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Abstract
In recent years, deep learning-based robotic grasping methods have surpassed analytical methods in grasping per-
formance. Despite the results obtained, most of these methods use only planar grasps due to the high computational
cost found in 6D grasps. However, planar grasps have spatial limitations that prevent their applicability in complex
environments, such as grasping manufactured objects inside 3D printers. Furthermore, some robotic grasping tech-
niques only generate one feasible grasp per object. However, it is necessary to obtain multiple possible grasps per
object because not every grasp generated is kinematically feasible for the robot manipulator or does not collide with
other close obstacles. Therefore, a new grasping pipeline is proposed to yield 6D grasps and select a specific object
in the environment, preventing collisions with obstacles nearby. The grasping trials are performed in an additive
manufacturing unit that has a considerable level of complexity due to the high chance of collision. The experimental
results prove that it is possible to achieve a considerable success rate in grasping additive manufactured objects.
The UR5 robot arm, Intel Realsense D435 camera, and Robotiq 2F-140 gripper are used to validate the proposed
method in real experiments.

1. Introduction
The advances in research on autonomous mobile and manipulator robots have been remarkable. The
interdisciplinary characteristics of robotics have contributed to its exponential progress in recent years.
Artificial intelligence and computer vision have significantly supported the results of recent research
overcoming past analytical and empirical methods [1].

Robot manipulators that can autonomously manipulate objects of different geometries in different
environments have a wide range of applications such as medicine, manufacturing, retail, service robotics,
emergency support, and serving food, among others. However, there are still many issues to be solved
until they can safely be applied to perform these activities, including but not limited to the complexity
in performing grasping in unknown objects with adversarial geometry, and the collision with the robot
workspace [2–4].

Grasping is defined by the gripper pose so that an object can be grasped, meeting several relevant
grasping criteria, such as object shape, position, material properties, and mass, given an image as a
reference [5]. Robotic grasping is one of the fundamental skills in manipulating an object and is still
an open area of research [6, 7]. When applying a robotic grasping technique, it is necessary to get an
accurate definition of what is a successful grasp. This definition varies according to the technique used.
Besides that, there may be several successful grasp poses in different object regions. Therefore, it is
crucial to select the positive grasp that represents the greatest success rate [8, 9].

Robotic grasping involves several areas of robotics, such as perception [10], trajectory planning [11,
12], and control. Consequently, its implementation in practice is a challenge. This challenge becomes
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even greater when the robot performs grasping on objects of different geometries with an unlimited
amount of positions since it requires a high dexterity [13, 14]. Besides that, grasping has shifted from
considering relatively simple, isolated objects to grasping geometrically and visually challenging objects
in a cluttered environment [15, 16].

A robot can be programmed manually to perform a specific activity, providing detailed instructions to
the control algorithm, known as an analytical or geometric method. Analytical robotic grasping methods
are referred to as hand-designing features and have been widely used in the past [17]. These methods
require the development of a mathematical grasping model that includes the geometry, kinematics, and
dynamics related to the robot and the object, which is not known [18]. In addition, surface properties
and friction coefficients are not available in advance [19]. Therefore, these parameters cannot be
accounted for unknown objects.

Analytical methods also consider that the position of the object and the contact locations between the
end effector and object are entirely known. In some analytical methods, grasping poses are previously
calculated using a point cloud registration method, which matches the 3D mesh point cloud and the real
object models through geometric similarities [20, 21]. Despite the satisfactory performance in known
environments, analytical methods are not feasible in unknown, dynamic, and unstructured environments,
considering unknown objects.

Rather than analytical methods, empirical methods have the advantage of removing partially or
entirely the need for a complete analytical model [22]. These methods focus on using experience-based
techniques employing machine learning. These methods generate grasps candidates through trial and
error and classify them by using some metric. Empirical methods usually imply the existence of previ-
ous experience of grasping, provided with the aid of heuristics and learning [19]. This training process
requires the use of real robots [23], simulations [24], or direct assessment in images [8].

