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Abstract

In the last few decades, the study of ordinal data in which the variable of interest is not exactly observed but
only known to be in a specific ordinal category has become important. To emphasize that the problem is
not specific to a specific discipline we will use the neutral term coarsened observation. For single-equation
models estimation of the latent linear model by Maximum Likelihood (ML) is routine. But, for higher-
dimensional multivariate models it is computationally cumbersome as estimation requires the evaluation
of multivariate normal distribution functions on a large scale. Our proposed alternative estimation method,
based on the Generalized Method of Moments (GMM), circumvents this multivariate integration problem.
It can be implemented by repeated application of standard techniques and provides a simpler and faster
approach than the usual ML approach. It is applicable to multiple-equation models with K-dimensional
error correlation matrices and Jk response categories for the kth equation. It also yields a simple method
to estimate polyserial and polychoric correlations. Comparison of our method with the outcomes of the
Stata ML procedure cmp yields estimates that are not statistically different, while estimation by our method
requires only a fraction of the computing time.

Keywords: coarsened events; generalized method of moments; item response models; multivariate ordered probit; ordered
qualitative data; ordinal data analysis; polychoric correlations

1. Introduction

The statistical tools of empirical Psychometrics, Econometrics, Political Science, and many other
empirical sciences including marketing analysis, agriculture, health, and medical statistics, find their
origin in the linear regression model.1 The idea is that a random phenomenon Y can be predicted by

1Capitals will be used for random variables, vectors, and matrices. We denote the zero-vector by o = (0,. . .,0). Disturbance
terms will be in Greek letters. Roman letters will be used for constants and realizations of random variables. Matrices will
be denoted by capitals as well to conform to the traditional regression formulas. Indexes will be suppressed where the
interpretation will be clear from the context. The ML-estimator of a parameter vector θ is denoted by θ̂. The corresponding
estimator from coarsened data is denoted by θ̂. An overbar above a symbol denotes a sample average.
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variables X in the sense that Y ≈ f (X;β), where β is a parameter vector. Later, the same model is applied
to explain the phenomenon Y, as caused by the variables X. In the econometrics literature since the
1960s this resulted in a host of different models, described in textbooks such as Greene (2018) and
Cameron and Trivedi (2005). In psychometrics there was a similar development known as the Structural
Equation Model (SEM) (Duncan, 1975; Hayduk, 1987; Bollen, 1989; Jöreskog, 1973). (For software, see,
for example, Narayanan (2012).) The main idea behind the modeling approach is that the phenomenon
Y to be studied has a conditional mean function that depends on other variables X1, . . . ,XM , say,
E(Y ∣X = x) = f (x;β) , where f (.) is a continuous and differentiable function and β is a set of parameters.
In practice the model is usually taken to be linear, that is, E[Y ∣X = x] = β0 +β1x1 + ⋅ ⋅ ⋅ +βMxM , which
produces the linear regression model. In the traditional approach, the variable Y is continuous and
directly observable. In economics the model approach (the first influential introduction is by Hood
and Koopmans (1953)) is used to describe dependencies between economic variables, e.g., purchase
intentions as a function of income, prices, education, family size, and age. In marketing the modeling
approach is used to develop and assess the effects of advertising, prices, promotions, etc. (see e.g.,
Fok (2017)). In medical statistics, a model is used to evaluate the response to diagnostic tests. These
are a few examples to illustrate the pervasiveness of the regression model approach in empirical
sciences.

The one-dimensional observation Yi may be replaced by a K-dimensional vector, Yi = (Yi1, . . . ,YiK)
and the function f (.) by a K-vector function, f = (f1, . . . ,fK).

In practice, the parameters of interest in such a model are estimated from a set of N observations
({Yi,Xi})N

i=1. Randomness enters the observed outcomes through the difference between the individual
responses, Yi, and the conditional expectation for individual observation i, E(Yi ∣Xi = xi) = f (xi) .
Hence, we introduce an “error,” εi, or a K-vector of errors, εi = (εi1, . . . ,εiK), which is defined for each
response as εi

def= Yi− f (Xi;β). The error represents the aggregate of other possible, unobserved variables
as well as the randomness of individual behavior. The random term is generated by a mean zero process
that operates stochastically independently of X. If the model is linear, we denote the discrepancy as the
residual ε def= Y−X′β. This approach is applicable when the dependent variable(s) Y and the explanatory
variable(s) X is (are) cardinal, i.e., are expressed in observable numerical values.

However, in many practical cases the dependent variable Y is coarsened; it is only observable in terms
of ordinal categories on a preference scale, such as subjective health status, well-being, reported as “bad”
or “good,” or “like” or “dislike,” or “poor, fair, good, very good, excellent,” or some ordinal ranking from
one to five where a cardinal interpretation becomes dubious. Although the observations take place in
a coarsened mode, we must interpret the discrete answers as reflecting a latent variable Y , the range of
which is a continuum. In that situation, we say the observations are “coarsened” or condensed into a set
of J adjacent intervals {(νj−1,νj]}J

j=1 = {Sj}J
j=1 on the real axis. For an individual i, the latent observation

is Yi ∈ Sji , if the realized observation is ji. Hence, we see that the estimation of the model is complicated
by two factors. First, there is the statistical problem that there is always a random error term involved.
Second, there is the additional observation problem that the continuum of observations is coarsened
or condensed (Maris, 1995) and mapped on a discrete event space {j = 1, . . . ,J}. We will call such data
Ordinally Coarsened (OC).

Since about 1934 in bioassay studies (Bliss, 1934; Finney, 1947, 1971), and in Economics, Sociology,
and Political Science, much later in the 1960s and 1970s researchers realized that many variables of
interest have an ordinal coarsened character. For instance, a question on self-assessed health status
may be responded to with ordered labels varying from “very healthy,” to “very unhealthy.” In modern
datasets, especially survey data, such verbal evaluations are abundant. The World Happiness Report,
Oxford University (2024) is a notable example. Such coarsening is nearly always dictated by the fact
that respondents are unable to quantify their answers directly on a numerical continuous scale but only
in terms of a few ordered verbally described categories. These values are not expressed in numbers but
in ordinal qualitative terms. In Psychometrics popular item response theory offers many examples (see
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Wiberg et al. (2019)). To stress that the statistical problems are not specific to one discipline we will also
speak of coarsened data.

In psychometric Structural Equations models (SEM) things may be further complicated by the fact
that the explanatory X variables are sometimes coarsened as well (cf. Jöreskog (1973)). In this paper,
we will assume that the explanatory X variables are either directly observable on a continuous scale, or
coarsened in ordered classes labeled 1, 2,.., or by dichotomous dummy variables, taking the value zero
or one.

A specific case of coarsened events is that of psychological testing (item-response theory IRT) and
that of multiple-choice tests used in exams. Say, the exam or test consists of K items with each J ordered
response categories. Then the test may be described by K item scores Y1, . . . ,YK . The response to each
separate item may be dichotomous (e.g. correct/false) or polychotomous (correct, not wholly correct,. . .,
false).

The probability of the response on item k is pikj = F (bk;θi), where bk stands for the difficulty of the
item k and θi for the ability of respondent i. From the joint probability of the K responses by individual
i we try to estimate the latent ability θi (e.g., IQ) of the individual by maximizing per individual i the
joint probability∏K

k=1F (bk;θi), with respect to θi. The ability θi may also depend on (or be explained by)
individual observable characteristics Xi = (Xi1, . . . ,XiM), say θi =X′i β+Diβ0i,where the dummy variable
Di equals one for individual i and zero for others and β0i is the ability of individual i. The term X′i β gives
then the part of ability or intelligence that can be explained by e.g., education, genetic factors, health,
income, etc., while the individual parameter β0i may be identified as the unexplainable truly individual
ability component. We notice that the estimation of β0i requires that K > 1 and preferably considerably
larger than one.

The method developed below may be used to estimate these β’s and θi’s. The response probability
F (bk;θi) of a separate item score is frequently assumed to be described by a normal or logistic
distribution function. Estimation of θi is then rather easy. However, intuition tells us that mostly, the
item scores on different items by a respondent will be correlated. This is almost unavoidable if the
response behavior depends on one θi. In that case, the ML- estimation is mostly difficult since estimation
will require the evaluation of many multivariate integrals. The correlation means that the multivariate
integrals cannot be reduced to products of one-dimensional integrals. The method proposed by us will
avoid this problem.

For directly observed cardinal data, ordinary least squares (OLS) is usually the default estimator of
choice.2 There are many extensions of the OLS estimator that are used in nonstandard cases, such as
nonzero covariances across observations. A familiar alternative to OLS is Generalized Least Squares
(GLS), in which the disturbances of the K observations per observation unit i are heteroskedastic or
correlated. Then an unknown error-covariance matrix has to be estimated as well. If this is feasible, we
call the method Feasible Generalized Least Squares (FGLS). Another well-known example is Seemingly
Unrelated Regressions (SUR), where K response variables are explained by K equations where the errors
are correlated. We refer to well-known econometric textbooks such as Amemiya (1985), Cameron
and Trivedi (2005), Greene (2018) and Verbeek (2017) for elaborate descriptions. We note that in
modern work these estimations are usually based on the assumption of a known error distribution,
usually multivariate normal, leading to Maximum Likelihood (ML) estimation. In the early received
literature, least squares were not explicitly based on an underlying error distribution, but rather on the
minimization of a Sum of Squared Residuals (SSR) that led to unbiased estimation of the regression
coefficients. Later it was found that SSR minimization and ML-estimation led to the same estimator
when the errors are normally distributed. (The normality assumption was also used to motivate certain
inference procedures.) The common counterpart for the linear regression model in case of coarsening
of Y is the Ordered Probit or Ordered Logit model (OP or OL). In the literature, it is frequently called
Probit or Logit Regression. (See e.g., McKelvey and Zavoina (1975)).

2The original least squares method is due to Gauss (1809) and Legendre (1805). “Sur la Méthode des moindres quarrés”.
See, also, Stigler (1981) for a historical survey.
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In this paper we will develop a novel approach to coarsened data, called Feasible Multivariate Ordered
Probit (FMOP), where the errors are suspected of being correlated, as is the case in, e.g., item response
models, in panel data, regional data or customer satisfaction data. It follows the analogy principle as
formulated by Goldberger (1968, 1991) and Manski (1988), based on the method of moments (MoM).

The established way to treat such models with coarsened correlated observations in psychometrics
or econometrics, and other empirical applications is by maximum likelihood (ML) estimation (see
McFadden (1989) and Hajivassiliou and McFadden (1998)), where the likelihoods per observation
include K-variate normal integrals (instead of densities). Those integrals are generally estimated
by simulation such as by the Geweke-Hajivasilliou-Kean (GHK)-algorithm. Theoretically, this is a
straightforward application of ML theory. However, the practical problem is that the evaluation of those
integrals by simulation may be quite cumbersome and time-consuming.

Geweke (1989), McFadden (1989), Keane (1994), Hajivassiliou and McFadden (1998), Cappellari
and Jenkins (2003) and Mullahy (2016), and others developed a multivariate probit estimator. Progress
has also been made based on the simulated moments approach (McFadden, 1989), using the Gibbs
sampler method (see Geman and Geman (1984) and Casella and George (1992)). An interesting
historical survey on the (logit and) probit method is found in Cramer (2004). See also Hensher et al.
(2015). Roodman (2007, 2020) developed a flexible working Stata estimation procedure (cmp) based
on the GHK simulator.

Independently, scholars in Psychometrics expanded the vast literature on IRT models yielding
different tools of analysis, inspired by the differences between the subject matters between disciplines
(see Bollen (1989)). It is surprising that both psychometricians and econometricians are working on
essentially the same methodological problems, but mostly without taking much notice of each other’s
literature. A rare exception is the econometrician Goldberger (1971) who explicitly recognized the
commonalities between Econometrics and Psychometrics.

Our approach, based on sample moments, does not need the evaluation of likelihoods, i.e., multi-
dimensional probability integrals or simulated moments. In this paper, we assume multivariate normal
error distributions for ε in line with the established practice. Data on X are assumed to be generated
by a random process that is statistically (and functionally) independent of that which generates ε.
The important element is that the observed values of Xi convey no information about the errors εi,
a property identified by econometricians as “strict exogeneity.” It is the property that E[ε ∣X ] = 0 for
every X. It follows that Cov(X,ε) = Cov(X,E[ε ∣X ]) = 0 as well. Econometricians call this condition
strict exogeneity. It implies the same zero-covariance property. Data on X are assumed to be “well-
behaved,” meaning that in any random sample, the sample covariance matrix (1/N)∑N

i=1 X′i Xi
def= Σ̂X

is always finite and positive definite. (Regularity conditions on X such as that the influence of any
individual Xi in (1/N)∑N

i=1 X′i Xi vanishes as N increases are also assumed.) Nothing further is assumed
at this point about the distribution of Xi, e.g., normality, discreteness, etc.

