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ABSTRACT. A new approach to the study of the Solar System and planetary 
systems in general is proposed, through the use of periodic planetary-
type orbits of the general N-body problem. In such an orbit, one body 
(called Sun) has a large mass and the rest N-l bodies (called planets) 
have small but not negligible masses and it can be proved that monopa-
rametric families of periodic orbits of the N-body problem exist in a 
rotating frame of reference , all being of the planetary type 

Two cases are studied in detail, N=3 and N=4. In N=3, apart from 
a general discussion, we present a detailed analysis of the Sun-Jupiter-
Saturn system and a study is made on which configurations with the masses 
of these two planets, or a multiple of them, are stable or unstable. 
Also, part of a family is shown to represent the Jupiter family of comets. 
It was found that commensurabilities are not in general associated with 
instabilities. For N=4 we present three families of periodic orbits. 
The motion corresponding to a branch of one of the above families has 
many similarities with the actual motion of the three inner satellites 
of Jupiter. 

It is shown that there exist many commensurable cases in the obtain­
ed periodic orbits and that the resonant orbits increase as the number 
of bodies increases. Based on these results, an attempt is made to 
explain the existence of commensurabilities in the Solar System. 

Finally, it is mentioned that a periodic motion of the planetary 
type can be used as a reference orbit for accurate computations for the 
actual motions of the planets or satellites of the Solar System. In this 
way the small divisor difficulties existing in the classical approach 
will not appear. 

1. INTRODUCTION 

The purpose of this paper is to present a new approach to the study of 
the solar system and of planetary systems in general, based on the study 
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of families of periodic orbits of the general N-body problem (N>3). It 
can be proved (Hadjidemetriou 1975a, 1976b,c) that families of periodic 
orbits exist in the general planar N-body problem, in a rotating frame 
or reference, for fixed values of the masses of all the bodies. In 
particular, we shall consider here the case where only one body, say P„, 
has a large mass and the rest N-l bodies P-j_, P3,..., PJJ have small but 
not negligible masses. Thus, this system represents a planetary system 
with the body P2 being the Sun and the bodies P^, P3,..., PN the planets 
(or comets) or the body P2 being a planet and the bodies P]_, P3,..., PN 
being its satellites. 

The rotating frame mentioned above is defined as follows: The origin 
0 coincides with the center of mass of the bodies P^ and P2 and the x 
axis contains always these bodies, the positive direction being from P2 
to P-j_. This system is rotating with a non constant angular velocity and 
it can be proved (Hadjidemetriou 1975a, 1976b,c) that the motion of the 
N-body system in this rotating frame can be studied independently of the 
motion of the rotating system with respect to an inertial frame. This 
separation is possible because of the existence of the angular momentum 
integral which introduces the angular position of the rotating frame as 
an ignorable coordinate. Thus, a qualitative study of the motion can be 
made in the rotating frame only and this simplifies the analysis. The 
equations of motion in the rotating frame are given in the above mention­
ed papers. In what follows we shall restrict ourselves, to the study of 
the motion in the rotating frame only. 

In this approach to the study of a planetary system no approximation 

is made and the gravitational effect of each planet on the other is 
completely taken into account. Also, this method applies equally well 
to planetary orbits with small and with large eccentricities and thus one 
can study planetary and cometary orbits by using the same method. And 
indeed, as we shall see in the following, there is a continuous transition 
from circular (planetary) orbits to elliptic (cometary) orbits. Also, 
any existing comensurabilities do not present any problem at all and the 
same method is used for all cases. Another advantage is that the small-
ness of the masses of the planets (or comets, or satellites) is not re­
quired and the same method can be applied to planetary systems with large 
masses of the planets. Thus, one can study the evolution of a planetary 
system, particularly its stability, by increasing the masses of the 
planets. 

The purpose of this paper is to present an overall qualitative view 
of planetary systems, as obtained through the study of periodic orbits of 
the general N-body problem, based on the work made so far at the Univer­
sity of Thessaloniki. For this reason we shall not present detailed nu­
merical computations. In some particular cases however which have a 
special interest, as the motion of the Sun-Jupiter-Saturn system or the 
three inner satellites of Jupiter, we present the exact numerical data. 
The applications are made for three and four bodies, but the same method 
can be applied for any number of bodies. 
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2. PLANETARY-TYPE ORBITS IN THE GENERAL THREE-BODY PROBLEM 

(a). A family for zero masses of the two planets 

In order to obtain approximate initial conditions for a periodic orbit 
we assume that the mass m2 of the body P2 (which we shall call "Sun") 
is equal to 1 and the masses of P]_ and P3 (which we shall call planets) 
are equal to zero and that they describe circular orbits around P2 in 
the same direction, in the plane. We can assume, without loss of gene­
rality, that the distance Rf between P2 and P-j_ is equal to unity. Then, 
for any value of the distance R3>1 between P2 and P3 we have a periodic 
motion in the rotating frame xOy, defined in the previous section. The 
ratio of the periods of the orbits of P^ and Pg around P2 is equal to 

