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Abstract

Methods within the domain of artificial intelligence are gaining traction for solving a range of materials science objectives, notably the use of
deep neural networks for computer vision for the analysis of electron diffraction patterns. An important component of deploying these
models is an understanding of the performance as experimental diffraction conditions are varied. This knowledge can inspire confidence
in the classifications over a range of operating conditions and identify where performance is degraded. Elucidating the relative impact of
each parameter will suggest the most important parameters to vary during the collection of future training data. Knowing which data col-
lection efforts to prioritize is of concern given the time required to collect or simulate vast libraries of diffraction patterns for a wide variety
of materials without considering varying any parameters. In this work, five parameters, frame averaging, detector tilt, sample-to-detector
distance, accelerating voltage, and pattern resolution, essential to electron diffraction are individually varied during the collection of electron
backscatter diffraction patterns to explore the effect on the classifications produced by a deep neural network trained from diffraction pat-
terns captured using a fixed set of parameters. The model is shown to be resilient to nearly all the individual changes examined here.
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Introduction

The fields of materials development and analysis have recently
begun to explore the possibility of applying data-driven strategies
and artificial intelligence (AI) for accelerating or automating a vari-
ety of tasks (Ong et al., 2013; O’Mara et al., 2016; Dagdelen et al.,
2017; Ward et al., 2018; Ziletti et al., 2018; Avery et al., 2019;
DeCost et al., 2019; Oviedo et al., 2019; Tshitoyan et al., 2019;
Dunn et al., 2020; Kaufmann & Vecchio, 2020; Kaufmann et al.,
2020a, 2020d; Stan et al., 2020; Chen et al., 2021). Computer vision
is a subset of AI with the goal of training computers to understand
the visual world and potentially act on that information (Zhu et al.,
2020a, 2020b). Deep learning algorithms enable many computer
vision applications and are of particular interest owing to their excel-
lent performance without significant feature engineering (LeCun
et al., 2015). While it can be difficult to precisely determine how
and why these “black-box algorithms” are capable of performing
these tasks, these methods can automate routine tasks, improve
upon existing solutions, or provide understanding (Adadi &
Berrada, 2018; Holm, 2019). While deep learning provides signifi-
cant opportunities for the advancement of materials science, robust
application of these tools requires an understanding of the condi-
tions under which optimal performance is achieved. Unlike most

cases involving natural images (Deng et al., 2010), scientific images
are less likely to be collected utilizing a wide range of parameters. For
instance, micrographs may be captured with only 1 or 2 magnifica-
tions, while photographs of animals at different distances and from
different angles are typically abundant (Deng et al., 2010). Moreover,
the knowledge of the conditions for which a model fails can guide
the future collection of labeled training data to improve subsequent
versions. However, in the context of electron diffraction, there likely
exists some cases (e.g., no frame averaging) where reduced quality or
lack of sufficient information in the images may limit performance
regardless of training data available for a given technique.

Convolutional neural networks (CNNs) are the current stan-
dard deep learning models for processing image data (LeCun
et al., 2015). Before a CNN can be applied to a given task, it
must learn to assign importance to various aspects of the image
that maximize the network’s differentiation capabilities. In
doing so, deep learning methods glean intricate functions of the
inputs that are sensitive to minute details, yet ignore irrelevant
information such as backgrounds (LeCun et al., 2015).
However, it should be noted that it is only with careful design
of a training set and rigorous validation that practitioners can
be confident that the model has truly learned relevant informa-
tion, is robust to new conditions, and has not found an unscien-
tific approach to solving the problem [such as learning the
presence of a ruler means a lesion is more likely cancerous
(Esteva et al., 2017)] (Zech et al., 2018; Riley, 2019). The applica-
tion of these tools to image-based tasks in materials science has
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proved to be useful for classification (Modarres et al., 2017; Ziletti
et al., 2018; Foden et al., 2019a; Kaufmann et al., 2020a), segmen-
tation (DeCost et al., 2019; Stan et al., 2020), and other objectives
(Xie & Grossman, 2018; de Haan et al., 2019). Examples of tech-
niques where interest in developing artificial intelligence agents
for image-based tasks include optical microscopy (DeCost &
Holm, 2015; DeCost et al., 2019), scanning transmission electron
microscopy (STEM) (Laanait et al., 2019; Roberts et al., 2019),
transmission electron microscopy (TEM) (Spurgeon et al.,
2020), and electron backscatter diffraction (EBSD) (Shen et al.,
2019; Ding et al., 2020; Kaufmann et al., 2020a, 2020b, 2020c).
These efforts are motivated by accelerating data generation rates
and the traditional need for tedious or arduous analysis of the
data by well-trained individuals with sufficient knowledge of the
material domain. Thus, it is important that these tools can be
applied robustly as imaging parameters are varied to prevent
increasing, instead of alleviating, researcher workloads. While dif-
ferent diffraction techniques often use distinct terminology,
parameters such as accelerating voltage or detector distance are
common among them and have similar effects on the collected
diffraction patterns. Several of these parameters play a role in
the amount of time required to collect each diffraction pattern
and therefore complete the analysis of a sample. In this work,
the EBSD technique is used owing to the relatively high rate of
data collection and ease of changing each parameter.