The theoretical model, that is, the data-generating mechanism, mimics the classical linear statistical
models. The substantive difference between exact and coarsened data is in the mode of observation
of the dependent variable Y . In the classical framework the dependent variable Y is directly observed,
while in the Ordered Coarsened (OC) -observation mode, the dependent variable Y is only observed
to be in one of the J intervals Sj = (νj−1,νj], where the cut points νj−1 and νj are unknown parameters to
be estimated. If Y is a K-vector, νj−1 and νj are K-vectors and Sj = (νj−1,νj] is a block in RK . Since the cut
points νj−1 and νj are unknown, it follows that the unit of measurement of Y is unidentified. The usual
identification is secured by setting the error variances equal to one; σ2

k = 1(k = 1, . . . ,K).3
The structure of this paper is as follows. In Section 2 we outline the basic probabilistic model in the

presence of coarsening of the dependent variables. In Section 3 we develop the estimation method for
a K-equations model based on the Ordered Coarsened data model. In IRT-models, this is equivalent to

3The important issue of whether the coarsened sample data (Yi,Xi) contain sufficient information to identify estimators of
β and the unknown cut-points in Sj is considered in Greene and Hensher (2010) among others.
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K item responses per respondent. We call the method Feasible Multivariate Ordered Probit (FMOP).
We call it Seemingly Unrelated Ordered Probit (SUOP) when we have a K-equation model with one
observation Yi = (Yi1, . . . ,YiK) per observation unit i. Of course, mixtures of FMOP and SUOP are
possible as well. Instead of differentiating high-dimensional log-likelihoods, with the likelihoods being
multi-dimensional integrals, with respect to the unknown parameters θ = (β,ν,Σ), we derive sample
moment conditions ĝ (θ) = 0 from the coarsened data that are analogues of the likelihood equations,
ĝ (θ) = 0 for direct observations. We then estimate θ from the equation set ĝ (θ) = 0. We find that ĝ (θ)
and ĝ (θ) converge to the same probability limit for all values of θ. The estimation of θ from ĝ (θ) = 0
takes place by repeatedly applying the generalized method of moments (GMM), (Hansen, 1982). We
note in passing that our approach employs elements of the EM algorithm (Dempster et al., 1977). In
Section 4 we demonstrate how to estimate polychoric correlations from SUOP-estimates. Further, we
generalize the concept of the coefficient of determination, R2, to K > 1. In Section 5.1 we apply FMOP
to an employment equation over a five-year panel dataset from the German SOEP dataset. In Section
5.2 we apply SUOP to a block of eight satisfaction questions extracted from the German SOEP data. In
order to get more insight into the stability of the method, in Section 5.3. we do some experiments on
a simulated data set. We use a recent update of the Stata procedure cmp as our benchmark to compare
our alternative approach with the ML approach.

We find that the estimation results of regression coefficients and their standard errors do not differ
substantially between the two methods. Where the established method may need hours, our method
takes only minutes. In Section 6 we provide some concluding remarks. In the Appendix, we propose an
easy intuitively appealing method to estimate the latent full error-covariance matrix, after the regression
coefficients, β, have been estimated using the coarsened data.

2. Regression in the population space

Regression analysis often begins with assumptions about the distribution of the observed data. Each
estimation procedure on a sample may be seen as a reflection of a similar procedure in the population.
For convenience but without loss of generality we assume E(X) = 0,E(Y) = 0. The model of interest for
equation k of K equations is

Yk ∣ x =
M
∑
m=1

xm,kβm,k + εk = x′kβk + εk,k = 1, . . . ,K (2.1)

Where the model design might call for differences across equations, they can be accommodated by
suitable zero restrictions on the coefficients in βk. For convenience, we ignore constant terms by setting
E(X) = 0. The expectation of outcome or response Yk is conditioned or co-determined by explanatory
variables/stimuli Xm, (m = 1, . . . ,M) assuming values xm. There are M variables Xm, that are generated
by a strictly exogenous process. The error vector ε derives from observation-specific variation around
the theoretical conditional mean. We have εk =Yk−X′βk. Denoting the observations by yi,k the observed
residual is defined as ei,k = yi,k−x′i βk. Deviations of observations i = 1, . . . ,N of Yi,k from the conditional
mean result from the presence of unobserved elements that enter the data-generating process, for
example, variation across individuals in the self-assessment of health or well-being. Random elements
are assumed to be generated by a zero mean, finite variance process; if εk = Yk −X′βk, it follows that
E[ε] = 0 and Var[ε] is finite. We assume that the process that generates X is stochastically independent
of that of ε. This implies E[Xε] = 0. Substitution yields the familiar regression equations

E[Xi
′ (Yi,k −X′i βk)] = 0,k = 1, . . . ,K, (2.2)

where Xi
′is a (M×K)-matrix and Xi

′ (Yi,k −X′i βk) a K-vector.
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If this holds for all i, then we have

N
∑
i=1

E[Xi
′ (Yi,k −X′i βk)] = 0∀k,m (2.3)

from which the regression coefficients β can be solved.
We define the functions gm,k (β) = ∑N

i=1 E[(X′i,k,m)(Yi,k −X′i βk)] . The equation system (2.3) in β is
then shortly written as g (β) = 0.

Result (2.3) identifies the slopes β of the conditional mean function. The zero conditional mean result
in (2.2) motivates least squares without reference to minimizing the mean squared error prediction of
Y ∣X or minimum variance linear unbiased estimation of β.

If the error covariance matrix Σ = E(εε′) is not the identity matrix, we may want to correct for the

unequal variances and correlations, and we weigh the observations by Σ−1 = [E(Y −X′β)(Y −X′β)′]
−1

,
producing

gm,k (β) =
N
∑
i=1

E[(X′i,m)Σ−1 (Yi,k −X′i βk)] .

By weighting the K observations per individual i by Σ−1 variances are standardized, and the error
correlations are accounted for. In that case, according to the Aitken theorem the covariance matrix of
the estimator β̂ is minimized.

We have motivated least squares through the moment equations (2.2). We see that we can interpret
these conditions (2.2) as first-order conditions for minimizing the expectation of the squared residuals
S = E(ε′Σ−1ε) = E(Y −X′β)′Σ−1 (Y −X′β).

We do not need to specify the probability distribution of Xand Y. We do assume well- behaved data
generating processes, which will include a finite, positive variance of ε and a finite positive covariance
matrix, Var[X,Y]. If the marginal probability distribution of ε is multivariate normal, the regression
estimator is Maximum Likelihood. We call X′β the structural part of the model and ε the disturbance,
where β is the (M×K) – matrix with columns β1

′, . . . ,βK
′.

If the columns of the matrix β are identical, this is the typical setting for longitudinal and panel data.
If the coefficients vary by response setting k, βk we have the situation of K different model equations.

2.1. Regression for Coarsened observations
We call an observation Y ∈ R coarsened if it is not observed directly, but only as belonging to one of the
J intervals {(νj−1,νj]}J

j=1 = {Sj}J
j=1 (The leftmost and rightmost terminals are infinity). These intervals

constitute the class C of observable events. We will call C the observation grid. This is generalized to
K-dimensional observations by replacing the J observed intervals (νj−1,νj] by K-dimensional blocks.

(νj−1,νj] = [(ν1,j1−1,ν1,j1], . . . ,(νK,jK−1,νK,jK ]] = Sj

where the one-dimensional random observations ji are replaced by the index vectors ji = (ji1, . . . ,jiK). C
stands for a partition in RK consisting of JK adjacent blocks. (We take J1 = ⋅ ⋅ ⋅ = JK

def= J for convenience,
but equality is not necessary.) We denote the C-coarsened event space by ΩC. We may then define
the corresponding coarsened probability measure PC on C by PC. We will call C the K-dimensional
observation grid.

Coarsening of Yimplies that we do not directly observe Y = y, but the event Y ∈ Sj, and more explicitly
for a K-vector Y that ν1,j1−1 < Y1 ≤ ν1,j1, . . . ,νK,jK−1 < YK ≤ νK,jK . It follows that for given X = x and
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j = (j1, . . . ,jK) there holds for the error vector

ν1,j1−1 −x′1β1 < ε1 ≤ ν1,j1 −x′β1, . . . ,νK,jK−1 −x′KβK < εK ≤ νK,jK −x′KβK,

which we denote shortly as ε ∈ (Sj −xβ). We denote the marginal probability as pk,j = P(ν1,j−1 −xβk < εk

≤ ν1,j − xβk). We define the generalized residual as ε def= E(ε ∣ε ∈ (Sj −xβ)). It is a random K-vector
defined on the blocks (νj−1 −xiβ,νj −xiβ]. These blocks constitute individual i’s individualized obser-
vation grid Ci. The grid Ci for observation unit i depends on x′i β. However, for any given value x

of X and any grid C (xβ) we have
J
∑
j=1

pk,jεk,j
def= EC (εk) = E(ε) = 0 according to the Law of Iterated

Expectations(LIE). Then it follows that

xi,k.EC (εi,k) = 0,∀i,k (2.4)

and

(1/N)
N
∑
i=1

EXi,k (Xi,k.εi,k) = 0,k = 1, . . . ,K (2.5)

This is the coarsened analogue of (2.2). We define the function gk (β) = (1/N)
N
∑
i=1

E(Xi (εi,k)). The

equation system (2.4) is then shortly written as g (β) = 0. If the error covariance matrix is not the
identity matrix, we may want to correct for the unequal variances and correlations, and we write

g (β) =
N
∑
i=1

XiΣ
−1E(εi,k), where Σ = Var(ε).

Finally, we have for the two functions

g (β) ≡ g (β) (2.6)

This holds for all values of β, not only for the zero roots of (2.2) and (2.4). (2.5) holds since for any
x- value xE(ε) = xE(ε).

3. Large sample results for regression

The Law of Large Numbers states that under standard regularity conditions, sample moments converge
in probability to their population counterparts as the number N of observations grows large. Slutsky’s
theorem says that continuous and differentiable functions of random sample moments converge
in probability to those functions of the population counterparts as N grows large, implying that
the population functions g (β,Σ) are consistently estimated by filling in the corresponding sample
moments.

When we want to get its (large-)sample estimator ĝ (β,Σ) we replace the expectations in (2.2) with
the corresponding sample moment conditions and we get

1
N

N
∑
i=1

X′i Σ̂−1Yi −(
1
N

N
∑
i=1

X′i Σ̂−1X′i) β̂ def= ĝ (β̂,Σ̂) = 0, (3.1)

where Σ̂ = 1
N

N
∑
i=1

(Yi −β′Xi)(Yi −β′Xi)
′. Solution of (3.1) with respect to the regression coefficients β

yields

β̂ = [ 1
N

N
∑
i=1

(X′i Σ̂−1Xi)]
−1

1
N

N
∑
i=1

(X′i Σ̂−1Yi) . (3.2)

This is the well-known OLS- estimator.
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Estimation of the asymptotic covariance matrix Asy.Var[β̂] is usually understood to mean under
the condition that X equals the sample data x. Then the well-known template is

Est.Asy.Var[β̂] = 1
N
[ 1

N

N
∑
i=1

(X′i Σ̂−1Xi)]
−1

(3.3)

3.1. Estimation from ordered coarsened data
Let us now consider the coarsened analogue. The events are elements of the observation grid C. The
corresponding coarsened probability measure is PC. If we would follow the conditional ML strategy, the
information to be maximized is EC (ln PC) = ∑N

i=1∑J
j=1PC(Yi ∈ Sj∣xi) lnPC(Yi ∈ Sj∣xi) .

The problem is here the evaluation of the PC(Yi ∈ Sj∣xi), being multivariate integrals over rectangular
blocks in RK . We can evaluate PC(Yi ∈ Sj∣xi) by its sample analogue, but this entails the evaluation of a
multitude of K-dimensional integrals, making this procedure very cumbersome, albeit not impossible
(see Roodman (2011)).

A much easier way is by making a detour and evaluating the coarsened analogue of the condition
(3.1). Let ji be the K-dimensional response by individual i. We notice that (the K-dimensional) Yi ∈
Sji ∣ xi implies εi ∈ (νi,ji−1 −xi

′B,νi,ji −xi
′B]. In this way to each observation unit i is assigned its own

observation grid Ci depending on xi
′B. We define the K-vector of the generalized residuals εi = E[εi∣εi ∈

(νi,ji−1 −xi
′B,νi,j i

−xi
′B],Xi = xi].