V T 3 = R 3 3 / 2 (1) 

and the period of the periodic motion in the rotating frame xOy is equal 
to 

T = 2it/(l-T1/T3). (2) 

We note that T varies between T=2Tt(for R=°°) to T=°° (for R3=l). Thus, 
we have a degenerate monoparametric family of symmetric periodic orbits 
of three bodies, with respect to the x axis, where the two bodies P̂_ and 
P3 have zero masses. One can use the relative period T, given by (2), 
as a parameter along the family. We shall always take the two planets 
and the Sun to lie on the same straight line at t=0. 

The initial conditions corresponding to the above family can be used 
as approximate initial conditions to obtain a symmetric periodic orbit 
in the rotating frame when the masses of P. and P3 are increased. This 
continuation is possible, as shown by Hadjictemetriou (1976a), for all 
members of the degenerate family except those corresponding to a resonance 
of the form 

T^Tg = n/(n+l), (3) 

because in that case the period T is a multiple of 2TC. This has as a 
consequence the generation of an infinite number of families of periodic 
orbits, all corresponding to the same (nonzero) masses of the three 
bodies. In this continuation the ratio m^/mg may have any prespecified 
value. 

This method has been applied by Hadjidemetriou (1976a) to obtain fa­
milies of periodic planetary-type orbits for the case m]_=m3=0.001 and 
m =0.998. This work was extended by Delibaltas (1976) who obtained fa­
milies of periodic orbits for the case where the three bodies have mas­
ses equal to the mass of Sun, Jupiter and Saturn, respectively. Also, 
the evolution of these families is studied, when the masses of the 
planets are increased. 

To summarize the results obtained so far, we note at this point that 
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a symmetric periodic orbit can be specified by its initial conditions 
provided X10' X30' y30 

in the rotating frame xOy, since y =x. =x_=0 
oU 1U oU 

a certain normalization scheme is used, 
the normalization 

=1, m1+m2+m3 1» * = 1. 

We have used in our calculations 

(4) 

where % is the initial value of the angular velocity of xOy, (Hadjide-
metriou and Christides, 1975). Thus, we see that a family of periodic 
orbits, for fixed masses of all the bodies, can be represented by a conti­
nuous curve in the space xiox3oy30* I n 'this paper, in order to present 
the results in the simplest possible way, we shall use the projection 
of the above curve in the X I Q X 3 0 pl a n e only. Evidently, the above 
mentioned degenerate family of periodic orbits is represented in 
this plane by the straight line x10=l. 

We also note that we can take, without loss of generality, Rg>l, 
which implies that |X3Q|>1, i.e. the orbit of P3 is outside the orbit 
of Pj_. If we had taken 0<Rg<l we would obtain the same family but with 
the roles of P]_ and P3 interchanged, i.e. P-j_ is the outer planet and Pg 
the inner planet. 

(b). Families for nonzero masses of the planets 

In Fig. 1 the straight line x-^Q"1 represents the degenerate family for 
zero masses of the two planets and the points Aj_, A2, A3,..., are the 
resonant orbits 1/2, 2/3, 3/4,..., respectively. These points have an 

3/4 2/3 1/2 2/5 1/3 

(2/3 

X30 

(1/2) 

Fig. 1: The degenerate family x,Q:l and the families I]_, I2, I3,... 
generated from it by increasing the masses of the planets 
(schematically). The points Aj_, A2, A3 represent resonant 
orbits of the form 1/2, 2/3, 3/4, respectively, of the dege­
nerate family. The point K, at the resonance 2/5, represents 
the Sun-Jupiter-Saturn system. All these families correspond 
to a fixed value of ni2 and m-j/irig. The picture is qualitative­
ly the same for all values of m-[_/mg. 
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accumulation point at x30=l. When this degenerate family is extended 
by increasing the masses of the two planets, it breaks down to an infi­
nity of families, all corresponding to the same fixed masses for the 
three bodies. Each family lies approximately between two consecutive 
resonant orbits of the form n/(n+l) and (n+l)/(n+2), respectively 
(n=l,2,3,...). 

The continuation of the degenerate family, as given in Fig.l, is 
qualitatively the same for all ratios of the masses of the two planets. 
The part of the families I]_, I2, I3,... which is nearly parallel to the 
line X-J_Q-1 corresponds to almost circular orbits of the two planets 
around the Sun and the rest part corresponds to an elliptic orbit of at 
least one planet. An interesting result is that all along the branch 
of a family which is not parallel to the line X-^Q-IJ there is an almost 
constant resonance T1/T3 of the osculating periods of the two planets. 
These constant values of the resonance are shown in Fig.l, in the paren­
theses near each branch. The association of this resonance with the 
resonance of the degenerate orbits A]_, A2... is evident. 

