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ON THE CONVERGENCE OF THE ZETA FUNCTION
FOR CERTAIN PREHOMOGENEOUS VECTOR SPACES

AKIHIKO YUKIE!

Introduction

Let (G, V) be an irreducible prehomogeneous vector space defined over a
number field k, P € k[V] a relative invariant polynomial, and  a rational char-
acter of G such that P(gx) = x(@)P(x). Let V.° = {x € V,| P(x) # 0}. For
x € V;°, let G, be the stabilizer of x, and Gy the connected component of 1 of G,.
We define L, to be the set of £ € V;° such that Go does not have a non-trivial
rational character. Then we define the zeta function for (G, Y) by the following
integral

20,9=[ 1@ T o,
GA/Gy zeL,

where @ is a Schwartz-Bruhat function, s is a complex variable, and dg is an in-
variant measure.

Shintani showed the convergence of Z(®, s) for Re(s) > 0 for the spaces
Symzk” and Symgk2 (see [4], [5]). F. Sato showed the convergence of Z(®, s) when
G, N Ker(x) is connected semi-simple (which implies that L, = V,") (see [1]).
Note that his assumptions in [1] were later proved by other people. Also he consi-
dered prehomogeneous vector spaces over Q, but if (G, V) is a prehomogeneous
vector space over k, we can consider (G, V) as a prehomogeneous vector space
over Q. Then the zeta function of (G, V) over k and the zeta function of (G, V)
over Q are the same. So his result implies the convergence of the zeta function for
prehomogeneous vector spaces as above over an arbitrary number field k. In [8],
we showed the convergence of Z(@, s) when dem G =dim V (in this case
L,= VkSS also). These cover 23 types of irreducible reduced prehomogeneous vec-
tor spaces. Ying recently showed the convergence of Z(®, s) for a few cases when
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L, # V.*. In this paper, we prove the convergence of Z(®, s) for prehomogeneous
vector spaces of the form (G/T, V), where G, V are as follows:

(1) G=GL(2) x GL(2) X GL(2), V=K QK QK

(2) G =GL(@3) x GL(3) X GL(2), V=K Q@K' ® K,

(3) G=GL@4) x GL(2), V= Ak' QK

(4) G=GL(6) X GL(2), V= Ak ® K,
and T = Ker(G— GL(V)) for all the cases. These are the D,, E,, D,, E, cases
in [6].

Note that since L, = VkSS for the case (4), the result of M. Sato and Shintani
(see [3]) on the meromorphic continuation and the functional equation of the local
zeta function at an infinite place implies the meromorphic continuation of Z(®, s)
and the functional equation of the form

Z(@,s) = Z(d, N — s),

where @ is an appropriate Fourier transform and N is a number which can easily
be figured out depending on the normalization. (see §80.3 of [8]). For the cases
(1)—(3), the meromorphic continuation of Z(®, s) is unknown.

In [7], Ying considered three types of prehomogeneous vector spaces, one of
which is the case where G = GSpin(@) X GL(2) for a non-degenerate quadratic
form @ in # = 4 variables, and V is the tensor product of the standard repre-
sentations. When GSpin(Q) is split, the case # = 4 (resp. # = 6) is the case (1)
(resp. case (3)) of this paper. So cases (1) and (3) of this paper are covered by
Ying. However, our method is totally different from Ying’'s method. For example,
his method is based on the consideration of Tamagawa numbers as in F. Sato’s
paper [1] and does not prove that the incomplete theta series ZIE,_O o (gx)
satisfies the assumption of Shintani’s lemma (see §3.4 of [8]). Our method is to
estimate the incomplete theta series on a Siegel set. Therefore, we can show that
erz.o @(gx) satisfies the assumption of Shintani’s lemma.

We handle the cases (1), (2) in §2, and the cases (3), (4) in §3.

§1. Preliminaries

We basically follow the notations of [8], but we recall the most basic ones.
For a finite set X, # X is its cardinality. If f, g are functions on a set X (not
necessarily finite), f € g means that there exists a constant C such that
f(x) < Cg(x) for all x € X. We also use the classical notation x € y when y is a
much larger number than x. We hope the meaning of this notation will be clear
from the context. The ring of adeles (resp. the group of ideles) over k is denoted
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by A (resp. A”). For a vector space Vover k, V, is the adelizati.u aua S(V,) is
the space of Schwartz-Bruhat functions. We define R, = {x = & |z > 0}. For
A € R,, A is the idele whose component at any infinite place is XT’T}QT and whose
component at any finite place is 1. Let lxl be the adelic absolute value of x € A.
Then |A] = A. Let a,(#, -, t,) be the n-dimensional diagonal matrix whose
(i, 1) -entry is ¢, for all 7. We define GL(n)OA ={geGL),||detg|=1).

For all the four cases in this paper, G is of the form G = GL(n,) X -+ X
GL(n)). (f is either 2 or 3). Let G; = GL(n,) for all i. Let T, C G, be the set of
diagonal matrices, and T= T, X -+ X T,. Let € > 0 be a sufficiently small con-
stant. We define

Gia = GL(n),
TP = Ay Quy, Ag) | A+ A, € Ry Ay Ay, =
A A, ERY, Ay ot Ay =1
A A 2 € }

i

1},

Ti?s = {an, Ay s iin‘)

== ) ER"|yy + -+ +y, =0
For ¢; = (¢, ", Cin-1) € R™™, we define
w,(c) = ¢, (1, —=1,0,-+,0) +¢,0,1, —=1,0,-+,00 + *-* + ¢, ,(0,---,0,1, —1).
Let t:‘pc be the cone generated by positive weights, i.e.
S

tioe = {w,(c) € ey, Cinyy 2 0}

Apparently, the set of interior points of tfpc consists of points of the form
w,(c;) where ¢, *, €4 > 0. For ¢ = (¢}, *+, ¢,), we define

w(e) = (w,(c), -, wlc).

Let
Gg = G;)A X oeoe X G;)A’
Tf = T10+ x X Tf0+’
T =Ty X -+ X Ty,
t =t x - Xt
t:C t;ljpc x . x t:DC‘

For t€ T, and y = (y,,"* -, y) € t", we can define ' € R, in the usual
manner. Let p € t* be half the sum of positive weights. This means that #* =
I, H}‘<k(’{ii’li_kl) for
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t = (anl(iu" * .1 ilnl)y~ * .) an,(_’j_ll). * .7 _jJn/))

The Weyl group W of G is the product of the Weyl groups of GL(n,)," -,
GL(n,) and we identify the Weyl group of GL(%,) as the set of permutation mat-
rices for all 7. The group W acts on Tf from the left by ¢ — gtg_1 forge W, te
T). We define the left action of W on t* by t* = (g 'tg)" for g€ W, y € t¥,
te T,

For the cases in this paper, up to a constant, Z(®, s) coincides with the fol-
lowing integral

[ X T 0Qg'n)d Adg’,
R.*x6Y/G, zeL,

where the action of A is the usual multiplication by A, d"A = A7'dA, and dg° is an
invariant measure on Gj;. We define

Z(®,s) = f 23 0(g’n)d Adg’.
1,0)xG4/G,  zeL,

It is well known that there exists a compact set £ C Gj; such that QT
surjects to GZ/G,‘. Therefore, by Proposition (1.2.3) [8], there exists 0 < ¥ €
S(V,) such that Z(®, s), Z, (D, s) are bounded by constant multiples of the fol-
lowing integrals

(1.1) .L; xrox““’ > Tttt *d*ad"t,

Z€L,

[ S vwr¥aidt
1,00 xT? zel, -
respectively, where d”tis an invariant measure on Tf.

