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LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL
NUMBERS

VIERA GAVALOVÁ AND DIEGO A. MEJÍA

Abstract. We propose a reformulation of the ideal N of Lebesgue measure zero sets of reals modulo an
ideal J on�, which we denote by NJ . In the same way, we reformulate the ideal E generated by F� measure
zero sets of reals modulo J, which we denote by N∗

J . We show that these are �-ideals and that NJ = N
iff J has the Baire property, which in turn is equivalent to N∗

J = E . Moreover, we prove that NJ does not
contain co-meager sets and N∗

J contains non-meager sets when J does not have the Baire property. We
also prove a deep connection between these ideals modulo J and the notion of nearly coherence of filters
(or ideals).

We also study the cardinal characteristics associated with NJ and N∗
J . We show their position with

respect to Cichoń’s diagram and prove consistency results in connection with other very classical cardinal
characteristics of the continuum, leaving just very few open questions. To achieve this, we discovered a new
characterization of add(N ) and cof(N ). We also show that, in Cohen model, we can obtain many different
values to the cardinal characteristics associated with our new ideals.

§1. Introduction. Many notions of topology and combinatorics of the reals have
been reformulated and investigated in terms of ideals on the natural numbers
(always assuming that an ideal contains all the finite sets of natural numbers).
For instance, the usual notion of convergence on a topological space, which states
that a sequence 〈xn : n < �〉 in a topological space converges to a point x ∈ X when
the set {n < � : xn /∈ U} is finite for any open neighborhood U of x, is generalized
in terms of ideals J on the natural numbers by changing the latter requirement by
{n < � : xn /∈ U} ∈ J (see, e.g., [28]). More recent and remarkable examples are
the so-called selection principles, which are reformulated in terms of ideals, and show
deep connections with cardinal characteristics of the real line [17, 37, 38, 41, 42].

In combinatorics of the real line, some classical cardinal characteristics have been
reformulated in terms of ideals (and in many cases they are connected to selection
principles in topology). The most natural examples are the reformulations of the
bounding number bJ and the dominating number dJ in terms of an ideal J on �,
more concretely, with respect to the relation ≤J on ��, which states that x ≤J y
iff {n < � : x(n) � y(n)} ∈ J . These have been investigated by, e.g., Canjar [18],
Blass and Mildenberger [10], also in connection with arithmetic in the sense that,
for any maximal ideal J, bJ = dJ is the cofinality of the ultrapower (on the dual
filter of J) of �. Other classical cardinal characteristics have been reformulated
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2 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

in terms of ideals on �, like the almost disjointness number [21, 23, 36] and the
pseudo-intersection number [13, 43], among others (see [25, Section 8.4]).

In the present paper we offer a reformulation, in terms of ideals on �, of the
ideal of Lebesgue measure zero subsets of the reals. Our reformulation does not
come from a definition of the Lebesgue measure in terms of an ideal J on �, but
it is inspired from one combinatorial characterization of measure zero. Details of
this new definition are provided in Section 2. We work in the Cantor space �2 for
simplicity, but the same reformulations and results can be obtained in other standard
Polish spaces with a measure (see Section 7). We denote by NJ the collection of null
subsets modulo J of �2. It will be clear that NFin = N , the ideal of Lebesgue measure
subsets of �2, where Fin denotes the ideal of finite subsets of �.

We also provide a reformulation of E , the ideal generated by the F� measure zero
subsets of �2, in terms of an ideal J on �, which we denote by N ∗

J . As expected, we
have N ∗

Fin = E .
We obtain that, for any ideal J on the natural numbers, NJ and N ∗

J are actually
�-ideals on �2 and that, whenever K is another ideal on � and J ⊆ K ,

E ⊆ N ∗
J ⊆ N ∗

K ⊆ NK ⊆ NJ ⊆ N .
In fact, it will be clear from the definitions that, whenever K is a maximal ideal on
�, N ∗

K = NK .
Our first set of main results work as interesting characterizations of ideals on �

with the Baire property:

Theorem A. Let J be an ideal on�. Then, the following statements are equivalent:
(i) J has the Baire property.

(ii) NJ = N .
(iii) N ∗

J = E .

Although no new ideals on the reals are obtained from ideals with the Baire
property, we obtain new characterizations of the ideals N and E . Moreover, ideals
without the Baire property offer new ideals on the reals that are worth of research:
the previous result can be expanded in connection with M, the ideal of meager
subsets of �2.

Theorem B. Let J be an ideal on �. Then, the following statements are equivalent:

(i) J does not have the Baire property. (iv) No member of NJ is co-meager.
(ii) NJ � N . (v) M∩N � NJ .
(iii) E � N ∗

J . (vi) N ∗
J � M.

Theorems A and B summarize Theorems 2.18, 3.7, and 3.11 and Corollary 3.5.
There are two elements providing the proof of these results. The first corresponds
to monotonicity results with respect to the well-known Katětov–Blass order ≤KB

and Rudin–Blass order ≤RB between ideals (Theorem 2.15), and the second is
Bartoszyński’s and Scheepers’ game [5] that characterizes filters (and hence ideals)
with the Baire property, which we use to prove many properties of NJ and N ∗

J for
any ideal J on � without the Baire property, specifically that NJ cannot contain
co-meager subsets of �2, and that N ∗

J contains non-meager sets.
About the connection between NJ and NK for different ideals J and K on �,

(and likewise for N ∗
J and N ∗

K ), we discovered a deep connection between these
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LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS 3

ideals and the notion of nearly coherence of ideals (or filters) on �, original from
Blass [7]. The ideals J and K are nearly coherent if there is some finite-to-one function
f : � → � such that

{
y ⊆ � : f–1[y] ∈ J ∪K

}
generates an ideal. We prove that

nearly coherence of ideals is characterized as follows:

Theorem C (Theorem 4.10). Let J and K be ideals on �. Then the following
statements are equivalent:

(i) J and K are nearly coherent.
(ii) There is some ideal K ′ such that N ∗

J ∪N ∗
K ⊆ N ∗

K ′ ⊆ NK ′ ⊆ NJ ∩NK .
(iii) N ∗

J ⊆ NK .

This means that, whenever J and K are not nearly coherent, the ideals NJ and
NK are quite different, likewise for N ∗

J and N ∗
K .

Blass and Shelah [11] proved that it is consistent with ZFC that any pair of ideals
are nearly coherent, which is known as NCF, the principle of nearly coherence of
filters. Theorem C implies that, under NCF, there is only one NJ for maximal ideals
J on�. We still do not know whether NCF implies that there is just one NJ (or N ∗

J )
for J without the Baire property. On the other hand, when we assume that there are
not nearly coherent ideals (which is consistent with ZFC, e.g., it is valid under CH
and in random model, see [7, Section 4]), we can construct a non-meager ideal K
on � such that N ∗

K 
= NK (Lemma 4.11). In contrast with the previous question,
we do not know whether ZFC proves the existence of an ideal K without the Baire
property such that N ∗

K 
= NK .
The proof of Theorem C uses Eisworth’s game that characterizes nearly coherence

[20]. Another element relevant to this proof is the order ≤KB, which is the dual of
the Katětov–Blass order (see Definition 2.14). If J and K are nearly coherent then
it is clear that there is some ideal K ′ such that J,K≤KBK

′, but the converse is also
true thanks to Theorem C. This equivalence is claimed in [7], but here we present
an alternative proof using our new ideals.

We also study the cardinal characteristics associated with the ideals NJ and N ∗
J ,

i.e., additivity, covering, uniformity, and cofinality. Recall that s denotes the splitting
number and r the reaping number.1 In ZFC, we can prove the following result.

Theorem D. Let J be an ideal on �. With respect to Cichoń’s diagram (see
Figure 1):

(a) cov(N ) ≤ cov(NJ ) ≤ cov(N ∗
J ) ≤ cov(E) ≤ min{cof(M), r} and

max{add(M), s} ≤ non(E) ≤ non(N ∗
J ) ≤ non(NJ ) ≤ non(N ),

i.e., the coverings of NJ and N ∗
J are between cov(N ) and min{cof(M), r}, and

their uniformities are between min{add(M), s} and non(N ).
(b) The additivities of NJ and N ∗

J are between add(N ) and cov(M), and their
cofinalities are between non(M) and cof(N ).

The previous theorem summarizes Theorem 5.6 and Corollary 5.13. Item (a)
follows directly by the subset relation between the ideals, and also because add(E) =

1We assume that the reader is somewhat familiar with classical cardinal characteristics of the
continuum, so we do not repeat their definitions in this paper. The reader can refer to, e.g., [9].
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4 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

Figure 1. Cichoń’s diagram including the cardinal characteristics associated with
our ideals, s and r, as stated in Theorem D.

add(M) and cof(E) = cof(M) due to Bartoszyński and Shelah [6]. Results from the
latter reference guarantee easily the connections with cov(M) and non(M) in (b),
but the connections with add(N ) and cof(N ) require quite some work. To prove
this, we define two cardinal characteristics bJ (Ω) and dJ (Ω). It will not be hard
to show that the additivities and cofinalities of NJ and N ∗

J are between bJ (Ω) and
dJ (Ω) (Definition 5.9), and that bFin(Ω) ≤ bJ (Ω) and dJ (Ω) ≤ dFin(Ω). The real
effort is to prove the following new characterization of add(N ) and cof(N ).

Theorem E (Theorem 5.12). bFin(Ω) = add(N ) and dFin(Ω) = cof(N ).

In terms of inequalities with classical characteristics of the continuum, Theorem D
seems to be the most optimal: we also manage to prove that, in most cases, no further
inequalities can be proved, not just with the cardinals in Cichoń’s diagram, but with
many classical cardinal characteristics of the continuum. We just leave few open
questions, for example, whether it is consistent that cov(NJ ) < add(M) (and even
smaller than the pseudo-intersection number p) for some maximal ideal J (likewise
for cof(M) < non(NJ )). This is all dealt with in Section 6.

Many consistency results supporting the above comes from the forcing model
after adding uncountably many Cohen reals.

Theorem F (Theorem 6.4). Let � be an uncountable cardinal. After adding �-many
Cohen reals: for any regular uncountable κ ≤ � there is some (maximal ) ideal Jκ on
� such that add(NJκ ) = cof(NJκ ) = κ.
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This shows that there are many different values for the cardinal characteristics
associated with different NJ after adding many Cohen reals. This potentially shows
that many of these values can be strictly between non(M) and cov(M) because,
after adding �-many Cohen reals, non(M) = ℵ1 and � ≤ cov(M) (and c = � when
�ℵ0 = �). See more in Section 6, specifically item (M1). This is inspired in Canjar’s
result [18] stating that, after adding �many Cohen reals, for any uncountable regular
κ ≤ � there is some (maximal) ideal Jκ such that bJκ = dJκ = κ.