The actual Sun-Jupiter-Saturn system corresponds to the resonant 
orbit K of Figure 1 for the resonance 2/5. The initial conditions 

of a periodic orbit closely representing the Sun-Jupiter-Saturn system 
are given (Hadjidemetriou 1976a) by 

x =0.99915744, x =-1.84094099, y =1.10378309, (5) 

for the masses 

m =0.0009508, m =0.9987640, m =0.0002852. (6) 

according to the normalization (4). The ratio T-./T at t=0 is equal 
to 0.406 and the osculating elements of the orbits of the two planets 
vary during one period as follows: 

1.000550 < a,<1.000950. 
- 1-

0.000611< e <0.000677, 

1.8367<a <1.8492 

0.00075<e <0.00368 
o 

We note that the eccentricities are smaller than in the actual case. 
Perhaps the addition of more bodies in the system has as a consequence 
an increase in the eccentricities. This seems to be confirmed by nume­
rical results in the 4-body problem (the resonant branches of families 
B,C in Fig.5, for the resonance 2/5 are found to have eccentricities 
of the order of lO-^). 

In the families of the type I the upper branch (not parallel to 
the line X-LO=1) corresponds to an almost circular orbit of the outer 
planet, P3, and an elliptic orbit of the inner planet, Pj_, (more 
appropriately called now a comet). The eccentricity increases as we 
proceed to larger values of X3Q along this branch of the family. This 
picture is qualitatively the same for equal masses of the two planets 
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and also for the actual masses (6) of Jupiter and Saturn and it seems 
that it is the same for any value of m-|_/m3. However, we have important 
differences as far as stability is concerned, as we shall describe below. 

As far as the families I. and I„ are concerned, we note that these 
are mostly almost resonant families, corresponding to the resonances 
1/2 and 2/3 for I2, and 2/3 and 3/4 for I3. These resonances appear 
in the parts of the families not parallel to the line xj_o=l. The 
transition from one resonance to the other in each family is along the 
lower part of the family in Fig.l, which is nearly parallel to the 
line xir=l. This latter segment which does not correspond to resonant 
motion is small, and becomes smaller and smaller as we proceed to the 
families 1^, I5... (not shown in Fig.l), corresponding to higher 
resonances. 

A general remark is that all the resonant orbits of the form 
n/(n+l), n=l,2,3,... correspond to elliptic motion of at least one 
planet, though the eccentricities are in most cases small and only 
towards the end of the branches the eccentricities have large values. 
The values of the elements of the orbits of families I-j_, ̂ s 3̂ a r e 

presented in Hadjidemetriou (1976a) and Delibaltas (1976). 

(b). Stability of planetary-type orbits 

We shall discuss families of the type I-j_, I2, IQ (Figure 1). From the 
available numerical results (Hadjidemetriou 1976a, Delibaltas 1976) we 
can draw the following conclusions: 

The stability character of an orbit is not necessarily associated 
with commensurabilities in the periods of the two planets. Indeed, 
almost all resonant periodic orbits of family I]_ with nearly circular 
orbits of the two planets are stable, for all values mi/1113. Also the 
resonant orbits 1/2 in I]_, 2/3 in I2 and 3/4 in I3, for m]_>m„ are 
stable while the resonant orbits 1/2 and 2/3 in I3 are unstable. 

The resonant periodic orbit corresponding to the commensurability 
1/3 is the only unstable resonant motion with nearly circular orbits 
of the two planets. This seems to be true for all values of m]_/m3, 
even for vanishingly small values of the masses of the two planets. 

For finite masses of the two planets there is a small instability 
region corresponding to the resonance 1/3. In particular, the resonant 
orbit 2/5, corresponding to the actual Sun-Jupiter-Saturn system is 
found to be outside this unstable region. 

The upper branch of the family I,, corresponding to an almost 
circular orbit of the outer planet P3 and an elliptic orbit of the 
inner planet P-|_ is stable only when the outer planet is the more massive 
one (we remind that in the degenerate family in 2(a) R3>1). When the 
mass of the inner planet (comet) becomes larger than the mass of the 
outer planet, the system becomes unstable. The exact point of transition 
from stability to instability along the upper branch of I- depends on 
the ratio m-|_/m3. 
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As mentioned above, the upper branch of Ig corresponds to a circu­
lar orbit of the outer planet P3, and an elliptic orbit of the inner 
planet P-|_. Also, the period of Pj_ is just larger than half the period 
of Pg. All these facts suggest clearly that this upper branch of 1^ 
can be considered as the Jupiter family of comets. Consequently, the 
Jupiter family of comets could not exist if the masses of the comets 
were larger than the mass of Jupiter. 