The grid Ci over which the expectation is taken at the LHS in (3.1) is now a grid in the space RM+K

where the first X-coordinates are directly observed while the Kεi-coordinates are coarsened by Ci.
Summing over the observations we get.

1
N

N
∑
i=1

E[x′i Σ−1εi∣x] =
1
N

N
∑
i=1

ECi [x′i Σ
−1εi∣x] (3.4)

Then (3.4) may be summarized as the identity

g (β,Σ∣x) ≡ g (β,Σ∣x) (3.5)

This implies that the equations g (β,Σ∣x) = 0 and g (β,Σ∣x) = 0 have the same roots β. The vector
function g (β,Σ) may be interpreted as the vector of derivatives of a criterion function like a log-
likelihood or the sum of squared residuals with respect to β. The simplest criterion function with g (β,Σ)
as gradient vector4 is

S = 1
N

N
∑
i=1

E(ε′ Σ−1ε∣X = xi) =

= 1
N

N
∑
i=1

E[εi ∣εi ∈ (νi,j−1 −x′i β,νi,j −x′i β],X = xi ]
′Σ−1E[εi ∣εi ∈ (νi,j−1 −x′i β,νi,j −x′i β] ,X = xi]

This is the sum of Squared Generalized Residuals. The identity (3.5) implies that S = E(ε′ε∣X) and
S = E(ε′ε∣X) have the same derivatives with respect to β; consequently, they are identical except for
a constant. When we decompose the residual variance into the sum of between- and within-variance

E(ε′ε∣X) = E(ε′ ε∣X)+E( "ε
′ "ε∣X), it is obvious that this constant difference is just the within-variance

S−S = E( "ε
′ "ε∣X), which appears not to depend on β. Things are complicated since each individual i has

its own observation grid Ci.

4Notice that ∂
∂β ε = ∂

∂β E(ε ∣νj−1 −xβ < ε ≤ νj −xβ,X = x ) = ∂
∂β [E(y ∣νj−1 < y ≤ νj )−xβ,X = x] = x.
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The solution for β is found as the root vector of the K-equation system g (β,Σ∣X) = 0.
We have now to construct the sample analogue of g (β,Σ∣X). The εi,ji have not drawn much attention

in the empirical literature. One notable exception is Heckman (1976) who appears to be the first author
in econometric literature to recognize the importance of this expected residual, later in the econometric
literature sometimes called the Heckman-term (see also Van de Ven and Van Praag (1981)). They have
been called by Gouriéroux et al. (1987) the generalized residuals. They used them in the analysis of
residuals. If the exact errors ε are standard normally distributed, then we have for the coarsened errors
the well-known formula

εi,ji

def= E(εi ∣νji−1 −xiβ < εi ≤ νji −xiβ,X) =

= φ(νji−1 −xiβ)−φ(νji −xiβ)
Φ(νji −xiβ)−Φ(νji−1 −xiβ)

(3.6)

If the errors are not normally distributed but logistically, the formulas for the truncated marginal
distribution can be found for example in Johnson et al. (1994) or in Maddala (1983, p. 369). We shall
restrict ourselves to the assumption of normally distributed errors.

Since there are no natural units observed, we can only estimate the β‘s in (2.1) up to their ratios. A
way to make them identifiable is to assume σk = 1 for k = 1, . . . ,K, which is the traditional assumption
in Probit and item response analysis.

The sample moment analogue of (3.1) is

1
N

N
∑
i=1

[xiΣ−1ei,ji] =
1
N

N
∑
i=1

[xiΣ−1 φ(νji−1 −xiβ)−φ(νji −xiβ)
Φ(νji −xiβ)−Φ(νji−1 −xiβ)

] = ĝ (β) = 0 (3.7)

where ji is the index of the interval/block observed for the observation unit i.
Notice that (3.7) is a concise presentation of a system of K blocks of M equations, each corresponding

with one of the elements of the coefficient matrix β, where we assume that each of the K blocks contains
M different coefficients βk.

The cut-points ν remain to be estimated. There are K×(J−1) of them. Therefore, we derive another
additional set of ν-identifying equations. The cut-points ν can be easily estimated one by one by applying
the following strategy (called binarization). We define for each equation the J − 1 auxiliary binary
variables εb

i,j which may assume the lower value E(εi ∣εi ≤ νj− xiβ) or the upper valueE(εi ∣εi > νj −xiβ).5
We have

P(εi ≤ νj −xiβ) .E(εi ∣εi ≤ νj −xiβ)+P(εi > νj −xiβ) .E(εi ∣εi > νj −xiβ) = 0 (3.8)

Again, there holds E(εb
i,j) = 0, due to LIE. For the sample counterparts, this implies

plim[ 1
N ∑eb

i,j] = 0,j = 1,2, . . . ,J−1.

The sample moment analogues are

1
N

⎡⎢⎢⎢⎢⎣
∑

i(ji≤j)

φ(νk,j −xi,kβk)
Φ(νk,j −xi,kβ)

− ∑
i(ji>j)

φ(νk,j −xi,kβ)
1−Φ(νk,j −xi,kβ)

⎤⎥⎥⎥⎥⎦
= 0,k = 1, . . . ,K,j = 1, . . . ,J−1 (3.8a)

from which the cut-points νk,j can be easily estimated, as both sums at the left increase in νk,j. We notice
that these observations are not yet weighted by an error-covariance matrix.

5This trick, called “binarization” is suggested by, e.g., Chris Muris, 2017. “Estimation in the Fixed-Effects Ordered Logit
Model,” The Review of Economics and Statistics, vol. 99(3), pages 465–477, July. The term has been used before in computer
science.
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10 van Praag et al.

Summing up we are ending with two-equation systems (3.7) and (3.8) from which the parameters
β and ν are estimated. This can be done by applying the Generalized Method of Moments (GMM)
(Hansen, 1982). We refer to well-known textbooks such as Cameron and Trivedi (2005), Greene (2018)
and Verbeek (2017) for elaborate descriptions. The software can be found, e.g., in Stata. We use an
iterative calculation scheme. Starting with assuming β = 0, a first-round yields β(1),ν(1). Taking these
values as a starting point we repeat this iterative procedure until convergence, which is rather rapidly
reached. The GMM method provides us with an estimate of the covariance matrix of β̂,ν̂ as well, using
the well-known “sandwich” formula.

4. Polychoric correlations and coefficients of determination

Suppose we have two test items Y1,Y2(K = 2) available by which we may, for example, examine an
individual or test the effect of a specific therapy or a response to a satisfaction question. For simplicity,
we assume both items are yes/no questions. Then we are of course interested to know how correlated the
two test items Y1,Y2 and therewith the responses on the two items are. The latent correlation between
items is known in the psychometric literature as the polychoric correlation. The literature on polychoric
correlations is massive. We refer out of the host of excellent contributions to the seminal (Olsson, 1979)
and the more recent (Liu et al., 2021; Moss and Grønneberg, 2023) for more analysis. The problem is
clearly how to estimate correlations between latent variables Y1,Y2, if we only have a 2×2 coincidence
table at our disposition. We propose the following method.

The latent variables are modeled like (2.1). The latent model is

Yi,k = Xi,k,1β1 +⋅ ⋅ ⋅+Xi,k,MβM +β0 + εi,k i = 1, . . . ,N,k = 1, . . . ,K (4.1)

where in this case k = 1,2. In this case, we have

Cov(Y1,Y2) = β′1E(X1X′2)β2 +σ1,2 (ε) (4.2)

and more generally for a K ×K coincidence table we find the K ×K-covariance matrix

Cov(Y) = B′ΣXXB+Σεε (4.3)

where B′ stands for the K × M matrix of structural effects and Σεε for the latent error covariance
matrix. Now, we derive the polychoric correlation from Cov(Y) in the usual way, that is, ρ(Y1Y2) =
Cov(Y1Y2)/

√
σ (Y1) .σ (Y2). The covariance matrix ΣYY = Cov(Y) is estimated as

Σ̂YY = B̂′Σ̂XXB̂+ Σ̂εε (4.4)

where B̂ is the estimated matrix of regression coefficients, Σ̂XX = 1
N ∑N

i=1 XiX′i , and Σ̂εεthe estimated full
error-covariance matrix, as estimated in the Appendix.

We notice that in the case that there are no structural effects found, i.e., B = o, we still may have non-
zero polychoric correlations due to correlated errors. The corresponding correlations are found from
the covariance matrix Σ̂YY in the usual way.

The matrices B, ΣXX are already consistently estimated. The latent (full) error-covariance matrix Σεε
is yet unknown. In the Appendix, we demonstrate how Σεε is consistently estimated.

We note that this method does not assume the normality of the random vectors X or ε. We may also
assume, for example, ε to be logistic. In those cases the formula (3.3) for the generalized residual has to
be replaced by the corresponding formula for the logistic, or in fact, any distribution, provided that the
covariance matrix is finite.
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In the second application below, where we are estimating satisfaction, we present the estimated 8×8
polyserial correlations between satisfactions as the off-diagonal elements in Tables 5–7 and 8a–8e. For
the first application in Section 5 we might estimate the polyserial correlations as well but given the panel
nature of the data, it is not very interesting.

The relative explanatory power of the equation estimates depends on the question of how volatile the
outcomes are due to random errors. Consider (5.1). We have

Var(Y1) = β′1E(X1X′1)β1 +σ1,1 (ε) (4.5)

An attractive measure of fit, that is explanatory power is the traditional coefficient of determination

R2 =
β′1E(X1X′1)β1

β′1E(X1X′1)β1 +σ1,1 (ε) = 1− 1
β′1E(X1X′1)β1 +σ1,1 (ε) (4.6)

The sample analogue for the first equation is

R̂2
k =

1
N

N
∑
i=1

[
M
∑

m=1
β̂k,mxi,k,m]

2

1
N

N
∑
i=1

[
M
∑

m=1
β̂k,mxi,k,m]

2

+1
(4.7)

where σ1,1 (ε) = 1, as postulated in Section 3. This is the same magnitude as proposed by McKelvey
and Zavoina (1975). We notice that these numbers may be interpreted as coefficients of determination
of the regression equations (5.1) for k = 1,k = 2, . . . ,k = 5, respectively. Of course, the regression is not
performed as Yi,k is not observable per individual. However, the regression correlation coefficient can
be estimated by a detour using (4.6) and (4.7). We call these satisfaction correlation coefficients. They
measure the part of the satisfaction variation, which can be structurally explained by observable traits X.
If there are K equations, we get R̂2

1, . . . ,R̂2
K . For curiosity we present in Table 2 our R2 and the McFadden

(1974) R2 for Ordered Probit side- by -side.

5. Two empirical examples and one simulation experiment

In order to evaluate our method empirically we considered two data sets, both part of a 2009–2013
panel data-sequence from the German SOEP-panel data set and a block of eight satisfaction questions
in wave 2013 of the SOEP data. The model in Section 5.1 is a set of five time-panel Ordered Probit
equations where the errors are correlated. We call this estimation method Feasible Multivariate Ordered
Probit (FMOP). It can be generalized to an arbitrary number of panel waves. The second data set
consists of eight seemingly unrelated cross-section satisfaction questions, where errors are correlated.
It is estimated in Section 5.2. We call this a Seemingly Unrelated Ordered Probit model (SUOP). In
addition we present estimations on a simulated data set on request of one of the referees to this paper.
The program code may be requested from the first author.

Given the results of the method, it becomes possible to estimate the latent full covariance matrix Σ
as well. We defer the description of how to estimate the full latent covariance matrix to the Appendix.

5.1. Employment status evaluation on a German five-year panel data set
Now we apply the FMOP method to a specific data set. We choose the employment situation of
German workers, where we do not pretend to make a study of German employment but merely test the
feasibility of the method, using these employment data. Following the lines above, we try to estimate
the employment equation and the error covariance matrix using FMOP.
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12 van Praag et al.

The data are derived from the German, Socio-Economic Panel (SOEP) data set. Households are
followed for a period of five successive years (2009–2013). We assume an unstructured error covariance
matrix. All explanatory variables are measured as deviations from their averages.

