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Abstract
Soft sets were introduced as a means to study objects that are not defined in an absolute way and have
found applications in numerous areas of mathematics, decision theory, and in statistical applications.
Soft topological spaces were first considered in Shabir and Naz ((2011). Computers & Mathematics with
Applications 61 (7) 1786–1799) and soft separation axioms for soft topological spaces were studied in El-
Shafei et al. ((2018). Filomat 32 (13) 4755–4771), El-Shafei and Al-Shami ((2020). Computational and
Applied Mathematics 39 (3) 1–17), Al-shami ((2021).Mathematical Problems in Engineering 2021). In this
paper, we introduce the effective versions of soft separation axioms. Specifically, we focus our attention
on computable u-soft and computable p-soft separation axioms and investigate various relations between
them. We also compare the effective and classical versions of these soft separation axioms.
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1. Preliminaries
1.1 Soft sets
The usual set is merely a collection of objects. But, in some situations, we need that collection to be
parameterized. The need for such a parameterized collection motivated Molodtsov to introduce
soft set theory in Molodtsov (1999). Soft set theory is considered a mathematical tool that deals
with objects that are not defined in a definite way. Such objects can be found in complicated
mathematical problems in economics and engineering applications when classical mathematical
tools cannot be used due to the uncertainties associated with such problems. There are already
existing mathematical tools for dealing with uncertainty in mathematical problems, such as the
use of probability theory (Jaynes 2003), fuzzy set theory (Zadeh 1965) and interval mathematics
(Gorzałczany 1987). However, those three mathematical tools have their own shortcomings that
the use of soft set theory overcomes as argued in Molodtsov (1999).

Due to the unique properties of soft set theory that allow it to be more suitable in certain
situations compared to the other mathematical tools mentioned above, it is often a major mathe-
matical tool used in decision-making problems as in Maji et al. (2002) and Feng et al. (2010). Soft
set theory, when combined with fuzzy set theory (Zadeh 1965) can be used in decision-making
as in Yang et al. (2013) and Peng et al. (2015), and also used in forecasting problems as in Xiao
et al. (2009). There are also some applications of soft set theory in algebraic structures as in Acar
et al. (2010), Aktaş and Çağman (2007), and Jun and Park (2008). When soft set theory is com-
bined with rough set theory Pawlak (1982), we get new approximation spaces with interesting
properties (Shabir et al. 2013).
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https://doi.org/10.1017/S0960129523000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000336
https://orcid.org/0000-0001-9885-313X
mailto:profsalah55@yahoo.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129523000336&domain=pdf
https://doi.org/10.1017/S0960129523000336


782 S. M. Elsayed and K. M. Ng

Topological spaces are introduced for soft sets (Shabir and Naz 2011), and some of the prop-
erties associated with soft topological spaces are explored in Nazmul and Samanta (2013). Several
soft separation axioms were defined and studied in El-Shafei et al. (2018) and the further applica-
tions of those soft separation axioms are explored in El-Shafei and Al-Shami (2020) and Al-shami
(2021). Soft separation axioms are of importance in soft topological spaces as shown in the exist-
ing literature, much like how classical separation axioms have played a key role in the classification
and the understanding of classical topological spaces. In this paper, we will define and explore fur-
ther soft separation axioms for soft topological spaces. We also define the computable versions of
these soft separation axioms and investigate their properties in an effective setting. This paper is
intended to investigate how computability interacts with soft topological spaces and soft separa-
tion axioms. Hence, we will compare the various principles that arise by considering computable
separation axioms in the soft setting.

The paper is organized as follows. In Section 1.2, we recall some basic notions of soft sets and
soft topological spaces as defined in the literature. In Section 1.3, we briefly recall some notation
and definitions that we will require from computable analysis, including computable topologi-
cal spaces and computable separation axioms that were studied in the literature. In Section 2, we
define a new separation axiom for soft topological spaces, called u-soft separation, and give some
of its basic properties. In Section 3, we define and study computable u-soft separation axioms for
computable soft spaces, and in Section 4, we define and study various computable p-soft sepa-
ration axioms. Finally in Section 5, we compare the various principles introduced in Sections 3
and 4.