Another interesting aspect concerning stability is the study of 
the evolution of the families shown in Fig.l by increasing the masses 
of the two planets. For example, we can take a certain set of families 
as in Fig. 1, for a fixed ratio of the masses m̂ /nig and continue all 
these families by increasing the masses of the two planets, keeping the 
ratio m̂ /nig fixed. The study of the stability of the obtained families 
will give interesting information for the generation and evolution of 
a planetary system as a whole. Of course, this procedure must be 

Fig. 2: The evolution of the family Ij_ by increasing the mass of 

both planets, for a fixed ratio of the masses (schematically). 
The orbit K is the resonant orbit 2/5 and the region in bold 
line represents unstable motion. It is assumed that mg<m,. 
If m„>m1 then the unstable region in the upper branch of I.. 
does not appear when m , m « l . 
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repeated for several values of m,/m in order to obtain a clear picture 
of the whole problem. 

We have done this in detail for the case m =m. (Hadjidemetriou 
1976a) and also, to a lesser extent, for the case where the values of 
m. and m are those of Jupiter and Saturn, respectively. The results 
are shown, qualitatively, in Fig.2. Only the family 1-̂  has been used 
for this continuation. 

We note that when the masses of the two planets are small there is 
a very small unstable region corresponding to the resonance 1/3. An ad­
ditional unstable region in the upper branch of I., exists when m„<m1. 
For the actual masses of Jupiter and Saturn and also for the masses of 
these two planets equal to 0.001 (in normalized units), the resonant 
orbit 2/5 is outside the unstable region and consequently it is stable. 
As the masses of the two planets increase, their ratio being fixed, we 
obtain the families I', I',' l£|.'. etc. We note that the unstable region 
due to the resonance 1/3 extends and also the unstable region in the 
upper branch of I extends (this latter unstable region would not be 
present for very small values of m. , m. if m <m„ but would appear as 
m , m increase). Eventually, the unstable region due to the resonance 
1/3 extends and covers the resonant orbit 2/5 which corresponds to the 
Sun-Jupiter-Saturn system. For still larger values of the masses, the 
above mentioned two unstable regions merge and we are left with a fami­
ly whose stable region corresponds to nearly circular orbits of the two 
planets not very near to each other. 

It was also found that this continuation can be carried out until 
the mass of the Sun becomes equal to zero, i.e. we end up to the circular 
restricted three-body problem. 

The transition from stability to instability for the actual Sun-
Jupiter-Saturn system, by incrasing the masses of both planets (keeping 
their ratio fixed) is shown in Tables I and II. In Table I we present 
a part of a family (family A) of periodic orbits corresponding to the 

m =0.0342888, m =0.9554260, m =0.0102852 (7) 

and in Table II a part of family B, corresponding to the masses 

m^O. 0409564, m =0.9467594, m =0.0122952. (8) 

The masses of the planets in family A are about 36 times the masses of 
Jupiter and Saturn and those of family B are about 43 times the masses 
of these planets. As a parameter along the family we have used the 
ratio T J U P I T E R/

T
S A T U R N

 o f t h e osculating elements of the two planets at 
t=0 and we present the stability index b^_ (of Hadjidemetriou 1975b), 
which is the first which becomes unstable, as a function of Tjnp//TSAT' 
The value of b-[_ when T /T =2/5 is obtained by linear 
interpolation between the adjacent values. 
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TABLE I 
A part of the family A, for the masses (7). 

TJUP/TSAT bl 

.414 

.402 

.400 

.398 

.394 

.390 

.379 

1.865 
1.973 
1.985 
1.996 
2 .015 
2 .029 
2 . 0 4 3 

TABLE II 
A part of the family B, for the masses (8). 

T 11 
JUP' SAT 

.426 

.419 

.415 

.412 

.410 

.405 

.400 

.399 

. 3 9 1 

b l 

1.878 
1.947 
1.974 
1.998 
2 .008 
2 .032 
2 .049 
2 .052 
2 . 0 6 1 

From the numerical results presented we can find that the transition 
from stability to instability for the Sun-Jupiter-Saturn system (defined 
as that system corresponding to the resonance 2/5) takes place when the 
masses of the two planets are increased by about 38 times the actual 
masses. We must note however that the numerical value of this factor 
is quite sensitive to the definition of the "Sun-Jupiter-Saturn" system. 
For example, if we allow for a variation in the value of T /T , in 

the definition of the "Sun-Jupiter-Saturn" system, this factor will 
change appreciably. 

The above stability analysis is based on a linear theory. In order 
to study the nonlinear effects we have computed the intersections of a 
perturbed orbit to the Sun-Jupiter-Saturn system, given by (7), with the 
plane y3=0, by a method described in Hadjidemetriou (1975b). At each 
point of intersection, in the same direction, we have computed the oscu­
lating semimajor axes and eccentricities of the two planets. The 
results are shown in Fig.3 for the semimajor axes and in Fig.4 for the 
eccentricities. We note that these points lie on smooth curves in such 
a way that every third point of intersection lies on the same curve. 
There does not seem to exist any secular change in the semimajor axes. 
This result does not contradict Poisson's theorem on the invariability 

Stable 
tt 

!l 

IT 

Unstable 
ii 

ii 

Stable 
II 

ti 

I! 