We use the variable employment (variable e11103 in the German SOEP data set) in three self-
reported categories “not working,” “part-time working,” and “full-time working.” This implies that the
five grids for the years 2009–2013 consist of three intervals each. We assume the explanatory variables
“age (18–75 years of age),” “age-squared,” dummy variables for “gender (female = 1),” “marital status:
married (reference),” “marital status: single,” “marital status: separated,” “ln(household income minus
individual labor income),” “number of children at home,” “years of education,” and dummy variables
for “years of education unknown” and “living in East-Germany.” The latent variable is assumed to be
generated by the linear equation

Employment = β1Age+β2Age2 +β3Female+β4Single+β5Separated+
+β6Ln(HH.LabourInc)+β7Children+β8Years_educ+
+β9Years_educ_unknown+β10East+ ε (5.1)

As already said, we assume an “unstructured” 5×5 covariance matrix where Σ = (ρk,k′). The results

are presented in Table 1. In the left-hand panel, we show the in-between error covariance matrix Σ̂, in the
right-hand panel the latent full covariance matrix Σ̂ as estimated by the simulation method described in
the Appendix. The error correlation over time appears from the right panel to be quite considerable (1.0,
0.8775, 0.7800,. . .). When we look at the coarsened data the correlation is mitigated by the coarsened
observation but still considerable.

Table 1. In-between and full error covariance matrices for FMOP.

In-between covariance matrix (FMOP) Full covariance matrix (FMOP)

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

2009 0.6303 1.0000

2010 0.4760 0.6156 0.8775 1.0000

2011 0.4049 0.4746 0.6149 0.7800 0.8856 1.0000

2012 0.3695 0.4125 0.4690 0.6131 0.7343 0.7998 0.8837 1.0000

2013 0.3336 0.3642 0.4059 0.4833 0.6168 0.6867 0.7280 0.7950 0.9079 1.0000

The regression estimates according to FMOP and Ordered Probit (errors independent) are presented
in Table 2.

As expected, the regression estimates are of the same order, because both estimators are consistent.
The difference is clearly in the calculated standard deviations. All FMOP standard errors are a factor of
1,5 to 2,0 larger than the OP estimates. This is caused because the assumption of error independence
by OP instead of the observed strong error correlations is tantamount to a gross exaggeration of the
reliability of the data material when we ignore the non-zero error correlations. The difference in standard
deviations is a warning signal.

For curiosity we also look at the question of what standard deviations we would have found when
we would have had the non-coarsened, that is exact, data material at our disposal. Those standard
deviations are estimated by the roots of the diagonal elements of 1

N (X′Σ̂−1X)−1 the elements of which are
known. The latent error-covariance matrix Σ is estimated by Σ̂ according to the method described in the
Appendix. We see from comparison that the FMOP-standard deviations (e.g., for the AGE-coefficient
0.0059) on the basis of the coarsened observations are much larger than the corresponding values found
from Ordered Probit theoretical values (0.0032) or for GLS-estimation (0.0038) on the exact latent data.
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Table 2. Regression estimates from FMOP and Ordered Probit.

Feasible Multivariate Exact Ordered Probit (OP)

Ordered Probit (FMOP) observ.

Number of obs. = 51760 FMOP Number of obs. = 51760

McF pseudo R2
= 0.2523

McK-Z R2
= 0.5396

EMPLOYMENT Coeff. Std.err. z Std.err. Coeff. Std.err. z

AGE 0.3137 0.0059 53.50 0.0038 0.3236 0.0032 102.36

AGE square −0.0037 0.00006 −58.34 0.00004 −0.0038 0.00003 −114.77

D. FEMALE −0.7464 0.0223 −33.51 0.0180 −0.7727 0.0115 −67.01

D. SINGLE 0.0778 0.0309 2.52 0.0186 0.0541 0.0202 2.68

sD. SEPARATED 0.0538 0.0250 2.15 0.0164 0.1184 0.0175 6.77

Ln(HHLABOURINC) 0.0071 0.0015 4.65 0.0009 0.0150 0.0013 11.31

# of CHILDREN −0.2051 0.0114 −17.97 0.0074 −0.2571 0.0077 −33.47

YEARS EDUCATION 0.0789 0.0039 20.03 0.0031 0.0742 0.0021 34.97

D. EDUC. unknown −0.1172 0.0459 −2.55 0.0318 −0.1985 0.0294 −6.75

D. EAST Germany −0.0542 0.0237 −2.28 0.0180 −0.0420 0.0128 −3.28

Cut point 1 −0.5892 0.0129 −45.79 – −0.5984 0.0069 −86.68

Cut point 2 0.3569 0.0123 29.05 – 0.3753 0.0066 5.68

Next to our estimate of we also present the Probit R2 as defined by McFadden (1974). We see that the
latter is considerably smaller than ‘our’ R2, which follows that of McKenzie-Zavoina (1975).

The computation time in total was 8 seconds. We used a laptop. The computation process can be
split up into two parts: the first-stage OP estimation, taking 3 seconds and the second-stage estimation
taking another 5 seconds.

We see that employment increases with age until age 42, after which employment decreases (we
excluded respondents under 18 years of age and those over 75 years of age). Females are less often
employed than males. In households with children, the respondents work less than in childless
households. The more additional labor income in the household, the more the respondent works. The
more education years one has, the more one works full-time, while respondents from East Germany are
less employed than the West Germans.

5.2. Seemingly Unrelated Ordered Probit (SUOP) on a block of eight satisfaction questions
In the German panel questionnaire, we find a number of satisfaction questions referring to various life
domains, like those presented in Figure 1. Here, we apply the SUOP method.

This type of questioning is abundantly used in marketing research and happiness research. Another
very important instance, where the use of SUOP is at hand, is in the analysis of vignettes, also known
as factorial surveys in sociological research or as conjoint analysis, now one of the major tools in
psychology and marketing research (Green & Srinivasan, 1978; Atzmüller & Steiner 2010; Wallander,
2009; Van Beek et al., 1997).

The data set consists of about 15,000 observation units. Since the original formulation with 11 answer
categories made the coarsened observations look very similar to continuous observations, we further
coarsened the data into five response categories (0,1,2), (3,4),. . .,(9,10). In this paper, we apply SUOP
analysis to the above-listed block of satisfaction questions with respect to life domains from the 2013

Downloaded from https://www.cambridge.org/core. 24 Apr 2025 at 02:20:46, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 van Praag et al.

How satis�ied are you today with the following areas of your life?

Please answer on a scale from 0 to 10, where 0 means completely dissatis�ied and 10 means 

completely satis�ied. How satis�ied are you with …..

1. your health? 0 1 2 3 4 5 6 7 8 9 10

2. your sleep? 0 1 2 3 4 5 6 7 8 9 10

3. your household income? 0 1 2 3 4 5 6 7 8 9 10

4. your personal income? 0 1 2 3 4 5 6 7 8 9 10

5. your dwelling? 0 1 2 3 4 5 6 7 8 9 10

6. your leisure time? 0 1 2 3 4 5 6 7 8 9 10

7. your family life? 0 1 2 3 4 5 6 7 8 9 10

Figure 1. A block of satisfaction questions with respect to various life domains.

wave of the GSOEP panel. We use the following explanatory variables: age and age-squared, dummies for
being female, single and separated, ln(individual labor income), ln(household income minus individual
labor income), the number of children, the number of years of education, living in East Germany,
dummy disability status (0 (no), 1 (yes)), and health rating (1 (bad health),. . .,5 (very good health)). Our
primary objective is to demonstrate the feasibility of SUOP. It stands to reason that for a substantive
analysis of domain satisfactions, this model specification is probably too simplistic, however, for our
objective, testing the feasibility of SUOP, this specific choice is no problem. In order to avoid that every
dependent variable would be explained by the same set of explanatory variables we chose different
subsets for each equation.

In Table 3 we present the estimates of the first two equations on Health and Sleep satisfaction. For
the full table presenting all eight equation estimates we refer to the Appendix.

Table 3. Comparison of the parameter estimates and their s.e.’s for Ordered Probit, Method of Moments,

and Maximum Likelihood.

McK-Z R2 0.1489 0.1481 0.1154

Health Satisfaction βOP σOP βSUOP σSUOP βML σML

Health: AGE −0.0695 0.0046 −0.0693 0.0048 −0.0651 0.0045

Health: AGE2 0.0006 0.00005 0.0006 0.00005 0.0006 0.00005

Health: D_FEMALE −0.0182 0.0175 −0.0181 0.0174 −0.0134 0.0166

Health: D_SINGLE −0.0514 0.0291 −0.0510 0.0293 −0.0570 0.0278

Health: D_SEPARATED −0.1241 0.0240 −0.1238 0.0243 −0.1108 0.0230

Health: Ln_LABOURINC 0.0289 0.0025 0.0288 0.0026 0.0227 0.0022

Health: CHILDREN 0.0357 0.0123 0.0356 0.0126 0.0308 0.0114

Health: D_EAST −0.1678 0.0201 −0.1670 0.0196 −0.1402 0.0193

Health: DISABLE −0.7991 0.0272 −0.7971 0.0268 −0.5825 0.0232

Health: Cut point 1 −1.8277 0.0184 −1.8240 0.0191 −1.8163 0.0181

Health: Cut point 2 −1.1161 0.0131 −1.1094 0.0134 −1.1122 0.0130

Health: Cut point 3 −0.3432 0.0109 −0.3415 0.0109 −0.3399 0.0107

Health: Cut point 4 0.9468 0.0123 0.9442 0.0124 0.9409 0.0122

(Continued)
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Table 3. Continued

McK-Z R2 0.0278 0.0278 0.0196

Sleep Satisfaction βOP σOP βSUOP σSUOP βML σML

Sleep: AGE −0.0380 0.0041 −0.0381 0.0042 −0.0348 0.0041

Sleep: AGE2 0.0004 0.00004 0.0004 0.00004 0.0003 0.00004

Sleep: D. FEMALE −0.1213 0.0172 −0.1213 0.0172 −0.1204 0.0164

Sleep: D. SINGLE 0.0508 0.0302 0.0505 0.0307 0.0594 0.0284

Sleep: D. SEPARATED −0.0762 0.0253 −0.0762 0.0260 −0.0658 0.0238

Sleep: Ln(HH.LABOURINC) 0.0067 0.0021 0.0066 0.0020 0.0062 0.0018

Sleep: # of CHILDREN 0.0219 0.0121 0.0220 0.0122 0.0164 0.0113

Sleep: YEARS of EDUCATION 0.0316 0.0032 0.0315 0.0031 0.0117 0.0028

Sleep: D. EAST GERMANY −0.1063 0.0199 −0.1065 0.0196 −0.0763 0.0192

Sleep: Cut point 1 −1.6918 0.0175 −1.6912 0.0174 −1.7036 0.0174

Sleep: Cut point 2 −0.9791 0.0123 −0.9800 0.0123 −0.9831 0.0123

Sleep: Cut point 3 −0.9251 0.0106 −0.2970 0.0106 −0.2940 0.0104

Sleep: Cut point 4 0.7286 0.0114 0.7269 0.0115 0.7150 0.0113

In the first two columns we present the initial Probit estimates and their s.e.’s. In columns 3, 4 we
present the corresponding SUOP-estimates and their s.e’s. The two right-hand columns 5, 6 give the
corresponding estimates by means of the ML-method. We take the cmp results as the touchstone of our
comparison.

Our first conclusion is that the three methods OP, SUOP, ML yield estimates which do not differ
significantly in most cases. This is not surprising as the three estimators are consistent. The standard
deviations of the SUOP-estimators seem to be slightly larger than the ML-estimators, but the differences
are mostly negligible.

In Table 4 we present the full correlation matrices as estimated by SUOP (estimation according to
Appendix) and ML (according to Stata), respectively.

Table 4. Full error correlation matrices compared for SUOP and ML.

Residual Stand.

Corr. SUOP Health Sleep HH inc. Ind inc. Dwelling Leisure Family life living

Health 1.0000

Sleep 0.5328 1.0000

HH. inc. 0.3196 0.2758 1.0000

Ind. inc. 0.2851 0.2367 0.8414 1.0000

Dwelling 0.3103 0.2894 0.4521 0.3769 1.0000

Leisure 0.3246 0.3359 0.3274 0.2812 0.4557 1.0000

Family life 0.3585 0.3295 0.3327 0.2838 0.4526 0.4743 1.0000

Stand. living 0.3964 0.2520 0.7173 0.6044 0.5551 0.4626 0.5930 1.0000

(Continued)
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Table 4. Continued

Residual Corr. ML Health Sleep HH inc. Ind inc. Dwell ing Leisure Family life Stand. living

Health 1.0000

Sleep 0.5487 1.0000

HH. inc. 0.3280 0.2802 1.0000

Ind. inc. 0.2919 0.2487 0.8266 1.0000

Dwelling 0.3144 0.2990 0.4530 0.3869 1.0000

Leisure 0.3301 0.3463 0.3323 0.2899 0.4635 1.0000

Family life 0.3643 0.3405 0.3355 0.2849 0.4563 0.4800 1.0000

Stand. living 0.3973 0.3492 0.7099 0.6118 0.5582 0.4610 0.5930 1.0000

We see that of the 75 SUOP-estimated regression coefficients 17 fall out of the ML-confidence
intervals. For the estimates of the correlation matrix we find a similar result.6 Three of the 28 SUOP
estimated correlation coefficients are just outside the ML-confidence intervals.