1.2 Soft topological spaces
In this section, we recall some definitions and results of soft set theory and soft topological spaces.
This section is meant to provide a self-contained introduction to the basics and background of
soft set theory. The initiated reader may skip ahead to Section 1.3.

Note:We would like to mention that soft topological spaces (X̃, τ , E) can be viewed as general
topological spaces on E× X as Matejdes pointed out in Matejdes (2021). Matejdes mentioned that
not all counterparts of soft concepts are studied in general topology. In this article, we prefer to
stick to the setting in which soft topological spaces are defined as this setting is widely used in the
literature regarding soft topological spaces and even the applications—look at those applications
mentioned in the introduction—of soft topological spaces used the same setting.

1.2.1 Basics of soft sets
Definition 1.1. (Molodtsov 1999) A pair (G, E) (usually denoted as GE) is called a soft set over a
universe X if G is a map from the nonempty parameter set E into 2X . We usually identify GE =
{(e,G(e)) : e ∈ E and G(e)⊆ X}. S(XE) denotes the set of all soft sets over X with respect to the
parameter set E. The relative complement of GE is denoted by Gc

E, where Gc : E→ 2X is defined
by Gc(e)= X \G(e). Where the context is clear we do not refer to the universe X. A soft set GE is
finite if, for every parameter e, the corresponding set is finite.

Definition 1.2. (Maji et al. 2002; Pei and Miao 2005) Soft union and soft intersection are taken
parameter-wise. For two soft sets GE1 ,HE2 over X, their soft union, GE1

⋃
HE2 , is the soft set

FE1∪E2 where F : E1 ∪ E2 → 2X is defined as follows

F(e)=

⎧⎪⎨⎪⎩
G(e), if e ∈ E1 − E2,
H(e), if e ∈ E2 − E1,
G(e)∪H(e), if e ∈ E1 ∩ E2.
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The soft intersection GE1
⋂

HE2 is the soft set IE1∩E2 where I(a)=G(a)∩H(a) for every
a ∈ E1 ∩ E2.

Given x ∈ X and a soft set GE, there are four ways one can define membership or non-
membership:

Definition 1.3. (El-Shafei et al. 2018; Molodtsov 1999) For a soft setGE ∈ S(XE) and x ∈ X, we say
that

• x ∈GE if x ∈G(e) for each e ∈ E.
• x /∈GE if x /∈G(e) for some e ∈ E.
• x�GE if x ∈G(e) for some e ∈ E.
• x ��GE if x /∈G(e) for each e ∈ E.

Hence, ∈ and �� are “strong” membership and non-membership, respectively. Depending on
the version of membership that one uses, the usual set-theoretic operations might or might not be
compatible:

Proposition 1.4. (El-Shafei et al. 2018) For two soft sets GE and HE in S(XE) and x ∈ X, we have
the following,

(1) If x ∈GE, then x�GE.
(2) x ��GE if and only if x ∈Gc

E.
(3) x�GE

⋃
HE if and only if x�GE or x�HE.

(4) If x�GE
⋂

HE, then x�GE and x�HE.
(5) If x ∈GE or x ∈HE, then x ∈GE

⋃
HE.

(6) x ∈GE
⋂

HE if and only if x ∈GE and x ∈HE.

Definition 1.5. (El-Shafei et al. 2018; Maji et al. 2002) A soft set GE over X is said to be:

• A null soft set if G(e)= ∅ for each e ∈ E. It is denoted by ∅̃.
• An absolute soft set if G(e)= X for each e ∈ E. It is denoted by X̃.
• A stable soft set if for someM ⊆ X we have G(e)=M for each e ∈ E.

There are two different ways one can define a point, either as a soft singleton or as a soft point:

Definition 1.6. (Ali et al. 2009; Shabir and Naz 2011) The soft set xE (called a soft singleton) is
defined by x(e)= {x} for each e ∈ E. A soft point, denoted by pxe , is the soft set PE where P(e)= {x}
and P(k)= ∅ for each k ∈ E \ {e}.

Definition 1.7. (Pei and Miao 2005) A soft set GE1 is a soft subset of a soft set HE2 , denoted by
GE1 ⊆HE2 , if

• E1 ⊆ E2, and
• ∀e ∈ E1, G(e)⊆H(e).

Two soft sets are soft equal if each one of them is a soft subset of the other.

