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Abstract. In this communication the main equations for the variables: radius vector, longitude, P and Q 
(variables built from Laplace's perihelium first integral) are given in closed form. These equations are used 
for deriving the equations of a second-order theory. At this order, the equations for P and Q, are separated 
and they are integrodifferential linear equations. The equations for the radius vector and for the longitudes, 
give, after integration, perturbations which are purely trigonometric. The solution shows the features 
observed in the motion of Jupiter's Galilean satellites. The results are discussed, and extended to include 
the space variables. 

1. Introduction 

As it has been pointed out by Kovalevsky (1962) the tables of the four great satellites 
of Jupiter (Sampson, 1910) do not allow, nowadays, a precise prediction of the phe­
nomena involving these bodies. The errors of such predictions are of the order of one 
minute, and, in many occasions they have gone up to several minutes. 

Since the nominal time unity of Sampson's tables is the UT, it may be expected 
that a shift of the time scale be among the main sources of errors. Indeed, the analysis 
of all photographic observations made in the past 40 years, carried out by Rodrigues 
(1970) and by Ferraz-Mello and Paula (1973), has shown that this shift is increasing 
two times faster than the difference ET —UT. The best modern observations, made 
by D. Pascu at McCormick, allow the following estimate for the shift of the Sampson's 
tables time scale (ST), for the mean epoch 1968.2: 

ST-UT=1.0±0.9min. 

The standard deviation is much larger than should be expected from the observa­
tions themselves. Indeed, after correcting the time scale, the standard deviation for the 
(0 — C) of the mutual distances is 0"2, while its expected value for the focal length of 
the telescope employed is O'.'l. So, these deviations are almost entirely due to tables' 
errors. 

If the evolution of precise measurements in the Solar System from radar astronomy, 
and the increasing need of better ephemeris for astrodynamics are considered, it is 
clear that a better theory will be necessary in the near future. So, efforts have been 
made, mainly at the Bureau des Longitudes (Paris), to derive a new theory for the 
Galilean satellites of Jupiter. 

This theory must take into account the main features of the Galilean system: 
(a) The ratio of the semimajor axis (0.2 to 0.6) and the masses of the satellites with 

respect to the primary (10~4) are characteristics of a planetary problem with strong 
interactions. 
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(b) The periods of the satellites are very short and prevent the use of the classical 
methods of planetary theory, as well as purely numerical theories. 

(c) The standard deviations of the best observations already made (0"03), when 
translated in terms of the Jovicentric longitudes of the satellites, give rise to very high 
values (50", 34", 21" and 13", respectively). 

These features allow us to characterize the problem of the motion of Jupiter's 
Galilean satellites as a problem of research of absolute orbits, i.e., orbits of low preci­
sion, but, which remain valid for very long time intervals. The first attempts to con­
struct absolute planetary theories are due to H. Gylden and, after him, to G. W. Hill 
(see Brouwer, 1959). The most important results obtained hereto are those by Brum-
berg (1970) and by Sagnier (1973a, b), the latter in intimate relation with Jupiter's 
satellites; in connection with these works the researches by Krasinsky (1968, 1969) 
providing a very strong mathematical tool for the integration of a certain kind of 
systems of linear differential equations with periodic coefficients and providing an 
existence theorem for quasi-periodic solutions of the first kind (premiere sore) in the 
planar Af-body problem, should also be mentioned. 

This paper deals with the problem of the construction of second-order absolute 
orbits for the Galilean system of satellites. The method is the same already used for 
deriving the equations of a first-order theory (Ferraz-Mello, 1966; Hagihara, 1972). 
The main ideas for deriving the second-order theory are those shortly described in 
Ferraz-Mello (1969a, b). 