In the following sections, we choose a coordinate system x = (z,***, Zy) of
V for each case so that there exists 7; € t* for i = 1,-*, Nand tx = (ﬁxi) for ¢
€T, z€e V 4. The element 7; is called the weight of the coordinate x;. For x =
(@, **, zy) €V, we define I, = {1 < i < N|x, # 0}. Let Conv, be the convex
hull of the set {7, |1 € I,}.

DEFINITION (1.2). A point x € V, is k-stable if for all g € G,, the convex hull
Conv,, contains a neighborhood of the origin of t*,

We showed in Proposition (3.1.4) [8] that if L, coincides with the set of
k-stable points, Z(®, s) converges absolutely for Re(s) > 0 and Z,(®, s) is an
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entire function.
We need the following lemma in §2 to show that L, coincides with the set of
k-stable points for the cases (1), (2).

LemMa (1.3).  Suppose that L © V;° is a G,-invariant subset such that Conv,
contains an interior point of t:c for any x € L. Then x is k-stable for allx € L.

Proof. Supposex € L. Let g € W, t € Tf. We define

1

e,= (0,--+,0,1,0,--+,0) € V,

for i=1,-+-, N. Then te; = t" ¢;. So

tge, = gg 'tge, = g(g 'tg)" ¢, = " ge,.

Therefore, Convl,, = gConv,. Since L, is G,-invariant, gr € L,. This implies
that gConv, contains an interior point of t:c. So Conv,, contains an interior point
of g 't%. Note that this statement is true for all g € W.

Suppose that Conv, does not contain a neighborhood of the origin of t*. Since
Conv, is a finite convex polytope, this implies that Conv, is contained in a half
space containing the origin, say {y € t*|I(y) < 0} where I(y) is a non-zero
linear form on t*. There exists an element g € W such that I(g"'y) is of the form

g™y = LGy + - + 1y,
L) =apy, + -+ + AinYin,

fory= (y, ", y) € t* where @, = -+ > a;,, are constants for 1 = 1,---, f.
Since y;; + *+* + Y, = O for all 7, we may assume that a;; > 0 for all ¢, ;.
Also since the linear form [ is not identically zero, we may assume that there exist
Lo, Jo such that a;; > a;; ...
We showed that there exists an interior point w(c) = (w,(c), -, w,(c,)) of
t:c such that Conv, contains the point g~ 'w(c). Then

-

n—

l(g"lw(c)) =2 (ay; = a,)cy

i=1 j=1

.

By assumption, all the terms are non-negative and at least one term is positive.
Therefore, (g 'w(¢)) > 0. This is a contradiction. So we can conclude that Conv,
contains a neighborhood of the origin. Q.ED.
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§2. D,, E; cases

We consider the cases (1), (2) in the introduction in this section. We consider
these prehomogeneous vector spaces as M(2,2) ® k* or M(3,3) @ k%, ie. the
space of 2 X 2 or 3 X 3 matrices whose entries are linear forms in two variables
v = (v, v,). We express a general element of V as M,(v) = v.x, + v,x, where
x, = (x,,), 2, = (x,,;) are 2 X 2 or 3 X 3 matrices. We choose x = (z,, x,) as
the coordinate system of V. If g = (g,, &,, &) is an element of GL(2) X GL(2) X
GL(2) or GL(3) x GL(3) X GL(3), the action of g is defined by

gM,(v) = g, M, (vgy)'g,.

We define F,(v) = det M,(v). Then F, is a binary quadratic or cubic form.
It was proved in [2] that V;” is the set of x such that F, has distinct factors over
the closure k of k. We showed in [6] that L, is the set of x such that F, is irre-
ducible.

THEOREM (2.1). The set L, coincides with the set of k-stable points. Therefore,
Z(®, s) converges absolutely for Re(s) > 0 and Z, (D, s) is an entire function.

Proof. Suppose that F, is irreducible. Then for any v € k*\{(0,0)},
F,(v) # 0, ie. M,(v) is a non-singular matrix. In particular =z, x, are
non-singular matrices. Let t = (¢, ¢,, t,) € Tf, where

L= az(in» i;ll)y ty = az(&zn _’3_;11)! l; = az@av _’1;11) _,, Ccase (1),
t= az(iu’ Aiz {113)» t, = as(izv Azas izs)r t; = ‘12@31» 431) case (2),

and Ay4,,4y5 = Aydpdy = 1.

The set L, is clearly G,-invariant. So by Lemma (1.3), we only have to show
that for any x € L,, Conv, contains an interior point of t:c. Let 7, be the weight
of the coordinate x; j, for all ¢, 7, k. The element 7, ;, can be expressed in the form
Tise = w(d, ;) (d,;, may not be in th).

We first consider the case (1). The following lemma is easy to verify and the
proof is left to the reader.

).

N =

11
Lemma (2.2). (1) d,, = <§’ 2

@ =5~ 53)
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11
(3) d1,21 = <— 20 9

l\:|n—-a

1 1
Note that d,;, can be obtained by replacing the 1ast ind,; by — 5

Suppose x € L,. If z;,, # O, then 7,,, € Conv, and 7,,, is an interior point
*
f tpc by the above lemma.

Suppose x,,, = 0. Then since x; is non-singular. & ;;, I;, # 0. Moreover if
Z,,; = 0, we can choose v € k*\ {0} so that M,(v) is singular. This contradicts
to the assumption £ € L,. So we may assume that x,,, # 0. Therefore, 7,5, 7121,
7211 € Conv,. This implies that 7, ;, + 7,5, + 7,1, € Conv, also and

111
di, Tdip +dy, = (5, 2 f)

So 7112 T 7iat T 721 is an interior point of Conv,. This completes the proof of
Theorem (2.1) for the case (1).

Next, we consider the case (2). The following lemma is easy to verify and the
proof is left to the reader.

Il
S
S
wi N
w|
SN—
S
w| o
W]
SN—
N =
SN——

LemmA (2.3). (1) d,

2 1

D S
|
w| =

w|

win w
| =
S—

Wl WH Wl
|
wl| o

Wiy Wik W

W= W
N—— S— S
//

/'\

-

%)(

1
Note that d, ;, can be obtained by replacing the last ind,; by — 3

Suppose £ € L. If xy,, # 0, then 7,,, € Conv, and 7,4, is an interior point
*
pC*

Suppose &1y, = 0, Ty 15, Ty # 0. Then 7,45, 710 € Conv,. So 7,5, + 7101 €

Conv, also and

of t
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b= (52 (5.2,

So 7112 T 7121 is an interior point of t;kc.