1.1. Structure of the paper. In Section 2 we define NJ and N ∗
J , prove their basic

properties, the monotonicity with respect to the orders ≤KB, ≤KB, and ≤RB, and
that NJ = N and N ∗

J = E when J has the Baire property. In Section 3 we deal
with ideals without the Baire property and finish to prove Theorems A and B.
Section 4 is devoted to our results related to nearly coherence of ideals, specifically
with the proof of Theorem C. Section 5 presents ZFC results about the cardinal
characteristics associated with our new ideals, mainly the proof of Theorems D
and E, and Section 6 deals with the consistency results and Theorem F. Finally, in
Section 7, we present discussions and summarize some open questions related to
this work.

§2. Measure zero modulo ideals. We first present some basic notation. In general,
by an ideal on M we understand a family J ⊆ P(M ) that is hereditary (i.e., a ∈ J
for any a ⊆ b ∈ J ), closed under finite unions, containing all finite subsets of M
and such thatM /∈ J . Let us emphasize that ideals on� or on any countable set can
not be �-ideals. We focus on ideals on � and we use the letters J and K exclusively
to denote such ideals. For P ⊆ P(M ) we denote

Pd = {a ⊆M : M \ a ∈ A}.

Recall that F ⊆ P(M ) is a filter when F d is an ideal. A maximal filter U ⊆ P(M )
with respect to inclusion is called an ultrafilter. For an ideal K ⊆ P(M ) we denote
K+ = P(M ) \K . One can see that a ∈ K+ if and only ifM \ a /∈ Kd .

A setA ⊆ P(M ) generates an ideal on M iff it has the so called finite union property,
i.e.,M \

⋃
C is infinite for any finite C ⊆ A. In this case, the ideal generated by A

is2 {
a ⊆M : a \

⋃
C is finite for some finite C ⊆ A

}
.

When s and t are functions (or sequences s = 〈si : i ∈ a〉 and t := 〈ti : i ∈ b〉), s ⊆
t means that s extends t, i.e., doms ⊆ domt and t � doms = s (or, a ⊆ b and si = ti
for all i ∈ a). We denote by � the Lebesgue measure defined on the Cantor space �2,
that is, the (completion of the) product measure on �2 =

∏
n<� 2 where 2 = {0, 1}

is endowed with the probability measure that sets {0} of measure 1
2 . In fact, for any

s ∈ 2<� ,�([s]) = 2–|s| where |s |denotes the length of s and [s] := {x ∈ �2 : s ⊆ x}.
Recall that {[s] : s ∈ 2<�} is a base of clopen sets of the topology of �2. Then

N := {A ⊆ �2 : � (A) = 0} and M := {A ⊆ �2 : A is meager}
are �-ideals, i.e., the union of any countable subset of the ideal belongs to the ideal.

2Considering that an ideal must contain all finite sets.
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6 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

The ideal N has a combinatorial characterization in terms of clopen sets. To
present this, we fix the following terminology. We usually write c̄ := 〈cn : n ∈ �〉
for sequences of sets.

Definition 2.1. Denote Ω := {c ⊆ �2 : c is a clopen set}. For ε : � → (0,∞),
consider the set

Ω∗
ε := {c̄ ∈ �Ω : (∀ n ∈ �) � (cn) ≤ εn}.

For each c̄ ∈ �Ω (or in �P(�) in general) denote

N (c̄) :=
⋂
m<�

⋃
n≥m
cn = {x ∈ �2 : |{n ∈ � : x ∈ cn}| = ℵ0},

N ∗(c̄) :=
⋃
m<�

⋂
n≥m
cn = {x ∈ �2 : |{n ∈ � : x /∈ cn}| < ℵ0}.

Fact 2.2 [4, Lemma 2.3.10]. Let ε : � → (0,∞), and assume that
∑
i∈� εi <∞.

Then:

(a) For any c̄ ∈ Ω∗
ε , N (c̄) ∈ N .

(b) For any X ⊆ �2, X ∈ N iff (∃ c̄ ∈ Ω∗
ε ) X ⊆ N (c̄).

The analog of Fact 2.2 usingN ∗(c̄) becomes the characterization of E , the �-ideal
generated by the closed measure zero subsets of �2.

Fact 2.3. Let ε : � → (0,∞) and assume that lim inf i→∞ εi = 0. Then:

(a) For any c̄ ∈ Ω∗
ε , N

∗(c̄) ∈ E .
(b) For any X ⊆ �2, X ∈ E iff (∃ c̄ ∈ Ω∗

ε ) X ⊆ N ∗(c̄).

Proof. Item (a) is clear because, for any n ∈ �,
⋂
m≥n cm is closed and, since

lim inf
i→∞

εi = 0 and c̄ ∈ Ω∗
ε , it has measure zero.

For (b), the implication ⇐ is clear by (a). To see ⇒, let X ∈ E , i.e., X ⊆
⋃
n<� Fn

for some increasing sequence 〈Fn : n < �〉 of closed measure zero sets. For each
n < �, we can cover Fn with countably many basic clopen sets [sn,k] (k < �) such
that

∑
k<�

�([sn,k]) < εn, but by compactness only finitely many of them cover Fn, so

Fn ⊆ cn :=
⋃
k<mn

[sn,k] for some mn < �, and �(cn) < εn. Then c̄ := 〈cn : n < �〉
is as required. �

Motivated by the combinatorial characterization ofN andE presented in Facts 2.2
and 2.3, we introduce a smooth modification of these via ideals on �. To start, we
fix more terminology and strengthen the previous characterizations.

Definition 2.4. Denote Ω := {c̄ ∈ �Ω : N (c̄) ∈ N}.

By Fact 2.2(a) we have that Ω∗
ε ⊆ Ω whenever ε : � → (0,∞) and

∑
i<� εi <∞.

Hence, as a direct consequence of Fact 2.2, we obtain the following equivalence.

Fact 2.5. For any X ⊆ �2, X ∈ N iff X ⊆ N (c̄) for some c̄ ∈ Ω.

We also have the analogous version of E . Before stating it, we characterize Ω as
follows.
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Lemma 2.6. For any sequence c̄ = 〈ci : i < �〉, the following statements are
equivalent.

(i) c̄ ∈ Ω.
(ii) (∀ ε ∈ Q+) (∃N < �) (∀ n ≥ N ) �

(⋃
N≤i<n ci

)
< ε.

(iii) For any ε : � → (0,∞) there is some interval partition Ī = 〈In : n < �〉 of �
such that �

(⋃
i∈In ci

)
< εn for all n > 0.

(iv) There is an interval partition Ī = 〈In : n < �〉 of � such that

∑
n<�

�

⎛
⎝⋃
i∈In

ci

⎞
⎠ <∞.

Proof. (i) ⇒ (ii): Let ε be a positive rational number. Since c̄ ∈ Ω,�(N (c̄)) = 0,

so lim
n→∞

�
(⋃

i≥n ci
)

= 0. Then �
(⋃

i≥N ci
)
< ε for some N < �, which clearly

implies that �
(⋃

N≤i<n ci
)
< ε for all n ≥ N .

(ii) ⇒ (iii): Let ε : � → (0,∞). Using (ii), by recursion on n < � we define an

increasing sequence 〈mn : n < �〉 with m0 = 0 such that �
(⋃

mn+1≤i<k ci
)
< εn+1

for all k ≥ mn+1. Then In := [mn,mn+1) is as required.
(iii) ⇒ (iv): Apply (iii) to εn := 2–n.
(iv) ⇒ (i): Choose Ī as in (iv), and let c′n :=

⋃
i∈In ci . It is clear thatN (c̄) = N (c̄′)

and c̄′ ∈ Ω∗
ε where ε : � → (0,∞), εn := �(c′n) + 2–n. Since

∑
n<� �(c′n) <∞, by

Fact 2.2 we obtain that N (c̄) = N (c̄′) ∈ N . Thus c̄ ∈ Ω. �

As a consequence of Lemma 2.6(ii), considering Ω as a countable discrete space,
the fact below immediately follows.

Corollary 2.7. The set Ω is Borel in �Ω.

Lemma 2.8. The ideal E is characterized as follows:

(a) N ∗(c̄) ∈ E for any c̄ ∈ Ω.
(b) For X ⊆ �2, X ∈ E iff (∃ c̄ ∈ Ω) X ⊆ N ∗(c̄).

Proof. (a) is proved similarly as Fact 2.3(a), noting that c̄ ∈ Ω implies that
limi→∞ �(ci) = 0 (by Lemma 2.6(ii)). (b) follows by (a) and Fact 2.3. �

We use this characterization to introduce the promised generalized versions of N
and E . Consider the ideal Fin of finite subsets of �. For c̄ ∈ �Ω and x ∈ �2, note
that,

x ∈ N (c̄)⇔{n ∈ � : x ∈ cn} ∈ Fin+,

x ∈ N ∗(c̄)⇔{n ∈ � : x ∈ cn} ∈ Find .

Replacing Fin by an arbitrary ideal on �, we obtain the following notion.

Definition 2.9. Fix an ideal J on �. For c̄ ∈ �Ω, define

NJ (c̄) :=
{
x ∈ �2 : {n ∈ � : x ∈ cn} ∈ J+}

,

N ∗
J (c̄) :=

{
x ∈ �2 : {n ∈ � : x ∈ cn} ∈ Jd

}
.
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8 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

These sets are used to define the families:

NJ :=
{
X ⊆ �2 : (∃ c̄ ∈ Ω) X ⊆ NJ (c̄)

}
, (2.1)

N ∗
J :=

{
X ⊆ �2 : (∃ c̄ ∈ Ω) X ⊆ N ∗

J (c̄)
}
. (2.2)

We say that the members of NJ have measure zero (or are null) modulo J .

Due to Fact 2.5 and Lemma 2.8, we obtain NFin = N and E = N ∗
Fin. Moreover,

one can easily see that, if J ⊆ K are ideals on �, then

N ∗
J ⊆ N ∗

K ⊆ NK ⊆ NJ . (2.3)

In particular, we obtain

E = N ∗
Fin ⊆ N ∗

J ⊆ NJ ⊆ NFin = N . (2.4)

Furthermore, if J is a maximal ideal (i.e., its dual Jd is an ultrafilter), thenNJ = N ∗
J .

We can prove that, indeed, both NJ and N ∗
J are �-ideals on the reals, exactly as

the original notions.

Lemma 2.10. Let J be an ideal on �. Then both NJ and N ∗
J are �-ideals on �2.

Proof. Thanks to (2.4), both NJ and N ∗
J contain all finite subsets of �2 and

the whole space �2 does not belong to them. It is also clear that both families are
downwards closed under ⊆, so it is enough to verify that both NJ and N ∗

J are closed
under countable unions.

Consider c̄k ∈ Ω for each k ∈ �. By recursion, using Lemma 2.6(ii), we define

an increasing sequence 〈nl : l < �〉 of natural numbers such that �
(⋃

n≥nl c
k
n

)
<

1
(l+1)2l

for all k ≤ l . Let I0 := [0, n1) and Il := [nl , nl+1) for l > 0. Then, we define
the sequence c̄ by

cn =

⎧⎨
⎩

⋃
k≤l
ckn , if n ∈ [nl , nl+1),

∅, if n < n0.