2. The Equations 

Let a Jovicentric system of moving axes be considered. Following a suggestion by 
De Sitter (1918) the angular velocity of this frame is taken so that the mean motions 
of the three inner satellites are exactly commensurable. Such a choice is possible since 
the absolute mean motions of these satellites are such that 

nl-3n2 + 2n3 = 0. (1) 

If vl9 v2 and v3 are the Eulerian mean motions of these satellites, it follows that 

n,=v, + JV, (2) 

where N is the angular velocity of rotation of the equatorial axes, and so 

n1-2n2 = v1-2v2-JV=0°73950742days-1, 

n2 - 2n3 = v2 - 2v3 - N=0°739 507 42 days " 1, 

i.e., 

AT=-0°73950742 days"1. 
For the plane variables, let Hill's normalized variables 

Uj = (Xj + iyjtfaj, Sj = (Xj - iy^a} (3) 

https://doi.org/10.1017/S0074180900070558 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070558


ON THE THEORY OF THE GALILEAN SATELLITES OF JUPITER 169 

be introduced. The normalization factors cij are the mean distances from the satellites 
to the planet. The heights over the fundamental plane are also normalized by this 
factor: 

Zj = zj/aj. 

Let also a new independent variable, 

C = expiv3f, (4) 

and the operator 

D = {d/d£, (5) 

be introduced. 
In the computations it is wise to take into account that the motions will not depart 

too much from coplanar circular uniform motions, whose angular velocities are the 
observed mean motions and whose radii are the mean distances ay The zeroth-order 
solution for each satellite is given by 

«7° = <tf«, s<> = afr9j, M = l), (6) 
where 

0; = Vv 3 , (7) 

and Gj=expi0Oj gives the position of theyth satellite at the time origin. Let then the 
variables U} and Sj be introduced through 

Uj=aF>(l + Uj), (8) 

The equations of motion are, then, 

(D + Kj)2 UJ + KJ = XJ(aj/rj)i (1 + 1 / , ) + ^ „ 
(D-K/ Sj + K^ljiaj/rj)3 (1 +Sj)fj. (9) 

where 

Xj = Gm0(l+mj)/vlal (10) 

rrij are the masses of the satellites with respect to the mass of Jupiter (m0), G is the 
constant of gravitation, r, are the vector radii of the satellites, 

Kj = gj + m, % (11) 

and 

m = JV/v3=-0.01448391. (12) 

31 j , 3~j and ^ are the disturbing forces for these variables. If only the mutual interac-
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tions are considered, then 

J t*j vf 1 r\ rf J' 

J~L ,,2 ) „3 + „3 ( ' (13) 

where rjf are the mutual distances, and 

dij^ajaj. (14) 

It must be observed that the planar equations are conjugated throughout the 
transformation, 

This property is very useful for checking the calculations throughout this work, and 
will be used in this paper in order to avoid duplicated derivations. 

3. The Area Integral and Its Application 

The integral of the areas in the two-body problem may be used to introduce a new 
pair of variables for each satellite, and these variables are intimately related to the 
proper oscillations perpendicular to the orbit. Let this integral be considered in the 
form 

c = r x v , (15) 

where r is the relative position of the second body and v its relative velocity in an 
inertial frame. The vector c is a constant vector directed along the positive normal to 
the orbital plane. 

Let now k be the unit vector of the z-axis of the Eulerian frame defined in Section 2, 
and K0 the projection of c along this axis. It follows that 

X0 = (rxv)-k, 

K0 = ( rxv g ) -k+mv 3 [ rx (kx r ) ] ' k , 
or 

where 
v =v — mvik x r 

is the velocity vector with respect to the Eulerian system of reference. With the nor­
malized Hill's variables, it writes 

K0 = v3a2(K + iK2) , (16) 
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where 
K2 = (\+S)DU-(1 + U)DS + 2K(1 + U)(1+S)-2K. (17) 

We have now the following proposition: K2 is a second-order quantity with respect 
to the eccentricity. Indeed, the above calculations were made in the frame of the 
problem of the two bodies where, to the first order, we must have the classical result 
Kl = Kv3a2 (=na2). 

The integral of the areas is then used to define two new variables. Let K and H 
be respectively defined by 

K = - ^ ( c x + icy), 
1 (18) 

where cx and cy are the projections of c over inertial axes in the fundamental plane 
of reference. Easy calculations lead to 

K=i^P{-±?(\+u)+z[?{\+um, 
// = ̂ { - Z C - x ( l + 5 ) + Z[C-K(l+S)J}, 

and, by introducing the operator D, to 

KK= (l + (7 )Z)Z-Z[Dt / + /c(l+ £/)], 
KH=-(\+S)DZ + Z[DS - K ( 1 + S ) ] . ( ' 

The pair of variables introduced in this way will serve to describe the proper 
oscillations along the z-axis and it is close to the Poincare's variables / exp — /(/—Q) 
and / exp*'(/ — Q). They will be introduced in the system as follows: We have for each 
satellite one equation like 

D2Z = ij/(Z). 