EBSD is a scanning electron microscope (SEM)-based method
that involves the capture of 2D diffraction patterns produced from
an incident electron beam scattering, diffracting, and escaping
from a well-polished “bulk” sample (Schwartz et al., 2009).
Despite the vast amount of information in the patterns
(Vecchio & Williams, 1987, 1988; Schwartz et al., 2009), conven-
tional EBSD has primarily focused on determining three-
dimensional orientation (Schwartz et al., 2009; Thomsen et al.,
2013; Tong et al., 2019; Zhu et al., 2020b). Furthermore, the tech-
nique typically relies on a user-defined phase list and
Hough-based indexing (Lassen, 1994). Hough-based indexing
generally allows for phase differentiation of sufficiently distinct
crystal structures (Britton et al., 2010; Foden et al., 2019b;
Hielscher et al., 2019), but the process remains susceptible to
structural misclassification (McLaren & Reddy, 2008; Chen &
Thomson, 2010; Karthikeyan et al., 2013). Improvements to
phase differentiation have been proposed and developed including
dictionary indexing (Chen et al., 2015; Ram et al., 2017; Ram &
De Graef, 2018; Singh et al., 2018) and spherical indexing (Day,
2008; Lenthe et al., 2019; Zhu et al., 2019), although each still
requires a user to pre-select phases and further requires simulat-
ing the Kikuchi sphere for each selected phase. Recently, the
EBSD community has begun to investigate the use of CNNs for
indexing, phase differentiation, and determining components of
the crystal structure (Foden et al., 2019a; Ding et al., 2020;
Kaufmann et al., 2020a, 2020b, 2020c). It is a goal of several of
these efforts that the onus of phase selection and/or structure
determination can be at least partially lessened on the user
(Kaufmann et al., 2020a, 2020b). However, to date, there has not
been a systematic study of CNN performance when the EBSD pat-
terns (EBSPs) are collected using different experimental geometry
than was used during collection or simulation of the training
data. The knowledge of how these changes to the diffraction pat-
terns influence proper pattern identification is paramount to wide-
spread adoption of these machine-learning-based techniques.

This work seeks to develop an understanding of model perfor-
mance as several of the most common EBSD operating conditions

are varied. The specific parameters are frame averaging, detector
tilt, sample-to-detector distance, accelerating voltage, and pattern
resolution. With regard to parameters that directly affect the time
to collect each pattern and therefore complete a map, such as
frame averaging and pattern resolution, the ability to collect the
data more rapidly without a significant reduction in performance
is of interest. With respect to parameters such as detector tilt, it
is important to determine if the model is susceptible to minor or
major changes in the training conditions. Parameters such as detec-
tor distance and accelerating voltage can cause much more dramatic
changes to the EBSPs, and it is, therefore, necessary to assess their
influence. The CNN model tested in this work was trained to clas-
sify EBSPs to one of six space groups using patterns collected from
a fixed EBSD setup (Kaufmann et al., 2020d). The effect of chang-
ing these parameters is tested using new EBSPs collected from one
material from each space group and a dual-phase 2205 duplex steel
for visual demonstration. Each time one parameter is varied, the
EBSPs are re-collected, and the CNN used to reassess the proper
space group identification. Ultimately, the model is found to retain
a high classification accuracy even with significant changes to the
diffraction conditions and therefore the EBSPs.

Materials and Methods

Materials

Eighteen different single-phase materials, comprising six of the
ten space groups within the (4/m �3 2/m) point group were
selected for training the space group classification CNN. The
space groups are Pm�3m (221), Pm�3n (223), Fm�3m (225),
Fd�3m (227), Im�3m (229), and Ia�3d (230). Suitable samples for
the remaining four space groups could not be obtained. The mate-
rials were [221: FeAl, NiAl, Ni3Al, Fe3Ni], [223: Cr3Si, Mo3Si],
[225: Ni, Al, NbC, TaC, TiC], [227: Si, Ge], [229: W, Ta, Fe],
and [230: Al4CoNi2, and Al4Ni3]. The collected diffraction pat-
terns from these materials were of low texture, typically less
than two times random in any direction. Refer to Kaufmann
et al. (2020d) for the distributions of orientation, band contrast,
and mean angular deviation for these samples.

A dual-phase material with phases that are easily differentiable
by Hough-based EBSD was used to visually demonstrate and com-
pare the classification accuracy of the model as parameters vary. A
longitudinal cross-section of cold-worked 2205 duplex steel was
mounted, ground, and polished to 0.05 μm using colloidal silica.
Looking at the longitudinal cross-section, cold-worked 2205 duplex
stainless steel has a ferrite matrix (space group 229) and elongated
austenite islands (space group 225) (Momeni et al., 2012).

Electron Backscatter Diffraction Pattern Collection

EBSPs were collected in a Thermo Scientific (formerly FEI) Apreo
scanning electron microscope (SEM) equipped with an Oxford
Symmetry EBSD detector.