Unstable 
I! 

II 

II 

It 
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a3 

0.9984 0.9985 CC< 

Fig. 3: Curves defined by the values of a^ and 33 at the consecutive 
points of intersection with y3=0 (in the same direction) for 
a perturbed orbit to the periodic orbit (8) for the isoenerge-
tic perturbation Ax10=0.04, Ax30=0, AxlQ=0.025, Ax30=0.04. 
Every third point of intersection is shown only. The computa­
tions correspond to about 500 periods. Only the curves defin­
ed by the points 1-38, 217-253, 4-35-471 are shown. 

of the semimajor axes (Hagihara, 1961, p.101). As far as the eccentri­
cities are concerned, we noted appreciable changes. However, although 
we did not carry out the computations very far, we believe that these 
changes are also quasiperiodic, with very long periods. The obtained 
points are an indication (but not a proof) that the orbit is stable to 
all orders. These results can be also concidered as an indication that 
additional integrals exist, at least locally (see also Hagihara, 1961, 
p.107). 

The stability studied above is with respect to perturbations in the 

plane of motion. As far as vertical stability is concerned (i.e. with 
respect tovperturbations normal to the plane of motion) it was found by 

1.878 

1877 
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0.060 

0.050 

e3 

00600 0.0510 e< 
Fig.4: The same as in Fig.3 for the eccentricities e 

three smooth curves mentioned in the text are s 
and e3 

nown. 
The 

Only 
60 points have been used in this Figure. The value of e^ for 
the 500 periods increased from 0.050 to 0.058 and the value 
of e decreased from 0.058 to 0.031. 

o 

Delibaltas (1976) that the family I., for the masses (6) of Jupiter 
and Saturn, is vertically stable. Thus, there are no critical orbits 
which would generate three-dimensional periodic orbits. This means 
that the extension of planetary type orbits of the kind I, to three 
dimensions is not possible. Hence, the actual three-dimensional motion 
of the Sun-Jupiter-Saturn system must be considered as a perturbed 
motion to a planar periodic orbit. 

3. PLANETARY-TYPE ORBITS IN THE GENERAL 4-BODY PROBLEM 

(a). Families for zero masses of the three planets 

We consider the mass of the body P_ to be equal to unity and the masses 
of the bodies Pi, Pg, Pq. equal to zero, and assume that the bodies 
P., Pg, P^ (called planets) describe circular orbits in the same plane 
around the body P2 (called Sun), in the same direction. Let 

2E/T 
1' W3 = 2 * / T 3' % = 2*/T4, (9) 

be the angular velocities of rotation of the three planets whose periods 
are T-|_, Tg, T^, respectively. We define a rotating frame xOy such that 
the origin is at P2 and the x axis contains always the body P-j_ and nor­
malize the unit of length in such a way that the radius R-̂  of P]_ is 
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equal to unity. We note now that if we take an arbitrary radius Rg for 
the orbit of Pg and select the radius R^ of P^ in such a way that 

(a)3-u1)/(a)1+-o)1) = p/q, (10) 

where p,q are integers, the system is periodic with respect to the 
rotating frame xOy with a period equal to 

T\. (11) 
I-TX/T4 r 

Using (9) and (10) we can. find that the ratio T../T is expressed in 
terms of T-̂ /Tg by the relation 

T T 

~- 1 + J (^- 1). (12) 
4 P 3 

If now we normalize the units in such a way that (P9P-i )=R]_=1
 and 

keep p/q fixed (p<q), we have for each value of R3>1, or equivalent-
ly of T-[_/T~, a periodic motion of the four bodies. In this normaliza­
tion we have T]_=2n. Thus, we obtain a degenerate family of periodic 
orbits of the four bodies, with the ratio T^/l^ (°r "the distance Rg) 
as a parameter. This family is characterized by a particular value of 
the ratio p/q and consequently we have several families, one for each 
value of p/q. Thus, we can characterize a degenerate family of 4 bodies 
by its ratio p/q. We note that if Rg>l and p/q<l, then T1/T4<T1/Tg 
which implies that the radii of P]_, P3, P4 increase in this order, i.e. 
P^ is the outer planet, P3 the intermediate planet and P-j_ the inner 
planet. In this case the ratio T1/T3 varies between the values 0 (for 
Rg=°°) and 1 (for Rg=l). It can be verified that there is no loss of 
generality in selecting R]_=l, R3>1 and p/q<l. For the other possible 
values of R-,, Rg and p/q we would obtain the same family, but with 
the roles of P]_, P3, P4 interchanged in their hierarchigal order. 

