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Linear equivalence of scattered metric
spaces

Jan Baars

Abstract. Let α < ω1 be a prime component, and let X and Y be metric spaces. In [8], it was shown that
if Cp(X) and Cp(Y) are linearly homeomorphic, then the scattered heights κ(X) and κ(Y) of X and
Y satisfyκ(X) ≤ α if and only ifκ(Y) ≤ α. We will prove that this also holds if C∗p (X) and C∗p (Y) are
linearly homeomorphic and that these results do not hold for arbitrary Tychonov spaces. We will also
prove that if C∗p (X) and C∗p (Y) are linearly homeomorphic, then κ(X) < α if and only if κ(Y) < α,
which was shown in [9] for α = ω. This last statement is not always true for linearly homeomorphic
Cp(X) and Cp(Y). We will show that if α = ωμ where μ < ω1 is a successor ordinal, it is true, but for
all other prime components, this is not the case. Finally, we will prove that if C∗p (X) and C∗p (Y) are
linearly homeomorphic, then X is scattered if and only if Y is scattered. This result does not directly
follow from the above results. We will clarify why the results for linearly homeomorphic spaces C∗p (X)
and C∗p (Y) do require a different and more complex approach than the one that was used for linearly
homeomorphic spaces Cp(X) and Cp(Y).

1 Introduction

For a Tychonov space X, we define C(X) to be the set of real-valued continuous
functions in X and C∗(X) to be the subset of bounded functions in C(X). If we
endow C(X) and C∗(X)with the topology of pointwise convergence, we denote that
by Cp(X) and C∗p(X). These function spaces are topological vector spaces that are
dense subspaces of RX . We define spaces X and Y to be lp-equivalent if Cp(X) and
Cp(Y) are linearly homeomorphic and l∗p -equivalent if C∗p(X) and C∗p(Y) are linearly
homeomorphic. Function spaces with the topology of pointwise convergence have
been widely investigated. For the results achieved, we refer to [2, 8, 15, 18–21].

In this paper, we will focus on linear homeomorphisms between function spaces
of metric spaces and the linear equivalence of the scattered height of the underlying
spaces. For a scattered metric space X, κ(X) denotes the scattered height of X (see
Section 2 for a formal definition). The following result for lp-equivalent metric spaces
can be found in [8, Theorem 4.1.15].

Theorem 1.1 Let α < ω1 be a prime component, and let X and Y be lp-equivalent
metric spaces. Then κ(X) ≤ α if and only if κ(Y) ≤ α.
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Linear equivalence of scattered metric spaces 1355

The notion of “support,” introduced in [1] by Arhangel’skii, was very important
in proving results for lp-equivalent spaces. In particular, Lemmas 2.2 and 2.3 in the
next section formulate properties of the support function that were key in the proof
of Theorem 1.1. Although the support function is also defined for continuous linear
functions ϕ ∶ C∗p(X) → C∗p(Y), both Lemmas 2.2 and 2.3 are not true in this case.
Therefore, a different approach is required to derive the equivalent of Theorem 1.1,
for l∗p -equivalent spaces. For this, the notion of ε-supported sets and Lemma 2.5,
the alternative for Lemma 2.3, were introduced in [10]. In addition to that, we also
need an alternative for Lemma 2.2. For the purposes of this paper, it will turn out
that Lemma 2.8 suffices as that alternative (see Section 2 for more details). These are
amongst the essential ingredients to prove the following 30-year-old problem (see [9]
or [8], Conjecture 4.6.8).

Theorem 1.2 Let α < ω1 be a prime component, and let X and Y be l∗p -equivalent
metric spaces. Then:
(a) κ(X) ≤ α if and only if κ(Y) ≤ α.
(b) κ(X) < α if and only if κ(Y) < α.

We will also show, for metric spaces X and Y , that if C∗p(X) and C∗p(Y) are linearly
homeomorphic, then X is scattered if and only if Y is scattered. Since Theorem 1.2 will
only be derived in this paper for α < ω1, this result does not directly follow from it.

Theorem 1.2(a) shows that Theorem 1.1 also holds for l∗p -equivalent spaces. In [9],
Theorem 1.2(b) was proved for α = ω and, therefore, Theorem 1.2(b) generalizes this
result for all prime components. The proof in [9] for α = ω made use of techniques that
seem to be unsuitable for the general case. The techniques in this paper also provide
an alternative proof of the original result for α = ω.

Theorem 1.2(b) shows that C∗p([1, ω2)) and C∗p([1, ωω)) are not linearly homeo-
morphic, where [1, α) is the ordinal space {β ∶ 1 ≤ β < α} with the order topology.
However by the classification results in [6], Cp([1, ω2)) and Cp([1, ωω)) are linearly
homeomorphic which shows that Theorem 1.2(b) cannot always be true for lp-
equivalent metric spaces. One might think that for lp-equivalent metric spaces,
Theorem 1.2(b) is not true for all prime components α < ω1. In this paper, we will
show this is not the case. For lp-equivalent metric spaces, it is true for some prime
components α < ω1 but not for all.

Theorem 1.3 Let 0 < α < ω1 be a prime component, and let X and Y be lp-equivalent
metric spaces.
(a) If α = ωμ with μ = 0 or μ a limit ordinal, then κ(X) < α if and only if κ(Y) < α.
(b) For all other α, κ(X) < α if and only if κ(Y) < α is not always true.