Definition 1.8. (Peyghan 2013) The Cartesian product of two soft sets FA and IB, denoted by
(F × I)A×B over universes X and Y , respectively, is defined as (F × I)(a, b)= F(a)× I(b), for each
(a, b) ∈A× B.
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1.2.2 Soft topological spaces
The study of soft topological spaces was initiated in Shabir andNaz (2011).We quickly recall some
of the definitions and results of soft topological spaces.

Definition 1.9. (Nazmul and Samanta 2013; Shabir and Naz 2011) A collection τ of soft sets over
a universe X w.r.t. a parameter set E is said to be a soft topology on X if the following conditions
are satisfied,

(1) X̃, ∅̃ ∈ τ .
(2) τ is closed under finite intersections.
(3) τ is closed under arbitrary unions.

The triple (X, τ , E) is called a soft topological space, or STS. Members of τ are called soft open
sets. A soft set is soft closed if its complement is soft open. The closure of HE, denoted by HE,
is the intersection of all soft closed sets containing HE. pxe is called a soft limit point of GE if
[FE \ pxe ]

⋂
GE �= ∅̃, for each soft open set FE containing pxe .

LetY be a nonempty soft subset of an STS (X, τ , E) parameterized by E. τY = {Ỹ ⋂
GE :GE ∈ τ }

is said to a soft relative topology on Y , and the triple (Y , τY , E) is a soft subspace of (X, τ , E).

Fact 1.10. (Shabir and Naz 2011) Given an STS (X, τ , E) and e ∈ E, τe = {G(e) :GE ∈ τ } forms a
topology on X (classically).

Theorem 1.11. (Peyghan 2013) Let (X, τ ,A) and (Y , θ , B) be two STSs. Let �= {GA × FB :GA ∈
τ and FB ∈ θ}. Then, the family of all arbitrary unions of elements of� is a soft topology on X × Y.

Note: In the previous theorem, if τ is seen as a topology onA× X and θ as a topology on B× Y ,
then the result is just the product topology on A× B× X × Y .

We now recall the partial soft separation axioms based on the partial membership (�) and
strong non-membership (��) relations:

Definition 1.12. (El-Shafei et al. 2018) An STS (X, τ , E) is said to be:

• p-soft T0 if for every two distinct x, y ∈ X, there exists a soft open set GE such that x ∈
GE and y ��GE, or y ∈GE and x ��GE.

• p-soft T1 if for every two distinct x, y ∈ X, there exist soft open sets GE and FE such that
x ∈GE, y ��GE, y ∈ FE and x �� FE.

• p-soft T2 if for every two distinct x, y ∈ X, there exist disjoint soft open sets GE and FE such
that x ∈GE and y ∈ FE.

• p-soft regular if for every soft closed set HE and x ∈ X such that x ��HE, there exist disjoint
soft open sets GE and FE such that HE ⊆GE and x ∈ FE.

Note that two soft sets are disjoint if their soft intersection is ∅̃.

The following well-known fact about T1 spaces holds in the p-soft setting:

Theorem 1.13. An STS (X, τ , E) is a p-soft T1 space if and only if xE is soft closed, for all x ∈ X.

1.3 Basics of computable analysis
1.3.1 Type-2 theory of computability
Turing provided (Turing et al. 1936) in his pioneering work in 1936 an abstract model of a Turing
machine. This is a central notion in the study of computability theory. In classical computability
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theory, we deal with natural numbers and the domain and co-domain of computable functions
are subsets of the natural numbers N. However, in the study of effective analysis, we are often
concerned with potentially uncountable objects such as subsets of real numbers, sets of functions,
etc. In order to apply the tools of classical computability, we will need to “encode” these objects by
means of names. Through systems of notations and representations in which the objects of study
are represented as finite or infinite sequences of natural numbers, we canmake sense of the notion
of a computation in which these names can be used as an input or the output of a computation.

Computable analysis has provided us with a formal framework in which we can conduct inves-
tigations of computability in the realm of analysis and topology. We introduce the notations that
will be used throughout the paper. The reader is referred to Weihrauch (2000, 2012) for more
details and background. Let � be a finite set of symbols that contains 0 and 1. The set of all finite
words over � is denoted by �∗, and the set of all infinite sequences over � is denoted by �ω
where q ∈�ω means that q :N→� and we write q= q(0)q(1) · · · , and |w| denotes the length of
w ∈�∗. q<i ∈�∗ represents the initial segment of length i of q ∈�ω and w� qmeans that w is a
prefix of q.