All EBSPs utilized in training were collected with the following
fixed geometry. The EBSD detector was utilized in high-
resolution (1,244 × 1,024) mode, the working distance was 18.1
± 0.1 mm, the sample-to-detector distance was 19.1 mm, and
the detector arm tilt set to 13.7° above horizontal. The imaging
parameters for the training set EBSPs were 20 kV accelerating
voltage, 51 nA beam current, and 30-pattern averaging. This
fixed geometry and set of imaging parameters will be referred

Microscopy and Microanalysis 777

https://doi.org/10.1017/S1431927621000556 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621000556


to as the “default” operating conditions. Refer to Figure 1 for an
annotated image of the diffraction setup in the SEM.

Diffraction patterns from six single-phase materials (Ni3Al,
Cr3Si, TiC, Si, Fe, and Al4CoNi2) and the dual-phase 2205 duplex
steel were collected separately from the training data to determine
a baseline accuracy for the model when using the default diffrac-
tion geometry. Approximately 3,000 individual patterns were col-
lected from a large area of each sample (i.e., low magnification) to
capture as many unique orientations as possible over the fixed
region. After collecting data using the default diffraction geome-
try, each one of the parameters was systematically varied one at
a time and the same ∼3,000 patterns re-collected from the same
location.

The parameters were varied as follows. Frame averaging was
set to 1, 5, 10, 20, or 30. The software detector tilt below zero
ranged from 1 to 5 in steps of 1. These values correspond to
the detector arm being 14.2°, 14.0°, 13.7°, 13.5°, and 13.3° above
the horizontal plane. The software detector insertion distance
ranged from 156 to 164 mm in steps of 2 mm. These values cor-
respond to sample-to-detector distances of 24.3, 21.8, 19.1, 16.8,
and 14.3 mm. The sample-to-detector distances were calculated
following the methods outlined in Jackson et al. (2019).
Accelerating voltage options were 10, 20, or 30 kV. The pattern
resolution options were 156 × 128 (low), 622 × 512 (medium),
or 1,244 × 1,024 (high). The working distance was held constant,
since moving the sample up or down while at 70° sample tilt
would change the location on the sample. The beam current
also remained fixed and the exposure time adjusted accordingly
by the Oxford Aztec software to offset the increase or decrease
in signal resulting from a varied parameter (e.g., detector dis-
tance). Table A.1 summarizes the EBSD pattern acquisition rate
for each of the varied parameters compared with the “default”
conditions.

Convolutional Neural Network

The Xception CNN architecture (Chollet, 2017) was selected for
fitting the model. The selection of this network was based on
Xception or derivatives of Xception being used previously in
the EBSD community (Ding et al., 2020; Kaufmann et al.,
2020a, 2020b, 2020c). Refer to Figure 5 in Xception: Deep
Learning with Depthwise Separable Convolutions (Chollet,
2017) for a complete description of the Xception architecture.
Further details about the training process can be found in
Kaufmann et al. (2020d). The CNNs were implemented with
TensorFlow (Abadi et al., 2016) and Keras (Chollet, 2015).

Diffraction Pattern Classification

During pattern collection, Hough-based indexing was performed
with only three options: ferrite, austenite, or non-indexed. After
collecting high-resolution EBSPs from each material, all patterns
collected were exported as tiff images. Diffraction patterns were
evaluated in a random order by the trained CNN model without
further information to assess the model as it would be applied in
practice. The output classification of each diffraction pattern was
recorded and saved in a (.csv) file. These csv files were utilized to
calculate the normalized accuracy of the model for each trial. In
the case of 2205 duplex steel, the predictions were converted to
a space group map using the plotting tools in MATLAB
R2018B following the methods established in Kaufmann et al.
(2020c).

Results

Equipment Setup and Hough-Based Results

The choice of operating parameters for EBSD are not fixed but are
instead valid over a range of values depending on the manufactur-
er’s calibration. The specific parameters defined as “default”
parameters in this work are those from which all EBSPs in the
training set were collected [refer to the section “Electron backscat-
ter diffraction pattern collection” or prior work by Kaufmann
et al. (2020d)]. The equipment setup for EBSD is shown and
labeled in Figure 1. The detector distance from the sample and
detector tilt are further detailed using arrows that describe their
geometric role. EBSPs are collected from a fixed region of the
specimen each time one parameter is varied.