We will conclude this paper by showing that Theorems 1.1 and 1.2(a) do not hold
for arbitrary Tychonov spaces, but that it remains an open question whether this is
the case for Theorems 1.2(b) and 1.3(a).
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2 The support function

Let X and Y be Tychonov spaces, and let ϕ ∶ Cp(X) → Cp(Y) be a continuous
linear function. For y ∈ Y , the map ψy ∶ Cp(X) → R defined by ψy( f ) = ϕ( f )(y)
is continuous and linear. This means ψy ∈ L(X), the dual space of Cp(X). Since
the evaluation mappings ξx (x ∈ X) defined by ξx( f ) = f (x) for f ∈ Cp(X) form a
Hamel basis for L(X), there are x1 , . . . , xn ∈ X and λy

x1 , . . . , λy
xn ∈ R / {0} such that

ψy = ∑
n
i=1 λy

x i ξx i . This means that for every f ∈ Cp(X), ϕ( f )(y) = ∑n
i=1 λy

x i f (x i). We
define the support of y to be {x1 , . . . , xn} and we denote that by suppϕ(y) or simply
by supp(y) if the subscript can be omitted without confusion. For B ⊆ Y , we denote
⋃y∈B supp(y) by suppϕ(B) or supp(B). The following lemma is well known (see [15,
Lemma 6.8.2]).

Lemma 2.1 Let X and Y be Tychonov spaces, let ϕ ∶ Cp(X) → Cp(Y) be a continuous
linear function, and let y ∈ Y.
(a) If f , g ∈ Cp(X) coincide on suppϕ(y), then ϕ( f )(y) = ϕ(g)(y).
(b) If ϕ is a homeomorphism, then y ∈ suppϕ−1(suppϕ(y)).

Similarly, the support function can be defined for continuous linear functions
between C∗p(X) and C∗p(Y) and Lemma 2.1 holds for continuous linear functions
ϕ ∶ C∗p(X) → C∗p(Y). For more information on the support function, we refer to [8]
and [15, Chapter 6].

The following two lemmas were key in the proof of Theorem 1.1.

Lemma 2.2 [1] Let X and Y be Tychonov spaces, and let ϕ ∶ Cp(X) → Cp(Y) be a
continuous linear function. If A ⊆ Y is bounded, then supp(A) ⊆ X is bounded.

Lemma 2.3 [7] Let X and Y be normal spaces, and let ϕ ∶ Cp(X) → Cp(Y) be a
continuous linear function. Let V be a locally finite family of open sets in X, and let
y0 ∈ Y be of countable character. Then there are a neighborhood U of y0 and a finite
subset W ⊆ V such that supp(U) ∩ ⋃{V ∈ V ∶ V ∉W} = ∅.

Examples in [8, 12] show that both Lemmas 2.2 and 2.3 do not hold for continuous
linear functions ϕ ∶ C∗p(X) → C∗p(Y). Therefore, a new approach is required to prove
Theorem 1.2. For continuous linear functions ϕ ∶ C∗p(X) → C∗p(Y), ε-supported sets
and an alternative for Lemma 2.3 were introduced in [10].

Let X and Y be Tychonov spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a continuous
linear function. Let A ⊆ X, B ⊆ Y and ε > 0. We define B to be ε-supported on A if for
each y ∈ B,

∑{∣λy
x ∣ ∶ x ∈ supp(y) / A} < ε.

The following lemma is straightforward.

Lemma 2.4 Let X and Y be Tychonov spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a
continuous linear function. Let A ⊆ X, B ⊆ Y and ε > 0 be such that B is ε-supported
on A.
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(a) If D ⊆ B, then D is ε-supported on A.
(b) If A ⊆ C, then B is ε-supported on C.
(c) If δ > 0 and C ⊆ X are such that B is δ-supported on C, then B is ε + δ-supported

on A∩ C .
(d) If D ⊆ Y is ε-supported on A, then B ∪ D is ε-supported on A.

The next lemma on ε-supported sets can be found in [10]. This lemma is the
alternative for Lemma 2.3 that we need in the proof of Theorem 1.2.

Lemma 2.5 Let X and Y be metric spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a contin-
uous linear function. Let V be a locally finite family of open sets in X, and let y ∈ Y. For
every ε > 0, there are a neighborhood U of y and a finite subset W ⊆ V such that U is
ε-supported on ⋃W ∪ (X / ⋃V).

We need the following corollary to Lemma 2.5.

Corollary 2.6 Let X and Y be metric spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a
continuous linear function. LetV be a locally finite family of open sets in X, and let K ⊆ Y
be compact. For every ε > 0, there is a finite subset W ⊆ V such that K is ε-supported on
⋃W ∪ (X / ⋃V).

Proof For every y ∈ K, there are, by Lemma 2.5, a neighborhood Uy ⊆ Y of y and
a finite subset Wy ⊆ V such that Uy is ε-supported on ⋃Wy ∪ (X / ⋃V). Since K is
compact, there is a finite subset F ⊆ K such that K ⊆ ⋃{Uy ∶ y ∈ F}. Let W = ⋃{Wy ∶
y ∈ F}. Then W is a finite subset of V. Let y ∈ F. Since Uy is ε-supported on ⋃Wy ∪
(X / ⋃V), we have by Lemma 2.4(b), Uy is ε-supported on⋃W ∪ (X / ⋃V). Then,
by Lemma 2.4(d), ⋃{Uy ∶ y ∈ F} is ε-supported on ⋃W ∪ (X / ⋃V), and hence, by
Lemma 2.4(a), K is ε-supported on ⋃W ∪ (X / ⋃V). ∎

For a Tychonov space X and an ordinal α, we define X(α), the αth derivative of X
by transfinite induction as follows:
(a) X(0) = X and X(1) = {x ∈ X ∶ x is an accumulation point of X}.
(b) If α is a successor, say α = β + 1, then X(α) = (X(β))(1).
(c) If α is a limit ordinal, then X(α) = ⋂β<α X(β).

For each ordinal α, X(α) is a closed subset of X. A Tychonov space X is defined to
be scattered if there exists an ordinal α such that X(α) = ∅. The scattered height κ(X)
of a scattered space X is defined to be the smallest ordinal α such that X(α) = ∅.

Theorem 2.7 [16, Theorem 8.5.2 and Proposition 8.5.5] Let X be a topological space.
Then there exists an ordinal α such that X(α) = X(α+1). For this α, X(α) is closed and
dense in itself and X / X(α) is scattered. In particular, X is scattered if and only if
X(α) = ∅. Moreover, if X is second countable and scattered, then it is countable.

