulli

((
1 − s(1)

j

)ξ1,i j
(
g(1)
j

)1−ξ1,i j
)

, ξ1,i j = 1(a(1)
i � q(1)

j ); (12)

a(1)
ik | a(2)

i , q(2)
k , θ (2) ∼ Bernoulli

((
1 − s(2)

k

)ξ2,ik
(
g(2)
k

)1−ξ2,ik
)

, ξ2,ik = 1(a(2)
i � q(2)

k );

p(s(d)
j , g(d)

j ) ∝ (s(d)
j )as−1(1 − s(d)

j )bs−1(g(d)
j )ag−1(1 − g(d)

j )bg−1 · 1(g(d)
j + s(d)

j < 1),

(13)

j ∈ [J ] for d = 1, and j ∈ [K1] for d = 2; (14)

p(a(2)
i | πdeep) ∝

2K2∏

�=1

π
1(a(2)

i =α�)

� , 0 ≤ π� ≤ 1,
2K2∑

�=1

π� = 1; p(πdeep) =
2K2∏

�=1

π
δ�−1
� .

(15)

The prior for πdeep = (π1, . . . , π2K2 ) in (15) is the Dirichlet distribution with parameters δ =
(δ1, . . . , δL). The prior for s(d)

j , g(d)
j in (14) is a product of two truncated Beta densities with

hyperparameters (as, bs) and (ag, bg), respectively, similar to that in Culpepper (2015). The

monotonicity constraint g(d)
j < 1−s(d)

j in (14) ensures each item or attribute provides information
to differentiate the capable and incapable subjects (Junker & Sijtsma, 2001) .

The above Bayesian formulation of DeepDINA facilitates convenient posterior inference
via a Gibbs sampler. Specifically, we sample each entry a(1)

i,k individually to better leverage the
multilayer generative process and to boost computational efficiency; this is different fromsampling
the entire latent vector a(1)

i as inmany previous Bayesian estimation approaches for CDMs.Define

a(1)
i,−k to be the (K1 −1)-dimensional subvector of a(1)

i containing entries other than a(1)
i,k . The full

conditional distribution of a(1)
i,k is:

k = 1, . . . , K1 : P(a(1)
i,k = 1 | −) = P(a(1)

i,k = 1 | r i , a(2)
i , θ (1), θ (2))

= P(a(1)
i,k = 1 | a(2)

i , θ (2))P(r i | a(1)
i,k = 1, a(1)

i,−k , θ
(1))

∑
x=0,1 P(a(1)

i,k = x | a(2)
i , θ (2))P(r i | a(1)

i,k = x, a(1)
i,−k , θ

(1))
;

In the above display, the “−” in the conditioning set for a(1)
i,k generically summarizes all of the

other quantities in the posterior, and the first equality is derived from the conditional independence
properties of the graphical model. As for the second latent layer a(2)

i , we sample it from the
categorical posterior with 2K2 components. The full conditional distribution of each element in
s(1), g(1), s(2), and g(2) is a truncated Beta, and that of πdeep is a Dirichlet; we provide the detailed
forms of these conditional distributions in the Supplementary Material.

4.2. Bayesian Inference for Hybrid GDINA-DINA

A two-latent-layer Hybrid GDINA-DINA model features a GDINA layer for modeling R |
A(1) and a DINA layer for modelingA(1) | A(2). Such amodel may be useful in practical scenarios
when it is desirable to adopt the general diagnostic model in the bottom layer for its flexibility and
adopt a simpler DINA model in the deeper layer for its parsimony. The Hybrid GDINA-DINA
model has the following generative process,

ri j | a(1)
i , q(1)

j , θ (1) ∼ Bernoulli
(
β

(1)
j,0 +

∑Kd

k=1
β

(1)
j,k

{
q(1)
j,ka

(1)
i,k

}
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+
∑

1≤k1<k2≤Kd

β
(1)
j,k1k2

{
q(1)
j,k1

a(1)
i,k1

} {
q(1)
j,k2

a(1)
i,k1

}
+ · · · + β

(1)
j,12···Kd

Kd∏

k=1

{
q(1)
j,ka

(1)
i,k

} )
; (16)

a(1)
ik | a(2)

i , q(2)
k , θ (2) ∼ Bernoulli

((
1 − s(2)

k

)ξ2,ik
(
g(2)
k

)1−ξ2,ik
)

, ξ2,ik = 1
(
a(2)
i � q(2)

k

)
.

(17)

SinceA(1) | A(2) follows the DINAmodel, we adopt the same truncated Beta priors as that in (14)
for the quasi-item parameters and enforce g(2)

k < 1−s(2)
k . As for the model forR | A(1), we adopt

the GDINA formulation proposed by de la Torre (2011) in (16) by using the identity link function
f (·) in the all-effect general diagnostic model. A general diagnostic model with an identity link
facilitates Gibbs sampling steps without data augmentation. Note that in order to perform Gibbs
sampling directly, it is not convenient to directly work with the β-coefficients in (16) and sample
from their posteriors. Instead, similar to the existing GDINA EM algorithm in the literature, we
adopt an invertible reparameterization of the β-coefficients and define a set of θ -coefficients that
directly correspond to conditional correct response probabilities and are easy to sample from.
Define K j = {k ∈ [K ] : q(1)

j,k = 1}, which is the set of indices of the latent attributes that item j

measures. Then each β-coefficient in the GDINA layer in (16) can be equivalently written as β
(1)
j,S ,

where S is a subset of K j ; for example, β(1)
j,∅ = β

(1)
j,0, β

(1)
j,{k} = β

(1)
j,k , and β

(1)
j,K j

corresponds to the
parameter for highest order interaction effect of the required attributes. For any subset S ⊆ K j ,

denote by q(1)
j,S := (q(1)

j,k ; k ∈ S) the subvector of q j . We now define the θ -parameters as follows:

θ
(1)
j,S =

∑

S′⊆S

β
(1)
j,S′

(�)= P(ri, j = 1 | a(1)	
i q(1)

j,S = q(1)	
j,S q(1)

j,S),

∀S ⊆ K j = {k ∈ [K ] : q(1)
j,k = 1}, (18)

where the equality indexed by “(�)” can be verified by simply following the definition of the
β-parameters. For example, θ(1)

j,{k} = β
(1)
j,∅ +β

(1)
j,{k} represents the probability of providing positive

response to item j given that the subject only masters the kth latent attribute A(1)
k . With the

above reparametrization and equality “(�)”, the θ -parameters directly represent positive response
probabilities of certain clearly defined latent classes in the population. This structure implies that
we can endow θ j,S with a Beta prior and then have a Beta posterior. In particular, let the prior for

θ
(1)
j,S be Beta(aθ , bθ ), then its posterior distribution is

Beta

(

aθ +
N∑

i=1

ri, j1
(
a(1)	
i q(1)

j,S = q(1)	
j,S q(1)

j,S

)
, bθ +

N∑

i=1

(1 − ri, j )1
(
a(1)	
i q(1)

j,S = q(1)	
j,S q(1)

j,S

)
)

,

where S ranges in all the possible subsets ofK j . This completes the description on how to sample
the continuous parameters for the GDINA layer.