Figure 2 highlights the need for a reliable tool to assist an oper-
ator with symmetry determination using a section of 2205 duplex
steel. In the case where the phases are known in advance (Fig. 2a),
Hough-based EBSD is shown to produce a high-fidelity phase
map of the austenite islands (blue) in the ferrite matrix (yellow).
However, in cases where the phases are unknown, there exists
ample opportunity for misclassification in the Hough-based
method even when using what could be considered ideal acquisi-
tion parameters. If the six space groups used in the CNN study
were selected in duplicate, one copy with lattice parameters
matching the austenite’s lattice parameters and symmetry and
the other copy matching the ferrite’s, the results can be strikingly
different (Fig. 2b). In fact, not a single pattern is indexed to either
of the two correct phases. Furthermore, two of the three space
groups selected, Pm�3n (orange) and Fd�3m (lime green), are not
present in the sample. Thus, a robust classifier of EBSD patterns
would be a useful tool for assisting with selecting the proper
phases or alerting users to potential errors in selected phase
lists. Figure 2c demonstrates how a CNN-based classifier could
be used for such a purpose. The CNN has predicted the space
group of each high-quality EBSP that Hough-based EBSD used
for generating Figures 2a and 2b, yet the CNN-derived phase
map is a much higher fidelity mapping of Figure 2a than
Figure 2b, albeit without the lattice parameter information at
this stage of the CNN model. These results are significant since
Figure 2b demonstrates a marked failure wherein Hough-based

Fig. 1. EBSD setup and variable parameters. An annotated view of the EBSD setup.
Parameters that vary in this study are listed below the equipment label. The
sample-to-detector distance (DD) and detector tilt (DT) are further detailed by arrows
describing their function. Detector tilt is defined as the angle between the detector
arm and horizontal.
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EBSD cannot distinguish between the two correct answers plus
ten phases with the same lattice parameters but different space
group symmetry. Given the potential the CNN-based method
has for improving the EBSD process, this work sets out to
study how reliable the CNN’s classifications are as new data cap-
tured under different diffraction conditions is presented to it.

Effects on the EBSD Patterns

It is important to understand the effect of varying the operating
conditions of the SEM and EBSD detector on the electron diffrac-
tion patterns. Figure 3 visually details the effects by displaying the
same diffraction pattern observed under different operating con-
ditions. The larger versions of these images are contained in
Figures A.1–A.5. Increasing the number of frames averaged for
each diffraction pattern increases the signal-to-noise ratio and
results in better resolution of finer details in the diffraction pat-
terns. Changing the detector tilt changes the relative position of
the image with respect to the interaction volume of the sample,
referred to as the pattern center in EBSD (Schwartz et al., 2009;
Basinger et al., 2011; Zhu et al., 2019). For tilt angles that are
far from the ideal conditions, the top or bottom edge of the
EBSP may display blurring. The most significant blurring is
observed when using a tilt of 13.3°. Otherwise, the changes are
observed to be limited to small differences in the region of the
Kikuchi sphere captured. Decreasing the sample-to-detector dis-
tance, and thus moving closer to the sample, results in the capture
of significantly more solid angle. Since the EBSD detector is cap-
turing a gnomonic projection, the increase in the solid angle
means a greater area of the Kikuchi sphere is observed. This likely
must be balanced with the ability to resolve the finer details and
eventual blurring of the pattern edges. On the other hand, moving
the detector further away captures less of the Kikuchi sphere but
“magnifies” the finer details. The diffraction elements also appear
slightly blurred at the furthest distance away from the sample.
Changes to the SEM accelerating voltage affect the EBSPs by alter-
ing the wavelength of the incoming electrons. A decrease in the
accelerating voltage increases the electron wavelength and there-
fore causes the Kikuchi bands to appear wider and vice versa.

This results in more diffraction information from the same region
of the Kikuchi sphere condensed within the viewing window for
higher accelerating voltages. Note that it does not have the same
effect as changing the detector distance. Lastly, the Oxford
Symmetry detector can capture patterns at one of three resolu-
tions: 156 × 128, 622 × 512, or 1,244 × 1,024. These are described
as low, medium, and high resolution, respectively, in this work.
For each of the different imaging conditions shown, approxi-
mately 3,000 diffraction patterns are collected from the same
region of each sample and the CNNs performance analyzed.

Frame Averaging

Figure 4 presents a visual overview of the pattern classification
results for each frame averaging condition studied using a sample
of 2205 duplex stainless steel, a material with a ferrite matrix
(space group 229; yellow) and austenite islands (space group
225; blue) (Momeni et al., 2012). Similar space group maps for
each of the parameters studied are shown in the Appendix
(Figs. A.6–A.10). The electron image (Fig. 4a) and Hough-based
phase map (Fig. 4b) are provided as the ground truth, since
these phases can be differentiated by Hough with relative ease,
assuming that the operator selects the correct phases at the start
(i.e., user knows the phases). Without any frame averaging, the
EBSPs are lacking much of the available details and essentially
all the EBSPs from this sample are misidentified (Fig. 4c).
Increasing the frame averaging to five improves the result
(Fig. 4d), but it is not until ten frames are averaged that a reason-
able number of classifications appear to be correct (Fig. 4e) when
compared with the Hough-based map (Fig. 4b). Figures 4f and 4g
each show sequential improvements over Figure 4e as nearly all of
the patterns become correctly classified to the correct space group
(i.e., matching the Hough-based phase map). As seen in the plot
(Fig. 4h), the number of patterns classified to each space group
begins to improve with ten frames averaged. While the plot
shows the relative number of patterns classified to each space
group compared with Hough-based EBSD, the space group
maps made from the CNN’s predictions establish whether the
individual EBSPs are correctly classified based on their correlation