Consider the following two cases:

(1) &y, =0, 2, = 0, and x5, # O,

(2) 2,4, =0, 2,5 = 0, and x, ;, # 0.

Since these cases are similar, we only consider the case (1). Since x, is a
non-singular matrix, &, ;5 # 0. If &,,; = Z,,, = 0, we can choose v € k*\ {0} so
that v,x, ;3 + v,7,,; = 0. This contradicts to the assumption £ € L, So we may
assume that either x,,, # 0 or x,,, # 0. Since

dz,n = d2.12 + ((0,0), (110)y O),

we only consider the case x,,, # 0.
With these assumptions, 7,1, 71,13 7212 € Conv,. Then

370 T 2713 T 27,1, € Conv,

also and
ot 2y + 2= ((5.5) (5 5) 2)

So 3712 + 27115 + 27,12 is an interior point of f,.
Suppose I, ;; = I, = Iy, = 0. Then since x; is a non-singular matrix, x, ;;,
Ty 590 L1 7 0. Suppose Z,;, # 0. Then

Tias T Tiee T 7os T 721 € Cony,

and

dypst+ dygytdig+dyy = ((%, %>, (%, %’), 1>.

So 7118 t Ti22 T Tia t 720 is an interior point of t,.
Suppose X, = Xy yy = Ty 4 = Ty, = 0. Then if either &z, ,, = 0 or 1,,, = 0,
2 . . . . .
we can choose v € k”\ {0} so that vx, + v,x, is singular, which is a contradic-
tion. So &, 15, X545 F 0. By assumption, X, 5, Ly 55, X131 F 0 also. Then

Tis T Tuee T 7ot T 7202 T 7220 € Conv,

and
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1 2 1 2\ 1
d1,13 + d1,22 + d1,31 + d2,12 + dz,21 = ((§, §), (§, §), E)
So 7y1s T Tige T Tim T Taxz T 7oz is an interior point of t:c. This completes the
proof of Theorem (2.1) for the case (2). Q.E.D.

§3. D, E, cases

We consider the cases (3), (4) in the introduction in this section. We consider
these cases as the space of 4 X 4 or 6 X 6 alternating matrices whose entries are
linear forms in two variables v = (v, v,). We express a general element of V as
M,(v) = vz, + v,x, where 2, = (x,,)), x, = (x,,;,) are 4 X 4 or 6 X 6 alternat-
iné matrices. We choose x = (xl, x,) as the coordinate system of V (we only con-
sider x;;, such that 7 > k). If g = (g;, g,) is an element of GL(4) X GL(2) or
GL(6) x GL(2), the action of g is defined by

gM,(v) = gle(ng)‘gr

Since M, (v) is an alternating matrix, there exists a binary quadratic or cubic
form F,(v) such that det M,(v) = F,(v)*(F,(v) is the Pfaffian of M,(v)). It was
proved in [2] that V;* is the set of x such that F,(v) has distinct factors. We
showed in [6] that L, is the set of x such that F, is irreducible for the case (3)
and that L, = V,” for the case (4).

TuEOREM (3.1).  The integral Z(D, s) converges absolutely and locally uniformly
for Re(s) > 0 and Z, (D, s) is an entire function.

Proof. Unlike the cases (1), (2), there are no k-stable points, so we have to
be a little more subtle for these cases. Let ¥ be as in §1. For L C V,, we define

(3.2) 6,(F, 1) = 2 ¥(itx)

zel

for AER,, tE T

€

We estimate O, (¥, Af). Note that if y € t* the integral f o P g%
A o
converges absolutely if — (y — 2p) is an interior point of t;kc.

Let t = (¢, t,) where

t = a,(Ayys Ay Auss A1), £ = a3 (4, 4—11) _,. case (3),
t = ae(Ayyy Ay A, Zw Aisr A1e) s b = (A, izl) case (4).
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Let 7,;, be the weight of the coordinate x; ;. for all 7, j, k (j > k). The ele-
ment 7,,, can be expressed in the form 7,,, = w(d, ), where d,,, € R* or R’.

Let ¢ = Re(s). We will prove that the function R”@LO(W, AD £ is integrable
on R, X T) for 6> 0. What we are going to do is to divide L, into a union of fi-
nite number of (not necessarily G,-stable) subsets L, and to estimate O, (¥,
&t)t—zp by a finite number of functions of the form A**#*“Y where wER, oy E
R'or R’ depend on a finite number of positive numbers N. These numbers should
have the property that if we choose N appropriately, p, € 0 and all the entries of
Cy are negative.

If A =1, for any ¢ € R, we can choose N depending on ¢ so that ¢ + py
< 0 and all the entries of ¢y are negative. This implies that the function XGQLi(qT,
&t)t_zp is integrable on [1, ©) X T If A <1, we fix N so that all the entries of
¢y are negative. Then if o + p, > 0, the function R”@Li(llf, &t)t_z" is integrable
on (0, 11 X TEO. Since ¢ is arbitrary for the convergence of the integral on [1, o)

X TEO, this proves the convergence of Z(®, s) for Re(s) » 0 and Z, (D, s) for
all s.
Let

. _ < -
(3.3) I()z{{(”]’k)‘z 1,2,1 <k <j< 4} case(3),

{(G,7,01i=12,1<k<j<6} case(4)
For I C I, we define

(3.4) B, 0= T sup(, A7t

(i,j,k)el

for l€ER,, tE T,

Functions of the form #,(4, ) often appear in estimates of various incomplete
theta series because our main tool is Lemma (1.2.6) [8]. So we first consider the
function h,(4, . We start with the following two observations whose proofs are
easy and are left to the reader.

LEMMA (3.5).

(1) If I, < I, < I, then h,‘(l, H < h,z(/l, D.

@) FI=1L0IC]lI, thenh,(4, t) = h,l(/l, t)h,z(/l, b.
LEMMA (3.6).

B, ) =sup I QA7't7™.

recr Gjker

Next, to simplify the situation, we estimate 4,(4, #) by functions of the form
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Ratww)
Let
d . = [((di,jk,u' T di,jk,a)r di,jk,4) case (3),
ok ((di,jk,lr' ) dz,;k,s)’ di,jk,s) case (4).
We define

ey = 2 dij
(4K €l
dyjka<0

for all / and put

Cr

— {((Cl,lf Y 61,3)y CI,4) case (3),
((eryy oy €15)s €1 case (4).

LemMa (3.7). kA, k) < sup(@, 27N’ on R, X T}

Proof. Note that

M Q77 =7 g e

(1,j,K)el” (i,j,k)el’

and 27" < sup@, 27*).
Let J,»Jk € R* or R’ be the element obtained by replacing positive entries of
d; . by 0. Then

O 9% ¢ I %% = Sewan,
5,k el (i,5,k)el’

However, since all the entries of ci,,,-,c are non-positive for all z, 7, k.

t'— Ell,l,kbsl’w(ac./k) << t_zll,/.k)elw(ax./k) = t_wwl).