The polychoric correlation matrix is presented in Table 5.

Table 5. The polychoric correlation matrix.

Residual Stand.

Corr. SUOP Health Sleep HH inc. Ind inc. Dwelling Leisure Family life living

Health 1.0000

Sleep 0.7372 1.0000

HH. inc. 0.7626 0.6347 1.0000

Ind. inc. 0.7389 0.6028 0.9418 1.0000

Dwelling 0.6985 0.5998 0.7752 0.7338 1.0000

Leisure 0.6962 0.6258 0.7111 0.6704 0.7287 1.0000

Family life 0.7496 0.6372 0.7550 0.7101 0.7558 0.7521 1.0000

Stand. living 0.8015 0.6728 0.9220 0.8705 0.8169 0.7680 0.8538 1.0000

A naïve approach is to assign the values 0,1,. . .,9,10 to the satisfaction values and to calculate the
Pearson correlations on that basis. This assignment is conform to daily usage, where average satisfaction
values in a sample are also based on this assignment practice.

The Pearson correlations are presented in Table 6. We see that there is a considerable difference
between Tables 5 and 6. We prefer 5 to 6, as the cardinalization by 0,1..,10 is arbitrary and might be
replaced by another one (0,2,3,. . .) yielding a different Table 6, while the polyserial correlations are
based on endogenous cardinalization. We notice that all Pearson correlations in Table 6 are considerably
smaller than the corresponding numbers in Table 5.

6The cmp-procedure provides confidence intervals for the correlation estimates.
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Table 6. The Pearson correlation matrix. (scale 0–10).

Pearsoncorr. Stand.

scale (0–10) Health Sleep HH inc. Ind inc. Dwelling Leisure Family life living

Health 1.0000

Sleep 0.5185 1.0000

HH. inc. 0.3331 0.2829 1.0000

Ind. inc. 0.2899 0.2575 0.7761 1.0000

Dwelling 0.2414 0.2635 0.4307 0.3580 1.0000

Leisure 0.2121 0.2804 0.2921 0.2448 0.4047 1.0000

Family life 0.3027 0.2965 0.3331 0.2599 0.4085 0.3985 1.0000

Stand. living 0.3852 0.3325 0.7112 0.5872 0.5201 0.3806 0.5387 1.0000

The computation process can be split up into three parts: the first-stage OP estimation took
1.8 seconds on our ASUS VivoBook 15 laptop, and the second-stage SUOP estimation took another
111 seconds. The whole calculation requires less than two minutes. The ML estimations by cmp (default)
took 7 hours. In the SUOP method, we use the in-between covariance matrix Σ̂ and not the full
covariance estimate. The computation time depends on the sample size N, the size K of the error
covariance matrix, and the capacity of our laptop. In this example K = 8. We see that for the ML method,
the time increases non-linearly with N. The number K seems to be important as well. For K = 2 equations
both methods are roughly equally fast, where SUOP takes 11 seconds and ML-cmp 10.5 seconds for
N = 15535. For K = 3 the SUOP computation increases to 16 seconds, while the ML method requires
already 1,241 seconds. This is caused, it seems, by the fact that ML has to evaluate a lot of K-dimensional
integrals. A colleague of ours (an expert Stata user) observed, quoting the “options” in the Stata text,
that cmp uses the GHK-simulation method for evaluating the needed integrals and that in the default
option cmp uses 2

√
N draws per evaluated likelihood. In the present case, this is about 250 simulations

per observation. Cappellari and Jenkins (2003) suggested that for a large number of observations, the
number of draws can be considerably reduced without severe efficiency loss. According to our colleague
by taking 5 draws per likelihood we would reduce the computation time from the reported 7 hours to
8 minutes with only a slight efficiency reduction. That is probably still significantly slower than the new
method, but the revision would be material. We followed this suggestion and found indeed comparable
estimates for the coefficients β. To our surprise the standard deviations for the five draws were not
significantly different from the 250 draws version. This seems to indicate that in the assessment of
variance the additional contribution caused by the simulation variance is not taken into account.

Clearly, if we would reduce the number of equations from eight to a more manageable four or two
equations and/or reduce the number of observations, both the ML and the SUOP methods would
perform much faster.

Our conclusion is that the SUOP method is faster than the ML method. We are unable to say whether
the Stata procedure cmp is to blame and could be improved or whether this is a general feature of the
ML-GHK procedure. It might also be that we could have reduced the ML computation time by choosing
specific options instead of the default procedure. Choosing too severe tolerance levels for the iterations
involved would have increased the computation time in exchange for more exact confidence intervals.
However, given that thecmp outcomes have about the same confidence intervals as our SUOP outcomes
we do not believe that the tolerance levels chosen in cmp were more severe than in our method (see
Table 8f).

5.3. A simulated example
Finally, we apply the estimation method to a simulated data set. We simulated a hard data set of 10,000
observations. We generated the set as follows. We assumed a latent model
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yi,1 = xi,1 + xi,2 + xi,3 +xi,4 + εi,1

yi,2 = xi,1 +2xi,2 +3xi,3 +4xi,4 + εi,2

yi,3 = −xi,1 +2xi,2 −3xi,3 +4xi,4 + εi,3

yi,4 = −xi,1 +0.5xi,2 − xi,3 +xi,4 + εi,4,

where, x1 is normal N (0,1), where x2 = 0.5x1 +D1 with D1 a dummy variable equal to +1 or −1 with
50% each, where x3 =N (0,2)+0.5x2, and where x4 = −0.5x3+D2 and D2 is drawn to equal +1, 0, or −1
with a chance of 1/3 each.

The error vector ε is i.i.d. N(0,Σ) with

Σ =
⎛
⎜⎜⎜
⎝

1.0
0.5 1.0
-0.5 0.3 1.0
0.2 0.6-0.1 1.0

⎞
⎟⎟⎟
⎠
.

We notice that all four variables x and the error vector has an expectation equal to zero. In order to
avoid that (the non-conditioned) Yi is approximately normal, we restricted the explanatory variables to
a small number of four and we chose those variables to be non-normal and correlated, such that the
structural part β′x does not tend to normality. Our first aim is to look for the distribution of the exact
data. The expectation E(Y) = 0, the empirical mean equals 0.0160 and the variance var(Y) equals 2.603.
The correlation matrix of the variables X, and Y is the 8 × 8 matrix in Table 1.

Cut points are defined as

ν1,1 = 0
ν2,1 = −1, ν2,2 = 1.5
ν3,1 = −1, ν3,2 = 0.5
ν4,1 = −1.5,ν4,2 = −0.5,ν4,3 = 1

We define the response indicators:

ji,1 = 1,2
ji,2 = 1,2,3
ji,3 = 1,2,3
ji,4 = 1,2,3,4

The model is iteratively estimated by the FMOP method. ji,k is the interval index by respondent i for
equation k, corresponding with the four equations k = 1,. . .,4. We start with iteration t = 0 for β = 0. We
define the under- and upper residuals

E(ε ∣ε ≤ ν(t)ji,k
−β(t)k

′
xi,k) = e

∼

(t)

ji,k

=
−φ(ν(t)ji,k

−β(t)k
′
xi,k)

Φ(ν(t)ji,k
−β(t)k

′
xi,k)

E(ε ∣ε > ν(t)ji,k
−β(t)k

′
xi,k) = ẽ(t)ji,k =

φ(ν(t)ji,k
−β(t)k

′
xi,k)

1−Φ(ν(t)ji,k
−β(t)k

′
xi,k)

We define the sets of respondents S1
k,j,S2

k,j (k = 1,. . .4; j = 1,. . .,Jk) who are in the response categories
≤ j or > jrespectively. We solve the equations

∑
i∈S1

k,j

e
∼

(t)

ji,k

+ ∑
i∈S2

k,j

ẽ(t)ji,k = 0,k = 1, . . . ,4,j = 1, . . . ,Jk (5c.1)
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for ν(t)k,j and find estimated cut-points ν(t)k,j in the tth iteration. These cut-points ν(t)k,j are substituted to
define the generalized residuals. The estimated generalized residuals e(t)ji,k

in the tth iteration are

e(t)ji,k
=

φ(ν(t)ji,k−1 −βk
′xi,k)−φ(ν(t)jik

−βk
′xi,k)

Φ(ν(t)ji,k−1 −βk
′xi,k)−Φ(ν(t)ji,k−1 −βk

′xi,k)
,

where ji,k is the interval index by respondent i for equation k. corresponding with the four equations
k = 1,. . .,4. We now define the (K ×M) orthogonality conditions

1
N

N
∑
i=1

xi,k,me(t)ji,k
= 0,k = 1, . . . ,4,m = 1, . . . ,M (5c.2)

We have now two equation systems (5c.1) and (5c.2), which are simultaneously solved. Then we
calculate the in-between error covariance matrix

Σ(t) = (σk,k′) =
1
N
(

N
∑
i=1

e(t)ji,k
e(t)ji,k′

) .

We repeat (5c.1) and (5c.2) with the new β(t+1) and ν(t+1)
k,j , and find new estimates. We repeat (5c.1)

and (5c.2) after weighting with the inverse covariance matrix solving

N
∑
i=1

e(t)ji,k
[Σ(t)]

−1
xi,k = 0.

In the end we estimate the corresponding covariance matrix of the estimators β̂,ν̂ by the well-known
sandwich formula.

We estimate each non-diagonal element σk,k′ of the latent full covariance matrix from the corre-
sponding element σk,k′ of the in-between error covariance matrix. The method is described in detail in
the Appendix.

We conclude that the method is stable in the number N of observations and it does not differ
significantly from the cmp-estimates.
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Table 7. Beta’s, Standard errors and Error correlations (N = 10,000).

N = 10000 beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 0.9794 0.0264 0.9799 0.0269

Eq.y1: var. x2 0.9910 0.0240 0.9927 0.0241

Eq.y1: var. x3 0.9715 0.0222 0.9715 0.0223

Eq.y1: var. x4 0.9694 0.0281 0.9703 0.0282

Eq.y1: cutp. 1 −0.0024 0.0193 −0.0072 0.0191

Eq.y2: var. x1 1.0329 0.0290 1.0557 0.0279

Eq.y2: var. x2 1.9859 0.0396 1.9991 0.0387

Eq.y2: var. x3 3.0286 0.0550 3.0558 0.0535

Eq.y2: var. x4 4.0158 0.0733 4.0526 0.0711

Eq.y2: cutp. 1 −1.0215 0.0321 −1.0154 0.0311

Eq.y2: cutp. 2 1.4972 0.0386 1.5026 0.0358

Eq.y3: var. x1 −1.0234 0.0444 −1.0065 0.0406

Eq.y3: var. x2 2.0183 0.0640 1.9981 0.0586

Eq.y3: var. x3 −3.0813 0.0847 −3.0441 0.0805

Eq.y3: var. x4 4.1387 0.1152 4.0610 0.1097

Eq.y3: cutp. 1 −0.9753 0.0447 −0.9675 0.0428

Eq.y3: cutp. 2 0.5115 0.0407 0.4993 0.0387

Eq.y4: var. x1 −1.0079 0.0212 −1.0078 0.0209

Eq.y4: var. x2 0.4957 0.0169 0.4931 0.0165

Eq.y4: var. x3 −1.0180 0.0173 −1.0143 0.0171

Eq.y4: var. x4 0.9727 0.0224 0.9696 0.0218

Eq.y4: cutp. 1 −1.5233 0.0282 −1.5198 0.0273

Eq.y4: cutp. 2 −0.5125 0.0233 −0.5165 0.0223

Eq.y4: cutp. 3 1.0335 0.0253 1.0289 0.0245

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.4496 1.0000 0.4703 1.0000

−0.5450 0.2527 1.0000 −0.4841 0.2306 1.0000

0.1934 0.5877 −0.0846 1.0000 0.2110 0.6266 −0.0857 1.0000
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Table 8a. Beta’s, Standard errors and Error correlations (N = 5,000) (Base dataset of 10000

cases, only every second case is used).