Finally,

∑
l<�

�

⎛
⎝⋃
n∈Il

cn

⎞
⎠ ≤

∑
l<�

∑
k≤l
�

⎛
⎝ ⋃
n≥nl

ckn

⎞
⎠ ≤

∑
l<�

∑
k≤l

1
(l + 1)2l

=
∑
l<�

1
2l
<∞,

so c̄ ∈ Ω by Lemma 2.6(iv). It is clear that
⋃
k∈� NJ (c̄k) ⊆ NJ (c̄) and⋃

k∈� N
∗
J (c̄k) ⊆ N ∗

J (c̄). �
Remark 2.11. The following alternative definition does not bring anything new:

Let Ω0 be the set of countable sequences ā = 〈an : n < �〉 of open subsets of �2 such
thatN (ā) ∈ N . DefineNJ (ā) similarly, andN 0

J as the family of subsets of �2 that are
contained in some set of the form NJ (ā) for some ā ∈ Ω0. Define N ∗0

J analogously.
It is not hard to show thatN ∗0

J = N 0
J = N . The inclusionsN ∗0

J ⊆ N 0
J ⊆ N are clear;

to see N ⊆ N ∗0
J , if B ∈ N , then we can find some ā ∈ Ω0 such that B ⊆

⋂
n∈� an

and �(an) < 2–n, so it is clear that B ⊆ N ∗
J (ā). For this reason, it is uninteresting to

consider sequences of open sets instead of clopen sets.
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Remark 2.12. We expand our discussion by allowing ideals on an arbitrary
infinite countable set W instead of �. Namely, for c̄ ∈ WΩ (or in WP(�2)), we
define NJ (c̄) and N ∗

J (c̄) similar to Definition 2.9, Fin(W ) as the ideal of finite
subsets of W,

Ω(W ) :=
{
c̄ ∈ WΩ : NFin(W )(c̄) ∈ N

}
(so Ω(�) = Ω)

and NJ and N ∗
J as in (2.1) and (2.2), respectively. We need this expansion to allow

ideals obtained by operations as in Example 2.13.
Using a one-to-one enumerationW = {wn : n < �} by Lemma 2.6 we get that,

for c̄ ∈ WΩ,

c̄ ∈ Ω(W ) iff, (2.5)

for any ε > 0, there is some finite set a ⊆W such that �

⎛
⎝ ⋃
n∈W\a

cn

⎞
⎠ < ε.

In fact, considering the bijection f : � →W defined by f(n) := wn for n < �, and
the ideal J ′ :=

{
f–1[a] : a ∈ J

}
(which is isomorphic to J), we obtain NJ = NJ ′

and N ∗
J = N ∗

J ′ . As a consequence, NFin(W ) = NFin = N and N ∗
Fin(W ) = N ∗

Fin = E .

Example 2.13. Consider � = N1 ∪ N2 as a disjoint union of infinite sets, let J1

be an ideal on N1 and J2 an ideal on N2. Recall the ideal

J1 ⊕ J2 = {x ⊆ � : x ∩ N1 ∈ J1 and x ∩ N2 ∈ J2}.

Note that:

(1) c̄ ∈ Ω iff c̄ � N1 ∈ Ω(N1) and c̄ � N2 ∈ Ω(N2).
(2) For c̄ ∈ Ω,

NJ1⊕J2(c̄) = NJ1(c̄ � N1) ∪NJ2(c̄ � N2)) and

N ∗
J1⊕J2(c̄) = N ∗

J1
(c̄ � N1) ∩N ∗

J2
(c̄ � N2).

As a consequence:

(3) NJ1⊕J2 is the ideal generated by NJ1 ∪NJ2 , in fact

NJ1⊕J2 =
{
X ∪ Y : X ∈ NJ1 and Y ∈ NJ2

}
.

(4) N ∗
J1⊕J2 = N ∗

J1
∩ N ∗

J2
.

The inclusion ⊆ in both (3) and (4) follows from (2); the converse follows by
the fact that, whenever c̄1 ∈ Ω(N1) and c̄2 ∈ Ω(N2), c̄ ∈ Ω where c̄ = c̄1 ∪ c̄2, i.e.,
c̄ = 〈cn : n < �〉 such that cn := cin when n ∈ Ni (i ∈ {1, 2}), and

NJ1⊕J2(c̄) = NJ1(c̄1) ∪NJ2(c̄2)) and

N ∗
J1⊕J2(c̄) = N ∗

J1
(c̄1) ∩N ∗

J2
(c̄2),

which follow by (1) and (2) because c̄ i = c̄ � Ni for i ∈ {1, 2}.
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10 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

By allowing P(�) instead of an ideal, NP(�)(c̄) = ∅ and N ∗
P(�)(c̄) = �2. Since

J1 ⊕ P(N2) = {a ⊆ � : a ∩ N1 ∈ J1}

is an ideal, for any c̄ ∈ Ω, we obtainNJ1⊕P(N2)(c̄) = NJ1(c̄ � N1) andN ∗
J1⊕P(N2)(c̄) =

N ∗
J1

(c̄ � N1) by (2). Therefore, NJ1⊕P(N2) = NJ1 and N ∗
J1⊕P(N2) = N ∗

J1
. Similar

conclusions are valid for P(N1) ⊕ J2.

We now review the following classical orders on ideals.

Definition 2.14. LetM1 andM2 be infinite sets,K1 ⊆ P(M1) andK2 ⊆ P(M2).
If ϕ : M2 →M1, the projection of K2 under ϕ is the family

ϕ→(K2) =
{
A ⊆M1 : ϕ–1(A) ∈ K2

}
.

We write K1 ≤ϕ K2 when K1 ⊆ ϕ→(K2), i.e., ϕ–1(I ) ∈ K2 for any I ∈ K1.

(1) [7, 26] The Katětov–Blass order is defined by K1 ≤KB K2 iff there is a finite-
to-one function ϕ : M2 →M1 such that I ∈ K1 implies ϕ–1(I ) ∈ K2, i.e.,
K1 ⊆ ϕ→(K2).

(2) [7, 31] The Rudin–Blass order is defined by K1 ≤RB K2 iff there is a finite-to-
one function ϕ : M2 →M1 such that I ∈ K1 if and only if ϕ–1(I ) ∈ K2, i.e.,
ϕ→(K2) = K1.

(3) We also consider the “dual” of the Katětov–Blass order: K1≤KBK2 iff there
is some finite-to-one function ϕ : M1 →M2 such that ϕ→(K1) ⊆ K2.

Recall that the relations ≤KB and ≤RB are reflexive and transitive, and it can be
proved easily that ≤KB also has these properties.

Note that K1≤RBK2 implies K1≤KBK2 and K2≤KBK1. Also recall that K1 ⊆ K2

implies K1≤KBK2 and K1≤KBK2 (using the identity function).
Recall that, if K2 is an ideal onM2, then ϕ→(K2) is downwards closed under ⊆

and closed under finite unions, andM1 
∈ ϕ→(K2). If ϕ is in addition finite-to-one
then ϕ→(K2) is an ideal.

We show that our defined �-ideals behave well under the previous orders. In fact,
this is a somewhat expected result that can usually be obtained for many well-known
objects in topology. For example, given an ideal J on �, consider the relation ≤J
on �� defined by x ≤J y iff {n < � : x(n) � y(n)} ∈ J , and define the cardinal
characteristics

bJ := min
{
|F | : F ⊆ ��, ¬(∃ y ∈ ��) (∀x ∈ F ) x ≤J y

}
,

dJ := min
{
|D| : D ⊆ ��, (∀x ∈ ��) (∃ y ∈ D) x ≤J y

}
.

It is known from [21] that:

(1) If K≤KBJ , then bK ≤ bJ and dJ ≤ dK .
(2) If K≤KBJ , then bK ≤ bJ and dJ ≤ dK .
(3) If K≤RBJ , then bI = bJ and dI = dJ .

We present another similar example in Theorem 5.11.3

3More similar examples of such implications can be found in [25, 38, 41].

https://doi.org/10.1017/jsl.2023.97 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.97


LEBESGUE MEASURE ZERO MODULO IDEALS ON THE NATURAL NUMBERS 11

Theorem 2.15. Let N1 and N2 be countable infinite sets, J an ideal on N1 and let
K be an ideal on N2. Then:

(a) If K≤KBJ , then N ∗
K ⊆ N ∗

J and NJ ⊆ NK .
(b) If K≤KBJ , then N ∗

K ⊆ N ∗
J and NJ ⊆ NK .

(c) If K≤RBJ , then N ∗
J = N ∗

K and NJ = NK .

Proof. Without loss of generality, we may assumeN1 = N2 = � in this proof. Fix
a finite-to-one function f : � → � and let In := f–1[{n}] for any n ∈ �. Given c̄ ∈
Ω we define sequences c̄′ and c̄– by c′n :=

⋃
k∈In ck and c–

k := cf(k). Since N (c̄′) =
N (c̄) and N (c̄–) ⊆ N (c̄), we have that c̄′, c̄– ∈ Ω.

It is enough to show:

(i) K ⊆ f→(J ) implies N ∗
K (c̄) ⊆ N ∗

J (c̄–) and NJ (c̄) ⊆ NK (c̄′), and
(ii) f→(K) ⊆ J implies N ∗

K (c̄) ⊆ N ∗
J (c̄′) and NJ (c̄) ⊆ NK (c̄–).

(i): Assume K ⊆ f→(J ). If x ∈ N ∗
K (c̄) then {n < � : x /∈ cn} ∈ K , so

{k < � : x /∈ c–
k} = f–1[{n < � : x /∈ cn}] ∈ J,

i.e., x ∈ N ∗
J (c̄–); and if x ∈ NJ (c̄), i.e., {k < � : x ∈ ck} /∈ J , then

f–1[{n < � : x ∈ c′n}] = {k < � : x ∈ c′f(k)} ⊇ {k < � : x ∈ ck},

so f–1[{n < � : x ∈ c′n}] /∈ J , i.e., {n < � : x ∈ c′n} /∈ K , which means that x ∈
NK (c̄′).

(ii) Assume f→(K) ⊆ J . If x ∈ N ∗
K (c̄), i.e., {k < � : x /∈ ck} ∈ K , then

f–1[{n < � : x /∈ c′n}] = {k < � : x /∈ c′f(k)} ⊆ {k < � : x /∈ ck},

so f–1[{n < � : x /∈ c′n}] ∈ K , which implies that {n < � : x /∈ c′n} ∈ J , i.e., x ∈
N ∗
J (c̄′); and if x ∈ NJ (c̄) then {n < � : x ∈ cn} /∈ J , so

{k < � : x ∈ c–
k} = f–1[{n < � : x ∈ cn}] /∈ K,

i.e., x ∈ NK (c̄–). �
Example 2.16. Notice that J≤RBJ ⊕ P(�), however, J and P(�) should come

from different sets. Concretely, if J is an ideal on� then J ⊕ P(�) should be formally
taken as J ⊕ P(N′) where N′ is an infinite countable set and � ∩ N′ = ∅. Therefore,
by Theorem 2.15, NJ⊕P(�) = NJ and N ∗

J⊕P(�) = N ∗
J (already known at the end of

Example 2.13).