We use the wrapping function ι :�∗ →�∗, where for example, for a, b, c, d, e ∈�, ι(abcde)=
110a0b0c0d0e011 to encode the concatenation of finite strings of any length in a way which can
be effectively decoded. For instance, we cannot recover σ and τ from στ but we can do so from
ι(σ )ι(τ ). We fix the pairing function on the set of natural numbers as 〈i, j〉 = (i+j)(i+j+1)

2 + j. We
also consider the standard tupling function on �∗ and �ω where 〈v1, · · · , vn〉 = ι(v1) · · · ι(vn),
〈v, q〉 = ι(v)q, 〈p, q〉 = p(0)q(0)p(1)q(1) · · · , and 〈q0, q1, · · · 〉

(〈i, j〉) = qi(j) for v1, · · · , vn, v ∈�∗
and p, q ∈�ω. For r ∈�∗ let r! be the longest subword s ∈ 11�∗11 of r and u� r iff ι(u) is a
subword of r. Then, for u, r1, r2 ∈�∗, (u� r1 ∨ u� r2)⇔ u� r1!r2!.

For X1, X2 ∈ {�∗,�ω}, a (partial) function f :⊆ X1 → X2 is computable if there is a type-2
machine M that computes f (see Weihrauch 2000, 2012 for more details if the reader is unfa-
miliar with the basics of effective type-2 theory). In TTE, we use representations or names to
denote objects and type-2 machines can work with them via names. This is formalized through
the notion of a represented space: a representation δ of a set S is simply a surjective (partial)
function δ :⊆�ω → S, while a notation ν of a countable set S is a surjective (partial) function
ν :⊆�∗ → S. Examples include the canonical notations of the natural numbers and the rational
numbers νN :�∗ →N, νQ :�∗ →Q, respectively.

For representations or notations γ :⊆�ω ∪�∗ →M and γ ′ :⊆�ω ∪�∗ →M′, a partial func-
tion h :⊆�ω ∪�∗ →�ω ∪�∗ realizes f :⊆M →M′ if f ◦ γ (p)= γ ′ ◦ h(p) for every p ∈ dom(γ ).
The function f is called (γ , γ ′)-computable if it has a computable realization h. These definitions
extend readily to multi-representations and multi-functions.

We say that γ is reducible to γ ′ (denoted by γ ≤ γ ′) if M ⊆M′ and the identity function id :
M →M′ is (γ , γ ′)-computable, i.e. there is a computable function that translates γ -names to
γ ′-names. Two representations γ and γ ′ are equivalent iff γ ≤ γ ′ and γ ′ ≤ γ .

Given a notation α :⊆�∗ →M, we can extend it naturally to a notation αfs for the set of finite
subsets ofM and a representation αcs for the set of countable subsets ofM in the natural way:

αfs(w)=W ⇔ (∀u�w)u ∈ dom(α),W = {α(u) : u�w};

αcs(p)=W ⇔ (∀u� p)u ∈ dom(α),W = {α(u) : u� p}.
If μ :⊆�ω →M′ is a representation of M′, we can also define representations μfs and μcs

for the set of finite and countable subsets of M′ accordingly: μfs(p)=W ⇔ (∃n)(∃q1, ...., qn ∈
dom(μ)), p= 〈1n, q1, ...., qn〉,W = {μ(q1), ...,μ(qn)}, and μcs(〈a0q0, a1q1, ...〉)=W ⇔ (∀i)(ai = 0
⇒ qi ∈ dom(μ)) and W = {μ(qi) : ai = 0}. Here, w ∈�∗, p, q0, q1, .... ∈�ω and a0, a1, ...are
symbols of�.
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1.3.2 Computable topological spaces
In this section, we define computable topological spaces as introduced in Weihrauch (2010),
Weihrauch and Grubba (2009) and mention some of the useful results in the literature that are
relevant to us.