We must also note that, apart from all the above parameters, a 
particular orbit depends also on the relative positions of the 3 planets 
with respect to the Sun, at t=0. In the present study we consider sym­
metric periodic orbits with respect the xOy only. For this reason we 
have taken all three planets to lie on the x axis at t=0. Moreover, 
we have restricted ourselves to positive values for X]_, Xg, xij. respecti­
vely, at t=0. If, other things being the same, we had taken xi>0, xg<0 
and x^>0 (x-[_< [xg |<x4) then we would obtain a different family. 

It can be proved (Hadjidemetriou 1976b,c) that the above mentioned 
degenerate families of periodic orbits can be continued as monoparametric 
families of symmetric periodic orbits of the general planar 4-body 
problem, in a rotating frame of reference, by increasing the masses of 
the planets. In this way we can obtain a family for fixed masses. In 
this continuation we may have any value for the ratio miimgim^. of the 
masses of the three planets. The continuation is unique for all the 
orbits of the degenerate family except for those orbits whose period is 
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a multiple of 2i. In this latter case the continuation theorem is not 
applicable and this results to a situation similar to that in the three-
body problem (Figure 1). And we may note from (11) and (12) that there 
is an infinity of such resonant orbits when T1/T3 varies between 1 and 
zero. Thus, a continuous degenerate family corresponding to a ratio p/q 
is extended to an infinity of families of periodic orbits for fixed non­
zero masses of the three planets. 

As an example we give below, in Table III, the values of T̂ /Tq. and 

T as a function of T1/T3, for a degenerate family corresponding to 

p/q=2/3. 

TABLE III 
Some characteristic orbits of the degenerate family for p/q=2/3 

NQ
 T-,/To Ti/Tii T corresponding family 

A 

B 

C 

We note that the 1st, 3rd, 5th and 6th cases in Table III correspond 
to resonant periodic orbits of the corresponding degenerate family (m-[_= 
m3=m^=0), where the period is a multiple of 2it. Evidently, there is an 
infinite number of such resonant orbits as T1/T3 increases to unity. As 
a consequence of the existence of these orbits in the degenerate family 
mentioned above, we obtain an infinite number of families of periodic 
orbits (for a fixed value p/q) when the masses of the three planets are 
increased. Each one of these latter families can be thought of as lying 
"between" two consecutive resonant orbits of the degenerate case with 
periods nX2i and (n+l)X2n, respectively (n=3,M-...). 

The degenerate family p/q=2/3 can be associated with the three inner 
Galilean satellites of Jupiter, because the family for nonzero masses 
of P^, P3 and P4 generated from the points of the degenerate family 
between the 3rd and 5th point in Table III has a branch which approxi­
mates the actual motion of Jupiter's satellites, (i.e. the periods are 
in the ratio 1:2:4). 

(b). Planetary-type families of periodic orbits of four bodies with 
nonzero masses 

Detailed calculations of planetary-type orbits in the general H-body 
problem will be given elsewhere (Hadjidemetriou and Michalodimitrakis 
1976). We shall present here the main qualitative features of the 
calculations obtained so far, for the family corresponding to p/q=2/3. 

1 
2 
3 
4 
5 
6 

1/3 
7/15 
1/2 
5/9 
3/5 
2/3 

0 
1/5 
1/4 
1/3 
2/5 
1/2 

3X2it 
(15/4)X2it 
4X2u 
(9/2)X2n 1 
5X2it J 
6X2u } 
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We extended the degenerate family p/q=2/3 for the masses 

m =0.0000379946, m =0.9998570204, 
1 l (13) 

m =0.0000249964, m =0.0000799886 . 

These masses, normalized so that m +m +m +m =1, correspond to the 
mass of Jupiter (F„) and its three inner satellites (P-p P3, P4) 
(Reek, 1958). As mentioned above, this degenerate family will be ex­
tended, for the masses (13), to an infinity of families. We have comput­
ed three of these families, the family A lying between the degenerate 
resonant orbits 

(T^T^l/3, TyT^O) and (T^T^l/2, iyT^l/4), 

the family B lying between 

(T1/T3=l/2, T /TH=1A) and (1^/1^=3/5, 1^/1^=2/5) 

and the family C lying between 

(Tx/T =3/5, T y r ^ / S ) and (T.^T.^2/3, T^T^l/2), 

as can be seen from table III. 

To present the results, we note (Hadjidemetriou 1976b,c) that a 
symmetric periodic orbit for N=4 can be specified, in the rotating 
frame of reference whose origin coincides with the center of mass of 
P.. , P and its x axis contains always these bodies, by the initial 
conditions 

X10' X30' X40' ^30' ^40' (llf) 

provided a certain normalization scheme is used. Thus, a family for 
fixed masses is represented by a continuous curve in the space x x„. 
x y y . To simplify things, we shall use, for qualitative 
purposes, the projections of this curve in the planes x x , and 
x x only. Evidently, the degenerate family p/q=2/3 will be 
presented in the above plane by the straight line x =1, according to 
the normalization mentioned before. 