Recall the following well-known result that characterizes ideals on � with the
Baire property.

Theorem 2.17 (Jalani-Naini and Talagrand [44]). Let J be an ideal on �. Then
the following statements are equivalent.

(i) J has the Baire property in P(�). (iii) Fin≤RBJ.
(ii) J is meager in P(�).

Therefore, as a consequence of Theorem 2.15, the result below follows.

Theorem 2.18. If J is an ideal on � with the Baire property, then NJ = N and
N ∗
J = E .

https://doi.org/10.1017/jsl.2023.97 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.97


12 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

So the �-ideals associated with definable (analytic) ideals do not give new �-ideals
on �2, but they give new characterizations of N and E . The converse of the previous
result is also true, which we fully discuss in the next section.

§3. Ideals without the Baire property. In this section, we study the ideals NJ and
N ∗
J when J does not have the Baire property. With respect to our main results, we

finish to prove Theorem A: an ideal J on � without the Baire property gives us new
�-ideals NJ and N ∗

J . We prove Theorem B as well (see Theorem 3.11).
One of the main tools in our study of NJ and N ∗

J is the technique of filter games.4

For the main results mentioned in the previous paragraph, we will use the meager
game.

Definition 3.1. Let F be a filter on �. The following game of length � between
two players is called the meager gameMF :

• In the nth move, Player I plays a finite set An ∈ [�]<� and Player II responds
with a finite set Bn ∈ [�]<� disjoint from An.

• After � many moves, Player II wins if
⋃

{Bn : n ∈ �} ∈ F , and Player I wins
otherwise.

Let us recall an important result from Bartoszyński and Scheepers about the
aforementioned game.5

Theorem 3.2 [5]. Let F be a filter on �. Then Player I does not have a winning
strategy in the meager game for the filter F if and only if F is not meager in P(�).

We use the meager game to show that, whenever J does not have the Baire
property, no member of NJ can be co-meager with respect to any self-supported
closed subset of �2, i.e., a closed subset of positive measure such that each of its
non-empty (relative) open subsets have positive measure.

Main Lemma 3.3. Let C ⊆ �2 be a self-supported closed set. If J is not meager
thenNJ (c̄) ∩ C is not co-meager in C for each c̄ ∈ Ω. As a consequence, Z ∩ C is not
co-meager in C for any Z ∈ NJ .

Proof. LetC ⊆ �2 be a self-supported closed set, and letG ⊆ C be a co-meager
subset in C. Then there is a sequence 〈Dn : n ∈ �〉 of open dense sets in C such that⋂
n∈� Dn ⊆ G . Moreover, since C is closed, there is a tree T such that C = [T ].
Consider c̄ ∈ Ω and construct the following strategy of Player I for the meager

game for Jd .
The first move:
Player I picks an s0 ∈ T such that [s0] ∩ C ⊆ D0 and chooses n0 < � such that

�
(⋃

n≥n0
cn

)
< � (C ∩ [s0]) (which exists because c̄ ∈ Ω). Player I’s move is n0.

Second move and further:

Player II replies with B0 ∈ [�]<� such that n0 ∩ B0 = ∅. Since �
(⋃

n∈B0
cn

)
<

� (C ∩ [s0]), C ∩ [s0] �
⋃
n∈B0
cn, so there exists an x0 ∈ C ∩ [s0] \

⋃
n∈B0
cn. Then

4One can find a good systematic treatment of filter games and their dual ideal versions in [29, 30].
5See also [29, Theorem 2.11].
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Player I finds an m0 > |s0| such that [x0�m0] ∩
⋃
n∈B0
cn = ∅. Since D1 is dense in

C, Player I can pick an s1 ∈ T such that s0 ⊆ x0�m0 ⊆ s1 and [s1] ∩ C ⊆ D1. Then

Player I moves with an n1 ∈ � such that �
(⋃

n≥n1
cn

)
< � (C ∩ [s1]). Player II

responds with B1 ∈ [�]<� such that n1 ∩ B1 = ∅, and the game continues in the
same way we just described.

Finally, since J is not meager, Player I does not have a winning strategy in the
meager game for Jd . Hence, there is some match 〈(nk, Bk) : k ∈ �〉 where Player I
uses the aforementioned strategy and Player II wins. Thus, we haveF :=

⋃
k∈� Bk ∈

Jd . Define x :=
⋃
k∈� sk . Then, x ∈

⋂
k∈� Dk . On the other hand, x /∈

⋃
n∈F cn

(because [sk+1] ∩
⋃
n∈Bk ck = ∅) and hence x /∈ NJ (c̄). �

Main Lemma 3.3 shows a connection between NJ and meager sets. First recall
the following well-known fact.

Lemma 3.4 (See, e.g., [27]). LetA ⊆ �2. If A is meager in �2 then, for any s ∈ 2<� ,
[s] ∩ A is not co-meager in [s]. The converse is true when A has the Baire property.

Consequences of Main Lemma 3.3 are stated as follows.

Corollary 3.5. If J is an ideal on �, then J does not have the Baire property iff
Z is not co-meager in �2 for any Z ∈ NJ .

Proof. For the implication from left to right, apply Main Lemma 3.3 toC = �2.
For the converse, if J has the Baire property thenNJ = N by Theorem 2.18, and it is
well-known that N contains a co-meager set in �2 (Rothberger’s Theorem [39]). �

Corollary 3.6. Assume that J is an ideal on � without the Baire property. Then,
for any Z ∈ NJ , Z is meager in �2 iff it has the Baire property.

Proof. Assume thatZ ∈ NJ has the Baire property. By Main Lemma 3.3,Z ∩ [s]
is not co-meager in [s] for all s ∈ 2<� . Therefore, by Lemma 3.4, Z is meager in
�2. �

Main Lemma 3.3 gives us the converse of Theorem 2.18 for NJ . Furthermore, we
can prove that there is a meager set of Lebesgue measure zero which is not contained
in NJ for non-meager J .

Theorem 3.7. Let J be an ideal on�. Then, the following statements are equivalent.

(i) NJ � N . (ii) M∩N � NJ . (iii) J is not meager.

Proof. The implication (i) → (iii) follows directly from Theorem 2.18. On the
other hand, since M∩N ⊆ N the implication (ii) → (i) is obvious.

It remains to show (iii) → (ii). First, we choose a closed nowhere dense C ⊆� 2
of positive measure, which can be found self-supported (as in the hypothesis of
Main Lemma 3.3). Then, we findG ⊆ C which is co-meager in C and has Lebesgue
measure zero. Hence G ∈ M∩N , but G /∈ NJ by Main Lemma 3.3. �

The proof of (iii) → (ii) is similar to the proof of E � M∩N from [4, Lemma
2.6.1]. Actually, the latter is already implied by (ii) (see (2.4)).

However, NJ , and even N ∗
J , contain many non-meager sets when J is not meager.

Examples can be obtained from the following construction.
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14 VIERA GAVALOVÁ AND DIEGO A. MEJÍA

Definition 3.8. For any non-empty tree T ⊆ 2<� without maximal nodes we
define c̄T as follows. Enumerate T = {tn : n ∈ �} in such a way that tm ⊆ tn implies
m ≤ n. By recursion on n, construct {tnk : k ≤ n} ⊆ T such that:

(i) t00 ∈ T extends t0 and |t00 | ≥ 1,
(ii) tn+1

n+1 ⊇ tn+1,
(iii) for each k ≤ n, tn+1

k ⊇ tnk , and
(iv) for each k ≤ n + 1, |tn+1

k | ≥ 2n + 2.

Define cTn :=
⋃
k≤n[t

n
k ] and c̄T :=

〈
cTn : n ∈ �

〉
. In addition, the inequality�

(
cTn

)
≤

2–n holds, so c̄T ∈ Ω.

In general, for any sequence ε̄ = 〈εn : n < �〉 of positive reals, it is possible to
construct a similar c̄T,ε̄ such that �

(
cT,ε̄n

)
< εn for all n < �, that is, c̄T,ε̄ ∈ Ω∗

ε̄ . For
this, we just need to modify the length of each tnk accordingly.

Main Lemma 3.9. Let T ⊆ 2<� be a non-empty tree without maximal nodes and
let J be a non-meager ideal on �. Then N ∗

J (c̄T ) ∩G 
= ∅ for every co-meager set
G ⊆ [T ] in [T ], i.e., N ∗

J (c̄T ) is not meager in [T ].
In other words, for any non-empty closed H ⊆ �2 there is some c̄H ∈ Ω such that,

for any non-meager ideal J on �, N ∗
J (c̄H ) ∩H is non-meager in H.

Proof. LetG ⊆ [T ] be co-meager in [T ]. Then, there is a sequence 〈Dn : n ∈ �〉
of open dense sets in [T ] such that

⋂
n∈� Dn ⊆ G . We look for an x ∈ N ∗

J (c̄T ) ∩⋂
n∈� Dn by using the non-meager game.
Construct the following strategy of Player I for the non-meager game for Jd along

with fragments of the desired x.
The first move:
Player I chooses some s0 ∈ T extending t00 such that [s0] ∩ [T ] ⊆ D0. Since s0 ∈ T ,

s0 = tn0 for some n0 ∈ �. Player I moves with A0 := n0 + 1.
Second move and further:
Player II replies with B0. Since B0 ∩ A0 = ∅, by (ii)–(iii) of Definition 3.8, Player

I can extend s0 to some s ′0 ∈ T such that, for any 	 ∈ B0, s ′0 extends t	n0
, and further

finds s1 ∈ T extending s ′0 such that [s1] ∩ [T ] ⊆ D1. Here, s1 = tn1 for some n1 ∈ �,
and Player I moves with A1 := n1 + 1. Player II would reply with some B1 not
intersecting A1, and Player I continues playing in the same way.

Now, since J is not meager, Player I does not have a winning strategy. In particular,
there is some match 〈(An, Bn) : n ∈ �〉 of the game where Player I uses the strategy
defined above and Player II wins, i.e., F :=

⋃
n∈� Bn is in Jd . On the other hand,

Player I constructed the increasing sequence 〈sn : n ∈ �〉 of members of T, so
x :=

⋃
n∈� sn is a branch of the tree. By the definition of the strategy, we have that

x ∈ cTm for any m ∈ F , so x ∈ N ∗
J (c̄T ). Also x ∈ Dn for every n ∈ �. �

As a consequence forT = 2<� , we conclude thatN ∗
J contains non-meager subsets

of �2 when J is an ideal on� without the Baire property. Moreover, let us emphasize
that the same is true for NJ as well (because N ∗

J (c̄) ⊆ NJ (c̄)).