As mentioned in the introduction, Lemma 2.2 does not hold for continuous linear
functions ϕ ∶ C∗p(X) → C∗p(Y). Instead, we will use the following lemma in the proof
of Theorem 1.2.
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Lemma 2.8 Let X and Y be metric spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a contin-
uous linear function. Let A ⊆ X be closed and scattered. Then, for every K ⊆ Y compact
and ε > 0, there is L ⊆ A compact such that K is ε-supported on L ∪ (X / A).

Proof Let κ(A) = α. We will prove the lemma by transfinite induction on α. For
α = 0, we have A = ∅. Then, for L = ∅, the lemma follows. For α > 0, assume the
lemma is true for every β < α.

First, suppose that α is a limit ordinal. Since A(α) = ∅, the family V = {X / A(β) ∶
β < α} is an open cover of X. Let U be a locally finite open cover of X such that {U ∶
U ∈ U} refines V. By Corollary 2.6, there is a finite subset W ⊆ U such that K is ε/2-
supported on⋃W. Let F = ⋃{U ∶ U ∈W} ∩ A. Then F is closed and sinceW is finite,
there is β < α such that F ⊆ A / A(β). This implies F(β) = ∅, hence F is scattered. By
the induction hypothesis, there is L ⊆ F compact such that K is ε/2-supported on
L ∪ (X / F). Note that (L ∪ (X / F)) ∩ ⋃W ⊆ L ∪ (X / A). So, by Lemma 2.4(b) and
(c), the set K is ε-supported on L ∪ (X / A).

Second, suppose that α = β + 1 is a successor ordinal. Since A(α) = ∅ and A is
closed, A(β) is a closed and discrete subset of X. ThenV = {X /G ∶ G ⊆ A(β) cofinite}
is an open cover of X. Let U be a locally finite open cover of X such that {U ∶ U ∈ U}
refines V. By Corollary 2.6, there is a finite subset W ⊆ U such that K is ε/2-supported
on ⋃W. Let F = ⋃{U ∶ U ∈W} ∩ A. Then F is closed and since W is finite, there is
G ⊆ A(β) cofinite such that F ⊆ A /G. This implies that F(β) = F ∩ A(β) is finite.

Let {Un ∶ n ∈ N} be an open neighborhood base of F(β) in X such that for
every n ∈ N, U n+1 ⊆ Un . Let (εn)n∈N be a sequence of positive numbers such that
∑∞n=1 εn = ε/2. For every n ∈ N, let Fn = F /Un . Then Fn is closed in X, Fn−1 ⊆ Fn and
F(β)

n = ∅. Hence, by the induction hypothesis, there is Ln ⊆ Fn compact such that K is
εn-supported on Ln ∪ (X / Fn). For n ∈ N, we inductively define L̂n by L̂1 = L1 and for
n > 1, L̂n = L̂n−1 ∪ (Ln ∩Un−1). Note that Ln ∩Un−1 ⊆ Ln , L̂n ⊆ Fn and L̂n is compact.

Claim 1 For every n ∈ N, K is∑n
m=1 εm-supported on L̂n ∪ (X / Fn).

We will prove the claim by induction on n. Clearly the claim holds for n = 1. Let
n > 1 and assume that the claim holds for every m < n. By the induction hypothesis,
the set K is ∑n−1

m=1 εm-supported on L̂n−1 ∪ (X / Fn−1). We also have that K is εn-
supported on Ln ∪ (X / Fn). Since

(L̂n−1 ∪ (X / Fn−1)) ∩ (Ln ∪ (X / Fn)) ⊆ L̂n ∪ (X / Fn),

we have by Lemma 2.4(b) and (c) that K is∑n
m=1 εm-supported on L̂n ∪ (X / Fn). This

proves the claim.
Let L = ⋃∞n=1 L̂n ∪ F(β).

Claim 2
(a) For every n ∈ N, L ∩ Fn = L̂n ∪ ((L̂n+1 ∩Un) /Un).
(b) L ⊆ F is compact.
(c) K is ε/2-supported on L ∪ (X / F).
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Clearly L̂n ⊆ L ∩ Fn and (L̂n+1 ∩Un) /Un ⊆ L ∩ Fn . Let x ∈ L ∩ Fn . Since Fn ∩
F(β) = ∅, we have x ∈ ⋃∞n=1 L̂n . Let m =min{k ∈ N ∶ x ∈ L̂k}. Then x ∈ Fm and hence
x ∉ Um . If m ≤ n, then x ∈ L̂m ⊆ L̂n and we are done. If m > n, then x ∉ L̂m−1 and hence
x ∈ Lm ∩Um−1. If m − 1 > n, then Um−1 ⊆ Un . Since x ∈ Fn , we have x ∉ Un which is
a contradiction. If m = n + 1, then x ∉ L̂n and hence x ∈ Ln+1 ∩Un ⊆ Un . But then
x ∈ (L̂n+1 ∩Un) /Un which proves part (a) of the claim.

For (b), note that by (a), we have L ∩ Fn is compact. Let V be an open cover of
L. Then, for every x ∈ F(β), there is Vx ∈ V such that x ∈ Vx . Let n ∈ N be such that
Un ⊆ ⋃{Vx ∶ x ∈ F(β)}. Since L ∩ Fn is compact, there is a finite subset W ⊆ V such
that L ∩ Fn ⊆ ⋃W. But then L ⊆ ⋃W ∪⋃{Vx ∶ x ∈ F(β)}, hence L is compact.