In Fig. 5 we present qualitative results for the families A,B,C 
obtained for the masses (13). In all cases, we have taken 

X10>0' X30>0' X40>0 a t t=° (alS° " l O ^ S O ^ ' 

The osculating eccentricities of the orbits of P., P and P are 
very small and for all orbits of all these families the ratio of rela­
tive frequencies (u -u )/ (ov-w., ) is found to be equal to 2/3 to an 

accuracy of three decimal places. We have also found that the satel­
lites I, II, III are in their pericenter (P) or apocenter (A) at 
t=0, along the families A, B, C, as shown below. The branches of 
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these families are designated by the resonance T^/T3 (see Fig. 5a). 

(3/5,2/5) (3/5.2/5) 

(1/2.1/4) 

1/3 X30 

(1/2.1/4) 

Fig. 5a,b: The families A,B,C (schematically). The lower branch 
(almost parallel to the line x10=l) of family A in the plane 
X10X^0 (Fi§# 5b) extends to infinity while the lower branch 
of A in the plane Xiox30 (Fig.5a) stops at the point cor­
responding to the resonance 1/3. The ratios in the parentheses 
near each branch of the families in Fig.5a denote the ratios 
Tl/T3> Ti/T4 5 respectively. 

Family branch II III 

A 
A 
B 
B 
C 
C 

1/3 
1/2 
1/2 
3/5 
3/5 
2/3 

P 
P 
A 
P 
P 
P 

P 
P 
A 
P 
A 
P 

P 
A 
P 
A 
P 
A 
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The lower branch of .family B corresponds to a resonance 1/2, 1/4 
between P -P and P.-P , respectively and has many similarities with 
the motion of the three inner satellites of Jupiter. We have selected 
the periodic orbit with initial conditions 

x =0.99429726, x =1.59200305, x =2.44984472 
10 30 40 (1 5 ) 

y =-0.80992184, y =-1.80974958 

as the closest orbit to the motion of Jupiter's satellites. The osculat­
ing elements of the orbits of the three satellites vary between the 
following limits: 

0.9978 < a < 0.9979, 0.01680 < e < 0.01690, 

1.5509 < a. < 1.5517, 0.02602 < e < 0.02629, 
— o — o ~ 

2.4585 < a < 2.4596, 0.00364 < e < 0.00395. 

At t=0 the bodies P-̂  and P3 are at apocenter and the body P̂ . at pericenter. 

The motion given by (15) has many similarities with the actual motion 
of Jupiter's satellites but does not coincide with it. This is so be­
cause the relative positions of P^, P3, P^ with respect to P2 are not 
those of the actual case. A periodic orbit representing closely the 
actual case has been obtained in the same way as (15), by the continua­
tion of a degenerate orbit corresponding to T]_/T3=l/2 and T±/T^=l/^, by 
increasing the masses to the values given by (13), if we take X]_o>0, xi|0>0 

and x30<0 (instead of x30>0 we had in (15)). This orbit is given by 

x1Q=l.000594320,
 x

30=
-1- 595000148 , ^ = 2 • 572200612 , 

y3Q=0.801696725, ^=-1.948632207 

and its osculating elements vary between the limits 

1.002595 < a < 1.002693, 0.001982 < e < 0.002012, 

1.601014 < a„ < 1.601357, 0.003780 < e < 0.003949, 

2.572558 < a < 2.573604, 0.000154 < e < 0.000368. 

The satellites I and III are in conjuction and II in opposition when they 
are all in their perijoves, and this corresponds to the actual case. A 
periodic orbit for the three inner satellites of Jupiter has been found 
by de Sitter (Brower and Clemence, 1961, p.82, Hagihara, 1961, p.123) 
and was used as an intemediary orbit to obtain the ephemeris of the 
satellites. 

As a general remark we can say that a large part of the families 
correspond to almost resonant motion of the three small bodies. This 

https://doi.org/10.1017/S0252921100062370 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062370


PERIODIC PLANETARY ORBITS IN THE N-BODY PROBLEM 279 

resonant motion corresponds to the part of the families in Figure 5 
which is not parallel to the line XJ_Q=1. The osculating eccentricities 
of the orbits of the planets along these branches are greater than zero, 
but in most cases remain small, of the other of 10~2. This value is 
in agreement with the eccentricities in the solar system, in particular 
the Sun-Jupiter-Saturn system. (Compare this with the remark made in 
section 2(c) for the eccentricities of the Sun-Jupiter-Saturn system, 
considered there as a 3-body motion). 

4. DISCUSSION 

The method developed in this paper could provide us with useful infor­
mation on the generation and evolution of planetary systems. This is 
so because by studying families of planetary-type orbits for several 
mass-ratios we can obtain an overall view of the problem. In this way 
we find which configurations are unstable, so that they are excluded as 
possible configurations for planetary systems existing in nature. 