Corollary 3.10. If J is not meager then N ∗
J (c̄T ) and NJ (c̄T ) are not meager

in �2.
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Figure 2. The situation when J is an ideal on � without the Baire property. An
arrow denotes ⊆, while a crossed arrow denotes �. The arrow on the bottom could
be reversed, e.g., when J is a maximal ideal.

In contrast with Main Lemma 3.9, if J has the Baire property then N ∗
J (c̄T ) is

meager in �2 (and even N ∗
J (c̄T ) ∩ [T ] is meager in [T ] when � ([T ]) > 0) because

N ∗
J (c̄T ) ∈ E by Theorem 2.18.
As a consequence of Main Lemma 3.9, we can finally conclude that N ∗

J = E iff J
has the Baire property.

Theorem 3.11. Let J be an ideal on �. Then the following statements are
equivalent:

(i) N ∗
J � M. (iii) E � N ∗

J .
(ii) N ∗

J � M∩N . (iv) J is not meager.

Proof. (iv) → (i) follows by Corollary 3.10; (i) → (ii) is obvious; (ii) → (iii) is
a consequence of E ⊆ M∩N ; (iii) → (iv) is a consequence of Theorem 2.18. �

In the case of NJ , whether J is meager or not, NJ contains non-meager sets.

Corollary 3.12. For every ideal J on �, NJ � M and NJ � M∩N .

Proof. Since N ∗
J ⊆ NJ , the conclusion is clear by Theorem 3.11 when J is not

meager. Otherwise NJ = N , and N contains a co-meager set. �
Figure 2 summarizes the situation in Theorems 3.7 and 3.11 when J is a non-

meager ideal on �.

§4. The effect of nearly coherence of filters. In this section, we prove a
characterization of nearly coherence of filters (or ideals) in terms of the ideals
NJ and N ∗

J . We first recall the notion of nearly coherence.

Definition 4.1 (A. Blass [7]). Two filters F0 and F1 on � are nearly coherent if
there is a finite-to-one function ϕ ∈ �� such that ϕ→(F0) ∪ ϕ→(F1) has the finite
intersection property. Dually, we say that two ideals J0 and J1 are nearly coherent if
there is a finite-to-one function ϕ ∈ �� such that ϕ→(J0) ∪ ϕ→(J1) is contained in
some ideal.

If J0 and J1 are nearly coherent ideals on�, then there is some ideal K in� which
is ≤KB-above both J0 and J1. As a consequence of Theorem 2.15(b), the following
result follows.
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Figure 3. Situation describing Lemma 4.2 (an arrow denotes ⊆).

Lemma 4.2. If J0 and J1 are nearly coherent ideals on �, then there is some ideal
K on � such that N ∗

J0
∪ N ∗

J1
⊆ N ∗

K ⊆ NK ⊆ NJ0 ∩NJ1 (see Figure 3).

SinceN ∗
J = NJ for any maximal ideal J on�, we immediately obtain the following

consequence.

Corollary 4.3. If J and K are nearly coherent ideals and K is maximal , then
N ∗
J ⊆ NK ⊆ NJ . In particular, if J is also a maximal ideal, then NJ = NK .

A. Blass [7] has introduced the following principle, which was proved consistent
with ZFC by Blass and Shelah [11].

(NCF) Near coherence of filters: Any pair of filters on � are nearly coherent.

In fact, u < g (which holds in Miller model [8, 12]) implies NCF [9, Corollary
9.18]. On the other hand, it is possible to obtain not nearly coherence pairs of filters
under CH and in random model [7, Section 4], as well as in Cohen model (e.g.,
Theorem 6.3).

The following is a consequence of Corollary 4.3.

Corollary 4.4. NCF implies that all NJ with J maximal ideal on � are the
same.

We prove the converse of Lemma 4.2 and of Corollaries 4.3 and 4.4, which gives
us a characterization of nearly coherence and NCF. For this purpose, we use the
following game, formulated by T. Eisworth, that characterizes nearly coherence.

Definition 4.5 (Eisworth [20]). Let F0, F1 be two filters on �. The following
game of length � between two players is called the nearly coherence game CF0,F1 :

• In the nth move, Player I plays a finite set An ∈ [�]<� and Player II responds
with a finite set Bn ∈ [�]<� disjoint from An.

• After � many moves, Player II wins if
⋃

{B2n+i : n ∈ �} ∈ Fi for i ∈ {0, 1}.
Otherwise, Player I wins.

Theorem 4.6 (Eisworth [20]). Let F0, F1 be two filters on �. Then F0 and F1 are
nearly coherent iff Player I has a winning strategy of the game CF0,F1 .

We use the nearly coherence game CF0,F1 to prove the following technical lemma.

Main Lemma 4.7. Let C ⊆ �2 be a closed self-supported set. If J and K are not
nearly coherent ideals on � then N ∗

J (c̄T ) /∈ NK where T is the tree without maximal
nodes such that C = [T ], and c̄T is as in Definition 3.8.
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Proof. We use the nearly coherence game CJd ,Kd and build a strategy for Player
I, in order to get an x ∈ N ∗

J (c̄T ) \NK (c̄′) for any c̄′ ∈ Ω.
The first move: Player I first moves with A0 = {0}, and put s0 := t0 (which is the

empty sequence).
The second and third moves, and further:
After Player II replies with B0 ⊆ � \ A0, Player I finds s1 ⊇ s0 in T such that

s1 ⊇ tn0 for every n ∈ B0, and further finds n1 ≥ |s1| such that�
(⋃

	≥n1
c′	

)
< �(C ∩

[s1]), which implies that there is some x1 ∈ C ∩ [s1] \
⋃
	≥n1
c′	 . Player I moves with

A1 = n1 + 1.
After Player II replies with B1 ⊆ � \ A1, Player I finds some m2 ≥ n1 such that

[s2] ∩
⋃
n∈B1
c′n = ∅ where s2 := x1�m2. Player I movesA2 = n2 + 1 where n2 < � is

such that s2 = tn2 .
Afterwards, Player II moves withB2 ⊆ � \ A2, and the same dynamic is repeated:

Player I finds an s3 ⊇ s2 in T such that s3 ⊇ tnn2
for every n ∈ B2, and some n3 ≥ |s3|

such that �
(⋃

	≥n3
c′	

)
< �(C ∩ [s3]), which implies that there is an x3 ∈ C ∩ [s3] \⋃

	≥n3
c′	 . Player I moves with A3 = n3 + 1, and the game continues as described so

far.
Since Player I does not have a winning strategy, there is some run as described

above where Player II wins. Thus, F0 :=
⋃
n∈� B2n ∈ Jd and F1 :=

⋃
n∈� B2n+1 ∈

Kd . Set x :=
⋃
n∈� sn. Note that x ∈ cT	 for any 	 ∈ F0, and x /∈ c′	 for any 	 ∈ F1,

which means that x ∈ N ∗
J (c̄T ) and x /∈ NK (c̄′). �

An application of the previous result to C = �2 yields the following distinction.

Theorem 4.8. If J and K are not near-coherent ideals on � then N ∗
J � NK and

N ∗
K � NJ . In particular, NK 
= NJ and N ∗

J 
= N ∗
K .

It is clear that Fin is nearly coherent with any filter on �. Therefore, any pair of
not nearly coherent filters must be non-meager. The following is a consequence of
Theorems 3.7 and 3.11.

Corollary 4.9. Let J and K be not nearly coherent ideals on �. Then the ideals
E , N ∗

J , NK and N are pairwise different.

The situation in Theorem 4.8 and Corollary 4.9 is illustrated in Figure 4.
We summarize our results as a characterization of nearly coherence.

Theorem 4.10. Let J and K be ideals on�. The following statements are equivalent.

(i) J and K are nearly coherent.
(ii) There is some ideal K ′ on � such that J≤KBK

′ and K≤KBK
′.

(iii) There is some ideal K ′ on � such that N ∗
J ∪N ∗

K ⊆ N ∗
K ′ ⊆ NK ′ ⊆ NJ ∩NK .

(iv) N ∗
J ⊆ NK .

Proof. (i) ⇒ (ii) is obvious; (ii) ⇒ (iii) is immediate from Theorem 2.15; (iii) ⇒
(iv) is obvious; and (iv) ⇒ (i) follows by (the contrapositive of) Theorem 4.8. �

The non-nearly coherence of filters also gives us examples of non-meager ideals J
such that N ∗

J 
= NJ . We do not know how to construct such an example in ZFC.
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Figure 4. Diagram corresponding to the situation in Theorem 4.8 where J and
K are not nearly coherent ideals on �. An arrow denotes ⊆, and a crossed arrow
denotes �. The arrow on the top could be reversed, e.g., whenK is a maximal ideal
(likewise for the arrow on the bottom).

Lemma 4.11. Assume that J1 and J2 are non-nearly coherent ideals on �. Then
J1 ⊕ J2 is non-meager and N ∗

J1⊕J2 
= NJ1⊕J2 .

Proof. Partition� = N1 ∪ N2 into two infinite sets, let ge : � → Ne be a bijection
for each e ∈ {1, 2}, and let J ′e = g→e (Je), which is an ideal on Ne isomorphic with
Je . Here, our interpretation of J1 ⊕ J2 is J ′1 ⊕ J ′2. It is clear that NJ ′1 = NJ1 and
N ∗
J ′1

= N ∗
J1

(by Theorem 2.15(c)).

Recall that non-nearly coherent ideals must be non-meager (this also follows by
Theorem 4.8), so J ′1 × J ′2 is a non-meager subset of �2 = N12 × N22 by Kuratowski–
Ulam Theorem, which implies that J ′1 ⊕ J ′2 is non-meager.

By Example 2.13, N ∗
J ′1⊕J

′
2

= N ∗
J ′1
∩ N ∗

J ′2
= N ∗

J1
∩N ∗

J2
and NJ ′1⊕J ′2 contains both

NJ1 and NJ2 , so N ∗
J ′1⊕J

′
2

= NJ ′1⊕J ′2 would imply that NJ1 ∪NJ2 ⊆ N ∗
J1
∩N ∗

J2
, and

in turn NJ2 ⊆ N ∗
J1

, which implies N ∗
J2

⊆ NJ1 (because N ∗
Je

⊆ NJe ), contradicting
Theorem 4.10 and the fact that J1 and J2 are not nearly-coherent. Therefore,
N ∗
J ′1⊕J

′
2

= NJ ′1⊕J ′2 �

In contrast with the previous result, we do not know whether NCF implies that
all NJ are the same for non-meager J.

§5. Cardinal characteristics. In this section, we focus on investigating the cardinal
characteristics associated with NJ and N ∗

J .
We review some basic notation about cardinal characteristics. Many cardinal

characteristics are defined using relational systems in the following way [45]. A
relational system is a triplet R = 〈X,Y,R〉 where R is a relation and X and Y are
non-empty sets.6 Define

6It is typically assumed that R ⊆ X × Y , but it is not required. In fact, R could be a proper class
relation like ⊆ and ∈.
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b(R) := min {|F | : F ⊆ X, ¬ (∃ y ∈ Y ) (∀x ∈ F ) x R y},
d(R) := min {|D| : D ⊆ Y, (∀x ∈ X ) (∃ y ∈ D) x R y}.