This proves the lemma. QE.D.
For the rest of this section, A € R,, t € T.. So in inequalities like Lemma
(3.7), we will not mention that it is uniform with respectto A € R, t € TEO.

We first consider the case (3). The following lemma is easy to verify and the
proof is left to the reader.

Lemma (3.8). (1) d,, = ((%, 1, %), —é)

(2) dyg = <<%’ 0, %)’ %)
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1 1
Note that d, ;, can be obtained by replacing the last 7 in d, j, by — 7 Also if

we put dy= ((—3, —4, —3), — 1), then — 2p = w(d,). By Lemma (3.7),
i, H <€ sup(1, A7, where

(3.9) ¢ =¢,=—(G,2,3),3.

Dermvition (3.10). (1) L, = {zx € Ly| x,, # 0}.
(2) Ly={x € Ly| 1,5, = 0, x,, # O}
(3) Ly=f{x € L,| Ty =0, 2,5 = 0}

Apparently, L, = L, U L, U L, So we estimate 6, (¥, At) t7% for i = 1,2,3.
(1) Consider L,.

Let I = I,\ {(1,2,1)}. By Lemma (1.2.6) [8], for any N > 1,

0, (T, 207 « 7", (2, D
By Lemma (3.7),

hQ, B € sup(l, A7) @2
h,Q, t)t_zp < sup(l, /2“11) tw«(o,—z,o),z))’

Since all the entries of d, ,, are positive, X”@Ll(w, it)t_zp

T, for 6> 0 and on [1, ) X T! for all o.
(2) Consider L,
Let I = 1,\ {(1,2,1), (1,3,1)}. By Lemma (1.2.6) [8], for any N = 1,

is integrable on R, X

0, (T, At « 7N g, (A, D
By Lemma (3.7),

k2, B < sup(1, A7) 2P,
hz(ﬂ, t)t_zp L sup(l, ]-10) tw«(o,—z,o),z)),

So for any N = 1,
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6, , &t)t—zp <« A7V sup(1, l—lo)tw(((o,—z,o),z)—N((%,0,% %))

1
Since all the entries of ((0, —2,0), 2) — N ((%, 0, 5), %) are negative if

N >4, ,z"@Ll(w, il)tqp is integrable on R, X Tf for 0> 0 and on [1, ) X
T, for all o.
(3) Consider L,.

Suppose & € L,. Then since &, is non-singular, &, 55, ;4 # 0. We define I =
L\{1,2,1, 1,3,1), (1,3,2), (1,4,1)}. Then by Lemma (1.2.6) [8), for any N > 1,

O, (T, At « 17N ey 3.
By Lemma (3.7),

h,QA, B < sup(l, z's)t’”((%'z'%)ﬁ))’
B, D% < sup(, }‘3)tw((‘§'“2»—%) 2)y.

So for any N = 1,
0, (¥, i) 1%« P sup(l, X—S) tw(((—%,—z,-%) 2) —N(dl,32+a1,u)).
Since d, 5, + d, 4, = ((0,0,0), 1), all the entries of
1 1
(<”‘ E’ -2, - 5): 2) - N(d1,32 + dl,41)
are negative if N > 2. Therefore, la@Ls(llf, At) £7% is integrable on R, X Te0 for
0> 0and on [1, ®) X T, for all 0.

This completes the proof of Theorem (3.1) for the case (3).

Next, we consider the case (4). The following lemma is easy to verify and the
proof is left to the reader.

Lesma (3.11). (1) dyyy = (% g" L ’3% %) %)
(2) dyyy = ((137 % L ‘2“ %) %)
(3) dyy = ((% % 0, %— %) %)
(4) dyg = ((% ”31“ 0, = % %) %)
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0 i (B h0. -5 -2 1)
0 - (-3 202 2.3)

o= (-3 A0 2 2.0

0 do= (-3 40~ 1 2.3

0 da= (- B a0~ 521

10 da= (-1 - 202 2).3)

i (- Lo~ 123
19 da= (-1 -20. -4 -2).3)
09 d- (- -2 -1 -1 2. 3)
10 a5 -2 -1~ 528
19 = (- L o120

1 1
Note that d,;, can be obtained by replacing the last 5 in dy ;, by — 5 Also if

we put dy = ((— 5, —8, —9, — 8, —5), — 1), then — 2p = w(d,). By Lemma
(3.7), hy, (A, B < sup(@, 770, where

(3.12) G =6,= — ((%Q 8,6,8, —2—39) 125—)

DermviTioN (3.13). (1) L, = {x € V| 2., or &y, or 2,4 # 0}
(2) Ly={x€ V|2, =25 = T,y = 0, Ty 3, OF T, 4, # O}.
3) Ly={xeV® l Tio1 = T3 = L = Lize = Lraz = 0}.
(4) L,={x € L;| 243, 2,5, # O}.
(5) Ly={x € Ly| 2,5, = 0, Xy 43, T1.5 # O}.
6) Le=A{x € Lyl x50 = 215 = 0, 2y 43, Ty # 0.
(7) L, ={x € L,| Tist = Tisy = Ty = 0, Ty g3 Tygp 7 0).
(8) Ly={r €< L, Tist = Tisy = Ty = Tygp =0, Tygg Tpyy # 0}
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9) Ly={x€L;|z,,=0,x2.4 #0).

10) Ly={zx € Ly| 2,43 = 2,5, = 0, Z, 55, Ty, # O}.

11) L11 {x e L,| Tigs = Tys = Lo = 0, Tysp # 0}

12) L, = {2 € Ly| 2,43 = 2,5, = T15, = 0, Ty, Ty5 # 0.

13) Ly, ={x €L, le BT Tys = Ty = Tysy = 0, Tygy, Ty F 0).
14) L, = {2 € Ly| 2,45 = X5, = Ty5p = Tyy = 0.

15) Lis = {x € L, | 2,65, T, 55 # 0.

16) Ly ={x € L, | 2,5, = 0, 2,65, T, 5, # O}

17) Ly, = {x € Ly, | 2,5, = 0, 2,5, # 0}

18) Ly = {x € Ly, | Ty = Xyss = 0, Ty g5, Tysq 7 0).

ProposITION (3.14). (1) V"= 11 |, s L.

73,14
(2) Ifx €V, there exist1 < i< 2,2 <j<6 such that x,,, # 0.

(3) Ifx € Ly there exist 2 < j< 5,1 < k< 2(G > k) such that x,;, ¥ 0.
(4) Ifx € L, there exists 2 < j < 5 such that x,;, # 0.

(5) Ifx € Ly or Ly, there exist 1 < k < j < 4 such that x,;, # 0.

(6) Ifx € Ly, Xy 07 Tpgy 07 Ty gy F 0.

(7) Ifx € Ly, thereexist2 < j < 4,1 < k <2(G > k) such that x,;, # 0.
(8) IfT € Lys, Xy 07 Ty 07 Ty # 0.

(9) Ifx € Ly, Xy 01 Xygy 07 T, F 0.

(10) If £ € Ly, Ty 07 Ty # 0.