We normalize this equation by introducing W= DZ. Then we have 

DW=il/(Z), DZ=W, 

which are transformed, by introducing the relations 

K = K{Z,W), H = H(Z,W), 

into two equations for the new variables. 

4. Laplace's First Integral and Its Application 

For each satellite, a second couple of variables will be introduced through functional 
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relations which allow us to transform the remaining equations to Weierstrass' normal 
form. Laplace's first integral for the two-body problem is the best suitable to suggest 
the functional relations to be introduced. This integral gives the invariance of the 
apsidal line and of the eccentricity in this problem. It writes 

p = - r / r - ( G / / ) ~ ' (r x v) x v, (20) 

where \i is the sum of the masses and p is a constant vector directed to the pericenter. 
Decomposing p along a couple of inertial axes in the fundamental plane of refer­

ence, we write 

P=(px+ipy)e*CK, 

Q = (Px-iPy)a£K, 

then, to the third order in the orbital eccentricity, 

P = — (i + [/) + _ l + - i )[DU + K (l + l / ) ] — K DZ, 
r K\ 2K J K 

Q=_-(l+S)-I(l+Jij[DS-ic(l+S)] + -H-DZ, 
r K \ 2K I K 

(21) 

where K, H and K2 are that defined in Section 3. It should be emphasized that all 
computations in the derivation of P and Q are made in the frame of the two-body 
problem. Indeed, the aim of these derivations is only to give rise to the functional 
relations we want. So, for example, Kepler's third law: G = K2vla3 may be used 
without any constraint. 

In order to solve these equations with respect to DU and DS let them be used to 
derive a new equation for K2 where DU and DS are replaced by P and Q. From 
Equations (21), it follows: 

( l + S ) P + (l + L 0 Q = - 2 - ( l + l / ) ( l+S) + 

+ - n + ^ J [ ( l + S ) D l / - ( l + l/)DS + 2ic(l + l/)(l+S)]-

— DZ[(1 + S) K - ( l + U) H] +0(4th); 

K 

and then, taking into account that 

( l + 5 ) D t / - ( H - L / ) D S + 2/c(l4-[/)(l+5) = 2K+K 2 , 
and that K2 is a second-order quantity in the problem of the two bodies, and solving 
with respect to K2, we have 

K 2 = - > 4 + i D Z [ ( H - S ) K - ( l + l / )H] + 0(4th), (22) 
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where 

A = K\ l - - ( l + l/)(l + S) - M ( l + S ) P + (l + l/)Q]. (23) 

It follows, to the third order, 

DU= KP + K(--U{1 + U) + ±A(1 + U)+W2(1 + U), 

DS=-KQ-K(--I\(1+S)-±A{\ + S)-WZ(\ + S), 

(24) 

where 
W2=-|Z>Z[(l+S)K-(l + l/)tf] + (l+S)KZ>Z, 

W$=-iDZ[(\+S)K-(\ + U)Hli-(l + U)HDZ. 
(25) 

Equations (24) will be taken as defining our new parameters P and Q. They will be 
introduced in the system as follows: We have for each satellite one pair of equations 
like 

D2[/ = ^1(C/,S), D2S = \I/2(U,S). 

We normalize these equations by introducing the functional relations 

DU = (Pl {U, S, P, Q), DS = q>2(U, S, P, Q). 

From their derivatives and the original equations, we have 

DP = q>3(U,S,P,Q)9 DG = V4(l/,S,P,Q). 

And this completes the transformation of our system of equations in a system of 
first-order equations. 