Interpretable monotonicity constraints can also be incorporated into the posterior sampling
of the θ

(1)
j,S parameters. For example, it may be reasonable to impose the constraint that the

main-effect parameters of the attributes, i.e., β
(1)
j,k in (9), are positive (Culpepper, 2019b) .

In our parametrization of θ
(1)
j,S , this constraint is equivalent to requiring θ

(1)
j,{k} > θ

(1)
j,∅ for each
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k = 1, . . . , K1. Such a constraint can be easily enforced by sampling θ
(1)
j,{k} from a truncated Beta

posterior as follows:

Beta

(

aθ +
N∑

i=1

ri, j1
(
a(1)
i,k q

(1)
j,k = q(1)

j,k

)
, bθ +

N∑

i=1

(1 − ri, j )1
(
a(1)
i,k q

(1)
j,k = q(1)

j,k

)
)

· 1(θ
(1)
j,{k} > θ

(1)
j,∅).

we provide the details of the Gibbs sampler for the Hybrid GDINA-DINA in the Supplementary
Material.

4.3. Bayesian Inference for DeepLLM

In this subsection, we consider the two-latent-layer Deep Logistic LinearModel (DeepLLM).
Let σ(x) = 1/(1 + e−x ) denote the inverse logit function (i.e., sigmoid function). For a(i)

2 and
πdeep, we adopt the same formulation and prior as (15). As for the additional parameters in a
DeepLLM, we adopt the following formulation,

ri j | a(1)
i , q(1)

j , θ (1) ∼ Bernoulli

(

σ

(

β
(1)
j,0 +

∑Kd

k=1
β

(1)
j,kq

(1)
j,kai,k

))

; (19)

a(1)
ik | a(2)

i , q(2)
k , θ (2) ∼ Bernoulli

(

σ

(

β
(2)
k,0 +

∑K2

m=1
β

(2)
k,mq

(1)
k,mai,m

))

; (20)

β
(1)
j,k | q(1)

j,k = 1 ∼ N (0, σ 2
β ) · 1(β

(1)
j,k > 0), β

(2)
k,m | q(2)

k,m = 1 ∼ N (0, σ 2
β ) · 1(β

(2)
k,m > 0).

(21)

The natural constraints imposed by the Q-matrices (β
(1)
j,k | q(1)

j,k = 0) ≡ 0 and (β
(2)
k,m | q(2)

k,m =
0) ≡ 0 can be readily enforced throughout the sampling process. In order to facilitate efficient
Gibbs sampling steps based on full conditional distributions of all the parameters, we propose to
use the Polya-Gamma data augmentation in Polson et al. (2013). This data augmentation strategy
was also recently adopted for Bayesian Pyramids for multivariate categorical data in Gu and
Dunson (2023) and for saturated CDMs in Balamuta and Culpepper (2022). Different from these
existing works, we apply Polya-Gamma augmentation not only for observed data layerR, but also
for the latent layer A(1), due to our multilayer logistic linear model assumption. Specifically, we
introduce auxiliary variables w

(1)
i, j for j ∈ [J ], w(2)

i,k for k ∈ [K1] that follow the Polya-Gamma
prior PG (1, 0). Introduce the following notation:

φ
(1)
i, j = β

(1)
j,0 +

∑K1

k=1
β

(1)
j,kq

(1)
j,ka

(1)
i,k , φ

(2)
i,k = β

(2)
k,0 +

∑K2

m=1
β

(2)
k,mq

(2)
k,ma

(2)
i,m .

Denote the probability density function of PG(1, 0) by pPG(w | 1, 0). By the property of the
Polya-Gamma variables in Polson et al. (2013), we have the following identity for φ

(1)
i, j :

exp(φ(1)
i, j ri, j )

1 + exp(φ(1)
i, j )

= 2 exp
{
(ri, j − 1/2)φ(1)

i, j

} ∫ ∞

0
exp

{
−w

(1)
i, j (φ

(1)
i, j )

2/2
}
pPG(w

(1)
i, j | 1, 0)dw(1)

i, j ;

and there is a similar identity for φ
(2)
i,k . A nice consequence of the above equality is that the

conditional posterior distributions for all the β
(1)
j,0 and β

(1)
j,k are still Gaussian, and the conditional
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posterior distribution of each w
(1)
i, j is still Polya-Gamma, with (w

(1)
i, j | −) ∼ PG(1, φ

(1)
i, j ). Similar

posterior forms can be derived for β
(2)
k,m and w

(2)
i,k , which are also Gaussian and Polya-Gamma,

respectively. Such posterior distributions are easy to sample from and are the building blocks of
our efficient Gibbs sampler for a DeepLLM. We provide the details of this Gibbs sampler for
DeepLLM in the Supplementary Material.

We point out that our Gibbs samplers described in Sects. 4.1–4.3 can be readily extended to
deeper models containing more than two latent layers. To see this, note that DeepCDMs have
a nice property implied by the graphical model: given any layer A(d), the layer above it A(d+1)

and the layer below it A(d−1) are conditionally independent. This means in a DeepCDM with
an arbitrary number of layers, when sampling parameters and latent structures for any specific
layer, we only need to consider its two adjacent layers and derive the full conditional distributions
based on these local model information. This fact allows straightforward extensions of our Gibbs
sampling procedures to general hybrid DeepCDMs.

