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Abstract

The maximal return and optimal leverage of a constant proportion debt obligation with
finite termination and two boundaries are analysed by numerically solving Hamilton—
Jacobi—Bellman equations. We discuss the probabilities of the asset value reaching the
upper or lower bound under the optimal control and the optimal control problem with
a time-varying boundary. Furthermore, we also analyse the relationship between the
optimal return, the optimal policy and different parameters.
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1. Introduction

The credit derivative market has been developing dramatically since the 1990s.
Meanwhile, some credit derivatives have been improperly used in practice, and this
finally led to the worldwide financial crisis which began in 2008. The financial crisis
has influenced global economy profoundly and forced people to be more cautious in
using credit derivatives. The issue of controlling leverage and using credit derivatives
has attracted more interest in academia and industry.

As one of these leveraged derivatives, constant proportion debt obligation (CPDO)
aims at paying high coupons and returning the principal to the investors by putting the
capital into a bank and leveraging a nominal credit exposure to indices [1, 3]. The
leverage needs to be adapted dynamically to generate high coupon payments (usually,
100-200 basis points above London interbank offered rate (LIBOR)) for investors
[3]. Cash-out and cash-in terms are included in a CPDO contract in order to avoid
substantial losses and reduce the risky exposure of the portfolio [4, 7]. The cash-out
term is a minimal return guarantee to the CPDO investors, while the cash-in term sets
the maximal payoff to them.
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The higher coupon payments of CPDO contracts compared to other products in
the same rating class (typically AAA or Aaa) made them popular among investors.
However, this led to more controversy among market participants about the methods
used by major rating agencies [, 3, 7]. Consequently, many researches have been
carried out on this issue. Cont and Jessen [3] used a top-down approach to analyse the
risks of a CPDO contract, pointing out that risk analyses based on rating or defaulting
probabilities alone are not sensible. Gordy and Willemann [7] used the CPDO case as
an example of model risk in rating derivatives with complex structures, and claimed
that the rating of CPDOs according to the traditional rating models was too high. Jobst
et al. in their dominion bond rating service (DBRS) commentary [10] used a Gaussian
copula to assess the risks of CPDOs. They pointed out that the model risks, high path
dependency, high credit spread volatility and the complex structure of CPDOs made it
challenging to rate them. Torresetti et al. [18] used a generalized Poisson loss model
instead of a Gaussian copula to study the possibility of a cluster of defaults occurring
to the pool of underlying names.

There are other researches focusing on the pricing of CPDOs. Dorn [4] derived a
dynamic closed-form pricing formula for a CPDO, which was useful in showing some
mechanisms and measuring the risks. Varloot et al. [19] used a simple closed-form
formula of a CPDO and calculated its basic risk measures in their investment research
on The United Bank of Switzerland (UBS). In addition, they offered advice on leverage
adjustment and credit rating. Cekic and Ugur [2] applied Laplace transformation to
obtain a closed-form CPDO pricing formula.

Meanwhile, the dynamically adjusting leverage in a CPDO contract makes it a
good model of optimal control. Baydar et al. [1] derived a Hamilton—Jacobi—Bellman
(HJB) equation to find the optimal leverage of a CPDO and compared it with that
used in industry. Instead of modelling the cash-in and cash-out boundaries directly,
they chose a special utility function to avoid them and obtained a closed-form solution
by a duality method. Later, Wu [21] and Yang et al. [22] analysed these contracts
in the optimal control framework as well, and cash-in and cash-out conditions were
included explicitly and described in detail. Wu [21] studied a perpetual CPDO contract
with a cash-out term, and discussed the cases of minimizing cash-out probability and
maximizing total returns. Yang et al. [22] modelled the conditional redemption in the
default probability minimization problem and found the optimal upper bound for the
control policy.

In this paper, we still use the optimal control method and HJB equation to solve
the problem. The HJB equations are widely used to solve control and optimization
problems. Due to their nonlinearity, most HIB equations cannot be solved explicitly;
only equations with special terminal conditions can be solved by the variable
separation or duality method. However, it is usually difficult to apply these methods to
equations with boundary conditions. In those cases, numerical methods are preferred.