The reasons for the choice of the functional relations given by Equations (24) may 
be discussed. Since this choice is arbitrary it would be possible in this theory to use 
the same functional relations already used in the first-order theory. The new choice 
corresponds to have P and Q close to the Poincare's variables e exp — i(l-m) and 
e Qxpi(l — m) to the second order in the elliptical parameters; this fact is of an utmost 
importance for it warrants linear equations for P and Q in the second-order theory. 
We would also ask about the possibility of introducing a third variable by taking 
the space component of p, which conjugates itself with Z in the same way as P and 
Q conjugate themselves with U and S. The difficulty for such a procedure, from an 
algebraic point of view, lies in the fact that the space component of p is a third-order 
quantity. On the other hand such possibility would not lead to easy interpretations 
of the variables as describing proper oscillations. 

5. The Central Problem 

We call central problem in the theory of the four great satellites of Jupiter the re­
stricted problem in which the satellites and the planet lie in a fixed plane under the 
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action of their mutual attractions, disregarding the effects arising from their shapes 
or from external bodies. This restricted problem has the main difficulties of the gen­
eral problem and its solution shows the main features of the observed motions. In­
deed, aside the characteristics already discussed in Section 1, some others may be 
considered: 

(a) The quasi-resonances. The sidereal mean motions of the satellites are such that 
nx—2n2 and n2 — 2n3 are small and will give rise to small divisors in the integration 
step. For example, in Laplace's theory (Tisserand, 1896), the longitude of Io has the 
inequality 

m2n1f(<xl2) . 
dVl = o _L n\ s i n 2 / l " 2 / 2 • 2 6 

Since its period is close to the period of the satellite it is named induced equation of 
the centre, and its half amplitude is the forced eccentricity. For the four satellites we 
have respectively, 

Proper eccentricity Forced eccentricity 
0.00001 0.00412 
0.00013 0.00943 
0.00139 0.00063 
0.00736 

These values show that the first two satellites depart from uniform circular motions 
more owning to perturbations than they do owning to proper oscillations. In the 
choice of the criteria for defining the small quantities of the theory, this fact is de­
terminant. 

(b) The proper oscillations. In reason of the strong interactions we cannot con­
sider each orbit as having its own free oscillation (equation of the centre). The strong 
interactions do not allow to take as intermediate solutions those arising from sep­
arated integrations. The intermediate orbit must arise from the integration of the 
system formed by the four pairs of variables P( and Qh simultaneously. So we will 
have four proper oscillations which will be apparent in the orbit of each satellite. 
The free oscillations in the longitudes of the satellites will have the form 

Svj^ZMjtSinilj-ml (27) 
i 

The fact that the system oscillates as a whole leads to the necessity of having the Pt 

and Qt close to the Poincare's variables at least to the second order in the elliptical 
parameters for the sake of having linear equations for these quantities in the second-
order theory. 

(c) The libration. The Galilean resonance, which arises from 

n 1 - 3 n 2 + 2«3 = 0, (28) 

will give rise to libration's inequalities in the longitudes of the first three satellites. 
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The best results indicate for their half amplitudes respectively 8"7, 24" and 2"3. These 
values must be compared with those giving the standard deviations of the best ob­
servations (Section 1), and such comparison allows to disregard a deeper study of 
this phenomenon when deriving a theory for ephemeris purposes, notwithstanding 
its very high mathematical interest. The complete modern treatment of this phenom­
enon has been made by Sagnier (1973b), who succeeded in deriving formal quasi-
periodic solutions of the second kind for the central problem including the Galilean 
libration. 

6. The Equations of the Central Problem 

The equations of the central problem are those given in Section 2, when restricted 
to the plane variables Uj and Si and to the disturbing functions arising from the 
mutual interactions. The functional relations which are to be introduced are 

DUj= KjPj + KjWCj-lUX + Uj+tAjil + Uj), 
DSj= -KjQj-Kjil/Cj-1)(1 + Sj) - H O + Sj), 

where 

and 

c^Ki + UjHi+Sj)]1'2, (30) 

Aj-Kjil-Cj-tKjKl + Sj) Pj+(l + Uj) Qj]. (31) 

The conjugacy of all equations, already mentioned in Section 1 is preserved; the 
equations are invariant with respect to the transformation 

UJ^SJ, SJ^UJ, PJ-^QJ, QJ-^PJ, t — t . (32) 

