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Abstract.Helioseismology has discovered a thin layer beneath the solar surface where the rotation
rate increases rapidly with depth. The normalized rotational shear in the upper 10 Mm of the
layer is constant with latitude. Differential rotation theory explains such a rotational state by a
radial-type anisotropy of the near-surface convection and a short correlation time of convective
turbulence compared to the rotation period. The shear layer is the main driver of the global
meridional circulation.
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1. Introduction

Helioseismology has detected a steep increase in the rotation rate with depth just
below the surface (Thompson et al. 1996; Schou et al. 1998). The subsurface radial shear
exceeds the latitudinal shear seen on the solar surface. The potential importance of the
large differential rotation in the near-surface shear layer (NSSL) for the solar dynamo
(Brandenburg 2005; Pipin and Kosovichev 2011) has triggered a discussion on the origin
of the layer (see e.g. Kitchatinov 2013; Hotta et al. 2015; Gunderson and Bhattacharjee
2019; Jha and Choudhuri 2021). The discussion has not led to a consensus yet.

It is noteworthy that although the near-surface shear varies with latitude, it varies
coherently with the rotation rate, so that the normalised shear
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in the upper 10 Mm of the solar convection zone is essentially constant (Barekat et al.
2014). An adequate theory should reproduce this remarkable property.

The rotational shear proportional to the rotation rate is a robust prediction of differ-
ential rotation theory for the case of a short correlation time of the convective turbulence
compared to the rotation period (Rüdiger 1989). The upper 10 Mm of the NSSL belong
to this case. The constant normalised shear then follows from the standard stress-free
condition for the upper boundary.

2. Differential rotation theory for NSSL

Thermal convection is driven by buoyancy forces pointing up or down the radius.
Convective turbulence can therefore be anisotropic, with different intensities of radial
and horizontal mixing. Lebedinsky (1941) was probably the first to point out that the
influence of anisotropic turbulence on global rotation is not limited to the smoothing
of rotational inhomogeneity by turbulent viscosity. Anisotropy allows the turbulence to
generate differential rotation through non-diffusive fluxes of angular momentum (see
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Figure 1. Depth profile of the Coriolis number (3) in the NSSL. The solid line shows the profile
for the depth range where Barekat et al. (2014) found the constant shear of Eq. (1). The profile
for greater depths is shown dashed. The star indicates an estimate for the solar granulation.

Kitchatinov 2005, for pictorial explanation). The Lebedinsky effect is now known as the
Λ-effect (Rüdiger 1989, p.37).

The turbulent transport of momentum is accounted for in the mean field hydrodynam-
ics by the Reynolds stress, Rij =−ρ〈uiuj〉, where the angular brackets mean averaging, ρ
is the density and u is the turbulent velocity. The differential rotation theory distinguishes
two parts in the stress tensor,

Rij =Rν
ij +RΛ

ij , (2)

which are responsible for the turbulent viscosity and the Λ-effect.
The key parameter of the theory is the dimensionless factor

Ω∗ = 2τΩ (3)

of the Coriolis force in the normalised equation of motion; τ is the convective turnover
time. The Coriolis number (3) measures the intensity of the interaction between convec-
tion and rotation. The main difficulty with the differential rotation theory was a large
value of the Coriolis number in the depth of the solar/stellar convection zone. Therefore,
the theory has to be non-linear in this number (Rüdiger et al. 2013). However, this diffi-
culty does not apply to the depth range where Barekat et al. (2014) found the constant
normalised shear of Eq. (1). Figure 1 shows small Coriolis number for these depths.

The total depth of the NSSL is conventionally assumed to be about 30Mm. The radial
shear changes sign around this depth (Schou et al. 1998). The shear value decreases and
the relation (1) is violated as this depth is approached (Komm 2022). It is a matter
of definition whether the depths near 30Mm, where the radial shear is no longer large
compared to the latitudinal shear, should be assigned to the NSSL. This paper focuses
on the upper 10Mm of the convection zone where the relation (1) constrains possible
explanations of the NSSL.
A further complication to the theory is that not only the Reynolds stress but also the

meridional flow can also cause differential rotation. However, the meridional flow does
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not enter the stress-free boundary condition,