The numerical methods to calculate HJB equations can be divided into two
categories: the Markov-chain method [5, 14, 16] and the finite-difference method
[6, 20]. The Markov-chain method is substantially a kind of explicit finite-difference
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method which is usually limited by its time step. That is, only minor time steps
make sure the convergence of a difference scheme, which leads to heavy computation.
Additionally, another difficulty needs to be overcome: both the optimal policy and the
optimal value need to be solved at every time step, but the optimal value and the policy
depend on each other. Forsyth and Labahn [6] proposed an implicit method to solve
HJB and HJBI (Hamilton—Jacobi-Bellman—Isaacs) equations, in which Newton-type
iteration is applied at every time step to determine the optimal policy and value. Wang
and Forsyth [20] discussed the possibility of using central difference in this implicit
scheme.

In this paper, we establish a stochastic optimal control model to find the optimal
leverage and maximal payoff of a CPDO. Both the cash-in and cash-out boundaries
are taken into consideration, and the requirements of a reasonable cash-in boundary
are discussed. An HJB equation with two boundaries is deduced to solve the problem.
Furthermore, we discuss the problem of a time-dependent cash-in boundary and solve
the associated HIB equation. The properties of the optimal policy and payoft are
shown and analysed in both models.

The main contributions of this article are the following: firstly, it applies stochastic
optimal control theories to study CPDO contracts; secondly, both cash-out and cash-in
terms are included in a CPDO with finite expiration leading to HJB equations with two
boundary conditions. This kind of equation is difficult to solve explicitly. Thirdly, the
equations with both fixed and time-dependent boundaries are solved numerically, and
the properties of the solutions are discussed.

The rest of this paper is organized as follows. In Section 2, the model of maximizing
the total payoff with fixed cash-in and cash-out boundaries is built, and numerical
results of the optimal value and the optimal policy are given. In Section 3, the payoff-
maximization model is improved to a regime-changing problem, numerical results are
given and the relationships between optimal policy, optimal payoff and parameters are
analysed. The conclusion is presented in Section 4.

2. Maximization of total payoff with fixed boundary

2.1. The model In a CPDO contract, an investor provides some principal to
a CPDO manager (special purpose vehicle (SPV)) by buying a CPDO, and
this capital is the initial investment [3]. The CPDO manager then builds a
portfolio by putting the capital into a bank account and keeping a position
in credit indices (for example, iTraxx or CDX) with the bank account as a
nominal to obtain high returns [1]. The manager adjusts the leverage of
the credit default swap (CDS) dynamically to pay coupons of LIBOR plus a
constant spread to the investor, and return the principal at termination [1]. The
performance of a CPDO can be characterized by three states: cash-in, cash-out and
failure to return the principal at the termination. If the asset value is high enough
to cover the present value of all future coupon payments and principal redemption at
expiration, then the SPV reduces the exposure to credit indices (the risky exposure) to
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zero, and puts all the asset in the bank account to receive a risk-free return. This case is
called cash-in. When the value of the capital falls below a determined lower boundary
(smaller than initial capital), the manager stops the contract and returns all what is left
to the investor. This case is called cash-out, which is similar to default [4, 7, 10].

Consider a filtered probability space (Q, %, .%;,P), on which a Brownian motion
W, is defined adapted to .%,. Consider a CPDO contract with finite expiration time T
and initial capital Xy = 1 (dollar). If we use X, to represent the capital process, then the
capital in the bank account satisfies the equation

dX; =rX, dt, (2.1)

where 7 > 0 is the constant risk-free interest rate. The CPDO manager uses the asset X;
as nominal principal to leverage credit indices. Let S, be the risky process of a credit
index and a, be the nominal risk exposure to the credit index at time ¢#; then the asset
value satisfies

dX, =rX; +a,dS,. (2.2)