5. Simulation Studies

Weconduct simulation studies for the three two-latent-layerDeepCDMsconsidered inSect. 4:
DeepDINA in Sect. 4.1, Hybrid GDINA-DINA in Sect. 4.2, and DeepLLM in Sect. 4.3. We also
conduct two additional simulation studies, one comparing a DeepCDM to a traditional CDMwith
a saturated attribute model, and one evaluating a DeepCDM’s robustness to deeper layer model
misspecification. The following three different generative graphical structures (equivalently, forms
of Q(1)

J×K1
and Q(2)

K1×K2
) are considered:

structure (a): Q(1)
30×6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I6
I6
I6
I6

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q(2)
6×2 =

⎛

⎝
I2
I2
I2

⎞

⎠ ; (22)

structure (b): Q(1)
30×7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I7
I7
I7

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q(2)
7×3 =

⎛

⎜
⎜
⎜
⎜
⎝

I3
1 1 0
1 0 1
0 1 1
1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

; (23)
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structure (c): Q(1)
30×8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I8
I8
I8

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Q(2)
8×3 =

⎛

⎜
⎜
⎝

I3
I3

1 1 0
1 0 1

⎞

⎟
⎟
⎠ . (24)

Denote the above three pairs ofQ-matrices by {Q(1)
a ,Q(2)

a }, {Q(1)
b ,Q(2)

b }, and {Q(1)
c ,Q(2)

c }, respec-
tively. In all the simulation experiments, the Gibbs sampling algorithm is run for 15,000 iterations,
with the first 10,000 iterations discarded as burn-in. Based on the last 5000 posterior samples, we
calculate the posterior means of the continuous parameters as their point estimators. We observed
sufficiently good convergence andmixing behaviors of all theGibbs samplers through preliminary
simulations.

Simulation Study I: Two-latent-layer DeepDINA.
Under each of the three pairs ofQ-matrices in (22)–(24), we specify the true item/quasi-item

parameters to be s(1)
j = g(1)

j = 0.1 for all j ∈ [J ], and s(2)
k = g(2)

k = 0.25 for all k ∈ [K1]. We

specify the true deep proportion parameters to be πdeep = (1/2K2 , . . . , 1/2K2), that is, uniform
over the 2K2 deep latent patterns. We consider three sample sizes N = 500, 1000, 2000, and
carry out 100 independent simulation replicates in each of the nine resulting simulation settings.
The Q-matrices Q(1) and Q(2) are fixed to the ground truths during estimation. We consider the
posterior means of the model parameters as their point estimators, and calculate the mean root
mean squared errors (RMSE) and mean absolute biases (aBias), each averaged across the 100
simulation replicates. Here, the mean absolute bias is a valid measure of the bias performance of
an estimator, which is both broadly used in statistics (Morris et al., 2019) and also in previous
studies about CDMs (Chen et al., 2020; Xu & Shang, 2018) . Note that directly averaging
the bias itself (instead of the absolute bias that we consider) across simulation replicates may
give a misleading result, because positive and negative biases can cancel out each other. Table
1 presents the simulation results of the average RMSE and average aBias for the slipping and
guessing parameters θ

(1)
DINA, for the quasi-slipping and quasi-guessing parameters θ

(2)
DINA, and the

deep proportion parameters πdeep.
Note that the three generative graph structures in (22)–(24) all satisfy the strict identifiability

conditions for the DeepDINA model. Specifically, all the Q(1) and Q(2) satisfy the C-R-D condi-
tions; therefore, Theorem 1 guarantees the strict identifiability of the parameters θ

(1)
DINA, θ

(2)
DINA,

and πdeep. This identifiability conclusion is empirically confirmed by the simulation results in
Table 1, where the estimation errors of these identifiable quantities measured through RMSE and
aBias are all reasonably small.

Simulation Study II: Two-latent-layer Hybrid GDINA-DINA.
Under the two-latent-layerHybridGDINA-DINAmodel,we specify the deeperDINA-layer’s

true parameters to be the same as that in the DeepDINA case with s(2)
k = g(2)

k = 0.25 for all
k ∈ [K1], and also specify the deep proportion parameters as πdeep = (1/2K2 , . . . , 1/2K2). As
for the GDINA-layer’s parameters, we specify them in the same way as the simulations in Xu and
Shang (2018) and Chen et al. (2020); that is, for each item j ∈ [J ], set the lowest correct response
probability to 0.2 for all-zero attribute profiles, set the highest correct response probability to 0.8
for all-one attribute profiles, and set all the main-effect and interaction-effect parameters under
the GDINAmodel to be equal. The above true parameter specification can be equivalently written
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Table 1.
Two-latent-layer DeepDINA simulation results.

Structure (J, K1, K2) N RMSE aBias

θ
(1)
DINA θ

(2)
DINA πdeep θ

(1)
DINA θ

(2)
DINA πdeep

(a) in (22) (30, 6, 2) 500 0.021 0.060 0.063 0.017 0.050 0.050
1000 0.015 0.046 0.049 0.012 0.038 0.040
2000 0.011 0.038 0.040 0.009 0.031 0.032

(b) in (23) (30, 7, 3) 500 0.039 0.072 0.042 0.033 0.062 0.033
1000 0.033 0.070 0.047 0.029 0.061 0.038
2000 0.029 0.066 0.044 0.026 0.058 0.036

(c) in (24) (30, 8, 3) 500 0.031 0.064 0.038 0.026 0.054 0.030
1000 0.026 0.060 0.037 0.022 0.051 0.029
2000 0.021 0.054 0.032 0.019 0.047 0.026

Table 2.
Two-latent-layer hybrid GDINA-DINA simulation results.

Structure (J, K1, K2) N RMSE aBias

β
(1)
GDINA θ

(2)
DINA πdeep β

(1)
GDINA θ

(2)
DINA πdeep

(a) in (22) (30, 6, 2) 500 0.046 0.064 0.059 0.037 0.052 0.047
1000 0.035 0.056 0.056 0.028 0.045 0.046
2000 0.025 0.042 0.044 0.020 0.033 0.036

(b) in (23) (30, 7, 3) 500 0.056 0.073 0.045 0.045 0.058 0.036
1000 0.041 0.063 0.044 0.033 0.051 0.035
2000 0.030 0.052 0.039 0.024 0.042 0.031

(c) in (24) (30, 8, 3) 500 0.052 0.069 0.043 0.042 0.056 0.034
1000 0.039 0.062 0.039 0.032 0.050 0.031
2000 0.028 0.050 0.033 0.023 0.040 0.027

in the following mathematical form,

P
GDINA(R j = 1 | A(1) = α,β(1)) = θ

(1)
j,S =

∑

S⊆K j

β
(1)
j,S, where K j = {k ∈ [K ] : q(1)

j,k = 1};

β
(1)
j,∅ = 0.2, β

(1)
j,S = (0.8 − 0.2)/(2|K j | − 1) for S ⊆ K j , S 
= ∅.