For y ∈ K, supp(y) is finite, hence there is n ∈ N such that supp(y) ∩ (F / F(β)) ⊆
Fn . Let Hn = L̂n ∪ (X / Fn) and H = L ∪ (X / F). By Claim 1, we have ∑{∣λy

x ∣ ∶
x ∈ supp(y) /Hn} < ∑

n
m=1 εm < ε/2. Since supp(y) /H ⊆ supp(y) /Hn , we have

∑{∣λy
x ∣ ∶ x ∈ supp(y) /H} < ε/2. So K is ε/2-supported on H which proves part

(c) of the claim.
Now, we can conclude that K is ε/2-supported on ⋃W and, by Claim 2, that K is

ε/2-supported on L ∪ (X / F). Note that (L ∪ (X / F)) ∩ ⋃W ⊆ L ∪ (X / A). Then,
by Lemma 2.4(b) and (c), the set K is ε-supported on L ∪ (X / A). Since by Claim 2,
L is compact, this proves the lemma. ∎

3 Linear k-mappings

Let X and Y be Tychonov spaces, let E be a linear subspace of Cp(X), and let ϕ ∶
E → Cp(Y) be a continuous linear function. Let k ∈ N and F = ϕ(E) ⊆ Cp(Y). We
define ϕ to be a linear k-mapping if, for every f ∈ E satisfying f (E) ⊆ [−1, 1], we have
ϕ( f )(Y) ⊆ [−k, k]. If ϕ ∶ E → F is a linear homeomorphism, we define ϕ to be a linear
k-homeomorphism if both ϕ ∶ E → F and ϕ−1 ∶ F → E are linear k-mappings. In that
case, we define ϕ ∶ E → Cp(Y) to be a linear k-embedding.

If we endow C∗(X) with the topology of uniform convergence, we denote that by
C∗u(X). For f ∈ C∗(X), we define ∥ f ∥ = supx∈X ∣ f (x)∣. Let ϕ ∶ C∗p(X) → C∗p(Y) be a
continuous linear function. By the Closed Graph Theorem, ϕ ∶ C∗u(X) → C∗u(Y) is
also continuous. This means there exist k ∈ N such that for each f ∈ C∗(X), ∥ϕ( f )∥ ≤
k ⋅ ∥ f ∥. Hence, for this k, it turns out that ϕ is a linear k-mapping. Similarly, if ϕ is
a linear homeomorphism (embedding), there is k ∈ N such that for each f ∈ C∗(X),
1
k ∥ f ∥ ≤ ∥ϕ( f )∥ ≤ k ⋅ ∥ f ∥. For this k, we have that ϕ is a linear k-homeomorphism
(embedding).

If there exists a linear k-homeomorphism between linear subspaces E and F of
Cp(X) and Cp(Y) or C∗u(X) and C∗u(Y), we denote this by E k∼ F.

For each ordinal α, let [1, α] be the compact ordinal space {β ∶ 1 ≤ β ≤ α} with
the order topology. By Corollary 8.6.7 in [16], the space [1, α] is scattered. We define
C∗u ,0([1, α]) = { f ∈ C∗u([1, α]) ∶ f (α) = 0}. In [13], Bessaga and Pelczyński found the
following:

Lemma 3.1 Let α ≥ ω be an ordinal. Then C∗u ,0([1, α]) 2∼ C∗u([1, α]).
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Lemma 3.2 Let α, β ≥ ω be ordinals, let {Un ∶ n ∈ N} be a clopen decreasing base at α
with U1 = [1, α], and let {Vn ∶ n ∈ N} be a clopen decreasing base at β with V1 = [1, β].
If k ∈ N is such that for every n ∈ N, there is a linear k-embedding from C∗u(Un /Un+1)
to C∗u(Vn / Vn+1), then there is a linear 4k-embedding from C∗u([1, α]) to C∗u([1, β]).

Proof For n ∈ N, let θn ∶ C∗u(Un /Un+1) → C∗u(Vn / Vn+1)be a linear k-embedding.
Define θ ∶ C∗u ,0([1, α]) → C∗u ,0([1, β]) by

θ( f )∣(Vn / Vn+1) = θn( f ∣(Un / Un+1)) and θ( f )(β) = 0.

Since each θn is a linear k-mapping, θ is well defined. Since, for every f ∈ C∗u ,0([1, α]),
we have 1

k ∥ f ∥ ≤ ∥θ( f )∥ ≤ k∥ f ∥ it follows that θ is a linear k-embedding. By Lemma
3.1, it then follows there is a linear 4k-embedding from C∗u([1, α]) to C∗u([1, β]). ∎

In [14], Dugundji proved the following:

Theorem 3.3 Let X be a metric space, and let A be a closed subspace of X. Then there
exists a continuous linear function ϕ ∶ Cp(A) → Cp(X) such that, for every f ∈ Cp(A),
we have ϕ( f )∣A = f and ϕ( f )(X) ⊆ conv( f (A)) the convex hull of f (A).

Dugundji’s theorem is used in the proof of the following lemma. A version of this
lemma was embedded in the proof of Theorem 1.1 (see [8, Theorem 4.1.15 on p. 147]).

Lemma 3.4 Let X and Y be metric spaces, and let ϕ ∶ Cp(X) → Cp(Y) be a linear
homeomorphism. Let K ⊆ Y be compact, and let L = supp(K). Then there exists a linear
embedding θ ∶ Cp(K) → Cp(L).

Proof By Theorem 3.3, there is a continuous linear function ψ ∶ Cp(L) → Cp(X)
such that, for every f ∈ Cp(L), we have ψ( f )∣L = f and a continuous linear
function ζ ∶ Cp(K) → Cp(Y) such that, for every g ∈ Cp(K), we have ζ(g)∣K = g.
Define θ ∶ Cp(K) → Cp(L) by θ(g) = (ϕ−1(ζ(g))∣L and ϑ ∶ Cp(L) → Cp(K) by
ϑ( f ) = (ϕ(ψ( f ))∣K . Then θ and ϑ are well-defined continuous linear mappings.

Let g ∈ Cp(K), and let h = ψ(θ(g)) − ϕ−1(ζ(g)). Then

h∣L = ψ(θ(g))∣L − ϕ−1(ζ(g))∣L = θ(g) − θ(g) = 0.