(11) Ifx € Ly, or Lig, x,, #+ 0.

Proof. Note thatif 1 <¢,7<18,47,j# 3,14, and ¢ # j then L, N L, = @.

It is easy to see that if x € V" and x € L,, L,, then x € L,. Suppose that
x€L,and ., #0. Thenif x €L, -+, L, 2,;,=0fori=12,7=2,--,6.
Suppose x,,; = 0. Then by considering the cofactor expansion with respect to the
first two columns, det M, (v) is a product of vZ and a sum of determinants of mat-
rices of the form

+ v,

¥ ¥ © O
¥ ¥ © ©
* ¥ © ©
* % © ©
* % ¥ *
* ¥ ¥ ¥
* % ¥ *
* X ¥ %

The determinant of the above matrix clearly is divisible by v;. So F,(v) is
divisible by vz, which contradicts to the assumption € V,°. This implies that
Ty F 0and x € Ly
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Suppose that £ € Ly and &, 4, = 0. If &, 5, or 2,5, # 0, then z € II;L, L,. So
we assume that £ € Ly and &y 43 = X5 = Ty5, = 0. Then 2,4 F 0 or x € L, If
Ty Tiss 7 0, x € L, Suppose 1,4 # 0, 2,5, = 0. Then if x5, =0, 2,;,, =0
for j, k=1, -+, 5. So by the cofactor expansion with respect to the last row and
the last column, det M,(v) is divisible by v;, which is a contradiction. Therefore,
Iy, 7 0, which implies that x € L.

Suppose £ € L. If 24, 2155 7 0, then £ € L. Also if 2,5 = 0, 2,53 7 0,
then x € L,. Suppose &y # 0, Ty 53 = 0. If x5, = 0, then x,;, =0 for 7, k =
1,--+, 5, which cannot happen. So x,5 # 0, which implies that x € L, Suppose
Tyg = X153 = 0. Then x5, # 0 for the same reason. If x4 = 0, the first three
columns of z, are zero. So det M,(v) is divisible by v. But since M,(v) is an
alternating matrix, det M,(v) is divisible by v;, which is a contradiction. This
proves (1).

The statements (2), (3), (5) are clear.

Consider the statement (4). Let x € L,. Then the first column of x, is zero.
Suppose x,,;;, = 0 for j = 2,..., 5. Then by the cofactor expansion with respect to
the (6,1), (1,6)-entries, det M,(v) is a product of x; v, and the determinant of an
alternating matrix of the form

00 0 O 0 % % x
0 0 * =*x * 0 % *
Ulo s 0 x| T%|% % 0 %
0 % % 0 x % % 0

The determinant of the above matrix is divisible by v;. So F,(v) is divisible
by 2, which is a contradiction. Therefore, if € L,, there exists 2 < j < 5 such
that z,;; # 0.

Consider the statement (6). Suppose x € L,,. If the statement of (6) in false,
there exists £ € L, such that

(3.15) Tigs = Tis = Trer = Lo = Lo = Lpa1 = 0, Ty50 F 0.

We show that (3.15) cannot happen. Suppose (3.15) is satisfied. Then M, (v)
is of the following form

[0 0

¥ ¥ oo oo
¥ ¥ oo oo

* O ¥ ¥ ¥ ©
O ¥ ¥ ¥ ¥ ©

I**OOOO’
* % ¥ ¥ © ©
* ¥ ¥ © ¥ ©
¥ ¥ © ¥ ¥ ©

o O O O O
¥ ¥ © o O
* O X % ¥ ¥
S ¥ ¥ ¥ ¥ ¥
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If 2,5 = X, = 0, det M, (v) is identically zero, which is . contradiction. So
we assume that &, or L, # 0. Let g, € GL(6), be an element o1 the form

1

A

where A € GL(2),. By applying an element of the form g = (g,, I,) € GL(6), X
GL(2),, we may assume that Z,, = Zp3 = Lpgy = Lpgr = 0, Ty # 0. Note that
by the action of g, det M, (v) changes by a non-zero constant and the form of x;
does not change.

Therefore, det M, (v) is a product of x;elvj and the determinant of an alter-
nating matrix of the form

+ v,

* ob& &
¥ © o S
¥ O O O
S % % %
% % % ©
* * © %
* © % %
o % ¥ %

The determinant of the above matrix is divisible by vi. This implies that
F,(v) is divisible by vZ, which is a contradiction.
Consider the statement (7). Let x € L,. If x,;, = 0 for j =2,3,4, k = 1,2,

M, (v) is of the form
0 A, 0 B,
la *]”‘[Bl *]

where A, B, are 2 X 2 and A,, B, are 4 X 4. Also the first now of A;, the first
and the second columns of A, are zero. Since detM,(v) = det(v,4, +
v,B,)det(v,A, + v,B,), det M,(v) is divisible by v,. Since M,(v) is an alternat-
ing matrix, det M, (v) is divisible by v}, which is a contradiction. Therefore, there
exists 1 < k <j < 4 such that z,;, # 0.

Consider the statement (8). Let £ € Lys. If Xy = Zpy = Zpgp = 0, M, (0) is

of the form
t t
vl[o —A] +v1[° —B],
A % B %

where A, B are 3 X 3 and the first and the second rows of A are zero. Since det
M,(v) = det(v,A + v,B)’, det M,(v) is divisible by v;, which is a contradiction.
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Therefore, &y 4 Or &y, Or Zys, #F 0.

Consider the statement (9). Let £ € L;. Suppose Xy, = Zpgy = Ty = 0.
Then by the cofactor expansion with respect to the first row and first column,
det M, (v) is a product of 2)22 and the determinant of a matrix of the form

0 0 0 =* * % %k %
vooo*+v****
10 0 0 = 2k % % %

¥ % % % * % k% %

Therefore, det M,(v) is divisible by v;, which is a contradiction. So Z,,, or
Ty3 OF Zyy 7+ 0.

Consider the statement (10). Let £ € Lg. Suppose Xy, = Zyy = 0. Then by
the cofactor expansion with respect to the first row and the first column,
det M,(v) is a product of v: and the determinant of a matrix of the form

0 0
+ v,

* ¥ X ¥
* X ¥ *
* ¥ X ¥
* ¥ ¥ *
* ¥ X ¥
* % X ¥

0 0
0 0
* ok
Therefore, det M, (v) is divisible by v5. Since M,(v) is an alternating matrix,
det M,(v) is divisible by v;, which is a contradiction. So &, or X4 # 0.
Consider the statement (11). Let x € L, or Lys. Then x,4 = 0. Suppose &, ,,
= 0. Then by considering the cofactor expansion with respect to the first row and

the first column, det M, (v) is a product of vzz and the determinant of a matrix of
the form

+ v,

=
S O O O
* ¥ © O
* X ¥ ¥
* X ¥ *
* ¥ ¥ *
X % X *
* % X *
* X ¥ ¥

So, det M, (v) is divisible by 45, which is a contradiction. Therefore, 2,5 # 0.
This completes the proof of Proposition (3.14). QED.