During theBayesian posterior sampling process,we enforce themonotonicity constraint described
in Sect. 4.2 by sampling the transformed parameters θ j,{k} = β

(1)
j,∅ + β

(1)
j,{k} from the truncated

Beta posteriors; this ensures the main-effect parameters β
(1)
j,{k} to be positive. Table 2 presents the

simulation results under the Hybrid GDINA-DINA model.
Table 2 shows that our method can accurately estimate all the parameters under the Hybrid

GDINA-DINAmodel and the estimation accuracy improves as sample size grows. Indeed, all the
Q(1)

a ,Q(1)
b , andQ(1)

c satisfy the identifiability conditions for general diagnostic models (condition

S in Theorem 2), and all theQ(2)
a ,Q(2)

b , andQ(2)
c satisfy the C-R-D conditions for identifying the

DINA model. Therefore, Proposition 1 guarantees that all the parameters β
(1)
GDINA, θ

(1)
DINA, and
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Table 3.
Two-latent-layer DeepLLM simulation results.

Structure (J, K1, K2) N RMSE aBias

β
(1)
LLM β

(2)
LLM πdeep β

(1)
LLM β

(2)
LLM πdeep

(a) in (22) (30, 6, 2) 500 0.360 0.339 0.026 0.284 0.262 0.021
1000 0.247 0.215 0.016 0.196 0.171 0.013
2000 0.175 0.161 0.011 0.139 0.129 0.009

(b) in (24) (30, 7, 3) 500 0.362 0.514 0.031 0.284 0.402 0.025
1000 0.254 0.407 0.024 0.199 0.315 0.019
2000 0.181 0.303 0.018 0.144 0.228 0.015

(c) in (24) (30, 8, 3) 500 0.376 0.491 0.023 0.294 0.379 0.018
1000 0.264 0.352 0.017 0.208 0.272 0.014
2000 0.187 0.212 0.012 0.149 0.166 0.010

πdeep in this Hybrid DeepCDM are fully identifiable, as supported by the numerical evidence in
Table 2.

Simulation Study III: Two-latent-layer DeepLLM. We conduct simulations for the
DeepLLM, using the Gibbs sampler with the multilayer Polya-Gamma data augmentation strat-
egy developed in Sect. 4.3. The true parameters in the two-latent-layer DeepLLM are specified
as follows. Inside the inverse logit function, the intercept parameters for the two layers are set
to β

(1)
j,0 = −3 for all j ∈ [J ] and β

(2)
k,0 = −2 for all k ∈ [K1]; the shallower layer’s main-

effect parameters are set to β
(1)
j,k = 6/

(∑K1
k′=1 q

(1)
j,k′

)
for which q(1)

j,k = 1, and the deeper layer’s

main-effect parameters are set to β
(2)
k,m = 4/

(∑K2
m′=1 q

(2)
k,m′

)
for which q(2)

k,m = 1. Note that these

β-parameters in a DeepLLM are all inside the inverse logit function f (x) = ex/(1 + ex ) to
generate the correct response probability, so they are on a different scale than those probability
parameters under the DINA or GDINA model. Table 3 presents the estimation accuracy results
for the two-latent-layer DeepLLM model.

The simulation results in Table 2 also show decreasing estimation errors with growing sample
sizes. We point out that the “RMSE” and “aBias” values in different tables are not directly com-
parable, because the logistic-scale parameters β

(2)
LLM and β

(2)
LLM in Table 3 have larger magnitudes

than DINA/GDINA parameters in the previous Tables 1 and 2. The three first-layer Q-matrix
Q(1)

a , Q(1)
b , and Q(1)

c all satisfy the identifiability conditions under general diagnostic models

which cover the LLM as a special case, so the β
(1)
LLM are always identifiable across structures (a),

(b), and (c) (see the layerwise identifiability argument in Proposition 1). As for the second-layer
Q-matrix in the three settings, Q(2)

a and Q(2)
c satisfy the strict identifiability conditions for LLM

whileQ(2)
c satisfies the generic identifiability conditions for LLM. For quantities β

(2)
LLM and πdeep

associated with Q(2), Table 3 shows that their estimation errors in the generic identifiability case
(b) are still reasonably small, though slightly worse than those in the strictly identifiable cases
(a) and (c). Overall, all the above simulation results corroborate the identifiability conclusions
about DeepCDMs and also provide evidence that our Bayesian estimation algorithms have good
empirical performance.

In addition to the estimation performance of the population parameters, we also present the
attribute classification accuracy for different layers of attributes in Table 4. The numbers in this
table are calculated as follows: in each simulation replicate, we obtain the posterior modes of each
subject’s each attribute entry in the shallower-layer A(1) (similarly for the deeper-layer A(2)), and
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Table 4.
Attribute classification accuracy across all of the simulation settings.

Structure (J, K1, K2) N DeepDINA Hybrid G-D DeepLLM
A(1) A(2) A(1) A(2) A(1) A(2)

(a) in (22) (30, 6, 2) 500 0.985 0.805 0.926 0.783 0.998 0.956
1000 0.984 0.822 0.928 0.786 0.998 0.960
2000 0.984 0.833 0.929 0.795 0.998 0.959

(b) in (22) (30, 7, 3) 500 0.969 0.738 0.903 0.706 0.994 0.873
1000 0.969 0.737 0.905 0.705 0.994 0.878
2000 0.969 0.737 0.906 0.712 0.995 0.881

(c) in (22) (30, 8, 3) 500 0.970 0.774 0.896 0.739 0.994 0.909
1000 0.971 0.774 0.898 0.740 0.994 0.913
2000 0.971 0.779 0.899 0.743 0.994 0.917

then average them across the 100 simulation replicates to get the attribute classification accuracy.
For all three DeepCDMs and all three Q-matrices structures (a), (b), and (c), the attribute clas-
sification accuracy numbers remain reasonably high, basically exceeding 90% for the shallower
A(1) and exceeding 70% for the deeper A(2). The classification accuracy for deeper attributes is
lower than that for shallower ones, which is an inevitable characteristic shared by all higher-order
latent variable models widely used in statistics. Despite this, the fact that the deeper attributes still
have classification accuracies beyond 70%, and even beyond 90% for DeepLLM, demonstrates
that the estimation quality of deeper attributes in our model does not degrade too much and is
still acceptable. Furthermore, Table 4 indicates that the DeepLLM has the best performance in
classifying the deeper A(2) and the smallest gap between the classification accuracies of A(1)

and A(2). This observation suggests that in the considered settings, DeepLLM may be a more
preferable model among the DeepCDM family in terms of estimating the deeper latent attributes.

