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Abstract. The Hubble constant can be determined from the time delay of gravitationally lensed
systems. We adopt Te Ve S as the relativistic version of Modified Newtonian Dynamics to study
gravitational lensing phenomena and evaluate the Hubble constant from the derived time-delay
formula. We test our method on observed quasar lensing published in the literature. Three
candidates are suitable for our study, HE 2149−2745, FBQ J0951+2635, and SBS 0909+532.
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1. Introduction
The value of the Hubble constant, H0, has been a topic of much debate in cosmology,

for more than half a century. Basically, it relates the cosmological distances and the
recessional velocities of galaxies, v = H0d. Its value can be estimated from gravitational
time delays, a concept that was introduced by Refsdal (1964).

One advantage of using time delays to derive the Hubble constant is that they are not
very sensitive to the adoption of a given cosmological model. However, there are some
uncertainties associated with determining mass distributions based on image deflections
and distortions using gravitational lensing. Another source of uncertainty in mass is, of
course, the ‘missing mass’ problem. This problem exists in nearly all galactic systems,
clusters of galaxies, large-scale structure, and the cosmic microwave background (CMB).
To solve this puzzle, we can introduce dark matter into the system. On the other hand, one
can also modify Newton’s law of motion or the laws of gravity. Milgrom (1983) proposed
Modified Newtonian Dynamics (MOND) to explain both the flat rotation curves observed
in most spiral galaxies and the Tully–Fisher (1977) relation. MOND asserts that when
the acceleration of an object that is under the influence of gravity only is smaller than
approximately a0 = 1.21× 10−10 m s−2 , Newton’s second law of motion no longer holds.
The proposed modification is

μ̃(|a|/a0)a = −∇ΦN = aN , (1.1)

where a is the acceleration of the object and ΦN is the Newtonian gravitational potential.
The function μ̃(x) is called the interpolation function. With x = |a|/a0 , μ̃(x) ≈ 1 for x �
1 (Newtonian regime), and μ̃(x) ≈ x for x � 1 (deep MOND regime). For convenience,
we call ΦN the Newtonian potential and Φ the MONDian potential.
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MOND is very successful in explaining the dynamics of galactic systems (see, e.g., the
review by Sanders & McGaugh 2002). Recently, McGaugh (2011a) showed that MOND
can perfectly explain the Tully–Fisher relation in gas-rich spiral galaxies without the
need to invoke uncertainty parameters such as the mass-to-light ratios of galaxies. Nev-
ertheless, many scientists consider that MOND is not quite successful on scales of clusters
of galaxies (see, e.g., Clowe et al. 2006; Angus & McGaugh 2008). Two decades after the
original proposal by Milgrom (1983), Bekenstein (2004) proposed the Tensor–Vector–
Scalar (TeVeS) covariant relativistic gravity theory with MONDian dynamics as its
non-relativistic limit. Adopting TeVeS, Chiu et al. (2006) derived the corresponding
strong-lens equation. More recently, Milgrom (2009) proposed another relativistic ver-
sion of MOND, called BiMOND. It turns out that TeVeS and BiMOND have identical
gravitational-lensing equations. The lens equation has been applied to some galaxy lens-
ing data, where the masses of the galaxies were calculated and compared with population
synthesis (e.g., Zhao et al. 2006; Ferreras et al. 2008; Chiu et al. 2011). In this paper, we
turn our attention to the Hubble constant.

2. Gravitational Lensing and Time Delays in Relativistic MOND
The modern view of light deflection is that it represents a relativistic gravitational

effect, in which both the time-like and space-like parts of the metric contribute to the de-
flection angle. The angle of deflection by a spherical lens in the small-angle approximation
can be written as (Chiu et al. 2006, 2011)

Δϕ = 2
∫

a⊥
dt

c
≈ 2�0

c2

∫ D ′
L

−DL S

1
�

∂Φ(�)
∂�

dζ, (2.1)

where c is the speed of light, θ the image position, � the distance from the center of
the spherical lens, �0 ≈ DLθ the closest approach of the light path from the center of
the lens, ζ2 = �2 − �2