Deep learning techniques have provided a considerable advance in robotic grasping applied to
unknown objects. Through these techniques, it is possible to extract features from objects that corre-
spond to a specific grasping pose or a set of grasping poses. The results achieved exceed the analytical
and empirical models [3,5, 8, 15, 25].

It is not proper to directly compare results between robotic grasping experiments due to the extensive
grasp detection techniques used [1]. The reason is that each experiment differs from the other by using
different types and numbers of objects, physical hardware, robot arms, grippers, and cameras. Therefore,
different authors recently published benchmark procedures for analyzing the grasping performance in
distinct scenarios [26–28].

In the context of additive manufacturing systems [29, 30], it is necessary to apply a robust robotic
grasping technique capable of yielding a diverse set of 6D grasps. This is necessary as some grasps may
not be kinematically possible or collides with objects in the robot’s volumetric space. Deep learning-
based grasps techniques provided a great tool to improve the performance of grasps in unknown objects.
However, grasps are usually performed in environment that offer a low risk of collision with objects.
Techniques to avoid collisions between the robot’s gripper and the environment are still an open area of
research [31].

This paper proposes a selective grasping pipeline to generate 6D grasps using an RGB+D sensor
avoiding collisions between the robot’s gripper and the environment. To avoid collisions with nearby
obstacles, a new collision detection system and a heuristic method to filter grasps were developed by
using a signed distance method. We limit the application of the collision avoidance algorithm exclusively
to the gripper, as, in the particular test case, there is no danger of the robotic arm colliding with the 3D
printer. Although the method has been tested in an additive manufacturing unit to pick objects from
a 3D printer bed, it is not limited to this application and can be adapted for other environments, such
as bin picking. An extended analysis of the grasping performance is given with experimental data. This
work builds upon our preliminary work [32], which was only evaluated in a simulated environment [33].
According to the simulator documentation, the simulator’s collision checking system may occasionally
yield wrong contact points, causing unrealistic reaction forces, vibrations, or instabilities, besides not
being available for real implementations.
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Figure 1. Overview of the proposed grasping pipeline.

An overview of the proposed grasping pipeline can be seen in Fig. 1. This paper has four main
contributions: (i) development of a new grasping pipeline to autonomously select and grasp objects
of interest placed in a complex environment such as a 3D printer, for additive manufactured objects
with low graspability [5]; (ii) development and validation of a low computational complexity collision
detection system to discard grasps in collision with the environment and a heuristic method to filter the
best grasps; (iii) integration of an object recognition and instance segmentation method, a 6D grasping
generator, and the new collision detection system; and (iv) validation of the proposed system using an
UR5 Robot Arm Manipulator, a RGB+D camera Intel Realsense D435, and the gripper Robotiq 2F-140.
Besides that, an ablation study separating the grasping pipeline stages, an analysis of the relationship
between the number of points of the workspace point cloud and the time required to verify collisions, and
validation of the deep learning-based object detection and segmentation algorithm for a set of additive
manufactured objects confirm the effectiveness of a synthetic dataset generated by a simulator.

The paper is organized as follows. In Section 2, the assumptions are given, and the variables used in
this paper are defined. The proposed grasping pipeline implementation is detailed in Section 3. Section 4
presents the approach for object recognition and instance segmentation. The grasping generator and the
collision detection using point clouds are presented in Section 5. Section 6 presents the experimental
results and an ablation study. Section 7 provides the main conclusions.

2. Problem statement
It has only been in the last few years that convincing experimental data have proven, in practice, the effi-
ciency of grasping methods. Nevertheless, the grasping techniques are often applied for picking objects
on planar surfaces such as a table [1] or in a bin [2, 15]. This workspace (table and bin) offers relatively
simple test benches to evaluate the grasping performances if compared with constrained spaces such as
inside 3D printers. Therefore, 4D grasping methods (also called planar grasps) are enough to generate
feasible grasps for planar surfaces but not are suitable for constrained spaces such as inside 3D printers.