Simulation Study IV: Comparison to the saturated attribute model. In this simulation
study, we generate data using a DeepCDM (DeepDINA here) but estimate parameters using both
the DeepCDM and the traditional one-layer CDM (DINA here) with a saturated attribute model.
We compare (a) the computation time of the two models, and also (b) their accuracy in recovering
the proportions π (1) of the latent attributesA(1). The distribution ofA(1) can be parameterized by
π (1) = (π

(1)
α ;α ∈ {0, 1}K1) where π

(1)
α = P(A(1) = α). Under DINA with a traditional saturated

attribute model, π (1) are directly treated as parameters and estimated, while in the DeepDINA
model,π (1) follows another higher-order DINAmodel and can be calculated after estimating these
higher-order parameters. Here we focus on comparing the accuracy of recovering the distribution
of A(1) via π (1) because this is the key difference between the two models. Table 5 displays the
average RMSEs of π (1) and the average computation time under the two models. In particular,
the 6th column “Ratio” in Table 5 displays the ratios of RMSEs under the deep and the saturated
model (i.e., ratios of numbers in the 4th and 5th columns in the table), and the 9th column “Ratio”
displays the ratio of computation time under the two models (i.e., ratios of numbers in the 7th
and 8th columns in the table). Compared to the traditional estimation method for the one-layer
DINA model, our DeepDINA method yields 20-60% of the RMSE in estimating π (1) and takes
9–25% of the computation time. These comparisons imply that appropriately taking into account
higher-order discrete structures will lead to both more accurate estimation and more efficient
computation. Here, more accurate estimation is thanks to the suitable modeling of the latent
attribute dependence, and more efficient computation is thanks to the statistical parsimony and
our efficient Gibbs sampling steps of a fewer number of parameters.
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Table 5.
Comparisons between the two-latent-layer DeepDINA and the saturated DINA model in terms of the RMSE of the
proportions π (1) of the fine-grained latent attributes A(1) and the computation time.

Structure (J, K1, K2) N RMSE of π (1) Computation time (min)
Deep Saturated Ratio (%) Deep Saturated Ratio (%)

(a) in (22) (30, 6, 2) 500 0.004 0.012 34.6 1.3 5.5 24.1
1000 0.004 0.012 29.2 2.5 10.5 24.2
2000 0.003 0.012 22.0 5.3 21.4 24.6

(b) in (23) (30, 7, 3) 500 0.003 0.005 49.7 1.7 10.3 16.5
1000 0.003 0.005 54.6 3.4 19.4 17.4
2000 0.003 0.005 59.4 6.6 37.4 17.6

(c) in (24) (30, 8, 3) 500 0.001 0.004 26.2 2.0 20.0 10.0
1000 0.001 0.004 24.6 4.6 48.5 9.5
2000 0.001 0.004 21.5 8.5 76.0 11.2

Simulation Study V: Robustness of DeepCDM to Deep Layer Misspecification.
We perform a simulation study to evaluate our method’s performance under a misspecified

higher-order model. Here we generate data from the HO-CDM in de la Torre and Douglas (2004)
that havehigher-order continuous latent traits behind thebinary latent attributes.Consider structure
(c) in (24) with J = 30 items, K1 = 8 attributes, and K2 = 3 higher-order continuous latent traits
(θ

(2)
1 , θ

(2)
2 , θ

(2)
3 ) =: θ (2). Let θ

(2)
1 , θ

(2)
2 , θ

(2)
3 follow independent standard normal distributions.

Given θ (2), the first-layer CDM parameters are set to be the same in the previous DeepLLM
simulation setting. Then we fit the data using our Gibbs sampler developed for DeepLLM, and
then examine the estimated shallower-layer item parameters β(1) under this misspecified model.
For better visualization, for a randomly generated dataset, in Fig. 2 we plot the heatmap of the
estimated β(1) in the form of J × K1 matrix whose sparsity pattern is given by the Q-matrix

Q(1) ∈ {0, 1}J×K1 . We can see that the estimated coefficients β̂
(1)

under a misspecified higher-
order model is still close to the ground truth, even for a relatively small sample size N = 500.

For a larger sample size N = 2000, the estimated β̂
(1)

matrix becomes closer to the truth.
Furthermore, we also look beyond a single simulation trial and carry out 100 independent

simulation replicates to assess our method’s average performance under model misspecification.
Figure3 presents the boxplots of root mean squared errors (RMSEs) of the estimated shallower-
layer β(1) parameters based on the 100 replicates. This figure clearly shows a decreasing trend
of estimation errors of β(1) as sample size increases. Together with the previous Fig. 2, we have
empirically demonstrated that our DeepCDM methodology has some robustness to model mis-
specification of the deeper-layers.

We next offer more discussions between the connections and differences between the very
popular HO-CDM and the proposed DeepCDMs. As described in de la Torre and Douglas (2004),
the motivation for proposing the HO-CDM includes parsimony and interpretability. For the HO-
CDM, the parsimony comes from using an IRT model with continuous latent traits to model the
binary attributes, and the interpretability comes fromdefining aplausiblemodel for the relationship
between general ability and specific knowledge. On one hand, asmentioned in Sect. 1, DeepCDMs
also similarly have the advantages of parsimony and interpretability. On the other hand, there are
also several key differences between the HO-CDM and DeepCDMs. First, DeepCDMs use fully
discrete latent layers, which offer a different interpretation of multi-granularity skill diagnosis.
Second, the above simulation study implies that a special member in the DeepCDM family –
DeepLLM – can serve as an approximation to HO-CDM; our DeepLLM method can robustly
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Figure 2.
Estimated first-layer parameters β(1) under amisspecified latent attribute model. The data are generated from a continuous
higher-order latent trait model but estimated using our DeepLLM method.