0 , and Φ(�) is the MONDian potential. DL, D′
L , and DLS are the

angular distances of the lens from the observer, observer from the lens, and the source
from the lens, respectively. The image appears in the direction of the closest approach
(projected on the sky). For a spherical lens, there are two images, located on both sides
of the source, and the governing equation (the ‘lens equation’) is given by

β = θ+ − α(θ+) = α(θ−) − θ− , α(θ) = Δϕ
DLS

DS
, (2.2)

where β is the source position and θ± are the image positions. The top sign denotes an
image on the same side as the source and the bottom sign corresponds to an image on
the opposite side of the source. α(θ) is commonly called the reduced deflection angle.

A time delay is defined as the difference in time traveled by light along the actual path
with respect to that expected from travel along the undeflected path. It can be derived
from Fermat’s principle or from the geodesic equation in relativistic gravitation theory.
As for the deflection angle, the form of the time delay is the same for general relativity
(GR) and for MOND (with Newtonian and MONDian potentials for GR and a MOND,
respectively),

t(θ) =
(1 + zL)

c

[
DLDS

2DLS
α(θ)2 −

∫ D ′
L

−DL S

2Φ(�)
c2 dζ

]
. (2.3)

The first and seconds term in Eq. (2.3) are referred to as the geometric and potential
time delays. If the difference in time delay for the two images is available, the value of H0
(and the mass of the lens) can be obtained by solving the time-delay difference equation
(henceforth ‘time-delay equation’), Δt = t(θ−)− t(θ+), and the lens equation, Eq. (2.2).
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For a full derivation and formulation, we refer the reader to Tian et al. (2012). Here,
we only show the interesting results in the deep MOND regime for a point-mass lens. The
interpolation function becomes μ̃(a/a0) � a/a0 . If the extent of the luminous matter is
also much smaller than θ (i.e., if it can be modeled by a point mass), then the time-delay
difference is solely determined by the potential time delay, because the deflection angle
approaches a constant in the deep MOND regime (Chiu et al. 2006). In this case, the
time-delay (difference) equation is independent of the choice of interpolation function,

D̃LS

D̃LD̃S

H0Δt

(1 + zL)
=

1
2

(
θ2

+ − θ2
−

)
. (2.4)

Note that Eq. (2.4) is identical to that in GR for an isothermal lens model (see Witt
et al. 2000). This is expected, since both potentials have the same form, i.e. logarithmic
potentials. However, in MOND Eq. (2.4) is valid only in the deep MOND regime.

3. Data and Modeling
Although hundreds of quasar lenses have been found, gravitational time delays have

been measured for only a few. As far as we know, only 18 strong lenses have had their time
delays measured (Paraficz & Hjorth 2010). To test our theory, we select lensed elliptical
galaxy systems with double images. Only five cases satisfy our criteria. They are HE
2149−2745, FBQ J0951+2635, SBS 0909+532, sdss J1650+4251, and HE 1104−1805.
The remainder are clusters, spiral galaxies, multiple images, or multiple lenses. However,
the lensing galaxy in the sdss J1650+4251 system is very dark. It does not have a
reliable measurement of its effective radius. In addition, the uncertainty in the time-
delay measurement in HE 1104−1805 is too large. This leaves us with a total of three
candidates: HE 2149−2745, FBQ J0951+2635, and SBS 0909+532 (Paraficz & Hjorth
2010). A rough estimate indicates that the gravitational acceleration of the three systems
ranges from 10−9 to 10−10 m s−2 . Thus, these gravitational lenses are not in the deep
MOND regime. The surface brightness profile of the lensing elliptical galaxies satisfies a
de Vaucouleurs’ profile. Therefore, we adopt a Hernquist (1990) mass density profile.