Fig. 2. Hough-based EBSD results with different phase lists. A comparison of the Hough-based EBSD method is performed where (a) only the two correct phases
are provided as options and (b) 12 options are made available based on the six space groups used in this work and the two lattice parameters found in the duplex
steel sample. The CNN-derived space group map (c) details the classifier’s predictions for the same EBSD patterns used in parts (a) and (b). The data for each map
are collected using the ideal parameters defined as “default” in this work. It is worth noting that the CNN-derived map is derived from having the solution for each
EBSP classified from among the six cubic space groups in the trained model.
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with the Hough-based phase map. Since each of the other mate-
rials studied in this work is known to be single-phase, normalized
classification accuracy precisely describes the model performance.

It is worth pointing out that the Hough-based result is consid-
ered the ground truth (or correct answer) because the phases in
the sample are known, and the known answer is provided as
input to the Hough-based solution. So in this context, the
EBSD solution for phase ID must already be known for the
Hough-based approach. The power of the machine learning
approach being implemented here, and previously presented in
Kaufmann et al. (2020d), is to perform symmetry identification,
to the space group level, for samples for which the phases present
are not known a priori (i.e., enable true phase ID by EBSD).

Figure 5 details the normalized accuracy of the CNN for each
space group as the number of frames averaged is varied in subse-
quent collections of the same EBSPs. The default frame averaging
is 30 patterns. It is observed that a high overall classification accu-
racy, compared with the accuracy obtained for the default param-
eter, is generally retained as low as 5–10 frames averaged. An
exception to this is observed for space groups 221 and 229

which, along with space group 225, are the most difficult for
the CNN to differentiate owing to the strong similarities between
the fcc and L12 structures and bcc and B2 structures used in train-
ing the model (Kaufmann et al., 2020d).

Detector Tilt

Figure 6 details the effect of the detector tilt on the CNN’s classi-
fication of the collected EBSPs. Note that the detector tilt is
reported as the angle of the detector arm above horizontal.
Referring to the EBSPs in Figure 3 and their enlarged counter-
parts shown in Figure A.2, detector tilts of 14.2–13.7° show
ideal patterns with little or no blurring at the edges. The blurring
becomes more apparent at the bottom of the EBSPs when a tilt of
13.5° is applied and increases in severity at a tilt of 13.3°. For most
space groups in Figure 6, the model is found to be highly resilient,
and it is only at or below a tilt of 13.5° that any notable changes in
accuracy occur. Again, space groups 221 and 229 are the excep-
tion to this observation. Referring to the symmetry maps of the
duplex steel, the fractions do not vary significantly across the

Fig. 3. Impact of operating conditions on the EBSD patterns. The diffraction pattern for a point on the sample is displayed for different imaging conditions. The
effect of the number of frames averaged, the tilt of the EBSD detector, the sample-to-detector distance for the EBSD detector, the SEM accelerating voltage, and the
resolution at which patterns are captured are each visually described.
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individual maps (Fig. A.7) and the space group classification of
each EBSP aligns well with the Hough-based phase map (ground
truth).

Detector Distance

Figure 7 presents the changes in the CNN’s performance as the
EBSD detector collects the diffraction patterns at different
sample-to-detector distances. The number of misclassified pixels,
however minute the difference is, is observed to scale with an
increased absolute distance from the default condition of
19.1 mm. When the detector is much further away from the sam-
ple, less solid angle is captured, and the diffraction patterns
become distorted (Fig. 3 and Fig. A.3). Moving closer to the sam-
ple increases the solid angle, but at the expense of the finer details.
This likely contributes to the noticeably reduced performance for
the closest possible setting (a sample-to-detector distance of
14.3 mm). Referring to the phase maps of the duplex steel
(Fig. A.8), similar effects are observed. As the sample-to-detector
distance gets further from the default condition, the CNN-derived
maps increasingly differ from the Hough-based phase map.

Accelerating Voltage

The effect of changing the wavelength of the incoming electrons
by modifying the accelerating voltage is explored in Figure 8
and Figure A.9. The primary effect of changing the wavelength
of the incoming electrons is a change in the width of the observed
Kikuchi bands (Fig. 3 and Fig. A.4). The resulting effect on the
collected diffraction patterns is similar to changing the detector
distance, but notably does not alter the amount of solid angle cap-
tured on the phosphor screen. Instead, changing the accelerating
voltage effectively changes the magnification of the diffraction
data within the same screen area. For example, decreasing to
10 kV causes the details of the diffraction pattern to increase in
size, effectively making the data appear expanded. Note how the
same zone axes are present for each accelerating voltage, but the
distance between the zone axes and the width of the diffraction
lines appears to change (Fig. A.4). These changes are observed
to have appreciable effects on the classification performance of
the CNN. At 10 kV, many of the patterns from each space
group are misclassified (Fig. 8). On the other hand, increasing
to 30 kV accelerating voltage yields reasonably good classification
performance, perhaps because the Kikuchi bands are narrower