If the technique of utilization-of the functional relations already discussed in 
Section 4 is adopted, we have, after some appropriate differentiations and substitu­
tions, the equations 

*j^j Kj 

where 

-L>-^B>il+u)+-t*(l+uJ>> 
DQJ-KJQ^ - ^ (1 + S j ) ~ 3-j + 

+ L ^ 4 ^ . 5 J ( 1 + ^ ) + 4 ^ X J ( 1 + S J ) ' 

LJ^AJPJ-UM + Uj) [ C J ( 1 + UJ)-PJ(1+SJ)] + 

(33) 

+ ^(Cl-l)(l + Uj) + ~Al(l + UJ). (34) 
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Uj is its conjugate through the above defined transformation 

B 7 =( l - iCj ) _ 1 KjKl+S^Lj-il + Uj)^], (35) 

and 

Z j = ( l - i C ^ ) - 1 [ ( l + ^ ) ^ - ( l + ^ ) ^ ] - (36) 
The new equations of the motion are the set formed by Equations (29) and (33) 

which are normalized, with respect to the variables Uj9 S,, P, and Qj. 
We must notice that these equations are exact, that is, no approximation has been 

made in the course of their derivation. The fact that the functional relations (Equa­
tions (29)) are themselves approximate relations in the two-body problem, do not 
matter. Indeed, the two-body problem has been used only to suggest the form of 
Equations (29), which are exact as they define the P, and Qjm 

7. First Integrals of the Functional Relations. Poisson Technique 

When Pj = Qj = 0, Equations (29) may be written 

Z)(l + l/,)= JJQ + UJ), 

D(\+SJ)=-J*J{1 + SJ, 

where 
stj-stjiUj, S,) = K , (1 /C , - q+frj-frjCj. (38) 

Two first integrals may be obtained. Firstly, from Equations (37), it follows: 

(\+SJ)>D{l + Uj) + (l + Uj)'D(\+SJ) = 0, 
and then 

(1 + Uj) (1 +Sj) = CJ = const. (39) 

On account of the meaning of Uj and S, it is easily seen that this integral accounts 
for the circularity of the motion when Pj = Qj = 0. From Equations (37) it follows, 
still, that 

(l+Sj-Dil + l / J . p + l / ^ D f l + S ^ ^ l + l/jlil+Sj), 

or, if we put 

ZJ = {1 + UJ)/(1+SJ)9 (40) 

that 
Dljl^lsty (41) 

Let it be remarked that, for PJ = QJ. = 0, ^ is a constant. Indeed, from its definition, 
and from Equations (39), it follows 

Stj = - ^Kj + Kj/Cj - \KJC} . 
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So, the integration of Equation (41) may be easily performed and leads to 

logtj = logCj + 2s/jlogt9 

or 

£^t"'-c, (42) 
This integral is related to the uniformity of the motion when p. = Q. = §. 

These integrals may be extended to the general case (P7-#0 and (^#0), by means 
of Poisson's method for the variation of the first integrals (see Kurth, 1959). Let 
Equations (29) be written completely: 

DSJ=-S/J(1+SJ)-HJ, 

where Gj and Hj are the terms which vanish when Pj=Qj=0, and which are to be 
treated as perturbations. The variational equations of Poisson, for this system, write 
(Ferraz-Mello, 1966) 

dC, dC. 

1 J (44) 
dC, dC] 

DCi=—J-Gi--^Hi. 1 dUj ' dSj ' 

If the partial derivatives are computed and substituted, it follows, after some algebra: 

DCj=i K j [P j (qr ' 2 r* ' - e , (q ) , / 2 t* 'L (45v 
DCj^Pjicy2 C'+Qj(q)3'2 c*>]-

-KrtiPj{q)l'2r"'-Qj{q)3>2 c*>] logc, 

s/'j=ds/j/dCj=-Kj(Cj2+i), (46) 

9j=Kfij(CJ2-t). (47) 
It is easily seen that any iterative procedure of integration (the Pj and Qj being as­

sumed as known Fourier's series) will lead to Poisson's secular terms. This fact is 
well apparent when the equation for DC] is modified taking into account that s/jDCj = 

where 

and 

= Djty. 