N = 5000 beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 1.0192 0.0385 1.0161 0.0392

Eq.y1: var. x2 0.9952 0.0341 0.9949 0.0344

Eq.y1: var. x3 0.9598 0.0319 0.9573 0.0312

Eq.y1: var. x4 0.9484 0.0398 0.9460 0.0397

Eq.y1: cutp. 1 −0.0330 0.0273 −0.0361 0.0270

Eq.y2: var. x1 1.0832 0.0418 1.0969 0.0402

Eq.y2: var. x2 1.9317 0.0552 1.9383 0.0534

Eq.y2: var. x3 3.0125 0.0790 3.0381 0.0749

Eq.y2: var. x4 4.0011 0.1053 4.0333 0.0997

Eq.y2: cutp. 1 −1.0462 0.0462 −1.0508 0.0442

Eq.y2: cutp. 2 1.4679 0.0542 1.4743 0.0501

Eq.y3: var. x1 −1.0418 0.0636 −1.0452 0.0567

Eq.y3: var. x2 1.9988 0.0847 2.0070 0.0807

Eq.y3: var. x3 −3.0718 0.1113 −3.0620 0.1128

Eq.y3: var. x4 4.1625 0.1512 4.1297 0.1548

Eq.y3: cutp. 1 −0.9182 0.0619 −0.8988 0.0598

Eq.y3: cutp. 2 0.6152 0.0562 0.6031 0.0554

Eq.y4: var. x1 −0.9814 0.0300 −0.9829 0.0292

Eq.y4: var. x2 0.4882 0.0238 0.4860 0.0233

Eq.y4: var. x3 −1.0281 0.0246 −1.0261 0.0244

Eq.y4: var. x4 0.9506 0.0322 0.9492 0.0306

Eq.y4: cutp. 1 −1.5350 0.0398 −1.5408 0.0390

Eq.y4: cutp. 2 −0.5381 0.0327 −0.5369 0.0321

Eq.y4: cutp. 3 1.0050 0.0362 1.0132 0.0343

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.5288 1.0000 0.4930 1.0000

−0.3185 0.3089 1.0000 −0.3905 0.3245 1.0000

0.3014 0.6468 −0.1165 1.0000 0.2201 0.6138 −0.0981 1.0000

0.3014: 95% confidence interval cmp [0.1462: 0.2916]
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Table 8b. Beta’s, Standard errors and Error correlations (N = 2,000) (Base dataset of 10000

cases, only every fifth case is used).

N = 2000 beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 0.9929 0.0574 0.9814 0.0590

Eq.y1: var. x2 0.9259 0.0507 0.9186 0.0509

Eq.y1: var. x3 0.9448 0.0512 0.9392 0.0483

Eq.y1: var. x4 0.9605 0.0628 0.9593 0.0609

Eq.y1: cutp. 1 −0.0165 0.0418 −0.0081 0.0414

Eq.y2: var. x1 0.9729 0.0643 0.9747 0.0588

Eq.y2: var. x2 1.9411 0.0822 1.9198 0.0827

Eq.y2: var. x3 2.9799 0.1168 2.9654 0.1138

Eq.y2: var. x4 3.9235 0.1548 3.9077 0.1502

Eq.y2: cutp. 1 −1.0068 0.0705 −0.9718 0.0677

Eq.y2: cutp. 2 1.4167 0.0828 1.4069 0.0746

Eq.y3: var. x1 −1.0846 0.0992 −1.0725 0.0990

Eq.y3: var. x2 2.1905 0.1320 2.2170 0.1474

Eq.y3: var. x3 −3.3765 0.1985 −3.4092 0.2109

Eq.y3: var. x4 4.4998 0.2566 4.5139 0.2813

Eq.y3: cutp. 1 −1.2270 0.1100 −1.2034 0.1120

Eq.y3: cutp. 2 0.5252 0.0976 0.5239 0.0939

Eq.y4: var. x1 −0.9667 0.0465 −0.9641 0.0458

Eq.y4: var. x2 0.4765 0.0372 0.4680 0.0362

Eq.y4: var. x3 −1.0109 0.0378 −0.9994 0.0386

Eq.y4: var. x4 0.9413 0.0511 0.9278 0.0472

Eq.y4: cutp. 1 −1.5391 0.0629 −1.5537 0.0605

Eq.y4: cutp. 2 −0.5099 0.0509 −0.5206 0.0493

Eq.y4: cutp. 3 0.9616 0.0541 0.9675 0.0527

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.5982 1.0000 0.5334 1.0000

−0.2635 0.3972 1.0000 −0.3878 0.2402 1.0000

0.3114 0.6242 0.0889 1.0000 0.2159 0.6098 −0.0263 1.0000
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Table 8c. Beta’s, Standard errors and Error correlations (N = 1,000) (Base dataset of 10000

cases, only every tenth case is used).

N = 1000 beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 0.9058 0.0798 0.8950 0.0820

Eq.y1: var. x2 0.9667 0.0719 0.9531 0.0718

Eq.y1: var. x3 0.8916 0.0726 0.8826 0.0651

Eq.y1: var. x4 0.9127 0.0880 0.9065 0.0839

Eq.y1: cutp. 1 0.0109 0.0581 0.0193 0.0578

Eq.y2: var. x1 1.0706 0.0998 1.0462 0.0885

Eq.y2: var. x2 1.8804 0.1089 1.8831 0.1162

Eq.y2: var. x3 2.9807 0.1617 2.9809 0.1636

Eq.y2: var. x4 3.9341 0.2122 3.9386 0.2157

Eq.y2: cutp. 1 −1.0250 0.0946 −1.0196 0.0955

Eq.y2: cutp. 2 1.3482 0.1172 1.3420 0.1055

Eq.y3: var. x1 −1.1157 0.1235 −1.1258 0.1419

Eq.y3: var. x2 2.1102 0.1724 2.1565 0.1987

Eq.y3: var. x3 −3.2868 0.2639 −3.3482 0.2912

Eq.y3: var. x4 4.4391 0.3299 4.5149 0.3847

Eq.y3: cutp. 1 −1.1548 0.1573 −1.1448 0.1512

Eq.y3: cutp. 2 0.5539 0.1232 0.5435 0.1322

Eq.y4: var. x1 −1.0006 0.0658 −1.0014 0.0664

Eq.y4: var. x2 0.4593 0.0526 0.4538 0.0507

Eq.y4: var. x3 −1.0533 0.0529 −1.0494 0.0562

Eq.y4: var. x4 0.9190 0.0742 0.9095 0.0665

Eq.y4: cutp. 1 −1.6660 0.0938 −1.7127 0.0892

Eq.y4: cutp. 2 −0.5368 0.0729 −0.5796 0.0724

Eq.y4: cutp. 3 1.0163 0.0762 1.0410 0.0778

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.7347 1.0000 0.5360 1.0000

−0.3041 0.0570 1.0000 −0.3291 0.2410 1.0000

0.1500 0.6412 −0.1904 1.0000 0.2013 0.5261 −0.1288 1.0000

0.7347: 95% confidence interval cmp [0.3862: 0.6583]
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Table 8d. Beta’s, Standard errors and Error correlations (N= 1,000) (A newly created dataset of

1000 cases).

N = 1000 beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 0.9490 0.0846 0.9536 0.0827

Eq.y1: var. x2 0.9997 0.0726 1.0142 0.0747

Eq.y1: var. x3 0.9368 0.0702 0.9446 0.0696

Eq.y1: var. x4 0.9916 0.0871 0.9944 0.0908

Eq.y1: cutp. 1 0.0282 0.0604 0.0380 0.0599

Eq.y2: var. x1 0.8773 0.0956 0.8964 0.0795

Eq.y2: var. x2 1.9966 0.1537 1.9868 0.1219

Eq.y2: var. x3 2.9308 0.2170 2.9092 0.1597

Eq.y2: var. x4 3.8298 0.2892 3.8065 0.2112

Eq.y2: cutp. 1 −0.9652 0.0989 −0.9571 0.0952

Eq.y2: cutp. 2 1.2944 0.1303 1.3508 0.1049

Eq.y3: var. x1 −1.0870 0.1472 −1.0583 0.1484

Eq.y3: var. x2 2.1040 0.2332 2.1304 0.2109

Eq.y3: var. x3 −3.2458 0.2952 −3.2709 0.2838

Eq.y3: var. x4 4.2512 0.4029 4.3088 0.3815

Eq.y3: cutp. 1 −1.0302 0.1601 −1.0904 0.1513

Eq.y3: cutp. 2 0.6065 0.1224 0.5906 0.1338

Eq.y4: var. x1 −0.9638 0.0650 −0.9645 0.0649

Eq.y4: var. x2 0.4585 0.0521 0.4732 0.0518

Eq.y4: var. x3 −0.8987 0.0531 −0.9015 0.0500

Eq.y4: var. x4 0.9384 0.0712 0.9204 0.0672

Eq.y4: cutp. 1 −1.4835 0.0854 −1.4945 0.0842

Eq.y4: cutp. 2 −0.5339 0.0690 −0.5255 0.0680

Eq.y4: cutp. 3 0.8221 0.0821 0.8277 0.0699

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.5582 1.0000 0.3511 1.0000

−0.5354 0.4227 1.0000 −0.5507 0.1285 1.0000

0.3158 0.7640 −0.3565 1.0000 0.1896 0.6688 −0.1589 1.0000

0.5582: 95% confidence interval cmp [0.1834: 0.4989]
0.4227: 95% confidence interval cmp [−0.1869: 0.4199]
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Table 8e. Beta’s, Standard errors and Error correlations (N = 1,000) (Again a newly created

dataset of 1000 cases).

beta’s MoM s.e. MoM beta’s cmp s.e. cmp

Eq.y1: var. x1 0.9592 0.0809 0.9417 0.0800

Eq.y1: var. x2 0.9477 0.0738 0.9352 0.0708

Eq.y1: var. x3 0.9064 0.0648 0.8982 0.0652

Eq.y1: var. x4 0.9397 0.0831 0.9374 0.0833

Eq.y1: cutp. 1 0.0766 0.0588 0.0701 0.0577

Eq.y2: var. x1 0.9359 0.0837 0.9287 0.0860

Eq.y2: var. x2 2.0244 0.1159 2.0294 0.1236

Eq.y2: var. x3 2.8800 0.1441 2.8982 0.1618

Eq.y2: var. x4 3.8478 0.1961 3.8657 0.2161

Eq.y2: cutp. 1 −0.9785 0.0996 −0.9942 0.0962

Eq.y2: cutp. 2 1.4898 0.1128 1.4802 0.1161

Eq.y3: var. x1 −0.8380 0.1291 −0.8675 0.1328

Eq.y3: var. x2 1.8184 0.1703 1.8429 0.1721

Eq.y3: var. x3 −2.8861 0.2167 −2.8964 0.2404

Eq.y3: var. x4 3.8474 0.2721 3.8491 0.3136

Eq.y3: cutp. 1 −1.0368 0.1240 −1.0327 0.1390

Eq.y3: cutp. 2 0.3357 0.1239 0.3267 0.1197

Eq.y4: var. x1 −1.0838 0.0679 −1.0809 0.0705

Eq.y4: var. x2 0.5400 0.0531 0.5334 0.0530

Eq.y4: var. x3 −1.0304 0.0550 −1.0243 0.0558

Eq.y4: var. x4 1.0777 0.0685 1.0711 0.0698

Eq.y4: cutp. 1 −1.5268 0.0823 −1.5160 0.0856

Eq.y4: cutp. 2 −0.4549 0.0726 −0.4652 0.0695

Eq.y4: cutp. 3 1.0477 0.0764 1.0275 0.0767

Estimated Full correlation matrix MoM Estimated Full correlation matrix cmp

1.0000 1.0000

0.6303 1.0000 0.6316 1.0000

−0.1647 0.5655 1.0000 −0.1230 0.2274 1.0000

0.1451 0.6184 0.0078 1.0000 0.1891 0.5982 0.0324 1.0000

(0.5655: 95% confidence interval cmp [−0.1068: 0.5155)
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Table 8f. The correlation matrix of the variables (N = 10,000).

x1 x2 x3 x4 y1 y2 y3 y4

x1 1.0000

x2 0.8797 1.0000

x3 −0.3812 −0.2516 1.0000

x4 −0.4803 −0.3452 0.9240 1.0000

y1 0.6278 0.4450 −0.1164 −0.3281 1.0000

y2 0.7033 0.6220 −0.0943 −0.2136 0.4566 1.0000

y3 0.5598 0.5484 −0.9312 −0.8929 0.1250 0.2659 1.0000

y4 −0.2500 −0.0479 0.9196 0.8447 −0.0921 −0.2116 −0.7871 1.0000

6. Concluding remarks

In this paper, we suggest a new approach to the statistical analysis of ordinal data, where the errors
are supposed to be correlated. The basic idea is that the ordinally observed dependent variables reflect
latent continuously-valued random variables Y and that the observations are coarsened corresponding
to an interval grid C = {(νj−1,νj]}J

j=1 of Y on the real axis, where the unknown cut-points ν have to
be estimated as well. Each observed category corresponds to one interval on the real axis. For cases
where Y is more dimensional, say K, and errors are correlated there is mostly a formidable impediment.
The usual ML-estimation procedure requires to evaluate likelihoods, which are multivariate normal
integrals over K-dimensional blocks. If this has to be performed this is very cumbersome and time -
consuming. In this paper we show that estimation of the latent generating model behind the coarsened
observations of dependent variables can be done in a much simpler way than usual without the need
for multi-dimensional integration or large-scale simulations.