The dual of R is defined by R⊥ := 〈Y,X,R⊥〉 where y R⊥ x iff ¬x R y. Hence
b(R⊥) = d(R) and d(R⊥) = b(R).

Given another relational system R′ = 〈X ′, Y ′, R′〉, say that a pair (ϕ–, ϕ+) is a
Tukey connection from R to R′ if ϕ– : X → X ′, ϕ+ : Y ′ → Y and, for any x ∈ X
and y′ ∈ Y ′, if ϕ–(x)R′ y′ then x Rϕ+(y′).

We say that R is Tukey below R′, denoted by R�TR′, if there is a Tukey connection
from R to R′. Say that R is Tukey equivalent to R′, denoted by R∼=TR′, if R�TR′

and R′�TR. It is known that R�TR′ implies d(R) ≤ d(R′) and b(R′) ≤ b(R). Hence
R∼=TR′ implies d(R) = d(R′) and b(R′) = b(R).

We constantly use the relational system cJI := 〈I,J ,⊆〉 discussed in [4, Chapter
2], and we identify I with the relational system cII . Denote add(I,J ) := b(cJI ) and
cof(I,J ) := d(cJI ). These cardinal characteristics are interesting when I ⊆ J are
ideals on some set X. It is well-known that, for any ideal I on X, we can express the
cardinal characteristics associated with I as follows:

add(I) = add(I, I), cof(I) = cof(I, I),

non(I) = add([X ]<ℵ0 , I), cov(I) = cof([X ]<ℵ0 , I).

In fact, via the relational system CI := 〈X, I,∈〉, we obtain non(I) = b(CI) and
cov(I) = d(CI). The following easy claims illustrate basic relations between these
cardinal characteristics.

Fact 5.1. If I is an ideal on X, I ⊆ I ′ and J ⊆ P(X ) \ {X}, then (cJI′)⊥ �T

CI�TcI
[X ]<ℵ0

. In particular, add(I ′,J ) ≤ cov(I) and non(I) ≤ cof(I ′,J ).

Proof. We only show the first Tukey connection. Define F : J → X such that
F (B) ∈ X \ B (which exists becauseX /∈ J ), and defineG : I → I ′ byG(A) := A.
Then, for A ∈ I and B ∈ J , F (B) ∈ A implies B � A. Hence, (F,G) witnesses
(cJI′)⊥ �T CI . �

Fact 5.2. If I ⊆ I ′ and J ′ ⊆ J then cJI �TcJ
′

I′ . In particular, add(I ′,J ′) ≤
add(I,J ) and cof(I,J ) ≤ cof(I ′,J ′).

Corollary 5.3. IfJ ′ ⊆ J are ideals on X, then cJ
[X ]<ℵ0

�TcJ
′

[X ]<ℵ0
and CJ �T CJ ′ .

In particular, cov(J ) ≤ cov(J ′) and non(J ′) ≤ non(J ).

We look at the cardinal characteristics associated with NJ and N ∗
J when J

is an ideal on �. If J has the Baire property then the cardinal characteristics
associated with NJ equal to those associated with N because NJ = N (Theorem
2.18). Moreover, since N ∗

J = E , the cardinal characteristics associated with N ∗
J

equal to those associated with E . We recall below some results about the cardinal
characteristics associated with E .

Theorem 5.4 ([6], see also [4, Section 2.6]).

(a) min{b, non(N )} ≤ non(E) ≤ min{non(M), non(N )}.
(b) max{cov(M), cov(N )} ≤ cov(E) ≤ max{d, cov(N )}.
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(c) add(E ,N ) = cov(M) and cof(E ,N ) = non(M).
(d) add(E) = add(M) and cof(E) = cof(M).

Theorem 5.5 [4, Lemma 7.4.3]. s ≤ non(E) and cov(E) ≤ r.

Thanks to the previous results, and the fact that E ⊆ N ∗
J ⊆ NJ ⊆ N , the

inequalities below immediately follow.

Theorem 5.6. ZFC proves

cov(N ) ≤ cov(NJ ) ≤ cov(N ∗
J ) ≤ cov(E) ≤ min{cof(M), r},

max{add(M), s} ≤ non(E) ≤ non(N ∗
J ) ≤ non(NJ ) ≤ non(N ).

We now turn to the additivity and cofinality numbers. In the case of J = Fin, we
can characterize add(N ) and cof(N ) using slaloms.

Definition 5.7. Let b = 〈b(n) : n < �〉 be a sequence of non-empty sets, and let
h ∈ ��. Denote ∏

b :=
∏
n<�

b(n),

S(b, h) :=
∏
n<�

[b(n)]≤h(n).

Define the relational system Lc(b, h) := 〈
∏
b, S(b, h),∈∗〉 where

x ∈∗ y iff {n < � : x(n) /∈ y(n)} is finite.

Denote bLc
b,h := b(Lc(b, h)) and dLc

b,h := d(Lc(b, h)).
When b is the constant sequence �, we use the notation Lc(�, h) and denote its

associated cardinal characteristics by bLc
�,h and dLc

�,h .

Theorem 5.8 (Bartoszyński [2, 3]). Assume that h ∈ �� diverges to infinity. Then,
Lc(b, h)∼=TN . In particular, bLc

�,h = add(N ) and dLc
�,h = cof(N ).

We propose the following relational system, which is practical to find bounds for
the additivity and cofinality of NJ and N ∗

J .

Definition 5.9. Let J be an ideal on �. For c, d ∈ Ω, define the relation

c ⊆J d iff {n < � : cn � dn} ∈ J.

Define the relational system SJ := 〈Ω,Ω,⊆J 〉, and denote bJ (Ω) := b(SJ ) and
dJ (Ω) := d(SJ ).

It is clear that bJ (Ω) is regular and bJ (Ω) ≤ cf(dJ (Ω)) ≤ dJ (Ω).

Theorem 5.10. Let J be an ideal on �. Then NJ�TSJ and N ∗
J �TSJ . In particular,

the additivities and cofinalities of NJ and N ∗
J are between bJ (Ω) and dJ (Ω) (see

Figure 5).

Proof. DefineF : NJ → Ω such thatX ⊆ NJ (F (X )) for anyX ∈ NJ , and define
G : Ω → NJ by G(d̄ ) := NJ (d̄ ) for any d̄ ∈ Ω. It is clear that (F,G) is a Tukey
connection from NJ into SJ , because c̄ ⊆J d̄ implies NJ (c̄) ⊆ NJ (d̄ ).
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Figure 5. Diagram of inequalities between the cardinal characteristics associated
with SJ , and the additivities and cofinalities of NJ and N ∗

J .

Similarly, we obtain a Tukey connection from N ∗
J into SJ via functions

F ∗ : N ∗
J → Ω and G∗ : Ω → NJ such that X ⊆ N ∗

J (F ∗(X )) for X ∈ N ∗
J and

G∗(d̄ ) := N ∗
J (d̄ ). �

Analogous to Theorem 2.15, we have the following result about SJ .

Theorem 5.11. Let J and K be ideals on �.

(a) If K≤KBJ , then SJ�TSK , in particular bK (Ω) ≤ bJ (Ω) and dJ (Ω) ≤ dK (Ω).
(b) If K≤KBJ , then SJ�TSK , in particular bK (Ω) ≤ bJ (Ω) and dJ (Ω) ≤ dK (Ω).
(c) If K≤RBJ , then SK∼=TSJ , in particular bK (Ω) = bJ (Ω) and dK (Ω) = dJ (Ω).

Proof. It is clear that (c) follows from (a) and (b).
Let f : � → � be a finite-to-one function and denote In := f–1[{n}]. Like in the

proof of Theorem 2.15, define F ′ : Ω → Ω by F ′(c̄) := c̄′ where c′n :=
⋃
k∈In ck , and

define F – : Ω → Ω by F –(c̄) := c̄– where c–
k := cf(k).

If K ⊆ f→(J ) then (F ′, F –) is a Tukey connection from SJ into SK , which
shows (a). To prove this, assume c̄, d̄ ∈ Ω and c̄′ ⊆K d̄ , and we show c̄ ⊆J
d̄ –. The hypothesis indicates that {n < � : c′n ⊆ dn} ∈ Kd , which implies that{
k < � : c′

f(k) ⊆ df(k)

}
∈ Jd . Since ck ⊆ c′f(k), the previous set is contained in{

k < � : ck ⊆ d –
k

}
, so c̄ ⊆J d̄ –.

To show (b), we verify that, wheneverf→(K) ⊆ J , (F –, F ′) is a Tukey connection
from SJ into SK . Let c̄, d̄ ∈ Ω and assume that c̄– ⊆K d̄ , i.e.,

{
k < � : cf(k) ⊆ dk

}
∈

Kd . Since dk ⊆ d ′f(k), this set is contained in
{
k < � : cf(k) ⊆ d ′f(k)

}
, so

{n < � : cn ⊆ d ′n} ∈ Jd , i.e., c̄ ⊆J d̄ ′. �
In the case J = Fin, we obtain the following characterization of the additivity

and cofinality of N .

Theorem 5.12. bFin(Ω) = add(N ) and dFin(Ω) = cof(N ).

Proof. Note that N = NFin�TSFin by Theorem 5.10, so bFin(Ω) ≤ add(N ) and
cof(N ) ≤ dFin(Ω).

We show the converse inequality for add(N ). It is enough to prove that,
whenever F ⊆ Ω has size<add(N ), it has some upper ⊆Fin-bound. For each c̄ ∈ F ,
find a function fc̄ ∈ �� such that �

(⋃
k≥fc̄ (n) ck

)
< 1

(n+1)2n for all n < �. Now
|F | < add(N ) ≤ b, so there is some increasing f ∈ �� with f(0) = 0 dominating
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fc̄ : c̄ ∈ F

}
, which means that, for any c̄ ∈ F , �

(⋃
k≥f(n) ck

)
< 1

(n+1)2n for all but
finitely many n < �. By making finitely many modifications to each c̄ ∈ F , we can
assume that the previous inequality is valid for all n < �.

For each n < �, let In := [f(n), f(n + 1)). Consider the functions bf and h with

domain� such that bf(n) :=
{
s ∈ InΩ : �

(⋃
k∈In sk

)
< 1

(n+1)2n

}
and h(n) := n + 1.

Since Lc(bf, h)∼=TLc(�, h)∼=TN , we obtain that bLc
bf,h

= add(N ) by Theorem 5.8.

Since F can be seen as a subset of
∏
bf , there is some ϕ ∈ S(bf, h) such that,

for any c̄ ∈ F , c̄ � In ∈ ϕ(n) for all but finitely many n < �. Define d̄ ∈ �Ω by
dk :=

⋃
s∈ϕ(n) sk for k ∈ In. Note that

�

⎛
⎝ ⋃
k∈In

dk

⎞
⎠ = �

⎛
⎝ ⋃
s∈ϕ(n)

⋃
k∈In

sk

⎞
⎠ < 1

(n + 1)2n
(n + 1) =

1
2n
,

thus d̄ ∈ Ω. On the other hand, for any c̄ ∈ F , ck ⊆ dk for all but finitely many
k < �, i.e., c̄ ⊆Fin d̄ .