To perform grasp in constrained spaces, such as inside 3D printers, it is required to avoid collisions
with nearby obstacles such as the printer bed. Therefore, it is necessary to generate a set of feasible
grasps with different positions and orientations for the same object, since some grasps are in collision
with obstacles in the workspace or kinematically infeasible. The description of the symbols used in this
article is as follows:

RGB image. Ci expresses a raw 8-bit RGB image.
Depth image. Let I be an 8-bit 2.5D depth image in which every object in the environment is

considered. H and W represent the height and the width of this image, respectively.
Segmentation mask. Mr represents the object segmentation mask.
Object point cloud. Nr evidences the detected object point cloud.
Filtered object point cloud. Nf represents the filtered point cloud of the detected object.
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Figure 2. Grasping pipeline.

Printer point cloud. Kr represents the raw point cloud of the 3D printer.
Downsampled printer point cloud. Kd denotes the downsampled point cloud of the 3D printer.
Grasp set. G̃g = (P̃, Õ) denotes a 6D grasps set, in which P̃ and Õ denote the position and orientation

angles, respectively, relative to the camera frame.
Filtered grasps. Ggf = (Pgf , Ogf ) represents the position Pgf and orientation Ogf of the filtered grasps

by applying the heuristics described in Section 3, relative to the camera frame.
Collision-free grasps. Go = (Po, Oo) denote the position Po and orientation Oo of the collision-free

grasps, relative to the robot base coordinate frame.
Grasp on the robot base coordinate frame. Gfb = (Pfb, Ofb) represents the position Pfb and

orientation Ofb of the collision-free grasps, relative to the robot base coordinate frame.
Current gripper pose. Ga = (Pa, Oa) describes the actual gripper position Pa and orientation Oa,

relative to the robot base coordinate frame.

3. Grasping pipeline
The proposed grasping pipeline is shown in Fig. 2, with the subsequent stages:

1. The initial state of the robot Ga is stored.
2. The image Ci is obtained by positioning the gripper in the front of the 3D printer.
3. The Mask R-CNN receives an image Ci as input and generate a mask Mr.
4. The mask Mr is copied to the depth image I.
5. The pixels of the image I are selected by using the mask Mr. The point cloud Nr is generated by

using a backprojection algorithm in the selected pixels of the image I.
6. A statistical outlier removal filter [34] is applied in the point cloud Nr to generate a new point

cloud Nf .
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7. The printer point cloud Kr is acquired.
8. Kr is downsampled to generate a new point cloud Kd .
9. Nf is used as input to GraspNet to generate a set of 6D grasps G̃g.

10. Ggf is selected from G̃g considering the grasps with a score greater than 80% and Ogf closer to
Oa, so:

Ggf = Oa − Õ < Om (1)

in which Ggf is a set of grasps next to Ga taking into account a predetermined interval Om.
11. Each grasp of Ggf is rejected if any point of the point cloud Ka lies inside the Robotiq 2F-140

gripper mesh.
12. The grasp without collision Go is obtained.
13. The final grasp Gfb is reached by using a quintic polynomial trajectory planning.

Summarizing, after a detection of an object of interest, a pixel-wise segmentation algorithm is applied
to create a mask of the objects using RGB images. This mask is used to segment the object in the
depth image and then generate a point cloud by using a back-projection algorithm. The point cloud of
the object is used to generate a 6D grasp, and the point cloud of the environment is used to check if
the generated grasp collides with obstacles. Besides this, each grasp is discarded if it is not kinematic
viable.

4. Object recognition and instance segmentation
Mask R-CNN [35] is a deep learning-based object detection and segmentation algorithm. It adds a
branch in Faster R-CNN [36] to predict segmentation masks. The mask branch downgrades the per-
formance of the object detection but is still able to reach better performance and accuracy than the
COCO instance segmentation task winner in 2016. Mask R-CNN runs at 5 fps on an NVIDIA Tesla
M40 GPU.

The layer applied in Faster R-CNN after the Region Proposal Network was used to extract features
to classify and apply box regression. It was not designed for pixel-to-pixel alignment between network
inputs and outputs. To solve this problem, a quantization-free layer, called RolAlign, that maintains
spatial locations, was applied in ref. [35]. The classes’ mask is inferred independently and depends on
the RoIAlign to classify and predict categories as is also done on Faster R-CNN.