Since supp(K) ⊆ L, we have h∣supp(K) = 0. Hence, by Lemma 2.1(a), ϕ(h)∣K = 0.
Therefore,

ϕ(h)∣K = ϕ(ψ(θ(g)))∣K − ϕ(ϕ−1(ζ(g)))∣K = ϑ(θ(g)) − g = 0,

and hence ϑ(θ(g)) = g. So θ is injective and ϑ ○ θ = idK . This implies that θ is a linear
embedding. ∎

By Lemma 2.2, the subspace L ⊆ X in Lemma 3.4 is compact. This fact is essential
in the proof of Theorem 1.1. Although it can be shown that Lemma 3.4 also holds for
linear homeomorphisms ϕ ∶ C∗p(X) → C∗p(Y), we cannot guarantee in this case that
L is compact. Therefore, a different approach is required to prove Theorem 1.2. Instead
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of Lemma 3.4, we will use Lemma 3.6 applied to the compact set L in Lemma 2.8. But
first, we need the following corollary to Dugundji’s theorem.

Lemma 3.5 Let X be a metric space, and let A be a closed subspace of X. Then there
is a continuous linear 1-mapping ϕ ∶ C∗p(A) → C∗p(X) such that, for every f ∈ C∗p(A),
we have ϕ( f )∣A = f .

Proof By Theorem 3.3, there is a continuous linear function ψ ∶ Cp(A) → Cp(X)
such that, for every f ∈ Cp(A), we have ψ( f )∣A = f and ψ( f )(X) ⊆ conv( f (A)). For
f ∈ C∗p(A), let k = ∥ f ∥. Then f (A) ⊆ [−k, k] and hence ψ( f )(X) ⊆ conv( f (A)) ⊆
[−k, k]. This implies ψ( f ) ∈ C∗p(X) and ∥ψ( f )∥ ≤ ∥ f ∥. So ϕ = ψ∣C∗p (A) ∶ C∗p(A) →
C∗p(X) is a linear 1-mapping. ∎

The next lemma is motivated by Lemma 3.4 in [3].

Lemma 3.6 Let X and Y be metric spaces, and let ϕ ∶ C∗p(X) → C∗p(Y) be a linear
k-homeomorphism. Let K ⊆ Y be compact, and let L ⊆ X be such that K is 1

4k -supported
on L. Then there exists a linear 2k-embedding θ ∶ C∗u(K) → C∗u(L).

Proof By Lemma 3.5 and the Closed Graph Theorem, there is a continuous linear
1-mapping ψ ∶ C∗u(L) → C∗u(X) such that, for every f ∈ C∗u(L), we have ψ( f )∣L = f
and there is a continuous linear 1-mapping ζ ∶ C∗u(K) → C∗u(Y) such that, for every
g ∈ C∗u(K), we have ζ(g)∣K = g. Define θ ∶ C∗u(K) → C∗u(L) by θ(g) = (ϕ−1(ζ(g))∣L
and ϑ ∶ C∗u(L) → C∗u(K) by ϑ( f ) = (ϕ(ψ( f ))∣K . Then θ and ϑ are continuous and
linear. Since ψ and ζ are linear 1-mappings and ϕ and ϕ−1 are linear k-mappings, we
conclude that θ and ϑ are linear k-mappings.

Claim For every g ∈ C∗u(K), we have ∥(ϑ(θ(g)) − g∥ ≤ 1
2 ∥g∥.

Let h = ψ(θ(g)) − ϕ−1(ζ(g)). Since ψ is a linear 1-mapping and θ is a linear
k-mapping it follows that ψ ○ θ is a linear k-mapping. Hence ∥ψ(θ(g))∥ ≤ k∥g∥.
Since ζ is a linear 1-mapping and ϕ−1 is a linear k-mapping, it follows that ϕ−1 ○ ζ
is a linear k-mapping. Hence ∥ϕ−1(ζ(g))∥ ≤ k∥g∥. This implies ∥h∥ ≤ ∥ψ(θ(g))∥ +
∥ϕ−1(ζ(g))∥ ≤ 2k∥g∥.

Note that h∣L = ψ(θ(g))∣L − ϕ−1(ζ(g))∣L = θ(g) − θ(g) = 0. Then, for z ∈ K,

∣ϕ(h)(z)∣ = ∣∑{λz
x h(x) ∶ x ∈ supp(z)}∣ ≤ ∑{∣λz

x ∣ ⋅ ∣h(x)∣ ∶ x ∈ supp(z)}
≤ ∑{∣λz

x ∣ ⋅ ∣h(x)∣ ∶ x ∈ supp(z) ∩ L} +∑{∣λz
x ∣ ⋅ ∣h(x)∣ ∶ x ∈ supp(z) / L}

≤ 0 +∑{∣λz
x ∣ ∶ x ∈ supp(z) / L} ⋅ ∥h∥ < 1

4k
⋅ 2k∥g∥ = 1

2
∥g∥.

This implies ∥ϕ(h)∣K∥ ≤ 1
2 ∥g∥. Since

ϕ(h)∣K = ϕ(ψ(θ(g)))∣K − ϕ(ϕ−1(ζ(g)))∣K
= ϑ(θ(g)) − ζ(g)∣K = ϑ(θ(g)) − g ,

this proves the claim.
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Let g ∈ C∗u(K) and suppose θ(g) = 0. Then ϑ(θ(g)) = 0, and hence, it follows by
the claim that ∥g∥ = ∥(ϑ(θ(g)) − g∥ ≤ 1

2 ∥g∥. So g = 0, and hence, θ is one-to-one. For
g ∈ C∗u(K), since ϑ is a linear k-mapping, we have by the claim

∥g∥ ≤ ∥(ϑ(θ(g)) − g∥ + ∥(ϑ(θ(g))∥ ≤ 1
2
∥g∥ + k∥θ(g)∥.