Notice that the asset invested in the bank account acts as collateral to sell the CDS
contracts, and a; is the control process in this model.
Assume that S, satisfies
dS;=udt+ odw,, (2.3)

where u stands for average index spread and od W, represents the mark-to-market gains
or losses due to the changes in the default probability of the underlying index portfolio.
Here, u and o are both positive constants. This model is the same as in the work by
Baydar et al. [1], and it also appeared in the work of Varloot et al. [19]. If the CPDO
manager is investing in a single CDS, default will cause a jump in the asset process.
However, when the CPDO manager leverages a portfolio of many CDS contracts, the
defaults can be modelled by a standard Brownian motion. From this point of view, this
process is similar to a reserve process of an insurance company (see, for example, the
articles by Hojgaard and Taksar [9] and Taksar and Markussen [17]).
By inserting (2.3) into (2.2), we obtain the process of the asset value

dX[ = (}"X, + a[ﬂ) d[ + a[O-dW[.

In this model, we assume that the coupon is paid continuously to the investor for
simplicity. The coupon rate is the constant risk-free interest rate r as in equation (2.1)
plus a spread ¢, with ¢ being a positive constant. Since the initial principal is 1, the
coupon paid during the time interval (¢, ¢ + df) is (r + 6) dt. Then the asset value X;
satisfies the stochastic differential equation (SDE)

dX, = (X, +au —r—98)dt + a0 dW,, 2.4)

where all parameters are considered to be constants. Note that in further works,
models with stochastic coeflicients can be taken into consideration as well, but the
simple model in this paper still reveals some fundamental characteristics of this kind
of derivative.
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Note that the admissible policy a, in (2.4) is nonnegative and the .%;-adapted process
is such that the above SDE (2.4) with an initial value X, = 1 has a unique .%;-adapted
solution X; which is right continuous with left-hand-side limitations. The set of all
admissible policies is denoted by A.

In a CPDO contract discussed in this paper, both the cash-out and cash-in terms are
included. With a principal of 1 in this model, the cash-out boundary is set as a constant
K € (0, 1) and the cash-out time is defined as

71 =inf{t > 0| X, < K},

which is a stopping time. Meanwhile, the cash-in boundary is set to be a constant
K > K. Similarly, the cash-in time is defined as

T, =inf{t>0| X, > K}.

In this section, we assume that the CPDO manager returns the total asset K to the buyer
immediately when the cash-in event happens. If neither the cash-in nor the cash-out
case happens before termination, the CPDO manager returns the total value of the
portfolio to the investor at time 7.

It can be deduced from above that the payoff to the CPDO buyer consists of four
parts:

(1) the coupon r + ¢ paid continuously during the period when the CPDO is still
valid;

(2) the capital returned to the investor when the cash-out case happens, namely, K;

(3) the value of capital K returned to the investor when the cash-in case happens;

(4) the value X7 received by the investor if the CPDO contract remains valid until
expiration.

We assume that the investors use utility functions to measure their satisfaction caused
by those incomes. The independent variable of a utility function is usually the profit
or loss of an investment, and the dependent variable is the satisfaction from the profit
or aversion to the loss. A utility function U(x) is usually increasing, since investors
are more content with higher profits. Meanwhile, a utility function is usually concave
down (U”(x) < 0), meaning that the marginal effect of the income decreases as the
total amount of income increases. More information on this type of function can be
found in the book by Karatzas and Shreve [13].
In this article, we define the utility functions U;(x) as follows:

Ui(x) = l(1 -, i=1,2.
Yi
Other types of utility functions can also be applied in this model, as long as they are
meaningful during the value interval of x and satisfy the basic properties of the utility
functions.