For each RGB image, Mask R-CNN outputs a segmentation mask, bounding box, and label for each
object. Mask R-CNN also requires a backbone architecture. Results show that using a better feature
extractor network such as ResNeXt-101-FPN [37] instead of ResNet-50-FPN [38] improves the per-
formance of the Mask R-CNN. In addition, the fully connected layers were removed to build a fully
convolutional network. This improved the inference performance of the segmentation task.

4.1. Training and dataset
To detect and segment the object’s image, a fine-tune process was applied to the Mask R-CNN. Figure 3
shows the test objects proposed by ref. [5] which were used to evaluate grasping methods due to their
low graspability.

A synthetic dataset was generated using the Webots simulator by applying the following pipeline
(Fig. 4):

1. An object is randomly positioned in a constrained space and an RGB image is captured by using
a virtual camera;

2. The RGB image is generated in simulation;
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Figure 3. Objects (real and synthetic) used to validate the grasping pipeline.

Figure 4. Dataset generation pipeline using the simulator Webots.

3. It was noticed that the object is better segmented in the simulation if the RGB image is turned
into a gray image;

4. A bounding box is also automatically generated using the edges of the object’s contour extracted
from the image;

5. The contour is shown in the RGB image of stage 2;
6. The object pixels in the synthetic RGB image are copied to real images with 3D printers, since

the grasps are performed only in this space.

By applying this pipeline, 900 images were created, 150 for each object. The training set and vali-
dation set were divided into 80% and 20%, respectively. The average precision (AP), considering the
average of IoU thresholds of 0.5:0.05:0.95, was 87.9% for the segmentation task. This AP with aver-
aging IoUs is used to determine the rank of the obstacle detection algorithms of the COCO challenge
dataset.
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Figure 5. Signed distance used to verify collisions between the point cloud and the Robotiq 2F-140
collision mesh.

The Mask R-CNN was pretrained on the COCO dataset and fine-tuned in 26 epochs. The learning
rate was set to 0.0025 with a decay of 10% in epochs 17 and 23. The Stochastic Gradient Descent was
used with a weight decay of 0.0001 and momentum of 0.9. The batch size was set to 2.

5. Grasps generation and collision detection using point clouds
GraspNet [3] is a deep learning-based grasping generator [39] consisting of an decoder and encoder
trained using Simulated Grasp Trials (SGTs). GraspNet is based on PointNet++ [40] and extracts fea-
tures from point clouds of the object and gripper for each grasp. This network contains a generator
and evaluator module. The generator module takes the latent space samples, the object, and gripper’s
point cloud to generate grasps. The evaluation module associates a probability of success for each grasp
generated.

It is important to note that the 6D grasping generator was trained using SGTs, considering objects
of simple geometry such as bowls, mugs, and boxes. Nevertheless, the objects employed for testing this
grasp generator in this work were more complex, although it is still possible to achieve good grasping
results as it generalizes well for new objects. Therefore, the 6D grasping generator applied in the grasping
pipeline is not optimized to generate grasps for small objects. Consequently, it may take seconds to find
a grasp for small objects.

As already mentioned, the 6D grasp generator applied is not capable of analyzing the workspace
around the selected object to avoid collisions. To mitigate this problem, a new collision detection system
was developed to discard grasps in collision with the environment by using the point cloud of the objects
in the workspace.

A simplified mesh of the Robotiq 2F-140 gripper (Fig. 6b) was created to verify collisions with the
workspace. For every new grasp generated, it is verified if this mesh collides with the point cloud of any
object in the workspace. To check for collisions, it is calculated the signed distance between each point
of the workspace’s point cloud and the boundaries of Robotiq 2F-140 collision mesh in the metric space
X with a subset �, and a metric d, such that

f (x) =
{

d(x, ∂�) if x ∈ �

−d(x, ∂�) if x ∈ �c
, (2)

d(x, ∂�): = inf
y∈∂�

d(x, y). (3)

where ∂� denotes the boundary of � for any x ∈ X and inf denotes the infimum.
Figure 5 exemplifies this statement. Figure 6 shows the workspace used for testing (Fig. 6a), a

collision-free grasp (Fig. 6b), and a identified collision between the gripper collision mesh and the
workspace point cloud (Fig. 6c).
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Workspace. Grasp without collision.