Hence ∥g∥ ≤ 2k∥θ(g)∥. Since θ is a linear k-mapping, it follows that 1
2k ∥g∥ ≤

∥θ(g)∥ ≤ 2k∥g∥. Hence, θ is a linear 2k-embedding. ∎

4 Main results

We define an ordinal α to be a prime component if, for every β < α, we have β + α = α.
If α > 0 is a prime component, then α = ωμ for some ordinal μ (see [17, Theorem
1, p. 320]). By Theorem 8.6.6 in [16], for the ordinal space X = [1, ωμ], we have the
equality X(μ) = {ωμ}. It is well known that, for every ordinal α, there is a largest prime
component ωμ such that ωμ ≤ α (see [17, p. 282]). We then have ωμ ≤ α < ωμ+1. Note
that if X is a first countable space and μ < ω1 is such that X(μ) ≠ ∅, then there is K ⊆ X
such that K is homeomorphic to [1, ωμ] (see, for example, Lemma 4.1.8 in [8]).

Bessaga and Pelczyński [13] found the following:

Theorem 4.1
(a) If ω ≤ α ≤ γ < ω1, then C∗u([1, α]) ∼ C∗u([1, γ]) if and only if γ < αω .
(b) If θ ∶ C∗u([1, ωμ]) → C∗u([1, ων]) is a linear embedding with μ, ν ≥ 1 and μ is a

prime component, then μ ≤ ν.

In [6], it was shown that the same isomorphic classification as in Theorem 4.1(a)
holds for linear homeomorphisms between function spaces Cp([1, α]). We are now
in a position to proof Theorems 1.2 and 1.3. In both proofs, we will need the following:

Theorem 4.2 [16, Theorem 8.6.10] Let X be a countable compact Hausdorff space.
Then there is an ordinal α < ω1 such that X is homeomorphic to [1, α].

Proof of Theorem 1.2 Let ϕ ∶ C∗p(X) → C∗p(Y) be a linear homeomorphism. Let
k ∈ N be such that ϕ is linear k-homeomorphism. Clearly, we have X = ∅ if and only
Y = ∅, so (a) holds for α = 0 and (b) holds for α = 1. Note that for α = 0, there is
nothing to prove for (b). For α = 1, (a) follows from Theorem 2.2 in [9], so we may
assume that α ≥ ω.

For (a), assume that κ(X) ≤ α and κ(Y) > α. Since Y(1) ≠ ∅, we have by the above
that X(1) ≠ ∅, hence X is not discrete. Since Y(α) ≠ ∅, there is K ⊆ Y such that K is
homeomorphic to [1, ωα] in Y . Since X is scattered, we can find by Lemma 2.8, a com-
pact subset L of X such that K is 1

4k -supported on L. Since X is not discrete, we may
assume, by Lemma 2.4(b), that L is infinite. By Lemma 3.6, there is a linear embedding
θ ∶ C∗u(K) → C∗u(L). Since L(α) = ∅, we conclude that L is a compact scattered metric
space. Therefore, by Theorem 2.7, L is countable, and hence, by Theorem 4.2, there is
ω ≤ γ < ωα such that L is homeomorphic to [1, γ]. Let ωμ < ω1 be a prime component
such that ωμ ≤ γ < ωμ+1. Then L(μ) ≠ ∅ and since L(α) = ∅ it follows that μ < α.
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Since γ < (ωμ)ω , we have, by Theorem 4.1(a), that C∗u([1, ωμ]) ∼ C∗u([1, γ]), and
hence, there exists a linear embedding from C∗u([1, ωα]) to C∗u([1, ωμ]). But then by
Theorem 4.1(b), α ≤ μ. Contradiction. This proves (a).

For (b), assume that κ(X) < α and κ(Y) ≥ α. Let κ(X) = β < α. Let (α i)i∈N be
an increasing sequence of ordinals such that α i → α and α i > β for every i ∈ N. Let
K i be a closed copy of [1, ωα i ] in Y . Since X is scattered, by Lemma 2.8, there is a
compact subset L i of X such that K i is 1

4k -supported on L i . As in the proof of (a), we
may assume that L i is infinite and, since L(β)

i = ∅, there is ω ≤ γ i < ωβ such that L i
is homeomorphic to [1, γ i]. But then L i can be seen as a closed subset of [1, ωβ], and
hence, by Lemma 3.5, there is a linear 1-embedding from C∗u(L i) to C∗u([1, ωβ]). By
Lemma 3.6, there is a linear 2k-embedding θ i ∶ C∗u(K i) → C∗u(L i), and hence, there
is a linear 2k-embedding ψ i ∶ C∗u([1, ωα i ]) → C∗u([1, ωβ]).

Let S = {x i ∶ i ∈ N} ∪ {x0} be a convergent sequence, where x i → x0. Let A be the
compact space defined by replacing x i in S by a copy A i of [1, ωα i ], and let B be
the compact space defined by replacing x i in S by a copy B i of [1, ωβ]. Then A is
homeomorphic to [1, ωα] and B is homeomorphic to [1, ωβ+1]. By Lemma 3.2, it now
follows that there is a linear 8k-embedding from C∗u([1, ωα]) to C∗u([1, ωβ+1]). But
then, by Theorem 4.1(b), α ≤ β + 1. Since β < α, we then have α = β + 1. But α is a
prime component and hence a limit ordinal. Contradiction. This proves (b). ∎

Proof of Theorem 1.3 For (a), let ϕ ∶ Cp(X) → Cp(Y) be a linear homeomor-
phism. Since X = ∅, if and only Y = ∅, (a) holds for μ = 1. For α = ωμ with μ a limit
ordinal, let (μ i)i∈N be a strictly increasing sequence of ordinals such that μ i → μ. Let
β = κ(X) and assume that κ(X) < α and κ(Y) ≥ α. Let i ∈ N be such that β < ωμ i .
Let α i = ωμ i and α i+1 = ωμ i+1 . Let K be a closed copy of [1, ωα i+1] in Y , and let
L = suppϕ(K). By Lemma 2.1(b), we have K ⊆ suppϕ−1(suppϕ(K)) ⊆ suppϕ−1(L), and
hence L is infinite. By Lemma 2.2, L is compact. Hence, by Lemma 3.4 and the Closed
Graph Theorem, there is a linear embedding θ ∶ C∗u(K) → C∗u(L). Since L(β) = ∅, as
in the proof of Theorem 1.2(a), there is ω ≤ γ < ωβ such that L is homeomorphic to
[1, γ]. But then L can be seen as a closed subset of [1, ωα i ], and hence, by Lemma 3.5,
there is a linear embedding from C∗u([1, ωα i+1]) to C∗u([1, ωα i ]). Since α i+1 is a prime
component, it then follows by Theorem 4.1(b) that α i+1 ≤ α i . Contradiction, which
proves (a).