Figure 3.
RMSE boxplots for the estimated first-layer parameters β(1) under a misspecified latent attribute model. Results are based
on 100 independent simulation replications for each sample size.
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estimate the item parameters for data generated from HO-CDM. It is then worth emphasizing that
DeepLLM is just a special member of the DeepCDM family, and that other members in this family
can flexibly model structures well beyond the logistic linear form used in DeepLLM and HO-
CDM. For example, DeepDINA or Hybrid GDINA-DINA can model the nonlinear conjunctive
relationship or interaction effects of higher-order discrete attributes, and they are still identifiable
and easy to estimate via Gibbs sampling (see Sect. 4). However, there currently do not exist
extensions of HO-CDM to nonlinear higher-order latent variable settings.

6. Application to the TIMSS Assessment Data

We demonstrate the DeepCDMmethodology by applying it to data extracted from the TIMSS
2019 math assessment mentioned in Sect. 1; the data are accessed from the TIMSS 2019 Inter-
national Database (Fishbein et al., 2021) . We use two-latent-layer DeepCDMs to analyze the
US student response data to item block No.2 in the eighth grade math assessment. Prior to our
analysis, the original student response data are converted into binary correct/wrong responses as
follows, based on the TIMSS 2019 Item Information available in the online database (Fishbein et
al., 2021) . For multiple-choice items, a student response is coded as one if the response matches
the correct answer key, and coded as zero otherwise; for constructed response items, a student
response is coded as one if the number of scores received is equal to the maximal score of the
item, and coded as zero otherwise.

Among the US eighth grade participants, we consider students that took the math item block
No.2 and give responses to all the J = 28 items in this block. This results in a binary observed data
matrix containing responses from N = 972 students. The online TIMSS 2019 Item Information—
Grade 8 provides details about which specific skills each test item is measuring, and we use
these information to construct the Q-matrices. There are four content skills: α(1)

1 : Number; α(1)
2 :

Algebra; α(1)
3 : Geometry; and α

(1)
4 : Data and Probability; and three cognitive skills: α(1)

5 : Know-

ing; α
(1)
6 : Applying; and α

(1)
7 : Reasoning. These content and cognitive skills can be viewed as

subcompetences for which it is desirable to provide fine-grained diagnoses. Therefore, we model
these seven skills as K1 = 7 fine-grained attributes in the shallower latent layer in a DeepCDM.
In fact, each test item is listed as measuring one content skill and one cognitive skill; for example,
the first item in block No.2 measures α

(1)
1 : Number, and α

(1)
5 : Knowing. We use such available

item information to obtain the first-layer J × K1 Q-matrix Q(1)
28×7 in Table 6. Further, as already

implied by the above skill descriptions, the seven specific skills naturally belong to two general
domains: the content domain and the cognitive domain. Here, the wordings of naming “content”
and “cognitive” as two “domains” are official terms defined by and provided in the online TIMSS
2019 Assessment Frameworks. Diagnosing a student’s states on these latent domains can reflect
their general strengths/weaknesses on these two broad aspects. So the deeper latent layer in our
DeepCDM has two domain attributes: α(2)

1 : Content and α
(2)
2 : Cognitive. According to the equiv-

alence between the direct dependencies among variables and theQ-matrix entries, we can use the
above attribute information to construct a K1 × K2 matrix Q(2)

7×2 = (q(2)
k,m), shown in Table 7.

We then apply ourBayesian estimationmethod to theTIMSSdata.DeepDINA is not used here
because Q(1) does not satisfy the C-R-D conditions (i.e., does not contain an identity submatrix
IK1 ), and hence does not give an identifiable DeepDINA model. As for DeepLLM and Hybrid
GDINA-DINA (abbreviated as Hybrid G-D hereafter), it is not difficult to verify that Q(1)

28×7 in
Table 6 satisfies the generic identifiability conditions (G1) and (G2) in Theorem 3 for main-effect-
based models, and thatQ(2)

7×2 in Table 7 satisfies the strict identifiability condition (S) in Theorem
2 for general diagnostic models. This means all the parameters in DeepLLM and Hybrid G-D
are all strictly or generically identifiable. Note that Q(2) has all the rows each being either (1, 0)
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Table 6.
First-layer Q-matrix Q(1)

28×7 for item block No.2 in TIMSS 2019 eighth grade math assessment.

Item ID α
(2)
1 α

(2)
2 α

(2)
3 α

(2)
4 α

(2)
5 α

(2)
6 α

(2)
7

Number Algebra Geometry Data prob. Knowing Applying Reasoning

1 1 0 0 0 1 0 0
2 1 0 0 0 1 0 0
3 1 0 0 0 1 0 0
4 1 0 0 0 1 0 0
5 1 0 0 0 1 0 0
6 1 0 0 0 1 0 0
7 1 0 0 0 0 1 0
8 1 0 0 0 0 0 1
9 1 0 0 0 1 0 0
10 0 1 0 0 1 0 0
11 0 1 0 0 1 0 0
12 0 1 0 0 0 1 0
13 0 1 0 0 0 1 0
14 0 1 0 0 0 1 0
15 0 0 1 0 0 1 0
16 0 0 1 0 0 0 1
17 0 0 1 0 0 0 1
18 0 0 1 0 0 0 1
19 0 0 1 0 0 0 1
20 0 0 1 0 0 0 1
21 0 0 1 0 0 0 1
22 0 0 1 0 0 0 1
23 0 0 0 1 1 0 0
24 0 0 0 1 0 1 0
25 0 0 0 1 0 1 0
26 0 0 0 1 0 1 0
27 0 0 0 1 0 1 0
28 0 0 0 1 0 0 1

Table 7.
Second-layer Q-matrix Q(2)

7×2 for TIMSS 2019 eighth grade math assessment.