Different investors may show different attitudes towards the coupon income and
the terminal payoff. For example, some may be more pleased to receive a steady
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income in the duration, while others may be more interested in the return at terminal,
or when cash-in or cash-out happens. In this paper, different utility functions are used
to measure the coupon income and the terminal income, that is, U;(x) and U;,(x) are
used to measure the utility from coupon and other incomes, respectively. Then, at time
t € (0, T), the total expected utility of the investor should be

T
J(x,t;a) = E[f ePEDUN(r + 0)Lis<rynrs) S + Lz <ronrye P77 U(K)
t

+ Ligyer,a1€ PP OULK) + Liraryneje PT P Un (X)X, = x],

where 3 is the discount rate of utility. The usage of discounted utility can also be found
in the works by Karatzas et al. [12] and Jonsson and Sircar [11] (also see the articles
by Guiso and Paiella [8] and Neilson and Winter [15] for more information on the
parameter calibration of utility functions). Here, 1, is the indicator function of a set
A, defined as
1, x€A,
b=y ek
The CPDO manager adjusts the control policy dynamically in order to maximize the
profits for the investor. Then the optimal value function is defined as
P(x,t) = sup J(x, t; a). (2.5
aceA
In this model, the cash-out boundary K and cash-in boundary K should be chosen
such that

Uy(K) < éul (r+0), UyK) = éUl (r +0).

The reason for these assumptions is that if a CPDO contract has an infinite time
horizon, and the contract remains valid until infinity, then the profit of the investor
should be

f e U (r + 6)dt = 1Ul(r +9).
0 B

It is reasonable to take this as the upper bound of an investor’s payoff. Then the cash-in
boundary K should be chosen such that

Uz(l_() < %U](r +0),

otherwise stopping adjustment on the boundary may not be the optimal choice. Here,
we assume that

Uy(K) = éUl(r+ 0)

and the cash-out boundary K, which is set to prevent the investor from losing
everything in a bad investment, is set to satisfy

Us(K) < éUl(r +6).
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From the above assumptions,

L PR
k= ln(l SO+ 5)), (2.6)

which is used in the following sections.

2.2. Value function, HJB equation and numerical results The optimal return
function P(x, 1) in (2.5) with K as in (2.6) satisfies the HIB equation, if it is continuous
(5],
P, +sup{(rx+au—r—0)P, + %aza'szx} + Ui(r+96)—-pP=0,
aeA
(x,1) € Q= (K,K)x(0,T),

P(K,t) = Ux(K), P(K,t)=UyK), tel0,T],
P(x,T) = Uy(x), x€l[K,K],

where P,, P,, P, represent OP/dt, P/0x, 0> P/dx?, respectively.
From Fleming and Soner’s book [5, pages 196-197], P(x,t) is a concave function
of x: taking x1, x; € [K, K], 1 € (0, 1) yields

AP(x1,1) + (1 = D)P(x2, 1) > P(Ax1 + (1 = Dxy, 1),

which is a common result in an optimal control problem if the value function is of a
special type.
Assuming that P, > 0, the optimal policy is

a* = —pP./(0*Pyy),

which is obtained as soon as the optimal value is solved.

As far as we know, the above nonlinear equation cannot be solved explicitly, yet
some numerical results can be obtained. Here, we use the implicit central and forward
(backward) difference and iteration method introduced by Wang and Forsyth [20] and
Forsyth and Labahn [6] to numerically calculate the optimal value and the optimal
leverage. The parameters are taken as follows:

K =0.1(dollar), T =3(year), pB=0.08/year, u=0.05/year,
o=0.1, r=0.03/year, 6=0.015/year, 7y, =2, 7y,=1.5.

Note that in this model, all the values of the parameters are given, but, in further
works, if needed, the parameters related to the CPDO contract and asset value can be
calibrated from real data. But the parameters related to the utility functions are difficult
to calibrate because of the relatively abstract concept of utility and the different types
of utility functions to choose from.

A transformation of time is made to make the terminal condition at time 7 to be the
initial condition at time 0. Take the time step to be At. In this paper, the initial value of
the control policy at every time node is chosen to be the optimal policy of the former
time node. However, the initial policy at time At is chosen to be identically equal to 1,
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Ficure 2. Optimal policy and corresponding payoff (colour available online). (a) Relationship between
optimal payoff P, initial asset value x and time 7. (b) Relationship between optimal policy a*, initial asset
value x and time 7.

since the optimal control policy at time O does not exist. After choosing the initial
policy, a relevant value vector is calculated implicitly, and the value vector is used to
calculate the (iterated) value of the control. The value of the control is used to evaluate
the iterated value again. This is the iteration method to obtain the optimal leverage
and return. If the infinite norm of the difference in value vector from two iterations
is sufficiently small, then the iteration of this time node is complete, and the optimal
value and optimal policy at this node are obtained.