The proof of dFin(Ω) ≤ cof(N ) is similar. Fix a dominating family D of size d

formed by increasing functions f such that f(0) = 0. For each f ∈ D, note that
dLc
bf,h

= cof(N ) by Theorem 5.8, so we can choose some witness Sf ⊆ S(bf, h)

and, for each ϕ ∈ Sf , define df,ϕk :=
⋃
s∈ϕ(n) sk for k ∈ [f(n), f(n + 1)). Then,

E :=
{
d̄ f,ϕ : ϕf ∈ Sf, f ∈ D

}
has size ≤cof(N ) and it is SFin-dominating, i.e.,

any c̄ ∈ Ω is ⊆Fin-bounded by some d̄ ∈ E. �

Corollary 5.13. The additivities of NJ and N ∗
J are between add(N ) and cov(M)

(at the bottom of Cichoń’s diagram); the cofinalities of NJ and N ∗
J are between

non(M) and cof(N ) (at the top of Cichoń’s diagram).

Proof. Since Fin ≤KB J , by Theorem 5.11 we obtain that bFin(Ω) ≤ bJ (Ω) and
dJ (Ω) ≤ dJ (Ω). Hence, by Theorems 5.10 and 5.12, we obtain

add(N ) ≤ bJ (Ω) ≤ min{add(NJ ), add(N ∗
J )} and

max{cof(NJ ), cof(N ∗
J )} ≤ dJ (Ω) ≤ cof(N ).

On the other hand, by Fact 5.2 and Theorem 5.4, add(NJ ) = add(NJ ,NJ ) ≤
add(E ,N ) = cov(M) and non(M) = cof(E ,N ) ≤ cof(NJ ,NJ ) = cof(NJ ), like-
wise for N ∗

J . �

§6. Consistency results. We show the behaviour of the cardinal characteristics
associated with NJ and N ∗

J in different forcing models. As usual, we start with the
Cohen model, where the behaviour of these cardinal characteristics are similar to
bJ and dJ , in the sense of [18]. Inspired by this reference, we present the following
effect of adding a single Cohen real.

Lemma 6.1. Cohen forcing C adds a real ē ∈ Ω such that, for any ideal J on � in
the ground model, there is some ideal J ′ ⊇ J on � in the generic extension, such that
c̄ ⊆J ′ ē for any c̄ ∈ Ω in the ground model.
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Proof. Consider Cohen forcingC as the poset formed by pairs of finite sequences
p = (np, cp) such that np = 〈npk : k < m〉 is an increasing sequence of natural
numbers, cp = 〈cpi : i < npm–1〉 is a sequence of clopen subsets of �2 and

�

⎛
⎜⎝
n
p
k+1–1⋃
i=np
k

cpi

⎞
⎟⎠ < 2–(k+1) (6.1)

for any k < m – 1. The order is q ≤ p iff nq end-extends np and cq end-extends cp.
If G is C-generic over the ground model V, we define ē by ek := cpk for some p ∈ G
(this value does not depend on such a p). It is easy to show that ē ∈ Ω.

It is enough to show that, in the Cohen extension,

J ∪
{
{k < � : ck � ek} : c̄ ∈ Ω ∩ V

}
has the finite union property,

i.e., � cannot be covered by finitely many members of that collection. Then, the
promised J ′ will be the ideal generated by this collection.

So, in the ground model, fix a ∈ J , F ⊆ Ω finite and p ∈ C with np = 〈npk : k <
m〉 and cp = 〈cpi : i < npm–1〉. We have to show that there is some q ≤ p and some
k < � such that q forces

k /∈ a ∪
⋃
c̄∈F

{k < � : ck � ek},

that is, k /∈ a and ck ⊆ cqk for any c̄ ∈ F . To see this, find some n′ ∈ � \ a larger
than npm–1 such that, for any c̄ ∈ F ,

�

⎛
⎝ ⋃
k≥n′
ck

⎞
⎠ < 1

(|F | + 1)2m+1
.

Define q ∈ C such that nq has length m + 2, it extends np, nqm := n′ and nqm+1 :=
n′ + 1, and such that cq extends cp, cqi = ∅ for all npm–1 ≤ i < n′, and cq

n′ :=
⋃
c̄∈F cn′ .

It is clear that q ∈ C is stronger than p, and that cq
n′ contains cn′ for all c̄ ∈ F . So

k := n′ works. �
Since FS (finite support) iterations of (non-trivial) posets adds Cohen reals at

limit steps, we have the following general consequence of the previous lemma.

Theorem 6.2. Let 
 be a limit ordinal with uncountable cofinality and let
P = 〈Pα, Q̇α : α < 
〉 be a FS iteration of non-trivial cf(
)-cc posets. Then, P forces
that there is some (maximal ) ideal J such that bJ (Ω) = add(NJ ) = add(N ∗

J ) =
cof(N ∗

J ) = cof(NJ ) = dJ (Ω) = cf(
).

Proof. LetL := {0} ∪ {α < 
 : α limit}. For eachα ∈ L let ēα be a Pα+�-name
of a Cohen real in Ω (in the sense of the proof of Lemma 6.1) over the Pα-extension.
We construct, by recursion, a sequence 〈J̇α : α ∈ L ∪ {
}〉 such that J̇α is a Pα-
name of an ideal on � and P forces that J̇α ⊆ J̇� when α < � . We let J̇0 be (the
P0-name of) any ideal J0 in the ground model.7 For the successor step, assume we

7Recall that P0 is the trivial poset, so its generic extension is the ground model itself.
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have constructed J̇α at a stage α ∈ L. By Lemma 6.1, we obtain a Pα+�-name J̇α+�

of an ideal extending J̇α , such that ēα ⊆J̇α+� -dominates all the c̄ ∈ Ω from the
Pα-extension. For the limit step, when  is a limit point of L (which includes the
case  = 
), just let J̇ be the P -name of

⋃
α< J̇α . This finishes the construction.

We show that J̇
 is as required. In the final generic extension, since ēα ⊆J�+� ē� for
all α < � in L and J�+� ⊆ J
, we obtain ēα ⊆J
 ē� . To conclude bJ
(Ω) = dJ
(Ω) =
cf(
), it remains to show that {ēα : α ∈ L} is ⊆J
 -dominating (because L is cofinal
in 
, and the rest follows by Theorem 5.10). Indeed, if c̄ ∈ Ω in the final extension,
then c̄ is in some intermediate extension atα ∈ L, so c̄ ⊆Jα+� ēα and hence c̄ ⊆J
 ēα .

It is then clear that bJ
(Ω) ≤ dJ
(Ω) ≤ cf(
). For cf(
) ≤ bJ
(Ω), if F ⊆ Ω has
size <cf(
), then we can find, for each c̄ ∈ F , some αc̄ ∈ L such that c̄ ⊆J
 ēαc̄ .
Since |F | < cf(
), there is some � ∈ L larger than αc̄ for all c̄ ∈ F , so ēαc̄ ⊆J
 ē� .
Then ē� is a ⊆J
 -upper bound of F (because ⊆J
 is a transitive relation).

Note that any (maximal) ideal extending J
 also satisfies the conclusion (by
Theorem 5.11). �

The previous results gives a lot of information about the effect of adding many
Cohen reals.

Theorem 6.3. Let � be an uncountable cardinal. ThenC� forces that, for any regular
ℵ1 ≤ κ ≤ �, there is some (maximal ) ideal Jκ on � such that bJκ (Ω) = add(NJκ ) =
add(N ∗

Jκ ) = cof(N ∗
Jκ ) = cof(NJκ ) = dJκ (Ω) = κ.

Proof. Let κ be a regular cardinal between ℵ1 and �. Recall that C� is forcing
equivalent with C�+κ, so we show that the latter adds the required Jκ. In fact,
C�+κ can be seen as the FS iteration of C of length �+ κ. Since cf(�+ κ) = κ, by
Theorem 6.2 we get that C�+κ adds the required Jκ. Note that any (maximal) ideal
extending Jκ also satisfies the conclusion (by Theorem 5.11). �

Using sums of ideals, we can obtain from the previous theorem that, after adding
many Cohen reals, there are non-meager ideals K satisfying non(N ∗

K ) < non(NK )
and cov(NK ) < cov(N ∗

K ) (Corollary 6.5). Before proving this, we calculate the
cardinal characteristics associated with some operations of ideals.

Lemma 6.4. Let I and J be ideals on an infinite set X. Then:
(a) min{add(I), add(J )} ≤ add(I ∩ J ) and cof(I ∩ J ) ≤ max{cof(I),

cof(J )}.
(b) non(I ∩ J ) = min{non(I), non(J )} and cov(I ∩ J ) = max{cov(I),

cov(J )}.
For the following items, assume that I ∪ J generates an ideal K.

(c) min{add(I), add(J )} ≤ add(K) and cof(K) ≤ max{cof(I), cof(J )}.
(d) max{non(I), non(J )} ≤ non(K) and cov(K) ≤ min{cov(I), cov(J )}.

Proof. We use the product of relational systems to shorten this proof. If
R = 〈X,Y,R〉 and R′ = 〈X ′, Y ′, R′〉 are relational systems, we define R × R′ :=
〈X × X ′, Y × Y ′, R×〉 with the relation (x, x′)R× (y, y′) iff x R y and x′R′ y′.
Recall that b(R × R′) = min{b(R), b(R′)} and max{d(R), d(R′)} ≤ d(R × R′) ≤
d(R) · d(R′) (so equality holds when some d-number is infinite), see, e.g., [9,
Section 4].
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As relational systems, it is easy to show that I ∩ J�TI × J and CI∩J�TCI ×
CJ , which implies (a), min{non(I), non(J )} ≤ non(I ∩ J ) and cov(I ∩ J ) ≤
max{cov(I), cov(J )}. The converse inequality for the uniformity and the covering
follows by Corollary 5.3, as well as (d).

We can also show that K�TI × J , which implies (c). �

Corollary 6.5 (of Theorem 6.3). The poset C� forces that, for any regular
ℵ1 ≤ κ1 ≤ κ2 ≤ �, there is some non-meager ideal K such that

add(N ∗
K ) = add(NK ) = non(N ∗

K ) = cov(NK ) = κ1,

cof(N ∗
K ) = cof(NK ) = cov(N ∗

K ) = non(NK ) = κ2.