α
(1)
1 α

(1)
2

Content domain Cognitive domain

α
(2)
1 Number 1 0

α
(2)
2 Algebra 1 0

α
(2)
3 Geometry 1 0

α
(2)
4 Data and probability 1 0

α
(2)
5 Knowing 0 1

α
(2)
6 Applying 0 1

α
(2)
7 Reasoning 0 1
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Figure 4.
TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated parameters from the Hybrid-GDINA-
DINA model. Plot (a): deeper DINA-layer parameters, with the left column being g(2) and the right column being
17×1 − s(2); plot (b): conditional correct response probabilities under GDINA.

or (0, 1), in which case the Hybrid G-D model in fact covers both DeepDINA and DeepLLM
as special cases and offers a more general alternative. Therefore, we focus on the more general
Hybrid G-D model next.

We run the Gibbs sampler for Hybrid G-D for 15,000 iterations and retain the last 5000 as
our posterior samples, the same as in the simulation studies. Based on these samples, the posterior
means are calculated for all the continuous parameters in the model. The deep proportion param-
eters’ posterior means are πdeep = (0.477, 0.033, 0.059, 0.430), which correspond to deep
latent patterns A(2) = (0, 0), (0, 1), (1, 0), (1, 1), respectively. This estimated πdeep implies that
the two domain attributes exhibit a relatively high correlation. As for the quasi-item parameters
characterizing P(A(1)

k | A(2),Q(2)) and item parameters characterizing P(R(1)
j | A(1),Q(1)), we

plot their posterior means in Fig. 4. Specifically, Fig. 4a shows the conditional attribute mastery
probabilities given the domain attributes, with its left column showing the quasi-guessing parame-
ters g(2) = (g(2)

1 , . . . , g(2)
7 )	, and right column showing one minus the quasi-slipping parameters

17×1 − s(2) = (1 − s(2)
1 , . . . , 1 − s(2)

7 )	. Figure4b shows the conditional correct response prob-
abilities given the fine-grained attributes, that is, the θ -parameters in (18). For each item j , the
column θ0 refers to θ

(1)
j,∅; column θk refers to θ

(1)
j,{k} for k = 1, . . . , 7; column θ15 refers to the

θ
(1)
j,{1,5}, etc. For an item j ∈ {1, . . . , 28}, only those “effective” θ -parameters are plotted in Fig. 4.

For example, the first item requires the first and the fifth attributes (i.e., Number and Knowing),
so only four θ -parameters are “effective” and shown in the first line in Fig. 4b: θ0, θ1, θ5, and θ15.

To further inspect the latent attributes’ mutual dependence, we calculate the element-wise
posterior modes of the discrete latent profiles and obtain the N × K1 binary matrix Ā(1) = (ā(1)

i,k )

and the N × K2 binary matrix Ā(2) = (ā(1)
i,m). Specifically, each binary entry ā(1)

i,k is the posterior

mode of a(1)
i,k based on the retained posterior samples, and ā(2)

i,m is similarly obtained. Based on

the K1 = 7 columns of Ā(1) and K2 = 2 columns of Ā(2), we generate the scatterplot matrices in
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Figure 5.
TIMSS 2019 eighth-grade math assessment US data, item block No.2, estimated latent profiles. In plots (b) and (d), the
sample data points are jittered from zero/one.

Fig. 5. In this figure, the two plots on the left show the correlation between the second-layer domain
attributes (Fig. 5a) and those between pairs of the first-layer fine-grained attributes (Fig. 5c). The
two plots on the right panel of Fig. 5 show the jittered versions of the scatterplot matrices, which
more explicitly visualize the pairwise joint distributions of latent variables. As expected, the seven
fine-grained latent skills show relatively high positive dependencies on each other, which supports
using the DeepCDMmodeling framework. Moreover, the estimated posterior mode matrices Ā(1)

and Ā(2) provide multi-granularity diagnoses of students’ strengths/weaknesses on both the two
broader domain attributes and the seven more fine-grained attributes.

Next, we also perform a comparative analysis of a TIMSS 2019 fourth-grademath assessment
dataset (item block No. 7) using both a DeepCDM and a traditional CDM to see their difference.
Specifically, we consider both the Hybrid G-Dmodel (which is GDINAwith a higher-order DINA
layer), and GDINA with a saturated latent attribute model. In terms of statistical parsimony,
our Hybrid G-D requires much fewer parameters than GDINA with a saturated latent layer. In
particular, to model K1 = 6 fine-grained latent attributes, the Hybrid G-D model uses only
3 + 6 × 2 = 15 parameters while the traditional saturated attribute model uses a large number
of 26 − 1 = 63 parameters. Such statistical parsimony implies that our DeepCDM would require
a smaller sample size to reach the same level of parameter estimation precision. In terms of
substantive interpretations, the correlation plots in Fig. 6 show that the Hybrid G-D model gives
a much more interpretable correlation structure among the fine-grained latent attributes (in the
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Figure 6.
Estimated attribute correlation plots given by the proposed Hybrid GDINA-DINA model (i.e., GDINA model with a
higher-order DINA layer) in (a) and GDINA with a saturated attribute model in b for the TIMSS 2019 4th grade math
booklet 7 dataset.

left panel) than GDINA with a saturated attribute model (in the right panel). Specifically, recall
that the first three attributes fall in the “Content” domain and the last three attributes fall in the
“Cognitive” domain. The nearly block diagonal heatmap in Fig. 6a shows that our DeepCDM
induces much higher correlations among attributes within a same domain than those across two
different domains. On the other hand, for the GDINA model with a saturated attribute model,
Fig. 6b shows a somewhat counter-intuitive pattern: “Data” has a relatively small correlation with
all other attributes and there are no clear separation between the content-related attributes and the
cognitive-related ones.