The following proposition is an immediate consequence of Proposition (3.14).
ProposITION (3.16).
0,«(T, i) = = GLl(W, At).

1<i<18
i#3,14
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We now consider individual cases.

(1) Consider L,.
Note that ¢ 7%, t 7 & 77 So by Lemma (1.2.6) [8] and Lemma (3.7), for

any N = 1,
0, (W, At < AN, (4, Her
< /l—N sup(1, 2—30) tw(do-to—Ndl,“)
Since
(29302 _N((2Lo2 )1
4= o~ N =((3.0.-3,0.3).5) - N((530353) 2)

all the entries of — Nd, ,, — ¢, + d, are negative if N is large. Also if N is large,
the exponent of A tends to — .

Therefore, la@Ll(?If, AD +7% is integrable on R, X TE0 for 0> 0 and on [1, o)
X T, for all 0.

(2) Consider L,.
Let I=I1,\{(1,2,1), 1,3,1), (1,4,1)}. For 2 < B < 6, we define
L,y ={x € L,| x4, 2,5 #* 0},
Ly = {x€ L, x4, 1., # 0},
Loy = {x € Ly | 2,459, 2,4 # 0},
Lo =1{x€ L,| 2,45, 1,5 # 0.

(We only consider B = 5,6 for L, 4, L, .)
By Proposition (3.14)(2), L, = U 4 4L, 45 S0

6,(F, ) <2 OL,.,(¥, AD.
a,B ! -
We consider L, , first.
Let I’ = {(1,3,2), 1, B8, D}, I” =1\ {(1,3,2), (1, B, 1)}. We define

Vi={xe€Vlz,=0frG,jk &I},
V'={z€Vl|z,, =0for G,jk €I

The subsets V', V" are subspaces of V, and L,,, can be considered as a subset of
V.® V. Forx € V@V’ let p'(x), p”(x) be the projections to the first factor
and the second factor respectively.
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By Lemma (1.2.5) [8], there exist 0 < ¥ € S(Vy), 0 < ¥” € S(V)) such

that
@Lm(llf, &t) < %: , w‘/(p/(&tx)) w”(ﬁ”(itx')).

We define

oW W= T Taw,

Il.ajzgfekx
o', 1) = 5 U Gao).
zeV)

Then

0, ¥, ) < 6/ (¥, A 6" (¥”, 2D).

By Lemma (1.2.6) [8],
"W, ) K hy (4, ) < h, (4, D).

We estimate k,(4, f). We define

I, =12, 7, 1) forj = 2,3,4},

[ =15 D,661,0G38,2),0G4,2),G5,2), }
7 1G,6,2),G,4,3), (,5,3), (G,54) fori=1,2]

L=I\U, UL ={G,6,k fori=1,2, k= 3,4,5}.
Then I=IL I LI I If (i,7, k) € I, all the entries except for the last of d,
are positive. If (¢, 7, k) € I,, d,;, is of the form ((c,, *, %, * , — ), *) or
((*y Cyy *, — Cyy *)» *)
By Lemma (3.7),
hll(x’ B < sup(l, 2—3)tw(<(o,o.o,o,0),%))’
hlxu, B < sup(l, x—e)tw(<<z,4,4,4,4>,%>>.

We have to be a little more careful about 4, (2, #). By Lemma (3.6),

h12(/2, t) < sup(l, R"’s) sup II t_T{Jk.

I,cly (.4,k)Ely
By the proof of Lemma (3.7), for each I, C I,, there exist a, b € R such that
2 2
I <« tw(((%%,2,%,%),%)+((a,b,0.-—b,—a),0>)

(i,j,k)ely

So there exist a finite number of real numbers a,,* -, a,, b;,* -, b, such that
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> tw((%,%,z%,%),%H((a,,,b,,,o.—b,,,—a,,))

h,z(/l, 1) < sup(l, )
h=1

4
» < o for all 4.

4 8
Moreover,—§_<_ah£4,—§£b 3
Let
7 1\ 13
611 p=((e,— 5.0, = 3,0, —a,+3), ),
7 4 8 1\ 13
a=(n-gn-5-3-b-3-a+t3)3)

Then we get the following lemma by the above considerations.

LeEmMA (3.18).
] !

B,Q, D <sup@, A7) 2 Y < sup(, A7) X .
h=1 h=1

Therefore,

-2 -27 ! w(py)

@,_2 ﬂ(llf, AN K sup(1, A7) 2 0°(W7, 2Dt
g - h=1 -

This implies that we only have to estimate functions of the form @' (¥, 18 £,
For L,,5, Ly, L, exactly the same argument works replacing I” by I’
{,4,2), 1,8, D}, {(1,38,2), 2,8, D}, (1,4, 2), (2,B,1)} respectively.

By Lemma (1.2.6) [8], for any N,, N, = 1,
@/(w-/’ ﬁt)tw“’") & 2'N1—N2 Sup(l, ]—27)tW(pk—Nldl,SZ_NZdl,Bl).

For L, 4, etc., we get the same estimate replacing d; s, or dy 5 by d, 4, or dypy.
However, since ¢ 7% € ¢~ and ¢ ™, t 7* L 7% for all B, we only have to

consider functions of the form
Z—Nl_Nz sup(l /2"27) tW(ph_Nldl,Az-deZ,Gl)
’ .

The point here is that we can choose N,, N, for each & separately. If we had
(¥, A1), we get an estimate by the function

used Lemma (1.2.6) [8] directly to O,

]
—N,—N., =27\ ,—N;7{3,—N. w(py)
/1 1 zsup(l’ /{ )t 171,327 N 271,81 E:t h’
h=1

and the choice of N, N, must be the same for all . This is the reason why we

https://doi.org/10.1017/50027763000005390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005390

22 AKIHIKO YUKIE

had to separate the two non-zero coordinates to start with.
It is easy to see that

1
2dy + dy = (0,1,0,1,0), 3).

We choose N, N, of the form N, =2N,+ N,, N, = N, + N,, where N, =1,
N,, N; = 0. Then
by — N1d1,4z - N2d2,61

= ((ah - '377 — Ny =3, =Ny, —a, t %>’ E';—NB'> — Nydyy — Nydygr-

If @, = 0, we choose N, = 4 + 3a,, N; = 0. Then

by — N1d1,42 - N2d2,61

_ 4 + 3a, 8 + 6a, ) 4 + 3a, 13—N3>
= (L -5 - N, -3, B N, ), - S 20,
Since a, = 0,
4 + 3a, 8 + 6a, 4 + 3a,
3 -3 7~ 3 =0
Therefore,
O Nodye) tw(((—l.—N3,—3.—N3,—1).13—;1\’3))’
AN CsupA7, A7Y = A sup(, A7,
3a,
If a, < 0, we choose N, = 4, N, = — 5 Then
Py — N1d1.42 - N2d2,61
(=1 —4 % N g _8_ & _>_ 3a, 13_—N_)
—(( 1, 3+2, N, — 3, 373 N, — 1), 2+4+ 2 .
) 4
Since — 7 < a, for all A,
4, a 8 a 3a,
3t T3 it =0

Therefore,

Wb ~Nrdy g~ Nydyer) tw(((-1,-N3.—3,—N3,—1),l3—TN1))

t

’
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AN Csup(A7t, A7) = 27 sup(1, 270

By the above considerations,

0w, D" < sup(1 2-33)2—3N3—4tw((—1,—N3,—3,—N3,—1).@3>‘
This bound does not depend on &, 3, k. So for any N; = 1,
eSS

@Lz(w’ /lt)t—zfj < sup(l, A7) 1 3Ns (L =Ny 3Ny
Therefore, °6, (¥, Dt is integrable on R, X T, for 6> 0 and on [1, %)

X Ts0 for all o.