MOND has been criticized, implying that it can not form large-scale structure. In
essence, this criticism originated from arguments based on consideration of GR with
baryons only. Skordis et al. (2006) showed that TeVeS needs 2 eV massive neutrinos
(which are treated as non-relativistic particles) to comply with CMB observations, and
(ΩB ,Ων ,ΩΛ) = (0.05, 0.17, 0.78). This is often called νCDM cosmology. In any case, the
discrepancy between the traditional ΛCDM model and the νCDM model is small, at
least for our sample. The difference in D̃LS /(D̃LD̃S ) is less than 0.4%.

4. Result and Conclusion
In this paper, we consider lensing and the time-delay equation for MOND in the

‘Bekenstein’ form, μ̃(x) = (−1+
√

1 + 4x)/(1+
√

1 + 4x) (Bekenstein 2004). The common
flat rotation curves of spiral galaxies and the Tully–Fisher relation for gas-rich galaxies
give a consistent value of the acceleration constant a0 = 1.21 × 10−10 m s−2 (Sanders &
McGaugh 2002; McGaugh 2011a). We evaluate H0 and M for the three selected systems
summarized in Table 4. In last two columns of Table 4, x = a/a0 is the ratio of the
acceleration at the closest approach to the MOND acceleration constant. From Table 4,
we see that the deep MOND point-mass model did not give reasonable values of H0. This
is understandable, because these three cases are not in the deep MOND regime.

A source of uncertainty is the choice of interpolation function. In both the Newtonian
(x � 1) and the deep MOND regimes (x � 1), different interpolation functions should
give the same result. However, our sample lies in the intermediate MOND regime. Table 4
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Table 1. Evaluated lens masses and the resulting Hubble constants. The mass unit is 1010 M�
and the unit of of the Hubble constant is km s−1 Mpc−1 . x = a/a0 is a measure of the MONDian
regime at the closest approach, �0 , and x± corresponds to θ±. The numbers in smaller font are
results taking into account the corresponding maximum and minimum uncertainties.

Mass H0

GR MOND GR GR Deep MOND MOND x− x+

Mass Model Hernquist Hernquist Hernquist Isothermal Point Mass Hernquist

HE 2149-2745 23.22 5 . 9
2 0 . 5 16.11 7 . 5

1 4 . 6 78.37 0 . 2
8 8 . 7 51.74 6 . 3

5 8 . 5 47.84 2 . 8
5 4 . 1 57.65 1 . 0

6 6 . 0 11.3 2.3

FBQS J0951+2635 2.93 . 3
2 . 6 2.302 . 5 4

2 . 0 5 101.59 0 . 2
1 1 6 . 0 62.55 5 . 6

7 1 . 4 57.45 1 . 1
6 5 . 6 79.36 9 . 9

9 1 . 5 28.5 4.0

SBS 0909+523 77.27 8 . 9
5 8 . 3 55.85 6 . 8

4 4 . 3 91.48 9 . 4
1 2 0 . 9 88.58 6 . 6

1 1 7 . 1 82.18 0 . 3
1 0 8 . 7 70.26 8 . 6

9 5 . 1 8.7 5.9

shows the results for the Bekenstein form of the equations. Other interpolation functions
will give somewhat different results. In any case, the major uncertainty comes from the
observations, in particular from the time-delay measurements.

In summary, this work is a first attempt to use MOND to interpret data from gravi-
tational time delays. The Hubble constant obtained from lensing and from time delays
must, of course, be consistent with values from other measurements. Recently Riess (2009)
calibrated 240 low-redshift Type Ia supernovae (SNe Ia) with Cepheids and obtained a
Hubble constant of H0 = 74.2 ± 3.6 km s−1 Mpc−1 . The values of H0 found from time
delays in this paper (see Table 4) are consistent with the value(s) from SNe Ia data.
When comparing with GR and adopting a Hernquist model (without dark matter), the
lens masses in MOND are 28 to 44% smaller than those found from GR, and the Hubble
constant is 18 to 25% smaller than resulting from GR. In this paper, we test this effect
in TeVeS, because we have a consistent cosmological model (i.e., νCDM). However, the
method is not restricted to TeVeS only. Gravitational lensing promises to provide a
testing ground for modified gravity.
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