Dlogq = ^ . [ P , . ^ 
(48) 

These Poisson terms are of the same kind as those arising in the formulation of 

https://doi.org/10.1017/S0074180900070558 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070558


178 S. FERRAZ-MELLO 

Lagrange's equations of variation of the parameters. They may be avoided by making 
use of the Tisserand's transformation (Tisserand, 1868). Let the parameter 

/ > l o g q + 2^.1ogC, (49) 

be introduced instead of C]. Equations (45) become: 

DCj^KjlPj/yj-QjyJ, 
Drj^s/j + ^jiPj/yj + Qjyj-], 

where 

y,?=exPr,.=qc2^. (51) 
For these equations we can get a formal quasi-periodic solution provided that the 

Fourier's series in the right hand side are of zero average. These solutions are formal 
first integrals of the motion. 

8. The Integration 

In order to integrate these equations, successive approximations may be used. Let 
be remarked that the radius vector and the longitude of the satellites are given by 

r — diC:, / , 
J J J 52 

0; = 0o; + 0 ,v 3 f - /y2i , 

so that the start solution may be 

C,= l, r ,= 0 (y,= l). (53) 
We must observe that s/j is one order lesser than the other terms of the differential 
Equations (50). So, at each step, C, must be computed before r,, and it must be taken 
for getting the new value of s/j in the computation of / } . The order-one solution is 
computed thereafter. 

We have, first, 
DCj^KjiPj-Qj), 

and then, 

Cj = l+lKp-l(Pj-Qj). (54) 
The choice of the constant of integration is provided by the fact that at each approx­
imation, if Pj and Qj are given by Fourier series, then the mean value of C, must be 
equal to one. This value of C, allows to compute the first-order approximation for 
sty. 

^--frlD-^Pj-Q}. (55) 

Then we have 

Dr^KjiPj + Qj^KJD-^Pj-Qj), 
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and 

r^KjD-^Pj+Q^KJD-'iPj-Q,). (56) 

Here, the arbitrary constant is chosen such that the mean value of r} be equal to 
zero. 

In both cases the operator D~l has the meaning of the primitive function of the 
trigonometric function involved, in the ordinary sense, i.e., without integration con­
stant. 

The complete integration involves also Equations (33) where the new parameters 
Cj and r, are to be introduced through 

(l + Uj)=Cjyj; (1+S,) = C,/T,. (57) 

The integration procedure may be chosen among the usual techniques. Nevertheless, 
this choice must be made with some care. The technique should not generate Poisson's 
secular terms, and it must allow for an adequate study of the free oscillations (see 
Section 5). If we wish only a low-order solution, approximations like those above 
computed may be used for eliminating C, and y, from the equations for P, and Q}. 
The resulting equations are integrodifferential equations. 

For example, to get the second-order solutions, it is enough to take the first order 
approximations given by Equations (54) and (55) for C, and f}. The resulting equa­
tions are, to the second order, 

DPj+KjPj = 

Kj 

+ ±gtj-A][lpj-lQ:+lKjD-*(Pj-QJ)-] + 
Kj 

and their conjugates. In these equations A' represent the first-order part of Ay From 
Equations (33) we see that 

and then 

4=-±J>-V. (59) 
where the constant of integration is taken as zero, since A] = 0 for the undisturbed 
motion. 

For the integration Krasinsky's method may be used since the equations are linear. 
In this order of approximation, Krasinsky's method reduces to the derivation of a 
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transformation of coordinates having the form 

Pj=P? + bJ + lilcJIP?+djlQT + ejiD-1I?+fjlD-1Qt+gjlD-2P? + hJiD-2Qr'\, 
(60) 

Qj=Qf + b'J + 'Z [_c'nQf + d'}iP? - e'jfi -l Qf -f'}iD "»P,* + g'yJ> " 2Qf + h'j,D " 2 i f ] , 
i 

where bp..., h^ are quasi-periodic functions of the time through £, all of them being 
of the first order. This transformation is built in such a way that the resulting system, 
which will remain linear, has constant coefficients. It has the same nature as Euler's 
differential equations. These equations are not homogeneous: they have a constant 
independent term. 