We have used the following values for iteration:

- _ 1@ —10-5
At=02, Ax=q15(K-K), €=107,

where € stands for the tolerance of error in the iteration. The iteration times at every
time node are shown in Figure 1.

The optimal value and the optimal leverage are shown in Figure 2.

The figures indicate that the optimal redemption P(x, f) is an increasing, concave-
down function of the initial asset value x, which agrees with the assumptions made
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on P. The optimal leverage a* is bounded, which is initially increasing and then
decreasing with respect to x. More properties of the optimal payoff and strategy will
be shown and discussed in the next section.

3. Maximization of total payoff with time-dependent boundary

3.1. Model establishment In this section, we replace the cash-in condition in the
last section with a more realistic one.

In Section 2, it is assumed that the cash-in boundary is constant, independent of
time and the asset is returned to the CPDO buyer immediately after the cash-in event.
However, in a common CPDO contract, the CPDO manager should continue paying
coupons after cash-out and return the asset left to the investor at terminal 7. In other
words, the cash-in boundary should be decided such that the money in the bank account
is enough to cover all the coupon payments and the terminal payoffs in the future.

Denote the new cash-in boundary as K(z); the new cash-in time is defined as

7, =inf{t > 0] X; > K(1)}.
The process of the investment is separated into two parts.

(1) From time t = 0 to the cash-in time 1t;: The CPDO manager faces an optimal
investment problem; he has to choose an optimal strategy in order to generate
the maximal return to the CPDO buyer.

(2) From the cash-in time T, to the terminal time T: The CPDO manager faces a
determined investment problem; since the risky exposure is zero, he only needs
to receive interest incomes and pay coupons to the CPDO buyer continuously
until termination and return the capital to the buyer at T'.

The asset processes and the strategies of the CPDO manager are different between
those two processes.

Taking Py(¢) to be the value function of the period (7;, T], the value function of the
whole investment problem becomes

T

P(x,1) = sup E[ f ePEDUL(r + )1 iser, ary) dS + Lig, <ynrie PO U (K)
aeA t

+ Ly am1€ PPy (12) + Liraryaeaje PP U (X)X, = x| (3.1)

Under this assumption, the asset value X, (deterministic process) after the cash-in

time follows the ordinary differential equation

dX(t)/dt =rX(t)—r—0, te[r,T],
X(T) =K.

The above problem admits a unique solution

[1=e"™ T+ Ke" T >0,

X(t):(l_(—r+6)efr(r’t)+r+5=r+6
r r
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from which one can deduce that
T
X = f eSOUN(r + 6)ds + e T PUL(K). (3.2)
t

Since X(¢) defined in (3.2) equals the present value of all the future coupon payments
and the capital payoff at termination, it is the new (time-dependent) cash-in boundary
K(t) in this problem. The boundary K(f) is an extension of the constant cash-in
boundary K in Section 2.1.

The payoff function after the cash-in time should be

T
Py() = f e PEDUL(r + 8)ds + e PTDUL(K)
t

- éUl(r +6)+ [UZ(I_() - éUl(r + 5)]e—ﬁ<T—f>, t €. T].

If K is defined as (2.6), then U»(K) = (1/B)U,(r + 8) and Py(t) = (1/B)U,(r + ). As in
Section 2, the new value function defined in (3.1), if continuous, is a viscosity solution
to the following HJB equation:

(9P+Su (rr+ 5)(’3P+1 Y
— rx+ap—r—0)—+-a o0 —
or " oob # ox 297 a2

+Ui(r+6)—-pP=0, (x,1) €K, K@®)x(O,T),

P(K,1) = Uy(K), P(K(t),t)= éUl(r +0), tel[0,T],

P(x,T) = Uy(x), x€l[K,K].
By using the same numerical method in Section 2, the equation can be solved.