In our approach, we depart from the requirement that the difference between the observation Y and
its predictor β′X, that is (Y −β′X), cannot be further explained by X. This is translated into the zero-
covariance conditions (2.5) and gives those conditions a significance on their own. When the errors are
normally distributed this coincides with the ML-conditions.

The identifying moment conditions are found by substituting the residuals in the regular zero
covariance-conditions for exact data by the corresponding generalized residuals corresponding to the
ordinal data.

The approach closely resembles the traditional GLS- and SUR-approaches used to estimate linear
models on exactly observed dependent variables.

For this method, an assumption about the marginal distributions of the error vector is required.
We choose for normality, which enables us to use (3.6). Although we restricted ourselves to assuming
normal errors, it is not difficult to generalize this method for other error distributions as well, where the
logistic and the lognormal are the foremost candidates (see in those cases, e.g., Maddala (1983, p. 369)
for the formulae of the generalized residuals). The estimation method remains unchanged.

This approach seems to smoothly close the gap between the analysis of exactly observable data and
qualitative ordinal data. We saw in the above examples that the effect on variances (confidence bands
and intervals) caused by SUOP compared to OP is in some cases small and in other cases large. The
regression coefficients are mostly similar, which is not surprising as both estimators are consistent
estimators. This is also the case for the comparison between traditional OLS and SUR estimates in
traditional econometrics. The advantage lies in the possibility to account for error correlations, caused
by using the additional information supplied by the error correlations. Standard error deviations are
assessed without assuming a specific structure of the covariance matrix before estimation. In the panel
data example in Section 5.1 it appears that the standard deviations of the estimates are doubled or more
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taking error correlation into account. Hence, in this case the reliability reduction when taking error
correlations into account is huge.

In this paper, we focus on the qualitative versions of FMOP and SUOP of FGLS and SUR. However,
this method seems generally appropriate for two broad types of model estimation situations character-
ized by Roodman (2011) as:

“1) those in which a truly recursive data-generating process is posited and fully modeled, and
2) those in which there is simultaneity but instruments allow the construction of a recursive set of
equations, as in two-stage least squares (2SLS).”

Our method may be compared with the methods, (based on the GHK algorithm), developed
by Cappellari and Jenkins (2003), based on simulated moments (Hajivassiliou & McFadden, 1998;
Roodman, 2007, 2020). Those methods aim at getting numerical estimates of the log-likelihood by
simulation and finding, by variation of the unknown parameters to be estimated, which parameter
values maximize the simulated log-likelihood of the sample. This requires the repeated evaluation of
multiple normal integrals and makes the procedure time-consuming. In our approach, we do not need
to evaluate multiple integrals or large-scale simulations, and therefore the method is not restricted with
respect to the size K of the equation system. Moreover, we can handle an arbitrary number J (> 2)
of outcome categories. We do not have to restrict ourselves to dichotomous (biprobit) data only. The
method can be used for any number of equations K and any number of interval categories Jk. For
instance, in our SUOP-example (Section 5.2) we estimated eight equations, 75 effects and 32 cut points
simultaneously. It is obvious that direct observation is a limiting case of coarsening and consequently the
methos may also be used when the data set consists of a mixture of directly observed and ordinal data.
Classical least-squares based estimation methods on exactly observed data may be seen as a specific
limiting case.

Our estimation method appears to require only a few minutes of computing time, which compares
favorably with the traditional methods each of which requires much more time. The method may be
interpreted as a generalization of classical least squares models that deal with exact observations to
include the estimation of models on the basis of more-dimensional ordered probit-type observations.

In this paper, we restricted ourselves to the most straightforward OP observation mode. In a
forthcoming study, we will generalize this approach to tackle the case where the sample consists of a
mixture of categorical, censored, and exactly observed data.

Acknowledgments. We are grateful for helpful remarks by the referees.
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Appendix

A. Estimation of the latent error covariance matrix Σ
For the estimation of the latent covariance matrix starting from the estimated b̂-estimates and the in-between covariance
matrix Σ̂ we propose the following method. We make use of the fact that in order to estimate the true error covariances ρk,k′

by ρ̂k,k′ for two OP-equations we notice that for each pair k,k′ we only have to look for the bivariate marginal distribution of
εk,εk′ . Consider for instance a cluster of three observations (1, 2, 3). The sample likelihood is P(ε1 ∈ S1,ε2 ∈ S2,ε3 ∈ S3;0,Σ1,2,3),
where S1 = (νji−1 −xi,1β < εi,1 ≤ νji −xi,1β] and S2 and S3 similarly defined. However, the bivariate marginal likelihood provides
the same information on σ1,2 as the trivariate full likelihood. In the K-dimensional covariance matrix there are K (K −1)/2
different non-diagonal elements. For instance, if K = 8 as in the model in Section 6, this boils down to 28 simple two-
dimensional estimations.

Applying the Gram-Schmidt decomposition, there holds for the pairεk,εk′ .

εi,k′ = ρk,k′ .εi,k +ηi,k
√

1−ρ2
k,k′ (A.1)

where εi,k,ηi,k are independent N (0,1) drawings.7 The coefficient
√

1−ρ2
k,k′ guarantees that σ2 (εi,k′) = 1. We have

E(εi,k.εi,k′) = ρk,k′ . When we consider the estimated in-between error covariance ρk.k′ = E(εi,k,εi,k′), then its value depends
only on the two one-dimensional grids Cik and Ci,k’ and ρk,k′ . We may now simulate εi,k,εi,k′ for various values of ρk,k′

by means of (A.1), and calculate the corresponding in-between covariances ρk,k′ =
1
N ∑

N
i=1 ei,k.ei,k′ , corresponding to the

grids Cik and Ci,k’. We notice that the dependent variable vector Yi,k is observed according to a uniform i-independent
gridCk= {(ν(k)

j−1,ν
(k)
j ]}

Jk

j=1
= {S(k)

j }
Jk

j=1
, while the errors εi,k are observed according to i-dependent individual grids

Xik = {(ν(k)
j−1 −xi,kβ,ν(k)

j −xi,kβ]}
Jk

j=1
= {S(k)

j −xi,kβ}
Jk

j=1
.

We consider the set of all two-dimensional grids for all observation units. {Cik, Ci,k’} N
i=1 = Ck,k’

We write for the sample in-between covariance

ρk,k′ =
1
N

N
∑
i=1

ei,k.(ρk,k′) .ei,k′ .(ρk,k′)
def= f (ρk,k′) .

We estimate the value of the latent ρk,k′ by comparing the observed sample in-between covariance ρ̂k,k′ with its simulated
counterpart ρk,k′ for various values of the latent ρk,k′ . It appears that there is one value ρ̂k,k′ solving f (ρk,k′) = ρ̂k,k′ . In order
to gain insight into the relationship between the latent ρk,k′ and the corresponding in-between covariance ρk,k′ we did some
simulation experiments for three different two-dimensional grids. In Table A1 we present three different two-dimensional
grids with different ρk,k′ values for different values of ρk,k′ . We describe one example in detail. Consider the two-dimensional
grid with C1= {(−∞,0], (0,∞)}, C2= {(−∞,0], (0,∞)} in the middle part of Table A1. We simulate a sample from a two-
dimensional normal distribution with a correlation with ρ = 0.1. We find an in-between covariance ρ = 0.043. For ρ = 0.2 we
find a corresponding value of ρ = 0.087, and so on. In Table A1 we present the relationship between ρ and ρ for three different
two-dimensional grids. We found that the function f (ρk,k′) = ρk,k′ is monotonically increasing in ρk,k′ for all grids we tested.
See also Aitkin(1964). We conclude that for a given grid (C1,C2) the function f (ρ) = ρ is monotonically increasing in ρ.

The solution ρ̂k,k′ of f (ρk,k′) = ρ̂k,k′ is, using Slutsky’s Law, a consistent estimator ρ̂k,k′ of the population parameter ρk,k′ .
Doing this for each non-diagonal element of Σ, we estimate the underlying non-diagonal elements of the full correlation matrix
Σ. The diagonal elements are equal to one by assumption. This yields a consistent estimator Σ̂ε of the error covariance matrix
Σε. Confidence intervals can be found by the delta method. Fig. 1 shows the graph of the function f (ρk,k′) for the left grid in
Table A1.

In Table 4 we presented the full correlation matrices calculated by SUOP and by cmp. In Table A2. below we present the in-
between covariance matrix and the full covariance matrix for the five-year panel considered in Section 5.1. We notice the fact

7We use standard normal draws for εi,k,ηi,k′ , because in (A.1) the simulated errors have to be N (0,1).
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Table A1. Relation between covariance ρ and in-between covariance ρ.

grid ρ ρ grid ρ ρ grid ρ ρ

ν11 = −0.5 0.1 0.075 ν1 = 0.0 0.1 0.043 ν11 = −1.0 0.1 0.032

ν12 = 0.0 0.2 0.141 0.2 0.087 ν12 = 2.0 0.2 0.051

ν13 = 0.75 0.3 0.198 0.3 0.128 0.3 0.092

0.4 0.290 ν2 = 0.0 0.4 0.167 ν21 = −2.0 0.4 0.119

ν21 = −0.75 0.5 0.342 0.5 0.224 ν22 = 1.0 0.5 0.140

ν22 = −0.5 0.6 0.451 0.6 0.264 0.6 0.167

ν23 = 0.5 0.7 0.505 0.7 0.321 0.7 0.189

N = 10,000 0.8 0.601 N = 10,000 0.8 0.367 N = 10,000 0.8 0.217

0.9 0.681 0.9 0.457 0.9 0.219

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.2 0.4 0.6 0.8 1.0

Figure A1. ρ as a function of ρ.

that the grid-wise observation causes a considerable loss of information. About 60% of the information is lost. The estimates
are not based on structural assumptions like “random effects” or errors where the correlations are specific functions of the time
difference. Actually, this result could be used to estimate and test specific functional specifications of the covariance matrix.
From Table A2. it is already obvious that “random effects” are to be rejected for this panel structure because in that case, the
non-diagonal elements would have to be roughly equal to each other.

Table A2. In-between and full covariance matrices for the five-year panel.

In-between covariance matrix Full covariance matrix

2009 2010 2011 2012 2013 2009 2010 2011 2012 2013

2009 0.6434 1.0000

2010 0.4852 0.6292 0.8899 1.0000

2011 0.4123 0.4841 0.6289 0.7984 0.8945 1.0000

2012 0.3771 0.4210 0.4793 0.6277 0.7490 0.8133 0.8910 1.0000

2013 0.3413 0.3725 0.4156 0.4944 0.6321 0.7064 0.7482 0.7970 0.9270 1.0000
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B. Table B1 is complete

Table B1. Comparison of the parameter estimates and their s.e.’s for Ordered Probit, Method of Moments, and

Maximum Likelihood.