It must be emphasized that a necessary condition for success in getting constant 
coefficient equations through Equations (60) as defined, is that m#0. Indeed all 
variable coefficients and terms in Equations (58) depend on the time through £(/' g\ 
where 7eZ4, and Ix +/2 + /3 + I4 = 0; since gl9 g2 and g3 are integers and since m^O, 
i.e., Kj^gj, the only possibility of having (l\g) too close to Kj is for higher-order 
resonances involving #4. 

As a final remark to this section let us mention that an exact set of equations could 
be found instead of Equations (58) if the variables ^>

j = Pj/yj and &j = Qjyj were used 
instead of P} and Qj. Nevertheless, this change corresponds to modifying the func­
tional relations introduced in Section 4 and lead to nonlinear second-order terms. 
So, the main characteristics of the result obtained above - the linearity of the second-
order equations - would be lost. 

9. The Constant Perturbation. The Libration 

After the integration of Equations (58) is performed, the results are to be introduced 
in Equations (50). If C} are replaced by the first-order quantities 

£j=Cj-l, 

these equations write 
Dej^iKjiPj-Qd-iKjiPj + Qjrj, 

Pj and Qj are, now, known functions of f, involving the four circulatory frequencies 
Qj and the four oscillatory frequencies Wj introduced by the integration of the con­
stant coefficient equations for the Pf and Qf. 

Once again Krasinsky's method may be used in order to eliminate periodic coef­
ficients. This aim is achieved notwithstanding the fact that this set of equations has 
the nonlinear term KjSJ; indeed, the coefficient of ej is constant and we are interested 
only in second-order equations. As in Section 8, Krasinsky's method reduces itself 
to the derivation of the transformation of coordinates, 

ei = (l+fcK + *; + U/?, (63) 
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where flj,..., rj'j are quasi-periodic functions of first order. The transformation is such 
that the resulting system has constant coefficients: 

^ - W ' (64) 
Drf = T0 - f Ktf + Txej + Ktf2. 

The solution of this system to the second order shows a shift for rf proportional to 
T0. This fact contradicts the working hypothesis after which v7 is already the ob­
served mean motion and this phase shift may not exist. So, the constants T0 must 
be made equal to zero, which allows to determinate the normalization factors a,, i.e., 
the mean distances from the satellites to the planet (these constant terms gave the 
so-called constant perturbation). On the other hand, the first-order parts of Tx and 
T2' are proportional to the first-order part of T0. Equations (64) reduce so, to 

D P * = 0 
J \ , (65) 

Dr?=-$Kjej + KjeJ2, 
for which the trivial solution, sj = 0 and r* = 0, is chosen. 

This completes the integration of the central problem to the second-order, when 
libration is disregarded. Indeed in the calculations shown above there was no question 
to investigate the nature of the constant terms involved. They could be of an essential 
nature - i.e. true constant terms - or of an accidental nature since gx — 3g2 + 2g3 = 0. 

If we suppose that the relation does not exactly hold, 

Equations (64) must be slightly modified in order to avoid the integration of terms 
in CG in the computation of the /?,-,..., ^ for 7= 1, 2, 3. The resulting system is 

Drf = T0 - f KjsJ + Txsf + T2rf + Kjsf, 

where T0, Tx and 72'are the same constants as before, plus functions of (£*G +£~*G — 2); 
TQ and T2 are functions of (CkG — C~kG)- The constants may be eliminated in the same 
way as before. The discussion of the remaining system will be the subject of a sep­
arate paper. 

10. The Complete Second-Order Theory 

Let us first show that the equations for the space variables are, at the second order, 
completely independent of the solutions for the planar parameters. Let the technique 
discussed in Section 3 be adopted. From Equations (19) it follows: 

KjpKj + KjKj)- (I+UJYD'ZJ-ZJKD + K/UJ + K^, 
KjiDHj-KjHj^-il+SjyD'Zj + ZjKD-KfSj + K?]. 