3.2. Numerical results The parameters here are the same as in Section 2.2. The
cash-in boundary changing with time ¢ is shown in Figure 3.

The optimal value and the optimal policy are shown in Figure 4(a) and (b),
respectively.

The relationships between the optimal payoff P and parameters are shown in
Figure 5. Notice that the cash-in boundary (upper bound of asset value) increases
and the solution domain of the optimal payoff expands as r or § increases.

The above figures imply that a higher value of y, r or ¢ leads to a higher optimal
payoft. Since r and ¢ are components of the coupon returned to the investor, a higher
value of r or 6 means a higher coupon payoff to the investor. Consequently, the optimal
value will be higher. A higher value of u means a better performance of the CDS,
which facilitates the CPDO manager to pay coupons while keeping a capital with a
relatively high return.

Contrarily, a higher o leads to a lower P, because the volatility in the CDS value
forces the CPDO manager to choose a more conservative way of investment to prevent
the portfolio from default. Accordingly, the optimal value for the investor will be
lower.
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The relationships between the optimal policy a* and the parameters are shown in
Figure 6.

From Figure 6, it follows that similar to the performance of the optimal value P,
the optimal leverage increases with r and ¢ and decreases with 0. Higher r or 6 means
higher coupon to be paid to the CPDO buyer, which forces the CPDO manager to use
a more radical leverage. The higher uncertainty of the market represented by higher
volatility of the CDS price forces the CPDO manager to be conservative and use a
lower leverage. As is shown in Figure 5(b), the optimal return becomes lower.

However, the relationship between a* and p is influenced by the initial asset value x.
When x is relatively small, the optimal leverage a* decreases with u. When x is bigger,
a* increases with u. For the increasing part, the reason may be that higher return of
the CDS contract (with the same uncertainty) enables the CPDO manager to choose
a more risky leverage in order to obtain higher returns. However, when the present
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Ficure 5. Relationships between optimal payoff P and the parameters. (a) P and p. (b) P and 0. (c) P
and r. (d) P and ¢ (colour available online).

value of the portfolio is very small, which may not be able to cover the coupon part
(rX; —r—96 < 0in (2.4)), the CPDO manager has to ensure that the asset value has an
increasing trend (rX; + au — r — § > 0) in order to avoid the cash-out case. Then the
CPDO manager has to choose a higher a* with a lower p.

The properties of optimal payoff and leverage with fixed cash-in boundary are
similar.

The cash-out and cash-in probabilities under the above optimal control are shown
in Figure 7.

4. Conclusion

In this paper, the optimal leverage of a CPDO contract for maximizing the expected
return of the CPDO buyer is analysed. Inclusion of the cash-in and cash-out terms in
our model, which are important in a CPDO contract, improves some of the previous
work on this topic. These terms add boundary conditions to the derived HIB equation,
making it difficult to obtain a closed-form solution. We solve the problem numerically.
Furthermore, another problem with a time-dependent cash-in boundary is discussed,
analysed and solved numerically.

Our results indicate that the optimal return function P(x, ) is an increasing,
concave-down function of the initial asset value x, while the optimal policy a* is first
increasing and then decreasing with respect to x.
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The optimal payoft and the optimal leverage will be affected by parameters. We
observe that P(x,t) increases with the return rate y of the CDS contracts, the risk-
free interest rate » and the exceeding part of the CPDO coupon rate over the risk-free
interest rate, 6. This implies that a better performance of the CDS or a higher coupon
rate will result in a higher return to the investors. Also, note that P(x, ) decreases with
a higher volatility o in CDS price, meaning that higher uncertainty in the financial
market will have negative effects on the payoff of the investors. The performance
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of the optimal policy ¢* is similar to that of the optimal return, while high volatility
influences the policy more evidently.
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