(3) Consider L,.
Let I =I,\{(1,2,1), -+, (1,5,1), (1,3,2), (1,4,2), (1,4,3)}. Then by Lem-
ma (1.2.6) [8], for any N = 1,
@L‘(LII, At) < 2_SNt_N(T"‘3+2r"5‘)h,(2, He .
By Lemma (3.7),

B, B < sup(1, 77258y
h,(, Dt < sup(d, 7% tw“%’_%’_a’_%’%)’%.

It is easy to see that

3
digs+2d,5 = <(1»0’0,0,1), ‘2')

Since the first, the fifth, and the last entries are positive, all the entries of

(@355 9 ) M

are negative.
Therefore, Za@L4(llf, it)t_zp is integrable on R, X Ts0 for 0 » 0 and on [1, o)
X T. for all o.

(4) Consider L.

Let Lo = {x € Li|xy #0 for «a=1,2,=2,+,6}. Then Lg=
U a,ﬂLs,aB'

We define

I1=1\{1,2,1), 1,3,1), 1,4,1, (1,5,1), (1,3,2), (1,4,2), (1,5,2)}.

Then k;(4, ©) has the same bound as in Lemma (3.18) with a,, b,, g, € R for
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h=1,---,1
We fix a, 8. Let I’ = {(1,4,3), (1,5,2), («, B, 1)}. For ¥’ € S(V}), we
define
oW, W= T Q.
zeV

T1,43T1,52%a,8,1

By a similar consideration as before, there exists 0 < ¥’ € S (V) such that
h
6, (T, At <sup(l, A7) X (W, A",
' - I=1 -
We consider each term. By Lemma (1.2.6) [8], for any N, N,, N, = 1,
o /'{t)t"’(‘lh) & /2‘Nx'Nz“Nat“’(‘lh‘Nldx,Aa‘dex.52"—"3“:1,91)‘

Since ¢ & ¢7* for all a, B as above, we only consider the case (a, B) =
(2,6).
It is easy to see that

1
dras T dyy + dy = ((0,0,0,0,0), 3)-

So we put N, = N, + N,, N, = N, + N,, N,= N, + N,, where N, = 1, N;, N;,
N, = 0.

Let W= {(a,b,0, — b, — a) | a, b € R} € R®. The following lemma and its
corollary are easy to verify and the proofs are left to the reader.

LEMMA (3.19). The convex hull of

(5-5053 C550-53 Gso-5-3)

contains a neighborhood of the ovigin of W.

CorOLLARY (3.20). For any a, b € R, there exist ¢, ¢,, ¢; = 0 such that

(3ot Y el bho b Dol ot Y
=(a, b,0, — b, —a).

By the above Corollary, we choose N;, N5, N, = 0 so that

wl-b-dedPen-tha-thnGio-d-d
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4 4
= (dh - §, bh, O, - bh, - a, + §‘>
Then

w((-1,~4,-3,-8, 1), 13—4»

O (W, AW « NN Ny
Since there are finitely many possibilities for &, there exist ¢;, ¢, = 0 such that
- 4__ _*_ 13—
Ls B(w ,{t)t 2p <A 3Ny—c, Sup(l —27— cz)tw((( 1,43 D, —L))

The right hand side does not depend on «, 3, h.
Therefore, Ra@Ls(Uf, ADt™ is integrable on R, X T} for ¢ » 0 and on [1, )
X T for all o.

(5) Consider L.

For a=2,--,5, =12, a>p, we define Lg,, = {x € Ly| z,,, # 0}.
Then by Proposition (3.14)(3), Ly = U, zLg 45 Since £ % < 7% for all @, B as
above, we only consider the case (&, B) = (5,2). If £ € Lggy, X453, Z161, Lose 0.
So by the same argument as in (4), RUQLG(W, it)t_zp is integrable on R, X T for
0> 0and on [1, ) X T for all 0. ‘

(6) Consider L,.

For @ = 2,+++, 5, we define L,, = {x € L,| 2,4, # 0}. Then by Proposition
(3.14)(4), L, = UL, ,. Since for all £ > < t "> for all & as above, we only con-
sider the case @ = 5.

Let

I=1\{Q,j, k) forj=2,--,6,k=12,7>k, (1,4,3)}.
Then by Lemma (3.7),

4 16, 15
—)’T))

h,Q2, 8 < sup(l, 2—20)tw<((5,8—%,6,8—-3~,3
- - w 2 _3.41,13
h,Q2, Dt < sup@, A7) OTE TR

By Lemma (1.2.6) 8], for any N,, N,, N; =
6, (¥, 1) <sup(l, AT NN N

x o3 —2,-3,-4. D13 Nd, 14— Nyd; 6~ Nody, )

It is easy to see that

1
8dys + 2dy, + 4y = ((1,0,0,0,D), 2).
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So if we choose N, = 3N,, N, = 2N,, N, = 4N, and N, > 0, all the entries of

2 4 1\ 13
<(0, - §, -3, §, é‘), 7) - N1d1,43 - N2d1,62 - N3d2,51

A X § AT

are negative.

Therefore, XU@L7(W, it)t_z‘a is integrable on R, X Tso for > 0 and on [1, o)
X Te0 for all o.

(7) Consider L.
By Lemma (1.2.6) [8], for any N = 1,
@Ls(w, _/it) t——zp & /I—SNtwwo—N(3d1,43+2dz,21))hlo(/Z’ t).
It is easy to see that
1 2 10 5\ 1
3d, 45t 2dy, = ((g, EL 2, 35 §), §>

Since all the entries of the above element are positive, ZU@LS(W, &t) t—zp is in
tegrable on R, X T) for 6 0 and on [1, ©) X T? for all 0.

(8) Consider L,
Let

I=I\{Q,j7, k) for1 <k<j<4, (1,51},
Then by Lemma (3.7),

_ 174 205 12015
hI(/{, t) << Sup(l, /2 23)tw(((3,8 3.6,8’ 3,3),2))’

- - 4 _2 4 15,13,
i, D% < sup(1, A7 oI,

2

For 1 £ B < a <4, we define Ly,5 = {x € Ly| x,,4 # 0}. Then by Proposi-
tion (3.14)(5), Ly = U, 4L 4. Since t77298 & 77 for all a, B as above, by Lem
ma (1.2.6) [8], for any N = 1,

0, (¥ ADE® < sup(1 1—21)X—BNtw(((0,—-%,-3,—1,1).12—3)—N(Zdl,sl——dz_m))
9,08 vl ! :

It is easy to see that

1
2d,5, t dyyy = <(110,0,0,1), 5)
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So all the entries of

(535~ 5 3. 2) - v

2
~(G-w -5 s 558550

are negative if N > 0.
Therefore, RU@LQ(Q",@‘)L‘"ZD is integrable on R, # T, for 6> 0 and on
[1, ) X T? for all o.