When substituting Equations (9) into the right-hand sides of these equations, the 
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Keplerian parts will disappear and it results, 

KJ(DK} + KJKJ)= (l+tyrj-Zjtgj, 
KjiDHj-KjHj^-il + Sdrj + Zjfj, 

It is easily seen that the right-hand sides are of the second order. So the Z, may be 
substituted by the first-order approximations, 

Zj=-ttKj + Hj). (69) 

So, the second-order equations are 

KjpKj+KjKj)- rj+UKj+HjWj, 
KjiDHj-KjHj^-rj-HKj+Hj)^, [ > 

where the ub s„ r{ and rjt in 0t^ ^j and f ] may be taken as for the circular zeroth-
order approximation (Equations (6)). So Equations (70) are homogeneous linear with 
quasi-periodic coefficients, not involving the Uj9 S,-, P, and Qy Again Krasinsky's 
method may be used. The transformation 

Hj-il+QJHf + TjKT, 
Kj=(i+e'j)Kf+irjH? 

may be derived in such a way that the coefficients in the equations for Hf and Kf 
are constants. The necessary condition to succeed in getting constant coefficient 
equations through Equations (71) is the same as for Equations (60) and it is fulfilled. 

For the planar variables the same technique employed in solving the central 
problem is adopted. The functional relations (24) are adopted, but, for the sake of 
simplicity, all space terms are collected in W2j and W£}. So, A} is taken as for the 
central problem (Equation (31)), and for W2j and W2* we take 

W2j= WKj + HjYDZj-iKjZl 
W?.= -^Hj + Kjj-DZj-iKjZJ 

The functional relations then write 

DUj-Kfi + KjiCf1-1)(1 + Uj)+lAj(l + Uj)+W2j(l + Uj), 

and their conjugates. The resulting equations for the Pj and Qj are the same as for 
the central problem (Equations (33)) and they are solved in the same way. The second-
order space terms came through 

W^DWzj+lKjWzj-iKjiWij- W2*j)+iK]Zj, 

and their conjugates. But, it is easily seen, by using Equation (69), and the first-order 
relations DKj = - KJKJ, DHj = KjHj9 D2ZJ = KJZJ9 and 

DZj^KjiKj-Hj), (74) 

that W3j is indeed a third-order quantity. 

(72) 
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At last, the equations for e7 and f} must be considered. The new equations for C} 

and Cj are those given by Equations (45) to which we add the space contributions 

s{DCj)=du-Wlj{l + Uj)~di w*j{l +Sj)' 

i.e., after some algebra, 

SiDCj^KjiKj + HjHKj-Hj), 
5(DC)=iKJCj(Kj-HJ)2-^K)Cj(KJ+HJ)2-

-st'jCj&KjiKj + HjHKj-Hj)} logC, 

and for rj9 defined by Equation (49), the new equation is Equation (50) with the 
additive space term, 

5(Drj)=iKj(K}-Hjr -frjiKj+Hjf. 

The integration of these equations is made exactly as it has been discussed in Section 9. 

11. Conclusion 

Notwithstanding the fact that this theory has been derived with special regard to the 
problem of the motion of the Galilean satellites of Jupiter, it may be useful in the 
study of other problems of planetary kind, in which the motions are close to circu­
larity and coplanarity, and, in which, quasi-resonances lead to strong perturbations. 
Nevertheless, usual resonant problems must be excluded: the Galilean resonance is 
a too particular kind of resonance and does not involve the same kind of difficulties 
as, e.g., Hecubian resonance (see Sagnier, 1973b). 

The main characteristic of the theory is that it allows to keep the main frequencies 
fixed from the earlier stages, and so, to have a purely trigonometric solution. Also 
the distances are to be fixed from the earlier stages; but the observational data for 
distances are not so good, and these distances are to be modified after computing 
the constant perturbation (Section 9). 

In practice the Laplace coefficients in the development of the disturbing function 
are to be taken numerically. The algebra of the series may be, then, performed, by 
using a computer. The work is made iteratively by getting better distances at each 
step. It must be remarked that this algebra is not too involved and does not require 
too powerful computers. 
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DISCUSSION 

K. Ziolkowski: Did you try to use your theory to other satellite systems or to planets? 
S. Ferraz-Mello: Yes, I am trying to use my theory to an asteroid, Hestia. 
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