Fig. 4. Visual overview of frame averaging on CNN classification for duplex steel. (a) Electron image of the region of dual-phase 2205 duplex steel. (b) Hough-based
EBSD phase map of the fcc (225) austenite (blue) and bcc (229) ferrite (yellow). (c) Phase map generated from EBSD patterns collected with no frame averaging
applied (i.e., one frame). (d) Phase map generated from EBSD patterns collected with five frame averaging applied. (e) Phase map generated from EBSD patterns
collected with ten frame averaging applied. (f) Phase map generated from EBSD patterns collected with 20 frame averaging applied. (g) Phase map generated from
EBSD patterns collected with 30 frame averaging applied. (h) Plot showing the fraction of patterns indexed to each space group as a function of frame averaging.
Thirty frame averaging is the default parameter and is designated as such by the blue star for space group 225 and a yellow star for space group 229. Trend lines are
fit with a third order polynomial. Scale bar = 25 μm. There are 3,848 diffraction patterns (pixels) in each phase map.
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and more information appears to be visible. The same effects on
performance are visually evident in the CNN-derived space group
maps of the duplex steel (Fig. A.9).

Pattern Resolution

Reducing the initial resolution of the collected diffraction patterns
bins the information from neighboring pixels to accelerate the rate
of collection. Figure 9 details the CNN’s performance after col-
lecting the diffraction patterns at each of the three available reso-
lutions for the Oxford Symmetry EBSD detector. The CNN is
capable of achieving a high degree of accuracy even when patterns

are collected at the lowest resolution setting. Only space groups
221 and 229 are appreciably impacted owing to the strong simi-
larities between the fcc and L12 structures and bcc and B2 struc-
tures used in training the CNN. Figure A.10 visually demonstrates
the reliable performance of the CNN at each pattern resolution by
creating structure maps for the 2205 duplex steel.

Discussion

The electron diffraction community has recently begun to con-
sider artificial intelligence a necessary component of next-
generation microscopy (Spurgeon et al., 2020). Much of this is

Fig. 5. Effect of frame averaging on classification accuracy. The normalized classification accuracy of the trained CNN for each space group based on the number of
patterns averaged during data collection. The space groups are (a) Pm�3m, (b) Pm�3n, (c) Fm�3m, (d) Pd�3m, (e) Im�3m, and (f) Ia�3d. The default number of frames
averaged is 30.

Fig. 6. Effect of detector tilt on classification accuracy. The normalized classification accuracy of the trained CNN for each space group based on the tilt of the
detector during data collection. The space groups are (a) Pm�3m, (b) Pm�3n, (c) Fm�3m, (d) Pd�3m, (e) Im�3m, and (f) Ia�3d. The detector tilts are reported as the
detector arm angle above horizontal. The default value for detector tilt is 13.7°.
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driven by the rate at which modern microscopes can generate
high-quality data (Goulden et al., 2018); as a result, human
knowledge and experience will no longer be an efficient means
of analysis. If AI-based tools are to be implemented effectively,
it is necessary for the community to identify potential areas of fra-
gility, for example, changing diffraction conditions, and assess the
impact in order to further development and increase trust in these
“black-box” models.

EBSD was selected as an ideal technique owing to the ease of
varying each parameter and the rates of data collection achievable
(Schwartz et al., 2009; Goulden et al., 2018). Furthermore, several

recent studies have explored the use of CNNs applied to compo-
nents of EBSD analysis (Jha et al., 2018; Shen et al., 2019; Ding
et al., 2020; Kaufmann et al., 2020a, 2020b); however, these efforts
have thus far only been tested with new data collected or simu-
lated using identical geometry and diffraction conditions.
Herein, a parametric analysis of five parameters commonly
found among electron diffraction techniques was performed to
examine the performance of a CNN trained to classify diffraction
patterns. One material was selected per space group and new dif-
fraction patterns were collected starting with diffraction condi-
tions matching the training set and then the same patterns were

Fig. 7. Effect of sample-to-detector distance on classification accuracy. The normalized classification accuracy of the trained CNN for each space group based on
the sample-to-detector distance during data collection. The space groups are (a) Pm�3m, (b) Pm�3n, (c) Fm�3m, (d) Pd�3m, (e) Im�3m, and (f) Ia�3d. The default value for
sample-to-detector distance is 19.1 mm.