Rrφ =RΛ
rφ +Rν

rφ = 0 at r=R�, (4)

which controls the surface shear (Kitchatinov 2013).
The smallness of the Coriolis number and the condition (4) simplify matters to such an

extent that the constancy of the normalised shear with latitude can be proved without
addressing any specific approximation of mean-field theory. Since the dependence on
angular velocity enters via the Coriolis number, the Reynolds stress can be linearised in
angular velocity. The general structure for the real RΛ

ij tensor linear in pseudo-vector Ω
reads

RΛ
ij =−ρνΛ (r̂iεjkl + r̂jεikl) r̂kΩl, (5)

where r̂= r/r is the radial unit vector, νΛ is a yet indefinite latitude-independent con-
stant, εjkl is the fully antisymmetric unit tensor and repetition of subscripts means
summation. The viscous part of the Reynolds stress is given by the viscosity tensor Nijkl

Rν
ij = ρNijkl(∇lVk), (6)

where V is the large-scale velocity, which includes rotation and the meridional circulation.
General expression for the viscosity tensor in the case of horizontally isotropic turbulence
(〈u2φ〉= 〈u2θ〉 	= 〈u2r〉) is

Nijkl = ν1 (δikδjl + δjkδil) + ν2δijδkl + ν3 (δikr̂j r̂l + δjkr̂ir̂l)

+ν4 (δilr̂j r̂k + δjlr̂ir̂k) + ν5δij r̂kr̂l + ν6δklr̂ir̂j + ν7r̂ir̂j r̂kr̂l. (7)

Substituting Eqs. (5–7) into Eq. (4) gives the expression for the normalised shear
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∂Ω

∂r
=− νΛ

ν1 + ν3
(8)

in terms of the eddy transport coefficients for the case of a horizontally isotropic
background turbulence and small Coriolis number.
The normalised shear (8) is constant with latitude. This constancy is therefore a

robust result of mean-field theory independent of any particular theoretical tool used
to derive the shear. However, the value of the surface shear depends on the - necessarily
approximate - theoretical tool used for the evaluation. Derivations with the quasi-linear
approximation give (Kitchatinov 2023)

r

Ω

∂Ω

∂r
=

〈u2h〉
〈u2r〉

− 2, (9)

where u2h = u2φ + u2θ is the intensity of horizontal mixing. Shear is negative for anisotropy

of radial type, 〈u2r〉> 〈u2φ〉= 〈u2θ〉, as it should be (Lebedinsky 1941).

Equation (9) reproduces the seismically detected shear (1) for 〈u2h〉/〈u2r〉= 1. This
intensity ratio is in agreement with the numerical experiment on the NSSL by
Kitiashvili et al. (2023). The anisotropy parameter AV of their fig. 4 corresponds to
〈u2r〉 � 〈u2h〉 within the convective zone.

3. NSSL and meridional flow

The global meridional flow is an important component of the flux transport dynamo
models for solar activity. The importance of the NSSL for the solar dynamo can be
mediated by the NSSL relation to the meridional flow. The flow is currently understood
to result from a slight imbalance between strong centrifugal and baroclinic drivers of the
flow (see review by Hazra et al. 2023, for further details).
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Figure 2. Centrifugal and baroclinic drivers of the meridional flow and their sum (left) and
the resulting meridional flow (right) as functions of radius for the 45◦ latitude according to the
mean-field model of Kitchatinov and Olemskoy (2011).

The profiles of the two drivers and the resulting meridional flow computed with a mean-
field hydrodynamical model are shown in Fig. 2. The two drivers are almost balanced in
the bulk of the convection zone. Close to the boundaries, a complete set of the boundary
conditions does not allow the additional condition of the thermo-rotational balance to
be satisfied. The increase of the centrifugal driving term near the boundaries violates the
balance. Accordingly, the meridional flow of Fig. 2 reaches its maximum velocity at the
boundaries and decreases inside the convection zone, in agreement with the seismological
detections by Rajaguru and Antia (2015) and Gizon et al. (2020). The meridional flow
is generated in the NSSL.

4. Conclusions

The NSSL is a consequence of the radial type of anisotropy of the near-surface con-
vection, and the condition (4) that the external azimuthal force is zero. The constancy
of the normalised surface shear (1) with latitude is a consequence of the short convective
turnover time relative to the rotation period in the depth range where the constancy was
found.
Global meridional flow is excited in the boundary layers near the top and bottom of the

convection zone. The large rotational shear in the NSSL drives the meridional circulation
by its non-conservative centrifugal force.
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