For (b), let α = ωμ < ω1 be a prime component with μ ≥ 1 a successor ordinal.
Suppose μ = σ + 1 and β = ωσ . Then β ≥ 1 is a prime component and α = β ⋅ ω. For
every n ∈ N, let Xn = [1, ωβ⋅n]. Let X = ⊕∞n=1 Xn be the topological sum of the spaces
Xn , and let Y = X1 ×N. By Theorem 4.1(a), we have, for every n ∈ N, Cp(Xn) ∼
Cp(X1). Therefore, Cp(X) ∼ Cp(Y). Note that for every n ∈ N,κ(Xn) = β ⋅ n + 1. This
implies κ(Y) = β + 1 < α and κ(X) = β ⋅ ω = α. ∎

Remark 4.3 Theorems 1.1–1.3(a) are true for prime components. The question is if
these results also hold for ordinals that are not a prime component. For such ordinals
α, let ωμ be the largest prime component such that ωμ ≤ α, and let β = ωμ . Then
β < α < β ⋅ ω, and hence ωβ < ωα < ωβ⋅ω .

Let X and Y be lp-equivalent metric spaces, and suppose α = β + 1. If κ(X) < α,
then κ(X) ≤ β. Since β is a prime component, we have by Theorem 1.1 that κ(Y) ≤ β,
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and hence κ(Y) < α. This implies that Theorem 1.3 also holds for α = β + 1 with β
a prime component. By the same reasoning, Theorem 1.2(b) also holds for α = β + 1
with β a prime component.

Now assume α > β + 1. By Theorem 4.1(a), we have C∗u([1, ωβ]) ∼ C∗u([1, ωα]).
As mentioned above, the same isomorphic classification holds for function spaces
Cp(X), where X is a countable compact ordinal space (see [6]). Therefore,
Cp([1, ωβ]) ∼ Cp([1, ωα]). Since κ([1, ωα]) = α + 1 > α and κ([1, ωβ]) = β + 1 < α,
it follows that Theorems 1.1–1.3 do not always hold.

In Theorem 4.6, we will show that if X and Y are l∗p -equivalent spaces, then
X is scattered if and only Y is scattered. This result does not directly follow from
Theorem 1.2 since we have only proved it for prime components α < ω1. To prove
Theorem 4.6, we need the following notion and result from [5].

For a metric space X and an ordinal α, we define X{α} by transfinite induction as
follows:
(a) X{0} = X .
(b) If α is a successor, say α = β + 1, then x ∈ X{α} if and only if for every neighbor-

hood U of x, U ∩ X{β} is not compact.
(c) If α is a limit ordinal, then X{α} = ⋂β<α X{β}.

For each ordinal α, it turns out that X{α} is a closed subset of X. The following
result can be found in [5].

Theorem 4.4 Let X and Y be l∗p -equivalent metric spaces, and let α be an ordinal.
Then X{α} = ∅ if and only if Y{α} = ∅.

In the proof of Theorem 4.6, we also need the following lemma on non-scattered
spaces.

Lemma 4.5 Let X be a non-scattered Tychonov space, and let α be an ordinal such
that X{α} = ∅. Then X contains a compact non-scattered subspace.

Proof Let C = ⋂β Y(β). By Theorem 2.7, we have C ≠ ∅, and hence α > 0. Note that
for every x ∈ C and every neighborhood U of x , we have U ∩ C is not scattered. We
will proof the lemma by transfinite induction on α. If α = 1, then Y is locally compact.
Pick x ∈ C, and let U be a neighborhood of x such that U is compact. Then U ∩ C is
a compact non-scattered subspace of Y .

Let α > 1 and assume the lemma is true for every non-scattered Tychonov space Z
and every β < α such that Z{β} = ∅. Pick x ∈ C, and let β =min{γ ≤ α ∶ x ∉ X{γ}}.
Since x ∉ X{α}, β is well defined. Clearly, β > 0 and β is a successor ordinal, say
β = γ + 1. Since x ∉ X{β}, there exists a neighborhood U of x such that U ∩ X{δ}

is compact. If U ∩ C is compact we are done, so let’s assume that U ∩ C is not
compact. Then there is z ∈ (U ∩ C) / X{δ}. Let V be a neighborhood of z such that
V ∩ X{δ} = ∅. Then V ∩ C is not scattered and (V ∩ C){δ} = ∅. By the induction
hypothesis, V ∩ C contains a compact non-scattered subspace which proves the
lemma. ∎
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We will now prove the following:

Theorem 4.6 Let X and Y be l∗p -equivalent metric spaces. Then X is scattered if and
only if Y is scattered.

Proof Let ϕ ∶ C∗p(X) → C∗p(Y) be a linear homeomorphism. Then there is k ∈ N
such that ϕ is a linear k-homeomorphism. Assume that X is scattered and that Y
is not scattered. Let α > 0 be an ordinal such that X(α) = ∅. Then X{α} = ∅, since
X{α} ⊆ X(α). From Theorem 4.4, it then follows that Y{α} = ∅.

Since Y is not-scattered, by Lemma 4.5, Y contains a compact non-scattered
subspace K. Since X is scattered, there is, by Lemma 2.8, a compact subset L of X
such that K is 1

4k -supported on L. Then, by Lemma 3.6, there is a linear embedding
θ ∶ C∗u(K) → C∗u(L). As in the proof of Theorem 1.2, we may assume that L is infinite
and that there is ω ≤ γ < ω1 such that L is homeomorphic to [1, γ].