Proof. In the C�-generic extension, let Jκ be a maximal ideal as in Theo-
rem 6.3. We show that K := Jκ1 ⊕ Jκ2 is the required ideal. By Example 2.13,
N ∗
K = N ∗

Jκ1 ∩N ∗
Jκ2 and NK is the ideal generated by N ∗

Jκ1 ∪N ∗
Jκ2 , so by Lemma 6.4

we can perform the following calculations:

κ1 = min{add(N ∗
Jκ1 ), add(N ∗

Jκ2 )} ≤ add(N ∗
K )

≤ non(N ∗
K ) = min{non(N ∗

Jκ1 ), non(N ∗
Jκ2 )} = κ1;

κ1 = min{add(NJκ1 ), add(NJκ2 )} ≤ add(NK )

≤ cov(NK ) ≤ min{cov(NJκ1 ), cov(NJκ2 )} = κ1;

κ2 = max{cov(N ∗
Jκ1 ), cov(N ∗

Jκ2 )} = cov(N ∗
K )

≤ cof(N ∗
K ) ≤ max{cof(N ∗

Jκ1 ), cof(N ∗
Jκ2 )} = κ2;

κ2 = max{non(NJκ1 ), non(NJκ2 )} ≤ non(NK )

≤ cof(NK ) ≤ max{cof(NJκ1 ), cof(NJκ2 )} = κ2. �

We do not know how to force that there is some non-meager ideal K such that
add(N ∗

K ) 
= add(NK ), likewise for the cofinality.
Using Theorem 6.3 and well-known forcing models, we can show that ZFC cannot

prove more inequalities of the cardinal characteristics associated with our new ideals
with the classical cardinal characteristics of the continuum of Figure 6, but leaving
some few open questions. We skip most of the details in the following items, but the
reader can refer to the definition of the cardinal characteristics and their inequalities
in [1, 4, 9 ], and learn the forcing techniques from, e.g., [4, 9, 14, 32, 33].

(M1) Using � > ℵ2, C� forces that there is some (maximal) ideal J on
� such that non(M) = g = a = ℵ1 < add(NJ ) = cof(NJ ) = add(N ∗

J ) =
cof(N ∗

J ) < cov(M) (see Theorem 6.3).
(M2) We can iterate the Hechler poset, followed by a large random algebra, to

force non(N ) = ℵ1 < b = d = a < cov(N ) = c. In this generic extension,
we obtain add(NJ ) = add(N ∗

J ) = non(NJ ) = non(N ∗
J ) = g = ℵ1 < b =

d = a < cov(NJ ) = cov(N ∗
J ) = cof(NJ ) = cof(N ∗

J ) = c for any ideal J on
�. This idea to force with a random algebra after some other FS iteration
of ccc posets is original from Brendle, but some details can be found in [22,
Section 5].
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Figure 6. Cichoń’s diagram and the Blass diagram combined, also including the
coverings and uniformities of our new ideals. An arrow x → y means that ZFC
proves x ≤ y.

(M3) In the Miller model, non(M) = non(N ) = u = a = ℵ1 < g = c = ℵ2,
so NCF follows. Hence add(NJ ) = add(N ∗

J ) = non(NJ ) = non(N ∗
J ) =

cov(NJ ) = cov(N ∗
J ) = ℵ1 < g = c = ℵ2 for any ideal J on �, e.g., since

ZFC proves cov(E) ≤ r ≤ u, cov(E) = ℵ1 in the Miller model. Although
cof(NJ ) and cof(N ∗

J ) are ℵ2 when J has the Baire property, we do not
know what happens when J does not have the Baire property (or just in
the case of maximal ideals).

(M4) In the Mathias model, cov(E) = ℵ1 < h = c = ℵ2 (the first equality due to
the Laver property). Hence add(NJ ) = add(N ∗

J ) = cov(NJ ) = cov(N ∗
J ) =

ℵ1 < non(NJ ) = non(N ∗
J ) = cof(NJ ) = cof(N ∗

J ) = ℵ2 (notice that h ≤
s ≤ non(E)).

(M5) Assume κ and � cardinals such that ℵ1 ≤ κ ≤ � = �ℵ0 . The FS iteration
of Hechler forcing of length �κ (ordinal product) forces e = g = s = ℵ1,
add(M) = cof(M) = κ and non(N ) = r = c = �. Thanks to Theorem 6.2,
there is a (maximal) ideal Jκ on � such that add(NJκ ) = add(N ∗

Jκ ) =
cof(N ∗

Jκ ) = cof(NJκ ) = κ. In general, we can just say that the additivities
and coverings of NJ and N ∗

J are below κ, and that their uniformities and
cofinalities are above κ for any ideal J on �.
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Since the Hechler poset makes the set of reals from the ground model
meager, we have that any ideal J0 on� with a set of generators in the ground
model (or in any intermediate extension) is meager in the final extension, so
cov(NJ0) = ℵ1 and non(NJ0) = c = �. We still do not know how to obtain
a maximal (or just non-meager) ideal J ′ in the final extension such that
cov(NJ ′) = ℵ1 and non(NJ ′) = �.

(M6) With κ and � as in (M5), there is a FS iteration of length �κ of �-centered
posets forcing cov(N ) = ℵ1, p = u = a = i = κ and non(N ) = c = �. For
example, by counting arguments, we make sure to force with all �-centered
posets of size <κ, while adding witnesses of u, a and i of size κ using
a cofinal subset of �κ of size κ (for u, use Mathias–Prikry forcing with
ultrafilters, and for a and i use Hechler-type posets as in [24], all of which
are �-centered). We have exactly the same situation of the previous model
for the cardinal characteristics associated with NJ and N ∗

J .
(M7) Over a model of CH, the countable support iteration of length �2 of the

tree forcing from [15, Lemma 2] forces d = cov(E) = ℵ1 < non(E) = ℵ2.
Concretely, this forcing is proper, ��-bounding, and does not add random
reals (see also [4, Section 7.3B]), hence cov(E) ≤ max{d, cov(N )} = ℵ1

(see Theorem 5.4). In this generic extension, all additivities and coverings
of NJ and N ∗

J are ℵ1, while the uniformities and cofinalities are ℵ2.
(M8) Brendle’s model [16] of cof(N ) < a clearly satisfies that the cardinal

characteristics associated with NJ and N ∗
J are strictly smaller than a for

every ideal J on �.
It is not clear from the above whether g ≤ cof(NJ ) in ZFC for all J, and whether

we can force cov(NJ ) < p and non(NJ ) > max{u, i} for some non-meager J.

§7. Discussions and open questions. We developed our work in the Cantor space,
but we could as well work in other Polish spaces with a measure (on the Borel
�-algebra), like R, the unit interval, and any product

∏
n<� b(n) of discrete finite

spaces such that |b(n)| ≥ 2 for infinitely many n (note that the Cantor space is a
particular case). In the case of R, for a fixed countable base B, we can replace Ω by
the collection of open sets that can be written as a finite union of sets from B. For∏
n<� b(n), we can look at clopen subsets and the product measure of the uniform

measures. We can define NJ and N ∗
J for these spaces, and prove the same results

similarly. Alternatively, we can use the natural “almost homeomorphisms” between∏
n<� b(n) and the unit interval to transfer results from one space to the other.

For example, the cardinal characteristics associated with NJ and N ∗
J are the same

because the relational systems for NJ are Tukey equivalent for two different spaces,
and the same applies to CNJ , N ∗

J and CN∗
J

.
In a preliminary version of this work [40], we considered a weaker notion of NJ

and N ∗
J by using, instead of Ω,

	1(Ω) :=

{
c̄ ∈ �Ω :

∑
n<�

�(cn) <∞
}
.

Although we do not know whether we have the same ideals in this way, many results
of this paper can be repeated for this weaker notion.
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More details about the discussion in the previous paragraphs can be found in the
arXiv version of this paper.8

We now address several open questions of this work.

Question 7.1. Does some converse of the statements in Theorem 2.15 hold in ZFC?

Concerning nearly coherence, we ask the following.

Question 7.2. Does NCF imply that there is only one NJ for non-meager J?

We may also ask whether (under NCF) N ∗
J = NJ for any non-meager J. In

contrast, we ask the following.

Question 7.3. Can we prove in ZFC that there is a non-meager ideal J on � such
that N ∗

J 
= NJ ?

Recall that we produced such an example in Lemma 4.11 under the assumption
that there is a pair of non-nearly coherent ideals on �. The answer to the previous
questions would expand our knowledge about the difference between NJ and NK
for different J and K.

Concerning the cardinal characteristics, we showed that it is possible to have
non(N ∗

K ) < non(NK ) and cov(NK ) < cov(N ∗
K ) for some non-meager ideal K (in

Cohen model, see Corollary 6.5). However, we do not know what happens to the
additivities and the cofinalities.

Question 7.4. Is it consistent that add(NJ ) and add(N ∗
J ) are different for some

non-meager ideal J on �? The same is asked for the cofinalities.

Question 7.5. Does ZFC prove some inequality between add(NJ ) and add(N ∗
J )?

The same is asked for the cofinalities.

The second author [32] has constructed a forcing model where the four cardinal
characteristics associated with N are pairwise different. Cardona [19] has produced
a similar model for E . In this context, we ask the following.

Question 7.6. Is it consistent with ZFC that, for some non-meager (or maximal )
ideal J on�, the four cardinal characteristics associated withNJ are pairwise different?

In relation with the cardinal characteristics in Figure 6, to have a complete answer
that no other inequality can be proved for the cardinal characteristics associated with
our ideals, it remains to solve the following problems.

Question 7.7. Does ZFC prove g ≤ cof(NJ ) for any ideal J on �?

Question 7.8. Is it consistent that cov(NJ ) < p for some maximal ideal J?

Question 7.9. Is it consistent that max{u, i} < non(NJ ) for some maximal ideal J?

Concerning the structure of our ideals, we ask the following.

Question 7.10. What is the intersection of all NJ ? What is the union of all N ∗
J ?

8https://arxiv.org/abs/2212.05185
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Note that such intersection is Nmin and the union is N ∗
max, where

Nmin :=
⋂

{NJ : J maximal ideal},

N ∗
max :=

⋃
{NJ : J maximal ideal}.

According to Corollary 4.4, under NCF, Nmin = N ∗
max. It is curious what would

these families be when allowing non-nearly coherent ideals.
We finish this paper with a brief discussion about strong measure zero sets. Denote

by SN the ideal of strong measure zero subsets of �2. We know that SN ⊆ N and
E � SN (because perfect subsets of �2 cannot be in SN ). Under Borel’s conjecture,
we have SN ⊆ E , however, cov(SN ) < cov(E) holds in Cohen’s model [35] (see also
[4, Section 8.4A]), which implies SN � E . This motivates to ask the following.

Question 7.11. Does ZFC prove that there is some non-meager ideal J such that
SN ⊆ NJ , or even SN ⊆ N ∗

J ?

In the model from Theorem 6.3 this can not happen for some maximal ideals
because ZFC proves cov(M) ≤ non(SN ) (Miller [34]).
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[39] F. Rothberger, Eine Äquivalenz zwishen der Kontinuumhypothese under der Existenz der
Lusinschen und Sierpin-schishen Mengen. Fundamenta Mathematicae, vol. 30 (1938), pp. 215–217.
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