(a) (b)

(c)

Grasp with collision.

Figure 6. Collision check system in an additive manufacturing system. (a) Workspace configuration
used for testing. (b) There are no points inside the gripper collision mesh. (c) There are points of the 3D
printer or the object point cloud inside the collision mesh of the gripper.

Figure 7. Relationship between the number of points of the workspace point cloud and the time required
to verify the collision. It is required 0.8 s to calculate the signed distance for 10,000 points.

The point cloud of the workspace, considering the gripper pose in front of the printer, has on aver-
age 10, 000 points. It is required 0.8 s to calculate the signed distance for this number of points. It is
important to note that the signed distance is calculated again for each grasp generated. As GraspNet
generates a diverse set of grasps for each object and most of them are in a collision, it can take consid-
erable time to execute if the point cloud is not downsampled. Figure 7 shows the relationship between
the number of points of the point cloud and the time to calculate the collision by using the signed
distance.
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Figure 8. Successful and failed generated grasps generated in each step of the ablation study.

6. Experimental results
This section describes the experiments conducted in an additive manufacturing unit assembled in a
laboratory, composed of a 3D printer, an UR5 Robot Arm Manipulator, and a RGB+D camera Intel
Realsense D435 mounted on the gripper Robotiq 2F-140. The system was developed using Robot
Operating System. The grasping generator and object segmentation algorithms were implemented with
the GPU versions of TensorFlow and MxNet, harnessing the power of parallel processing to improve
efficiency. The GPU utilized for these computations was the NVIDIA GeForce RTX 3060 graphics
card. As a parameter for evaluation, a grasp was considered successful if the object is taken from the
3D printer without slipping through the gripper.

6.1. Ablation study
Some experiments were conducted to better understand the benefits of the integration of the proposed
heuristics and the point cloud collision detection into the 6D grasping generator. The objects of Fig. 3
were used in these experiments, and only one object was randomly placed on the 3D printer bed
per grasp. In the ablation study, the 6D grasp generator and the instance segmentation technique are
employed in each one of the following cases:

1. Using only stages 1 to 6 of the grasping pipeline of Fig. 2. The highest score grasp is chosen in
this case;

2. Considering stages 1 to 10 of the grasping pipeline of Fig. 2. A heuristic to filter the generated
grasps is applied. The highest score grasp is chosen between the filtered grasps;

3. Employing the complete grasping pipeline of the Fig. 2.

Figure 8 shows instances of successful and failed grasps. Since GraspNet only takes the object point
cloud as input without information about the surrounding environment, it generates grasps that often
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Figure 9. Grasps performed employing the ablation study referred to in Section 6.1. (1) Grasping
pipeline from stages 1 to 6, (2) grasping pipeline from stages 1 to 10, and (3) complete grasping pipeline.
The objects applied in the experiments are shown in Fig. 3.

collide with the printer. When an orientation constraint is added to GraspNet (stage 10 of the grasping
pipeline), the grasp feasibility is improved but it does not guarantee that the robot will not collide with
the environment, as clearly seen in Fig. 8. Nevertheless, grasps that are closer to the current end-effector
orientation are considered, and grasps far away are ignored. For that, a heuristic already explained in
Section 3 is applied. When a collision detection algorithm using the point cloud of the environment is
applied, the successful grasps are considerably improved as seen in Fig. 9.

To analyze the performance of the proposed method, 20 pick attempts were performed per object.
Figure 9 shows each grasp trial considering the referred ablation study. From the experiments, it can
be inferred that the grasp generator does not effectively generate a grasp for small-sized objects such as
part 1, nozzle, and gear box. Larger objects such as a vase, part 3, and bar clamp lead to more stable
grasps.

In each ablation study, 120 grasp attempts were performed in total. Table I shows the performance
obtained for each case of the ablation study. Only eight (or 7 %) grasps were successful when employing
the grasping pipeline from stage 1 to 6. When applying the grasping pipeline from stage 1 to 10, 18
(or 15 %) grasps were successful. Considering the entire grasping pipeline, 74 (or 62 %) grasps were
successful.

