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Abstract. The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an
extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski
functionals under realistic experimental conditions for cosmological data collections. In this
paper, we implement Minkowski functionals on multipoles and needlet components of CMB
fields, thus allowing a better control of cosmic variance and extraction of information on both
harmonic and real domains; we then exploit the GKF to provide their expected values on
spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.
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1. Introduction
The expected values of the Minkowski functionals in the planar case and under Gaus-

sianity is analytically known to the literature since the work of Adler in the early 80’s
Adler 1981, see also Tomita 1986. A major advancement of this field in the last dacade,
however, was brought by the discovery of the Gaussian Kinematic Formula (GKF) by
Adler and Taylor (2003, 2007,2009). GKF allows a simple computation of the expected
values for Lipschitz-Killing curvatures (LKCs) (which are equivalent to Minkowski func-
tionals up to a constant factor) under an impressive variety of extremely different cir-
cumstances, covering arbitrary manifolds with and without masked regions and a broad
class of nonGaussian models.

One of our purposes in this paper is to exploit these recent results to develop a number
of analytic predictions on functionals tailored to test nonGaussianities and asymmetries
on CMB data. Due to page constraints, here we will show only results for Gaussian
fields convolved with a realistic mask in needlet domain. For detail analysis and explicit
analytical expressions of the expected values of LKCs for Gaussian and nonGaussian
cases on multipole and needlet domains and including an arbitrary sky cuts, please refer
to our paper Fantaye et. al. 2014.

2. Gaussian Kinematic Formula (GKF)
The GKF is about expected values of Lipschitz-Killing curvatures for excursion re-

gions. The great power of the GKF is that it allows for a full decoupling of the expected
values of LKCs of an excursion set ELi(Au (g(T ),M)) into components which are com-
pletely independent: the LKCs of the original manifold Li+ l(M), the Gaussian Minkowski
Functionals which depends only threshold value M(u), and the covariance structure λ
of the field. The independence of these components to each other means an enormous
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computational advantages to derive analytical results under a variety of circumstances,
including masked regions as we shall see below. Before giving the expression of the GKF,
let us define the important components in turn.

Exursion sets: Au (f(x),M))
On the sphere, the excursion sets Au (f) of a given (possibly random) function f are

defined as

Au (f) :=
{
x ∈ S2 : f(x) � u

}
.

Of course, in the limit where we take u = −∞, we have that Au (f) = S2 .

Lipschitz-Killing Curvatures (LKCs): ELi(Au (f(x),M))
The LKCs for the region A with dimension dim(A) = n, are defined as the coefficients

of a Taylor expansion of a Tube of radius r around A.

V ol [Tube(A, r)] =
n∑

k=0

Ln−k (A)ωkrk .

where ωk are the volume of a unit ball in Rk . LKCs depend on the Riemannian metric,
and are a measure of the k-dimensional size of the Riemannian manifold M . For instance,
let A be the unit square on the plane; by elementary geometry, the volume of the Tube
is then given by

L2(A) + 2L1(A)r + L0(A)πr2 = 1 + 2 · 2 · r + πr2 ,

the LKCs L0 ,L1 ,L2 correspond to Euler-Poincaré characteristic, half the boundary
length and area, respectively.

Gaussian Minkowski Functionals (GMFs): Mk (U)
The Gaussian Minkowski Functionals (GMFs) Mk (U) are defined as the Taylor coef-

ficients in the expansion of the Tube probabilities Pr {Z ∈ Tube(U, r)}, the probability
that a zero-mean standard Gaussian variable belongs to Tube(U, r); for instance, for
U = [u,∞). The GMFs dependence only on the excursion threshold u and can be easily
computed using the following expression

Mγk

j ([u,∞)) = (2π)−1/2Hj−1(u)e−u2 /2 .

where Hj is the Hermite polynomials: H0(u) = 1, H1(u) = 2u, H2(u) = 4u2 −1, H3(u) =
8u3 − 12u.

