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In a centrally condensed solar nebula, the gas is partially supported by 
a pressure gradient, and rotates at less than the Keplerian velocity. Solid 
bodies lack this support, and spiral inward due to drag. The radial velocities 
developed can be significant, even in low-mass nebular models. Possible effects 
include fractionation of particles by size or density, rapid accumulation of 
planetesimals, and production of regions of anomalous (non-solar) composition 
in the nebula. 

In most models of the solar nebula, the pressure and density decrease in 
the direction away from the axis. The nebular gas is partially supported by 
this pressure gradient, and therefore rotates more slowly than the Kepler or­
bit velocity. Solid bodies in the nebula, from dust grains to protoplanets, 
are not supported by the pressure gradient. In the absence of gas, they would 
pursue Kepler orbits. They move with respect to the gas, and their motions are 
affected by drag in ways which depend on their sizes and the nebular structure. 
Whipple (1972, 1973) examined the limiting cases of very small and large bodies, 
for two particular drag laws. Cameron (1973) applied his results to the nebular 
models of Cameron and Pine (1973). The results presented here cover the full 
range of particle sizes and drag laws for more generalized nebular models. 

Using Whipple's notation, P = gas pressure, T = temperature, p = density, 
u = molecular weight, v = mean termal velocity, \ = mean free path, n = pvA/2 = 
viscosity, s = radius of particles (assumed spherical), ps = particle density, 
and r the distance from the nebular axis. The central gravity is 

g = VpT (1) 

where V^ is the velocity of a circular Kepler orbit. In a low-mass nebula, g = 
GMe/r , where G = gravitational constant, and Mg is the solar mass. In a frame 
rotating with the gas, the residual gravity is 

Ag = p"1 dP/dr (2) 

for the gas to be in hydrostatic equilibrium (Ag < 0 for a centrally condensed 
nebula). The rotational velocity of the gas, Vg, is given by 
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from which, when Ag/g << 1, 

k . (3) 
-r + Ag 

k g ~ 2g' k 
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ideal gas, P = pRT/n. Then 

AV = V. - V = (̂ 8.) V. . (4) 

Suppose P can be described by a power law: P = P0 • (r/r0) . For an 

Ag = p l dP/dr = -nRT/yr, (5) 

which does not depend on the magnitude of P or p. Hence, AV is independent of 
the nebular mass, if the nebula's self-gravitation is small (M(nebula) << M Q ), 
but depends on the exponent n and the nebular temperature structure. 

When a particle moves through gas with velocity v, the drag force is 

FD = CD TTS2 pv2/2 (6) 

where Cn, the dimensionless drag coefficient, depends on another dimensionless 
parameter, the Reynolds number, Re = 2pvs/n. From experiments, it is known that 

CD = 24 Re"
1 for Re < 1 (7a) 

CD = 24 Re
--6 for 1 < Re < 800 (7b) 

CD = 0.44 for Re > 800 (7c) 

where (7a) is the Stokes drag law. When A > s, the Epstein drag law applies: 

FD = 4rrps
2 vv/3. (8) 

Whipple defines the "stopping time," t as 

te = m v / FD- (9) 

The type of motion depends on the ratio of te to the orbital period, t„. A 
"small" particle, with te/tp<<l, is carried with the gas (v<<AV). It feels 
the residual gravity, Ag, and, in a frame rotating with the gas, falls radially 
at a terminal velocity 

dr/dt = t Ag. (10) 

A "large" body, with te/tp >> 1, moves in a Kepler orbit, experiencing a trans­
verse "wind" of velocity AV. The drag causes the orbit to decay at a rate 

dr/dt = rAg/teg. (11) 

From (10) and (11), it can be seen that dr/dt + 0 in the limits of large and 
small s. The radial velocity is greatest when te = tp/2vT. In the strongly-
perturbed case, the equations of motion must be solved numerically. However, 
it can be shown analytically (Weidenschilling 1976, in preparation) that 
|dr/dt| 

max " |AV|. This limit is independent of the drag law or particle prop­
erties, and depends only on the nebular structure. Figure 1 shows dr/dt 
schematically as a function of s; the shape of the curve is determined by the 
drag laws. 
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Figure' 1. Radial velocity vs particle size (schematic) . The shape of the 

curve is determined by the drag laws, hut the peak value depends 
only on the nebular structure. 
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Figure 2. Radial velocity vs size in the model nebula at r = 1 AV, for differ­
ent particle densities. 

Consider a model nebula with P = r~3 and T = r~l, similar to that sug­
gested by Lewis (1974). I take T = 600° K, p = 10"9 g cm"3 in the central plane 
at 1 AU. This is a "low-mass" nebula (= 0.05 M0) . Figure 2 shows dr/dt for 
particles of different densities. Radial velocites exceed lO'* cm sec"l for 
s - 10-100 cm. Characteristic lifetimes (r/(dr/dt)) in this size range are very 
short, < 100 yr. Note that for "small" particles, larger and/or denser ones 
have larger radial velocities, while for "large" particles, the opposite is true. 
Fractionation by size or density can occur in either direction, depending on 
the sizes of the particles. 

Figure 3 shows dr/dt for particles of various sizes as a function of r. 
Bodies of the appropriate sizes may have large radial velocites, even in a low-
mass nebula. They can be transported long distances in times shorter than the 
nebular lifetime. Meteorites often contain inclusions of anomalous chemical 
or isotopic composition; they may have been brought from different heliocentric 
distances in larger bodies, broken up in collisions, and accreted by the 
meteorite parent bodies. 
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Figure 3. Radial velocity us r in the model nebula, for different particle 
sizes. 

It is often assumed that gas drag would quickly damp relative velocities 
of solid bodies in a non-turbulent nebula. However, since dr/dt depends 
strongly on s, bodies of different sizes maintain appreciable relative veloci­
ties of a magnitude to promote accretion. Most collisions would be between 
particles of very unequal sizes, in which the smaller could become embedded in 
the larger. Bodies of nearly equal size would automatically have low relative 
velocities, preventing disruptive collisions. 

Besides mixing solid condensates, the pressure gradient might produce 
another type of chemical anomaly. Suppose that large, icy bodies formed in 
the outer part of the nebula. They would spiral inward until they passed the 
region of ice stability, and evaporate. For "large" bodies, dr/dt <* s~l, so 
the volatiles would be released in a narrow zone, whatever their sizes. Bodies 
composed of H2O ice would cause local enhancement of 0; NH3 and CH4 hydrates 
could increase N and C abundances also. The chemical effects would be equiva­
lent to depletion of hydrogen. Analogous effects may have been produced by 
other components in different parts of the nebula. 
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