McK-Z R2 0.1489 0.1481 0.1154

Health Satisfaction βOP σOP βSUOP σSUOP βML σML

Health: AGE −0.0695 0.0046 −0.0693 0.0048 −0.0651 0.0045

Health: AGE2 0.0006 0.00005 0.0006 0.00005 0.0006 0.00005

Health: D_FEMALE −0.0182 0.0175 −0.0181 0.0174 −0.0134 0.0166

Health: D_SINGLE −0.0514 0.0291 −0.0510 0.0293 −0.0570 0.0278

Health: D_SEPARATED −0.1241 0.0240 −0.1238 0.0243 −0.1108 0.0230

Health: Ln_LABOURINC 0.0289 0.0025 0.0288 0.0026 0.0227 0.0022

Health: CHILDREN 0.0357 0.0123 0.0356 0.0126 0.0308 0.0114

Health: D_EAST −0.1678 0.0201 −0.1670 0.0196 −0.1402 0.0193

Health: DISABLE −0.7991 0.0272 −0.7971 0.0268 −0.5825 0.0232

Health: Cut point 1 −1.8277 0.0184 −1.8240 0.0191 −1.8163 0.0181

Health: Cut point 2 −1.1161 0.0131 −1.1094 0.0134 −1.1122 0.0130

Health: Cut point 3 −0.3432 0.0109 −0.3415 0.0109 −0.3399 0.0107

Health: Cut point 4 0.9468 0.0123 0.9442 0.0124 0.9409 0.0122

McK-Z R2 0.0278 0.0278 0.0196

Sleep Satisfaction βOP σOP βSUOP σSUOP βML σML

Sleep: AGE −0.0380 0.0041 −0.0381 0.0042 −0.0348 0.0041

Sleep: AGE2 0.0004 0.00004 0.0004 0.00004 0.0003 0.00004

Sleep: D. FEMALE −0.1213 0.0172 −0.1213 0.0172 −0.1204 0.0164

Sleep: D. SINGLE 0.0508 0.0302 0.0505 0.0307 0.0594 0.0284

Sleep: D. SEPARATED −0.0762 0.0253 −0.0762 0.0260 −0.0658 0.0238

Sleep: Ln(HH.LABOURINC) 0.0067 0.0021 0.0066 0.0020 0.0062 0.0018

Sleep: # of CHILDREN 0.0219 0.0121 0.0220 0.0122 0.0164 0.0113

Sleep: YEARS of EDUCATION 0.0316 0.0032 0.0315 0.0031 0.0117 0.0028

Sleep: D. EAST GERMANY −0.1063 0.0199 −0.1065 0.0196 −0.0763 0.0192

Sleep: Cut point 1 −1.6918 0.0175 −1.6912 0.0174 −1.7036 0.0174

Sleep: Cut point 2 −0.9791 0.0123 −0.9800 0.0123 −0.9831 0.0123

Sleep: Cut point 3 −0.9251 0.0106 −0.2970 0.0106 −0.2940 0.0104

Sleep: Cut point 4 0.7286 0.0114 0.7269 0.0115 0.7150 0.0113
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Table B1. Continued

McK-Z R2 0.1345 0.1342 0.1133

Household Income Satisfaction βOP σOP βSUOP σSUOP βML σML

HH inc.: AGE −0.0648 0.0045 −0.0649 0.0048 −0.0593 0.0045

HH inc.: AGE2 0.0008 0.00005 0.0008 0.00005 0.0007 0.00005

HH inc.: D. FEMALE 0.0837 0.0175 0.0836 0.0175 0.0764 0.0167

HH inc.: D. SINGLE −0.1398 0.0304 −0.1404 0.0308 −0.1326 0.0279

HH inc.: D. SEPARATED −0.2582 0.0255 −0.2583 0.0264 −0.2404 0.0237

HH inc.: Ln(LABOURINC) 0.0396 0.0026 0.0395 0.0027 0.0349 0.0025

HH inc.: Ln(HH.LABOURINC) 0.0261 0.0021 0.0261 0.0021 0.0262 0.0014

HH inc.: # of CHILDREN −0.0088 0.0122 −0.0085 0.0122 −0.0212 0.0095

HH inc.: YEARS of EDUCATION 0.0808 0.0033 0.0806 0.0034 0.0693 0.0032

HH inc.: D. EAST GERMANY −0.3862 0.0201 −0.3867 0.0200 −0.3472 0.0185

HH-inc.: Cut point 1 −1.7878 0.0179 −1.7106 0.0174 −1.7012 0.0175

HH-inc.:Cut point 2 −1.0544 0.0129 −1.0564 0.0128 −1.0323 0.0126

HH-inc.:Cut point 3 −0.2814 0.0108 −0.2858 0.0107 −0.2743 0.0103

HH-inc.:Cut point 4 0.9480 0.0123 0.9442 0.0126 0.9020 0.0121

McK-Z R2 0.1503 0.1495 0.1306

Individual Income Satisfaction βOP σOP βSUOP σSUOP βML σML

Ind. inc.: AGE −0.0562 0.0045 −0.0562 0.0048 −0.0565 0.0045

Ind. inc.: AGE2 0.0008 0.00005 0.0008 0.00005 0.0007 0.00005

Ind. inc.: D. FEMALE −0.1239 0.0174 −0.1239 0.0173 −0.1180 0.0169

Ind. inc.: D. SINGLE −0.0595 0.0290 −0.0602 0.0292 −0.0613 0.0277

Ind. inc.: D. SEPARATED −0.1016 0.0240 −0.1016 0.0245 −0.0885 0.0233

Ind. inc.: Ln(LABOURINC) 0.0727 0.0026 0.0725 0.0028 0.0728 0.0025

Ind. inc.: # of CHILDREN 0.0311 0.0121 0.0314 0.0119 0.0277 0.0102

Ind. inc.: YEARS of EDUCATION 0.0752 0.0033 0.0749 0.0034 0.0670 0.0032

Ind. inc.: D. EAST GERMANY −0.2912 0.0200 −0.2916 0.0198 −0.2561 0.0189

Ind. inc.: DISABLILITY RATE −0.1510 0.0270 −0.1513 0.0272 0.0430 0.0177

Ind. Inc.: Cut point 1 −1.3425 0.0147 −1.3428 0.0144 −1.2938 0.0141

Ind. Inc.: Cut point 2 −0.7372 0.0117 −0.7401 0.0116 −0.7361 0.0114

Ind. inc.: Cut point 3 −0.0300 0.0107 −0.0358 0.0106 −0.0442 0.0103

Ind. inc.: Cut point 4 1.1096 0.0129 1.1043 0.0133 1.0914 0.0130
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Table B1. Continued

McK-Z R2 0.0566 0.0564 0.0475

Dwelling Satisfaction βOP σOP βSUOP σSUOP βML σML

Dwelling: AGE −0.0432 0.0047 −0.0424 0.0049 −0.0397 0.0046

Dwelling: AGE2 0.0006 0.00005 0.0006 0.00005 0.0005 0.00005

Dwelling: D. FEMALE 0.0333 0.0183 0.0332 0.0182 0.0409 0.0168

Dwelling: D. SINGLE −0.2409 0.0313 −0.2414 0.0322 −0.2312 0.0282

Dwelling: D. SEPARATED −0.2384 0.0265 −0.2384 0.0266 −0.2126 0.0242

Dwelling: Ln(LABOURINC) 0.0179 0.0027 0.0178 0.0027 0.0151 0.0026

Dwelling: Ln(HH.LABOURINC) 0.0134 0.0022 0.0133 0.0022 0.0142 0.0020

Dwelling: # of CHILDREN −0.0079 0.0127 −0.0077 0.0127 −0.0159 0.0109

Dwelling: YEARS of EDUC. 0.0313 0.0034 0.0312 0.0034 0.0213 0.0033

Dwelling: DISABLILITY RATE −0.1317 0.0283 −0.1320 0.0287 0.0258 0.0245

Dwelling: Cut point 1 −2.1862 0.0261 −2.1806 0.0256 −2.1637 0.0252

Dwelling: Cut point 2 −1.6332 0.0172 −1.6321 0.0170 −1.6211 0.0169

Dwelling: Cut point 3 −0.9408 0.0123 −0.9453 0.0122 −0.9364 0.0121

Dwelling: Cut point 4 0.2504 0.0106 0.2477 0.0107 0.2360 0.0105

McK-Z R2 0.0902 0.0901 0.0940

Leisure Time Satisfaction βOP σOP βSUOP σSUOP βML σML

Leisure: AGE −0.0433 0.0043 −0.0432 0.0044 −0.0406 0.0042

Leisure: AGE2 0.0006 0.00005 0.0006 0.00005 0.0005 0.00005

Leisure: D. FEMALE −0.0353 0.0175 −0.0352 0.0175 −0.0257 0.0160

Leisure: Ln(LABORINC) −0.0273 0.0026 −0.0272 0.0028 −0.0299 0.0025

Leisure: Ln(HH.LABOURINC) 0.0047 0.0019 0.0047 0.0020 0.0051 0.0018

Leisure: # of CHILDREN −0.0847 0.0114 −0.0848 0.0116 −0.0896 0.0102

Leisure: YEARS of EDUCATION 0.0055 0.0033 −0.0056 0.0032 −0.0043 0.0031

Leisure: D. EAST GERMANY −0.1293 0.0202 −0.1288 0.0200 −0.0921 0.0185

Leisure: DISABLE RATE −0.1039 0.0277 −0.1036 0.0287 0.0498 0.0249

Leisure: Cut point 1 −1.8463 0.0194 −1.8454 0.0200 −1.8090 0.0188

Leisure: Cut point 2 −1.2129 0.0136 −1.2092 0.0138 −1.2051 0.0133

Leisure: Cut point 3 −0.4716 0.0109 −0.4687 0.0110 −0.4846 0.0108

Leisure: Cut point 4 0.6486 0.0113 .6499 0.0113 0.6359 0.0114
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Table B1. Continued

McK-Z R2 0.0834 0.0834 0.0763

Family Life Satisfaction βOP σOP βSUOP σSUOP βML σML

Family life: AGE −0.0572 0.0048 −0.0573 0.0048 −0.0534 0.0046

Family life: AGE2 0.0006 0.00005 0.0006 0.00005 0.0005 0.00005

Family life: D. SINGLE −0.4871 0.0297 −0.4880 0.0295 −0.4665 0.0270

Family life: D. SEPARATED −0.5665 0.0260 −0.5666 0.0267 −0.5420 0.0236

Family life: Ln(LABOURINC) 0.0013 0.0027 0.0012 0.0028 −0.0012 0.0025

Fam. life: Ln(HH.LABOURINC) 0.0167 0.0022 0.0166 0.0022 0.0180 0.0020

Family life: YEARS of EDUC. 0.0040 0.0034 0.0038 0.0034 −0.0084 0.0032

Family life: D. EAST GERMANY −0.1370 0.0209 −0.1376 0.0208 −0.1049 0.0192

Family life: DISABLE RATE −0.1290 0.0281 −0.1293 0.0289 0.0321 0.0239

Family life: Cut point 1 −2.1949 0.0250 −2.1905 0.0244 −2.1609 0.0240

Family life: Cut point 2 −1.6631 0.0172 −1.6638 0.0169 −1.6476 0.0168

Family life: Cut point 3 −0.9763 0.0125 −0.9813 0.0124 −0.9741 0.0123

Family life: Cut point 4 0.1778 0.0106 0.1749 0.0107 0.1609 0.0105

McK-Z R2 0.1193 0.1187 0.0965

Standard of Living Satisfaction βOP σOP βSUOP σSUOP βML σML

Stand.living: AGE −0.0760 0.0047 −0.0758 0.0048 −0.0699 0.0045

Stand.living: AGE2 0.0008 0.00005 0.0008 0.00005 0.0008 0.00005

Stand.living: D. FEMALE 0.1111 0.0180 0.1108 0.0180 0.1113 0.0155

Stand.living: D. SINGLE −0.2982 0.0293 −0.2984 0.0292 −0.2762 0.0266

Stand.living: D. SEPARATED −0.3720 0.0259 −0.3712 0.0265 −0.3415 0.0234

Stand.living: Ln(LABOURINC) 0.0312 0.0026 0.0310 0.0027 0.0269 0.0025

Std.living: Ln(HH.LABOURINC) 0.0225 0.0021 0.0225 0.0022 0.0228 0.0017

Stand.living: YEARS of EDUC. 0.0714 0.0034 0.0711 0.0034 0.0576 0.0032

Stand.living: D. EAST GERM. −0.3197 0.0205 −0.3199 0.0201 −0.2755 0.0180

Stand.living: Cut point 1 −2.2120 0.0254 −2.1991 0.0251 −2.2096 0.0242

Stand.living: Cut point 2 −1.6048 0.0167 −1.6018 0.0164 −1.5980 0.0163

Stand.living: Cut point 3 −0.8760 0.0119 −0.8219 0.0118 −0.8087 0.0117

Stand.living: Cut point 4 0.5312 0.0111 0.5264 0.0113 0.5095 0.0109
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