Definition 1.14. (Weihrauch and Grubba 2009). An effective topological space is defined to be a
4-tuple X= (X, τ , α,μ) such that (X, τ ) is a topological T0 space and μ :⊆�∗ → α is a notation
of a countable base α of τ . X is a computable topological space if dom(μ) is recursive and there is
some c.e. set S such that for all u, v ∈ dom(μ) we have

μ(u)∩μ(v)=
⋃

{μ(w) : (u, v,w) ∈ S}.
In other words, the intersection of any two basic open sets is effectively open, uniformly in the
notation for the basic open sets.

Definition 1.15. (Weihrauch 2010). Let X= (X, τ , α,μ) be a computable topological space. We
define the following representations.

(1) δ :⊆�ω → X is a representation of the set X, where

δ(p)= x⇔ (∀w ∈�∗)(w� p⇔ x ∈μ(w)).
(2) ϑ :⊆�ω → τ is a representation of the set of open sets where

ϑ(p)=W ⇔ ∀w ∈�∗(w� p⇒w ∈ dom(μ)), andW =
⋃

{μ(w) :w� p}.
(3) ψ :⊆�ω →A is a representation of the set of closed sets where

ψ(p)=A⇔ ∀w ∈�∗(w� p⇔A∩μ(w) �= ∅).
(4) δ :⊆�ω → X is a representation of the set X, where

δ(p)= x⇔ ϑ(p)= X \ {x}.
(5) ϑ :⊆�ω → τ is a representation of the set of open sets, where

ϑ(p)= X \ψ(p).
(6) ψ :⊆�ω →A is a representation of the set of closed sets, where

ψ(p)= X \ ϑ(p).
We introduce some existing results that we will be using implicitly throughout the paper.

Lemma 1.16. (Weihrauch 2010).We have the following:

(1) μ≤ ⋃
μfs ≤ ϑ .

(2) δ(w�ω)= ⋂
μfs(w) for all w ∈ dom(μfs).

(3) The space is SCT2 (see Definition 1.19) iff δ ≤ δ.
The following theorem illustrates how we can compute unions and intersections of open and

closed sets computably.

Theorem 1.17. (Weihrauch 2010).We have the following:

(1) Finite intersection on open sets is (μfs, ϑ)-computable and (ϑ fs, ϑ)-computable.
(2) Union on open sets is (ϑ cs, ϑ)-computable.
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(3) Finite union on closed sets is (ψ fs,ψ)-computable, and intersection on closed sets is (ψ cs,ψ)-
computable.

(4) Finite union of compact sets is (κfs,κ)-computable.

Lemma 1.18. (Weihrauch and Grubba 2009). Given a point x, an open set W, a closed set A and a
compact set K, we have the following:

(1) “x ∈W” is (δ, ϑ)-c.e.
(2) “K ⊆W” is (κ, ϑ)-c.e.
(3) “A∩W �= ∅” is (ψ , ϑ)-c.e.
(4) “K ∩A= ∅” is (κ,ψ)-c.e.

In the above lemma, the relation is (γ , γ ′)-c.e. if there is a Turing machine that, on input (p, q)
where p, q are γ -, γ ′-names, respectively, halts precisely if the two names satisfy the corresponding
relation.

1.3.3 Computable separation axioms
Weihrauch (2010) introduced effective versions of separation axioms in computable topologi-
cal spaces and discovered several interesting properties that hold for the computable separation
axioms but not for their classical counterparts. For instance, he proved that the computable ver-
sions of T2 and T1 are equivalent (Weihrauch 2010) although they are clearly not classically
equivalent.

In this section, we recall some of the computable separation axioms defined in Weihrauch
(2010) and the relationships between them. The main goal of this paper is to further this line of
investigation for soft topological spaces. In the subsequent sections, we define different types of
computable separation axioms for soft topological spaces and establish the relationships between
them. We also show that certain implications are proper.

Definition 1.19. (Weihrauch 2010). We define the following properties for a computable
topological space (X, τ , α,μ):

• CT0: Themulti-function t0 is (δ, δ,μ)-computable, where t0 maps every pair of points (x, y) ∈
X2 such that x �= y to some U ∈ α such that x ∈U and y /∈U, or x /∈U and y ∈U.

• CT1: Themulti-function t1 is (δ, δ,μ)-computable, where t1 maps every pair of points (x, y) ∈
X2 such that x �= y to some U ∈ α such that x ∈U and y /∈U.