(9) Consider Ly,

For 1 < B < a <4, we define Lygap = {x € Ly, | X4 # 0}. Then by Prop-
osition (3.14)(5), L1y = U 4 4L 0,as Since £ % < 7% for all a, B as above, we
only consider the case (a, B) = (4,3).

Let I’ = {(1,5,2), (1,6,2), (2,4,3)}, and

V' ={z€ V|g, =0fr G, j,k &I}
For ¥ € S(V}), we define

oW, W= T UG
z 1.52@?::;2@5*0

Then as before, there exists 0 < ¥’ € ‘Z(VA) such that
I

6L, (¥, D1 < sup, 7O, A 3£,
' - T k=1

By Lemma (1.2.6) [8], for any N,, N,, N; = 1,
o' (T, 1D tW('lh) L Sup(l ]—27)X_NI_NZ_NBtwwh—Nldl,Gl_NZdl.SZ—NSdZ,AB).

It is easy to see that
1
digy tds T dyys = ((0,0,0,0,0), —2—).

Therefore, by the same argument as in (4), ROQLN(W, it)t_zﬂ is integrable on
R, X T. for 0> 0 and on [1, ) X T. for all 0.

(10) Consider L,;.

For a = 2,3,4, we define L,,, = {x € L, | z,,, # 0}. Then by Proposition
(3.14)(6), L, = U,L,,,. Since ¢t ** & 7" for @ = 2,3,4, we only consider the
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case o = 4.
It is easy to see that

55 0.53)2)

3d,5, T 2d,4 = <<§, 3 0
So by Lemma (1.2.6) [8], for any N =1,
@Lm(w, %t)t_z" & 1N putdomN iy r2dra) o(lt)

~3,- 4 5=3N) 1=N,,

<< 2 —5N Sup(l x 30)tw(((—"

Therefore, }a@Lu(llf, it)t—zp is integrable on R, X TE0 for 0> 0 and on
[1, ) X T? for all 0.
€

(11) Consider L,.

For a«=2,34,8=12,a>p we define L,q = {r€ L,|x,, # 0.
Then by Proposition (3.14)(7), Ly, = U 4 4L, 4s- Since ¢ TTas & 72 for all @, B
as above, we only consider the case (a, 8) = (4.2).

It is easy to see that

3d1,61 + 2d1,53 + 4d2,4z = <(0,1,0,1,0), l>,

4d, gy + 2d, 55 + 4dyy = ((3 30, 3, - %) 1).

Also

24,2 2 —w(((=L, 1
t—w(((3,3,o,3, 51 <t w(((-3,0,0,0,3),0)

—w(((=11p21 —w(((-L 1
¢ w((( 3,3,0,3,3),0)) Lt w((( 3,0,0,0,3),0)).

We define

= (01,010, ).
(2 008.-2).9).
(4000 2).0)

m,

fl

my

https://doi.org/10.1017/50027763000005390 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005390

PREHOMOGENEOUS VECTOR SPACES 29

Then by the same argument as in (2), we only have to consider functions of the
form

R—10N1—4N2—9N3 sup(1 2—27) tw(p,,»Nlml—szz-Nsma)
’

’

where N, 2 1, N,, N, 2 0.

It is easy to see that we can choose N;, N,, N, so that all the entries of p, —
N,m, — N,m, — Nym, are negative.

Therefore, la@le(qf, Ab) t™% is integrable on R, X T for ¢ > 0 and on
[0, ) X T! for all 0.

(12) Consider L.

For (a, B) = (2,1), (3,1), (3,2), we define Lyzn = {x € Ly3| 2,05 # 0}.
Then by Proposition (3.14)(8) L3 = U, gL 3 46 Since ¢ TTas & 77 for all @, B as
above, we only consider the case (@, §) = (3,2).

It is easy to see that

3d, g + 2d, 5 + Adys, = ((o 1,2,1,0), )

ot = (3515 —3)

0).
dioi T dysy +2d,5, = << é’ % _g‘ %), 0>.
Also

12,1 1 1 1
—w((32,1,5,-1),0) ~w(((3,0,0,0,—3),0)
t 33T« 3 E

—w(((-L1;21 —w(((-L, L
¢ w(((-3.5,1,5:3),0) &t w((( 3,0.0.0,3),0)).

Therefore, by the argument of (2) and (11), 2°6,,, (¥, it)t—zp is integrable on
R, X T. for ¢ 0 and on [1, ©) X T for all 0.

(13) Consider L.

For o = 2,3,4, we define Ly;, = {x € Li5| 2,,, # 0}. Then by Proposition
(3.14)9), Lis = U, L5, Since ¢ 2% € £ for @ = 2,3,4, we only consider the
case a = 4.

It is easy to see that

)-2)

w|+—

21 2
2d,6; + 2d,53 + 3dy g = <<§’ 3 0, EL
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Then by Lemma (1.2.6) [8], for any N = 1,
_ _ Ne2lo21) 1
@Lm(w.’ e W g 27Nl N«3’3’0’3’3)'2»h,°(2, 9

5 5, 13 21,211
—7N -30y w((3,0,-3,0,9, -~ 2 102D 1)
KA T sup(1, A7) 32 3ITEIE

Therefore, by the argument of (11), ﬂg@Lls(W, A 7% is integrable on R, X
T. for 6> 0 and on [1, ) X TY for all 0.

(14) Consider L.

For a = 2,3, we define L, = {x € L;|x,,, # 0}). Then by Proposition
(3.14)(10), Lys = U,Lg,. Since ¢ ™ < £ for @ = 2,3, we only consider the
case a = 3.

It is easy to see that

21 2 1\ 1
2dg + 2dy 5+ 3dyy = ((‘3“, 3 1, 3 §), 5)

Since all the entries of the above element are positive, x"@Lm(w, At) % is in-

tegrable on R, X T for 6> 0 and on [1, ©) X T} for all o.

(15) Consider L.
It is easy to see that
1 2 1 5) 1)

30+ 200 = (352 3 3) 2)

Since all the entries of the above element are positive, Za@,_”(w, A % is in-
tegrable on R, X T} for ¢ 0 and on [1, ©) X T for all 0.

(16) Consider L.
It is easy to see that
2 4 2 1) 1)

2d, 63 + 2d, 54 t+ 3dy5 = ((‘g, 3 1, 33) 9

Since all the entries of the above element are positive, lg@Lm((F, &t)t_zp is in
tegrable on R, X 7. for ¢ 0 and on [1, ) X T for all o.
This completes the proof of Theorem (3.1) for the case (4). QED.
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