Let ωμ < ω1 be a prime component such that ωμ ≤ γ < ωμ+1, and let β > μ + 1
be a prime component. Since K is a compact non-scattered metric space, we have
K(β) ≠ ∅, and hence, it contains a copy of [1, ωβ] and so, by Lemma 3.5, there
exists a linear embedding from C∗u([1, ωβ]) to C∗u(K). By Theorem 4.1(a), we
have C∗u([1, ωμ]) ∼ C∗u([1, γ]), and hence, there exists a linear embedding from
C∗u([1, ωβ]) to C∗u([1, ωμ]). But then by Theorem 4.1(b), β ≤ μ. Contradiction, which
shows that Y is scattered. ∎

Remark 4.7 Theorem 4.6 also holds for lp-equivalent first countable paracompact
spaces (see [4]). The proof of Theorem 4.6 does not work for all first countable
paracompact l∗p -equivalent spaces. The reason for this is the use of Lemma 3.6. This
lemma makes essential use of Dugundji’s theorem 3.3 for metric spaces. The proof
of Theorem 4.6 for lp-equivalent first countable paracompact spaces in [4] does not
need Dugundji’s theorem. A careful examination of the proofs of Lemma 2.5 in [10],
Corollary 2.6 and Lemma 2.8 shows that these results do hold for first countable
paracompact spaces.

Question 4.8 Let X and Y be l∗p -equivalent first countable paracompact spaces. Is it
true that X is scattered if and only if Y is scattered?

The results in this paper do hold for ordinals α < ω1. For ordinals α > ω1, the
approach in this paper does not seem to work, but for α = ω1 it does.

Theorem 4.9 Theorems 1.1–1.3 hold for α = ω1.

Proof Theorem 4.1.17 in [8] shows that Theorem 1.1 holds for α = ω1.
Let X and Y be metric spaces. Suppose κ(X) < ω1. Then there is a prime com-

ponent ωμ , with μ < ω1 a limit ordinal, such that κ(X) < ωμ . So if X and Y are lp-
equivalent or l∗p -equivalent, we then have, by Theorem 1.2(b) or Theorem 1.3(a), that
κ(Y) < ωμ < ω1. Therefore, Theorems 1.2(b) and 1.3(a) hold for α = ω1.

This leaves us with Theorem 1.2(a) for α = ω1. Let k ∈ N, and let ϕ ∶ C∗p(X) →
C∗p(Y) be a linear k-homeomorphism. Suppose κ(X) ≤ ω1 and κ(Y) > ω1.
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Let y ∈ Y(ω1), and letV = {X / X(α) ∶ α < ω1}. ThenV is an open cover of X. LetW be
a locally finite open cover of X such that {W ∶W ∈W} refinesV. By Lemma 2.5, there
are a neighborhood U of y and a finite subset F ⊆W such that U is 1

8k -supported on
⋃F. Let A = ⋃{W ∶W ∈ F}. Then A is closed and sinceF is finite, there is β < ω1 such
that A ⊆ X / X(β). So A(β) = ∅. Let σ be a prime component such that β < σ < ω1.
Then U contains a closed copy K of [1, ωσ]. By Lemma 2.8, there is L ⊆ A compact
such that K is 1

8k -supported on L ∪ (X / A). Then, by Lemma 2.4(a), (b), and (c), we
have that K is 1

4k -supported on L. Then, as in the proof of Theorem 1.2(a), there is
ω ≤ γ < ωα such that L is homeomorphic to [1, γ] and there is a linear embedding
from C∗u(K) → C∗u(L). As in the proof of Theorem 1.2(a), this gives a contradiction.
Hence, Theorem 1.2(a) holds for α = ω1. ∎

The following question remains open:

Question 4.10 Let X and Y be lp-equivalent or l∗p -equivalent metric spaces. For
which ordinals α > ω1 are Theorem 1.1, Theorem 1.2, or Theorem 1.3 true?

We conclude this paper by showing that Theorem 1.1 and Theorem 1.2(a) do not
hold for arbitrary Tychonov spaces. It remains an open question if the same holds for
Theorems 1.2(b) and 1.3(a).

Example 4.11 For every prime component, such that ω ≤ α < ω1, there are
Tychonov spaces X and Y such that:
(a) X and Y are lp-equivalent.
(b) X and Y are l∗p -equivalent.
(c) κ(X) = α + 1 and κ(Y) = α.

Proof Let (α i)i∈N be an increasing sequence of limit ordinals such that α i → α.
Let Z = [1, ωα), and for every i ∈ N, let Z i = [1, ωα i ]. Then Z is homeomorphic to the
topological sum⊕∞i=1 Z i . We have κ(Z) = α and for every i ∈ N, κ(Z i) = α i + 1. Let
z i be the unique point in Z(α i)

i , and let D = {z i ∶ i ∈ N}. Then D is a countable closed
and discrete subset of Z.

Let βZ be the Čech–Stone compactification of Z, and let Z∗ = βZ / Z, the Čech–
Stone remainder of X. Note that D is C∗-embedded in Z and that the closure clβZ D of
D in βZ is βD which is canonically homeomorphic to βN. Let u ∈ clβZ D, and let X be
the subspace Z ∪ {u} of βZ. Then ũ = {A ⊆ N ∶ u ∈ clβZ{z i ∶ i ∈ A}} is an ultrafilter
on N, and hence a point in N

∗. Let S = N ∪ {ũ} ⊆ βN, and let Y = Z ⊕ S.
In [11], it was shown that X and Y are lp-equivalent. In fact, the proof shows that

there is k ∈ N such that Cp(X)
k∼ Cp(Y). Hence, X and Y are also l∗p -equivalent. Note

that κ(X) = α + 1 and κ(Y) = α. ∎

Question 4.12 Let α < ω1 be a prime component. Are there l∗p -equivalent Tychonov
spaces X and Y such that κ(X) < α and κ(Y) ≥ α?

Question 4.13 Let α = ωμ < ω1 be a prime component with μ a limit ordinal. Are
there lp-equivalent Tychonov spaces X and Y such that κ(X) < α and κ(Y) ≥ α?
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