Fig. 8. Effect of accelerating voltage on CNN classification. The normalized classification accuracy of the trained CNN for each space group based on the SEM
accelerating voltage. The space groups are (a) Pm�3m, (b) Pm�3n, (c) Fm�3m, (d) Pd�3m, (e) Im�3m, and (f) Ia�3d. An accelerating voltage of 20 kV is the default.
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recollected 16 more times after setting just one parameter to a
value different from the default conditions. The same analysis
was performed for a sample of 2205 duplex steel to demonstrate
CNN-based symmetry mapping (Kaufmann et al., 2020c) a sam-
ple with each varied parameter. If the trained CNN is highly sen-
sitive to the diffraction conditions, we would have expected to see
large decreases in performance with the smallest changes. For
example, by changing the sample-to-detector distance, the
Kikuchi bands from the same material can appear wider or nar-
rower and the distance between diffraction information (e.g.,
zone axes) appears to change. However, the CNN’s classification
accuracy is observed to be quite stable (i.e., small reductions in
classification accuracy) in comparison to the results achieved
with the default conditions, suggesting that the features detectors
learned by the model are not biased to these characteristics. This
was one of the intended goals of using multiple materials with dif-
ferent z-contrast and lattice parameters for the same space group
in the training set (Kaufmann et al., 2020d), and this study indi-
cates its effectiveness. Moreover, the CNN is also observed to be
highly dependable after decreasing the signal-to-noise ratio of
the captured diffraction pattern by reducing the frame averaging.
Decreasing the number of frames averaged will allow for faster
data collection, as much as six times faster if averaging 5 frames
compared to 30, while maintaining a high degree of classification
accuracy for most materials. In each of the studies within this
work, the space groups most likely to be misclassified by the
model were 221 (Pm�3m ) and 229 (Im�3m ). As previously men-
tioned, the misclassification of these patterns can be at least par-
tially attributed to the strong similarities between diffraction
patterns from the fcc (Fm�3m) and L12 (Pm�3m) structures and
bcc (Im�3m) and B2 (Pm�3m) structures used in training the
CNN (Kaufmann et al., 2020d). Inclusion of more diverse data
for these space groups may help alleviate this concern in addition
to being a practical advancement toward commercial adoption.
While the model’s dependability and trustworthiness with respect
to equipment parameters has now been evaluated for phase

differentiation and identification problems, it is still important
to test this hypothesis for EBSD orientation indexing CNNs
(Jha et al., 2018; Shen et al., 2019; Ding et al., 2020). A much
larger study should also be performed to investigate the effects
of co-varying operating parameters; however, we expect that sim-
ilar tolerances will be observed based on the reliability observed
under diffraction conditions far from the training data. This
expectation stems from the observation that changing individual
parameters can cause drastic changes to the patterns and the
CNN generally maintains exceptional performance.

Conclusions

In this work, a systematic study of the EBSD operating parameters
and their individual effects on the classification performance of a
CNN is performed. Despite the CNN being trained from diffrac-
tion patterns captured with a fixed geometry and SEM settings, it
is found to be resilient over a wide range of conditions. Markedly
decreased performance is generally only observed for the most
challenging materials to differentiate (e.g., B2 and bcc or L12
and fcc). Furthermore, it is encouraging to verify that parameters
that effect the time to map an area (e.g., frame averaging or pat-
tern resolution) can be modified to accelerate the process without
substantially degrading model performance. For parameters such
as tilt, it is reassuring to validate the model performs well over a
variety of reasonable parameters. Although the CNN may not
achieve high accuracy under all conditions, such as a low number
of frames averaged, when used appropriately it remains a highly
capable method for assisting the user with phase identification
and provides a level of phase differentiation markedly above
what state-of-the-art commercial methods are currently capable
of. In the current version of the CNN, the parameter settings
that cause noteworthy reductions in performance across a major-
ity of space groups are a frame averaging of 1 or utilizing 10 kV
accelerating voltage. In the future, training models with patterns
collected using a wider variety of operating conditions,

Fig. 9. Effect of pattern resolution on CNN classification. The normalized classification accuracy of the trained CNN for each space group based on the EBSD detec-
tor resolution. Available resolutions are 156 × 128 (low), 622 × 512 (medium), and 1,244 × 1,024 (high). The space groups are (a) Pm�3m, (b) Pm�3n, (c) Fm�3m, (d)
Pd�3m, (e) Im�3m, and (f) Ia�3d. High resolution (1,244 × 1,024) is the default setting.
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particularly those with the largest effect on performance, could
result in a model that is even more resilient to some of these
types of perturbations to the diffraction patterns; although it
may still not be possible to overcome all limitations, such as no
frame averaging, owing to significant reductions in the
signal-to-noise ratio. A future study should also investigate the
co-variation of parameters from the default conditions.
Ultimately, we expect the results of this research to encourage
the continued development of these tools given the reliability
observed and their potential to assist with or automate the anal-
ysis of electron diffraction patterns.
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analyzed during the current study are available from the corresponding author
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available through Zenodo (doi: 10.5281/zenodo.3564937) (krkaufma, 2019).
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Appendix

See Figs. A.1–A.10 and Table A.1

Fig. A.1. Diffraction pattern with increasing frame averaging. A visual explanation of the observed changes based on the number of frames averaged during the
capture of each diffraction pattern.
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Fig. A.2. Diffraction pattern with different detector tilt. A visual explanation of the observed changes based on the tilt of the EBSD detector above the horizontal.
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Fig. A.3. Diffraction pattern with decreasing sample-to-detector distance. A visual explanation of the observed changes based on the proximity of the EBSD detec-
tor to the sample. Larger detector distances are further from the sample.
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Fig. A.4. Diffraction pattern with variable accelerating voltage. A visual explanation of the observed changes based on the accelerating voltage applied to the
incoming electrons.