7. Discussion

In this work, we have proposed a new family of interpretable diagnostic models called Deep-
CDMs, established transparent identifiability conditions and general identifiability theory, and
developed Bayesian estimation methods for them. On one hand, DeepCDMs are well motivated
by the applied goal of uncovering rich and structured diagnostic information from educational
and behavioral data. Through the estimated multilayer latent profiles, DeepCDMs enable multi-
granularity diagnoses of latent attributes from coarse to fine grained and from high level to
detailed. On the other hand, in terms of discrete latent structures, DeepCDMs share similarities
with powerful deep learning models such as deep belief networks (Hinton et al., 2006) and
deep Boltzmann machines (Salakhutdinov & Larochelle, 2010) , and are expressive modeling
tools. Distinctively, DeepCDMs are fully identifiable under our conditions, which is a desirable
property lacked by most deep learning models. In a nutshell, our identifiability conditions can be
summarized as: as long as eachQ(d) satisfies the identifiability condition under the CDM towhich
the shallower layerA(d−1) (orR if d = 1) conforms, then the entire DeepCDM is identifiable. Our
identifiability guarantees form the very foundation for deriving interpretable and reliable insights
in practical applications, and offer the very guidelines on adopting a shrinking-ladder-shaped gen-
erative graph structure. Simulation results empirically corroborate the identifiability conclusions,
and also demonstrate the good practical performance of our Bayesian estimation algorithms.
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In our real data example in Sect. 6 and other potential future applications, the deeper-layer
binary variables are not used in order to capture the person’s continuous variability in the coarse-
grained higher-order skills as in the HO-CDM in de la Torre and Douglas (2004). Instead, the
higher-order meta attributes provide an additional layer of discrete diagnoses of the persons’
higher-order skills. Such a diagnostic modeling goal shares a similar motivation with originally
using CDMs as an alternative modeling tool to the classical (multi-dimensional) IRT models
with continuous latent traits. Historically, IRT has been the dominating modeling methodology in
educational and psychologicalmeasurement, thanks to their excellent ability of capturing subjects’
latent variability. Nonetheless, in the recent two decades, CDMs have also emerged as powerful
alternative tools that provide fine-grained discrete diagnoses of skills, instead of capturing the
continuous variability. In this sense, we view the proposed DeepCDMs as going further down the
road of diagnostic classification, by providing skill diagnoses with multiple layers of granularity.
To fully realize the applied potential of the proposed new framework, our far-reaching goal is for
practitioners to design new cognitive diagnostic assessments directly inspired by the DeepCDM
identifiability theory.

DeepCDMs suppose that the latent variables follow a multilayer generative structure. In
practice, admittedly, it may not always be the case that attributes follow multiple neat layers as
in a DeepCDM. On the other hand, however, we believe that in a number of CDM modeling and
application scenarios, the advantages of DeepCDMs in terms of statistical parsimony, practical
interpretability, and identifiability outweigh the induced limitation. Our motivation for proposing
DeepCDMs is not to replace, but to complement, other latent structuralmodels (including attribute
hierarchy methods, higher-order continuous latent trait models) in the CDM literature as an
alternative family of interpretable and identifiable models. Specifically, we expect DeepCDMs
will be suitable for those applicationswheremulti-resolution discrete diagnoses of latent attributes
are of interest. We hope this work contributes a useful first step toward a versatile toolbox of
providing statistically justified multi-granularity diagnostic classification.

The proposed DeepCDM framework unlocks many interesting future research possibilities.
First, this paper has focused on binary responses and binary latent variables in all the layers,
but the DeepCDM framework can be readily extended to polytomous responses and polytomous
attributes (Chen & de la Torre, 2013; Gao et al., 2021) . Similar identifiability conditions on the
between-layerQ-matrices may be obtained, and corresponding Bayesian estimation methods can
also be developed. To this end, the Bayesian Pyramid model and its corresponding Bayesian esti-
mation method in Gu and Dunson (2023) is an example, which deals with multivariate unordered
categorical data with binary latent layers. Second, this paper developsMarkov ChainMonte Carlo
algorithms for estimation. In the future, it would also be useful to develop more scalable varia-
tional Bayesian inference algorithms or EM algorithms for DeepCDMs to enhance computational
efficiency.

Another interesting future direction is to perform exploratory DeepCDM analysis and esti-
mate theQ-matrices from data. This initial work has focused on confirmatory scenarios in which
multi-granularity design information are available and can be directly translated into the Q-
matrices. Nevertheless, all of our identifiability results are fully general and applicable to the
exploratory settings with unknown Q-matrices. This means we have also obtained identifiability
guarantees for directly estimating all the Q-matrices in a DeepCDM. In recent years, there has
been an increasing interest in exploratory estimation of CDMs, including those using Bayesian
approaches (Balamuta & Culpepper, 2022; Chen et al., 2020; Culpepper, 2019b) and those
using frequentist ones (Chen et al., 2015; Gu & Xu, 2023; Xu & Shang, 2018) . Developing
efficient methods to estimate the multiple Q-matrices in a DeepCDM is important future work.
Furthermore, in an even more exploratory setting, it would also be interesting to study how to
select the number of latent variables K1, K2, etc., in each layer in a DeepCDM. Nonparametric
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Bayesian approaches can be useful tools toward this end (e.g., Chen et al., 2021, Fang et al., 2019,
Gu and Dunson, 2023).

On the application front, for modern large-scale educational assessments such as TIMSS
and PISA, we believe there is a promising future potential of using the DeepCDM methodology
to model and analyze high-dimensional response data, to generate new insights into student
achievement, and to enhance multi-granularity instruction and intervention. Indeed, the TIMSS
2019 eighth grade math assessment offers more levels of item information than are used in our
current data analysis. For example, under the “Number” skill, there are still four different topic
areas: Integers/Fractions and decimals/Ratio, proportion, and percent, which are candidates for
more fine-grained attributes. In the future, advancing and refining the computational techniques
for DeepCDMs with more layers can help extract even more nuanced diagnoses about student
subcompetences from large-scale assessment data.

On a final note, we would like to give a broader discussion on DeepCDMs’ implications.
In applied cognitive psychology, the concept of “higher-order thinking skills” was put forward
(Brookhart, 2010; Schraw & Robinson, 2011) which includes problem solving, critical thinking,
creativity, and so on; in linguistics, the “ladder of abstraction” idea was proposed (Hayakawa,
1947;Munson et al., 2011) to describe theway humans think and communicate in varying degrees
of abstraction through languages; and in deep learning, an influential review article Bengio et
al. (2013) pointed out that using deep architectures can potentially lead to progressively more
abstract features at higher layers of representations. Our shrinking-ladder-shaped DeepCDMs
attempt to offer principled and identifiable statistical models to back up such substantive theory
and deep learning heuristics. We hope the DeepCDM framework will be useful for practitioners,
illuminating for theoreticians, and triggering fruitful future research on using rigorous statistical
methods to cross-fertilize the fields of (deep) machine learning and psychometrics.

Supplementary Material.

The Supplementary Material contains the proofs of the identifiability theorems and the details of
the Gibbs sampling algorithms for posterior computation.
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