It can be noted through Fig. 10 that the grasp generator and the pixel-wise segmentation methods
are fast enough to generate a grasp from 2.6 to 3.4 seconds using the hardware mentioned in Section 6.
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Table I. Successful and failed grasping comparison of the
ablation study in Fig. 8.

Grasp success Grasp fails
Entire grasping pipeline 62% 38%
Stage 1 to 10 15% 85%
Stage 1 to 6 7% 93%

Figure 10. Time to generate a grasp for each object used in the experiments. (1) Bar clamp, (2) gear
Box, (3) nozzle, (4) part 1, (5) part 3, and (6) vase. The processing times were based on the ablation
study referred in Section 6.1. It is noticed that the entire grasping pipeline is time-consuming due to the
collision detection with the point cloud. However, grasp success is considerably increased as shown in
Fig. 9.

Despite this lower grasping planning time, the grasping success rate is low. When the grasp collision
check using the point cloud is employed, the grasp planning time is increased as well as the success rate
as described in Fig. 9.

Despite the success rate of the entire grasping pipeline (62 %), the time consumed to generate a
grasp is considerably high, as shown in Fig. 10. Besides that, the time required to generate a grasp
highly depends on the object’s geometry. Small objects such as part 1 demand a significant time to find
a feasible grasp, and for bigger objects such as the vase, a grasp is generated faster. The reason is that
the grasp generator employed was not trained with small objects as seen in ref. [3]. Despite this, Fig. 11
shows that if we set a time threshold to generate a grasp, we would still get a high success rate for some
objects. The lower the time threshold is, the lower the success rate because the grasp planner has less
time to explore the 6D space.
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Figure 11. Relationship between time threshold and success rate.

To investigate the grasp repeatability, two poses (position + orientation) were determined empirically
for each object, see Fig. 12a, and 15 grasp attempts were performed for each pose for each object, see
Fig. 12b. It is important to point out that this repeatability test does not have a statistical value, but an
empirical analysis. We can infer that the pose of the object’s point cloud Nf in relation to the visual
sensor generates different levels of graspability, and consequently the grasping generator produces a
set of different grasps, except in cases of objects with a high degree of symmetry (e.g., balls, cubes,
rectangles, cylinders, etc).

7. Conclusion
This paper has proposed a selective grasping pipeline to generate 6D grasps. It was accomplished by
the integration of an object recognition and instance segmentation method, a 6D grasping generator,
and a collision detection system based on point clouds. An extensive analysis of experimental results
is provided, involving an ablation study, computational cost for collision detection, and repeatability,
applied to additive manufactured objects in a complex environment.

The proposed grasping pipeline generates multiple feasible grasps per object. The variety of grasps
produced makes it possible to analyze several viable kinematic solutions and eliminate those that are
in collision in the robot’s volumetric space, as shown in Fig. 13 and the supplementary material. The
main advantage of this solution comes from the integration of important functionalities for grasping
systems: (i) selective grasp, the system can grasp and identify the target objects; (ii) segmentation and
statistical outlier removal filter to generate object’s point cloud in complex environments; and (iii) gen-
eration of ranked collision-free grasps. The system with such functionality can be easily adapted to other
applications, such as selective pick and place in unstructured environment, selective bin picking, among
others.

In future work, we consider a detailed investigation of the grasping efficiency in small printed objects
and the object recognition training process improvement. The 6D grasp generator had lower perfor-
mance when considering small objects. This is even more noticeable when considering a constrained
space such as inside the 3D printer. In view of the application mentioned in the paper, we do not
perceive a significant issue with allocating additional time to compute the optimal grasp, given that
we possess the 3D shape of all printed objects as well as the 3D printers and the grasp computa-
tion can occur concurrently with the parts’ printing. Nevertheless, incorporating a preprocessing step
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(a)

(b)

Figure 12. Repeatability test.
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Figure 13. Grasps performed in printed objects inside a 3D printer, a video of these experiments can
be found in the supplementary material for this article.

to optimize the voxel representation prior to inputting it into the grasping network is an interesting
prospect.
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