In the families of planetary-type orbits we have obtained both for 
three and for four bodies, we note that a large part of the obtained fa­
milies correspond to resonant motion. Moreover, the appearance of re­
sonances increases as the number of bodies increases. For N=3 the 
resonant orbits are those corresponding to the part of the families 
which are not parallel to the straight line X]_0=l and also some isolated 
orbits in the part which is almost parallel to x-i0

=l (Figure 1). The 
former resonant orbits are associated with nonzero eccentricities of the 
orbits of the two planets (though in most cases the eccentricities are 
not large). The addition of a fourth body has as a consequence the 
increase of resonant cases, no matter how small the mass of the fourth 
body is. In fact, all orbits obtained from a degenerate family for N=4, 
corresponding to a fixed ratio p/q, when the masses of the planets as­
sume nonzero values, are resonant in the sense that the ratio of the 
relative angular velocities in the rotating frame xOy (w -OJ )/(a> -a) ) 

is almost constant, equal to p/q, for all members of the family. Besides, 
the addition of a fourth body results in the appearance of more resonances, 
in the absolute orbits of the planets, not originally present in the 
(simple) periodic orbits of the three-body system. This can be seen 
from the comparison of Figs.l and 5 (and Table III). The resonances in 
the ratios of the absolute motions of the three planets in the 4-body 
system appear in all the branches of the families in Fig.5 which are 
not parallel to the line X]_g=l. F°r example, for N=3 we have the 
resonances 1/2, 2/3, 3/4 and when a fourth body is added, we can see 
from Figure 5, for p/q=2/3, that the resonances 1/4, 2/5, 3/5 are also 
present. In the same way, the addition of a fifth body will increase 
further the resonant cases. 

Taking into account all the above, we can attempt an interpretation 
of the appearence of commensurabilities in our Solar System. Indeed, if 
we assume that the motion of the Solar System, or at least its most 
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important components, must be near a periodic orbit, then it is very 
likely that many commensurabilities will exist, as a large part of the 
families of periodic planetary-type orbits in the N-body problem are 
resonant orbits. 

As far as stability is concerned, we may note that if we restrict 
ourselves to N=3, i.e. we study the Sun-Jupiter-Saturn system only and 
ignore the other planets, then there exists an infinity of stable con­
figurations for the actual masses of these bodies. It would be of in­
terest to study whether the addition of more bodies make the system more 
stable or, on the contrary, limit the stable configurations of the Solar 
System. The stability of the 4-body systems has not yet been studied 
and will appear elsewhere (Hadjidemetriou and Michalodimitrakis, 1976). 

There seems to be some confusion on the role which the resonances 
among the planets play in the stability of the Solar System (e.g. Moser 
1973). The stability analysis of periodic planetary-type orbits of 3 
bodies has shown that the commensurabilities do not play a very important 
role in the stability of the system. For example, the commensurable 
orbits 1/2 in family I]_ are stable for mjL=m3=0.001, m2=0.998 and the 
commensurable orbits 1/2 in family I2 for these masses are unstable. 
Also, the commensurable orbits 1/2 of family 1^ for the masses (9) are 
unstable. Thus, the presence of small divisors (e.g. Hagihara, 1961, 
p.Ill) does not seem to play an important role in stability as, for the 
same commensurability, the stability depends on the relative dimensions 
of the orbits of the planets (i.e. on the position on the family) and 
on the relative masses of the planets. 

We would also like to comment on the meaning of (linear) instabili­
ty. Usually, instability is associated with escape of at least one body, 
and this seems to be the rule in most cases in other problems. In the 
planetary orbits however for N=3 we could not establish such a close 
connection between instability and escape. For small masses of the 
planets, a perturbed orbit to an unstable periodic orbit did not lead to 
escape but to random, bounded, motion. Of course, one can always argue 
that escape will eventually happen if the computations are carried further 
in time, but this remains an open question. We do have a case for N=3 
where escape takes place after some hundred revolutions (Hadjidemetriou 
1976a), but the masses of the planets were rather large (1x11=1113=0.05, 
m =0.90). 

Finally, we may note that the method of periodic orbits may provide 
a new approach to the accurate computation of the planets and satellites 
of the Solar System. Instead of using the two-body approach as a refe­
rence orbit to compute the perturbations we may use for this purpose a 
periodic motion for several members of the Solar System, and calculate 
the perturbations for the actual motion starting from this periodic 
orbit. The periodic motion can be obtained to a high degree of accuracy 
numerically and analytically in the form of Fourier series. In this 
way we avoid the small divisors which complicate the classical approach 
to the solution of the planetary problem, as all the resonances will be 
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included in the reference periodic orbit itself, whose numerical compu­
tation does not depend on any resonance present and the gravitational 
effect of one planet on the other is completely taken into account. 
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