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Scanning transmission electron microscopy in scanning electron microscopes (STEM-in-SEM) is well 

competitive compared to transmission electron microscopy (TEM). The lower primary electron energies 

(typically ≤ 30 keV) yield a higher image contrast for weakly scattering materials [1]. Although sample 

damage by radiolysis is enhanced at lower energies, knock-on damage vanishes below a threshold 

energy that lies in most cases well above 30 keV [2]. Practical arguments for STEM-in-SEM are the 

widespread availability of scanning electron microscopes, which can be equipped with a STEM detector 

and a multiple sample holder suited for transmission imaging [3], flexible change of instrumental 

parameters like primary electron energy and detection angles, lower maintenance costs and the more 

straightforward use of SEM instruments compared to TEM instruments. In addition, STEM imaging can 

be combined with secondary or backscattered electron imaging, rendering STEM-in-SEM a correlative 

imaging technique for imaging both surface and subsurface features [4]. 

 

In this work, we explore the applicability of STEM-in-SEM to analyze biological samples using human 

A549 lung carcinoma cells exposed to nanoparticles (NPs) as an example. In previous work, those cells 

were investigated by backscattered electron microscopy [5]. Two main characteristics, the contrast-to-

noise-ratio (CNR) and spatial resolution of bright field (BF) STEM images at 30 keV, are discussed and 

compared to 200 keV TEM images of the same region of interest of the sample. Since the contrast in 

TEM does not depend only on the projected mass-thickness of the sample but also on defocus and 

aperture settings, the beam convergence and detection angles were chosen such that similar image 

signals can be expected due to the reciprocity theorem for STEM and TEM [6]. Series of TEM images 

with increasing defocus values up to 1.5 µm values were recorded. Figure 1 shows the same region of a 

microtome section of a cell that has been exposed to silica NP, imaged by 200 keV TEM and 30 keV 

STEM-in-SEM. The TEM image in Figure 1a was taken in focus. A line scan (1 px wide) through one 

of the dark particles, shown below the micrograph, reveals a more pronounced noise, quantified by the 

contrast-to-noise ratio 

    
     

√     
     

with the background intensity    outside the particle, the particle intensity    and the standard deviation 

      of these intensities [7]. Figure 1b shows the 30 keV BF-STEM image of the sample region and 

reveals reduced noise, as visible from a higher CNR = 17.8. 

Another essential characteristic is spatial resolution. It is found that the better contrast at low spatial 

frequencies in TEM is achieved in this case with a defocus          . A line scan over a small 

feature (Figure 2a) reveals a resolved feature size of 1.3 nm, estimated by the full-width-at-half-
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maximum (FWHM) of the intensity curve. No additional image in the BF-STEM case is needed and 

therefore Figure 2b is an enlarged section from Figure 1b. The same feature shows an estimated feature 

size of 1.8 nm here. 

The possibility to obtain good CNR and spatial resolution from one single image in BF-STEM 

compensates for the fact that some thinning of the specimen is observed in BF-STEM. In contrast, no 

change is visible in TEM, expectedly due to reduced radiolysis at higher electron energies. 

 

Our results show that STEM-in-SEM is a powerful technique for analyzing biological specimens like 

microtome slices of NP exposed cells. It combines good CNR values with a spatial resolution that can 

compete with classical TEM. However, its main advantage is its availability and more straightforward 

operation of the SEM instruments, multiple sample handling, and flexible change of instrumental 

settings. 

 

 

 
Figure 1. Comparison of the CNR of a 200 keV TEM image and a 30 keV BF-STEM image of the same 

area. a) TEM image recorded at a CM200 (Philips, equipped with a TVIPS TemCam-F416 CMOS 

camera), objective aperture 12.5 mrad, condenser (C2) aperture 4 mrad. b) BF-STEM image taken at a 

Helios GF FX (Thermo Fisher Scientific), convergence angle and detection angle 14 mrad. 
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Figure 2. Comparison of the spatial resolution of a 200 keV TEM image and a 30 keV BF-STEM image 

of the same area. a) TEM image with strong defocus (1.5 µm) and a line scan (width 3 nm) of a small 

structure, revealing resolved feature size of 1.3 nm, estimated by the FWHM. b) The same BF-STEM 

image as in Figure 1a, magnified. The line scan shows a feature size of 1.8 nm. 
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