Metric scaling coefficients: λ1/2

The metric scaling coefficient λ represents the covariance structure of the manifold
we are working with, and are simply given by the second derivative of the covariance
function at the origin. On a sphere the scaling λ required to go to a needlet domain is
given by:

λj =

√√√√
∑

� b2( �
2j )C�

2�+1
4π

�(�+1)
2∑

� b2( �
2j )C�

2�+1
4π

,

where b(.) is the needlet weight function, j is the needlet frequency parameter, and B > 1
is some fixed bandwidth.
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Under these circumstances, the Gaussian kinematic formula takes the form

λi/2
ELi(Au (g(T ),M)) =

dim(M )−i∑
k=0

λ(i+k)/2Li+k (M)Mk (g−1 [u,∞)) ; (2.1)

3. LKCs in the presence of sky cuts
Assume we observe only M := S2\G. Recall that L0(M),L1(M)L2(M) are the LKCs

of the unmasked region. Then the expected values of LKCs in the presence of mask G
are:

the Euler characteristic is given by

EL0(Au (f(x),M)) = {1 − Φ(u)}L0(M)+
1
4
λse

−u2 /2L1(M)+λ2
s

ue−u2 /2
√

(2π)3
L2(M) ; (3.1)

half the boundary length

EL1(Au (f(x),M)) = 2 {1 − Φ(u)}L1(M) +
1
4
λse

−u2 /2L2(M) ; (3.2)

the area

EL2(Au (f(x), S2)) = (1 − Φ(u))L2(S2). (3.3)

For an arbitrary mask G what is unknown in the above equations are the input LKCs
Li(S2\G). A very simple solution to derive these parameters can be provided by exploit-
ing one more time Gaussian Kinematic Formula, following an idea discussed in Adler &
Taylor 2011, chapter 5.4. The strategy is as follows:

(a) Fix a simple power spectrum C�, for instance with Lmax = 10, and generate Gaus-
sian maps out of it

(b) Fix a limited number of threshold values u and perform a Monte Carlo evaluation
of the LKCs evaluated on the excursion set of the fields generated according to (a) and
with the mask G applied

(c) Use least square regression to estimate Li(S2\G), i = 0, 1, 2
(d) Use the estimates obtained in point 3 as an input for equation (2.1) for any arbi-

trary power spectrum (for instance, multipole or needlet components on realizations of
a ΛCDM model, under Gaussian and nonGaussian circumstances).

4. Numerical results
To compare analytical results of LKCs with Monte Carlo simulations, we generated

100 realizations of an input power spectrum using the HEALpix Górski et. al. 2005
package. A root mean square normalized Gaussian needlet maps, which we used for
all our analysis, are obtained by first generating spherical harmonic coefficients from
the input power spectrum through the HEALpix create alm routine up to a maximum
multipole of �max = 2000; and then by convolving these coefficients with the needlet filter
as

βj (x) =
1
σj

B j + 1∑
�=B j −1

∑
m

b2(
�

Bj
)a�m Y�m (x) , (4.1)

where σ2
j = 1

4π

∑
� b4( �

B j )(2� + 1)C� is the variance. We then applied a realistic mask on
these maps. The mask used is shown in the left panel of Fig. (1).
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Figure 1. Masked LKCs on needlet space for a Gaussian field. Right panel shows the mask
used in the analysis. The other three panels are for the Euler-Poincaré characteristic (genus),
boundary length and area functionals. Analytical results are shown in red (assuming full sky)
and blue (for mask corrected). Simulations are shown in black (mean of the simulations) and
grey shades, which are 68, 95 and 99% percentiles estimated from 100 simulations. The needlet
parameters used are B = 1.5 and j = 12, which corresponds to multipole range � = [87, 195].

From these normalized and masked needlet maps we computed the three Minkowski
Functionals, which as argued earlier are equivalent to the LKCs up to constant factors.
This implementation is achieved exploiting the algorithms described in Eriksen et. al.
2004. The results we will show here are for a needlet frequency parameter j = 12 and the
band width B = 1.5; this particular needlet map has a compact support for multipole
ranges � = [87, 195]. More details can be found in Fantaye et. al. 2014.

To obtain the analytical results corresponding to our simulations, we first computed the
mask dependent input LKCs, L〉(S2/G), using a single multipole sumulation at multipole
� = 15 and following the procedures given in Section 3. We then substituted back these
values to Eqns. (3.1, 3.2, 3.3). The comparison of the analytical and simulation results
for Euler-Poincaré characteristic, boundary length, and area are shown in Fig. (1).

5. Summary and Conclusion
The Gaussian Kinematic Formula allows to evaluate exact expected values for Lipschitz-

Killing curvatures (Minkowski functionals) in a number of circumstances of applied in-
terest, covering in particular full-sky experiments (accounting for the geometry of the
sphere), nonlinear statistics and masked data.

We found an excellent agreement in all the cases that we investigated; more precisely,
the analytical estimates are always well within the 68% Confidence Interval (CL) es-
timated from simulations, and as shown in the figures they are for practical purposes
indistinguishable from the theoretical predictions even with a relatively low number of
Monte Carlo simulations.
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