Fig. A.5. Diffraction pattern with variable detector resolution. A visual explanation of the observed changes based on the resolution of the EBSD detector.
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Fig. A.6. Visual overview of frame averaging on CNN classification for duplex steel. (a) Electron image of the region of dual-phase 2205 duplex steel. (b)
Hough-based EBSD phase map of the fcc (225) austenite (blue) and bcc (229) ferrite (yellow). (c) Phase map generated from EBSD patterns collected with no
frame averaging applied (i.e., one frame). (d) Phase map generated from EBSD patterns collected with five frame averaging applied. (e) Phase map generated
from EBSD patterns collected with ten frame averaging applied. (f) Phase map generated from EBSD patterns collected with 20 frame averaging applied. (g)
Phase map generated from EBSD patterns collected with 30 frame averaging applied. (h) Plot showing the fraction of patterns indexed to each space group as
a function of frame averaging. Thirty frame averaging is the default parameter and is designated as such by the blue star for space group 225 and a yellow
star for space group 229. Trend lines are fit with a third-order polynomial. Scale bar = 25 μm. There are 3,848 diffraction patterns (pixels) in each phase map.

Fig. A.7. Visual overview of detector tilt on CNN classification for duplex steel. (a) Phase map generated from EBSD patterns collected with a detector tilt of 14.2°.
(b) Phase map generated from EBSD patterns collected with a detector tilt of 14.0°. (c) Phase map generated from EBSD patterns collected with a detector tilt of
13.7°. (d) Phase map generated from EBSD patterns collected with a detector tilt of 13.5°. (e) Phase map generated from EBSD patterns collected with a detector
tilt of 13.3°. (f) Plot showing the fraction of patterns indexed to each space group as a function of detector tilt. A detector tilt of 13.7° above horizontal is the default
parameter and is designated as such by the blue star for space group 225 and a yellow star for space group 229. Trend lines are fit with a third-order polynomial.
There are 3,848 diffraction patterns (pixels) in each phase map.
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Fig. A.8. Visual overview of detector distance on CNN classification for duplex steel. (a) Phase map generated from EBSD patterns collected with a
sample-to-detector distance of 24.3 mm. (b) Phase map generated from EBSD patterns collected with a detector distance of 21.8 mm. (c) Phase map generated
from EBSD patterns collected with a detector distance of 19.1 mm. (d) Phase map generated from EBSD patterns collected with a detector distance of 16.8 mm. (e)
Phase map generated from EBSD patterns collected with a detector distance of 14.3 mm. (f) Plot showing the fraction of patterns indexed to each space group as a
function of sample-to-detector distance. A detector distance of 19.1 mm is the default parameter and is designated as such by the blue star for space group 225
and a yellow star for space group 229. Trend lines are fit with a third-order polynomial. There are 3,848 diffraction patterns (pixels) in each phase map.

Fig. A.9. Visual overview of accelerating voltage on CNN classification for duplex steel. (a) Phase map generated from EBSD patterns collected with an electron
accelerating voltage of 10 kV. (b) Phase map generated from EBSD patterns collected with an electron accelerating voltage of 20 kV. (c) Phase map generated from
EBSD patterns collected with an electron accelerating voltage of 30 kV. (d) Plot showing the fraction of patterns indexed to each space group as a function of
accelerating voltage. An electron accelerating voltage of 20 kV is the default parameter and is designated as such by the blue star for space group 225 and a yellow
star for space group 229. Trend lines are fit with a third-order polynomial. There are 3,848 diffraction patterns (pixels) in each phase map.
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Fig. A.10. Visual overview of pattern resolution on CNN classification for duplex steel. (a) Phase map generated from EBSD patterns collected with a detector
resolution of 156 × 128 (low). (b) Phase map generated from EBSD patterns collected with a detector resolution of 622 × 512 (medium). (c) Phase map generated
from EBSD patterns collected with a detector resolution of 1,244 × 1,024 (high). (d) Plot showing the fraction of patterns indexed to each space group as a function
of EBSD pattern resolution. The default pattern resolution is 1,244 × 1,024 and is designated as such by the blue star for space group 225 and a yellow star for space
group 229. Trend lines are fit with a third-order polynomial. There are 3,848 diffraction patterns (pixels) in each phase map.

Table A.1. Pattern Acquisition Rates.

Setting Default 20 Frames 10 Frames 5 Frames 1 Frame Medium resolution Low resolution 30 kV 10 kV

Rate (Hz) 5.7 8.6 17 34 171 35 40 9 1.8

Setting 14.2° 14.0° 13.5° 13.3° 24.3 mm 21.8 mm 16.8 mm
14.3
mm

Rate (Hz) 5.7 5.7 5.7 5.7 3.5 4.6 7.1 9.5

A summary of the acquisition rates compared with the default settings used in this work. Default conditions: 30 frame averaging, high resolution, 20 kV accelerating voltage, 13.7° detector tilt,
and 19.1 mm detector-to-sample distance. Units: Patterns/second (Hz).
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