• CT2: The multi-function t2 is (δ, δ, [μ,μ])-computable, where t2 maps every pair of points
(x, y) ∈ X2 such that x �= y to some (U,V) ∈ α2 such that U ∩V = ∅, x ∈U and y ∈V .

• SCT2: There is a c.e. set H ⊆�∗ ×�∗ such that
(1) ∀x �= y ∃(u, v) ∈H (x ∈μ(u)∧ y ∈μ(v)).
(2) ∀(u, v) ∈H (μ(u)∩μ(v)= ∅).

• CTpc
2 : The multi-function tpc is (δ,κ, [μ,

⋃
μfs])-computable, where tpc maps every x ∈ X

and every compact set K such that x /∈K to some pair (U,W) of disjoint open sets such that
x ∈U and K ⊆W.

• CTcc
2 : The multi-function tcc is (κ,κ, [

⋃
μfs,

⋃
μfs])-computable, where tcc maps every pair

(K, L) of nonempty disjoint compact sets to some pair (V ,W) of disjoint open sets such that
K ⊆V and L⊆W.

• SCTpc
2 : There is a c.e. set H ⊆�∗ ×�∗ such that

(1) ∀x ∈ X ∀ compact K such that x /∈K ∃(u,w) ∈H (x ∈μ(u)∧K ⊆ ⋃
μfs(w)).

(2) ∀(u,w) ∈H (μ(u)∩ ⋃
μfs(w)= ∅).
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• SCTcc
2 : There is a c.e. set H ⊆�∗ ×�∗ such that

(1) ∀ compact sets K, L such that K ∩ L= ∅ ∃(u, v) ∈H (K ⊆ ⋃
μfs(u) and L⊆ ⋃

μfs(v)).
(2) ∀(u, v) ∈H

(⋃
μfs(u)∩ ⋃

μfs(v)= ∅
)
.

We list some of the implications between the above computable separation axioms.

Theorem 1.20. (Weihrauch 2010). The following implications are proper or the notions are
equivalent as indicated by the arrows:

(1) SCT2 ⇒ CT2 ⇒ CT0.
(2) CT2 ⇔ CT1.
(3) SCTcc

2 ⇔ SCTpc
2 ⇔ SCT2 ⇒ CTcc

2 ⇒ CTpc
2 ⇒ CT2.

Weihrauch in Weihrauch (2010) wondered whether the implications in the third line of the
above theorem are proper and in Elsayed (2022) The authors proved that those notions in the
third line of the above theorem are all equivalent.

Convention. We would regard X̃ as a set whose points are of the form pxe and thus, pxe ∈ X̃
means pxe ⊆ X̃.

2. U-Soft Separation Axioms
In Section 1.2.2, we mentioned soft separation axioms for STS based on strong membership and
strong non-membership.

In this section, we define u-soft separation axioms. This type of separation axioms is based
on soft points which is the natural way to define separation axioms analogously to the classical
separation axioms. We investigate the relations between the u-soft separation axioms and p-soft
separation axioms defined in El-Shafei et al. (2018). We will note that some implications between
the two different notions of soft separation axioms hold when the set of parameters is finite; how-
ever, when the parameter set is infinite those implications do not hold as what will be seen then
from the counterexamples.We also answer a question proposed in Al-shami (2020) about whether
u-soft T2 spaces imply p-soft T2 spaces where we find out that the answer is yes and we give a
counterexample to show that the reverse implication is not true in general.

Definition 2.1. An STS (X, τ , E) is called

• u-soft T0 iff ∀ pxe , p
y
a ∈ X̃ where pxe �= pya, there exists a soft open set GE such that pxe ∈GE and

pya /∈GE, or pxe /∈GE and pya ∈GE.
• u-soft T1 iff ∀ pxe , p

y
a ∈ X̃ where pxe �= pya, there exist two soft open sets GE and FE such that

pxe ∈GE and pya /∈GE, and pxe /∈ FE and pya ∈ FE.
• u-soft T2 iff ∀ pxe , p

y
a ∈ X̃ where pxe �= pya, there exist two soft open sets GE and FE such that

pxe ∈GE and pya ∈ FE and GE
⋂

FE = ∅̃.
Immediate implications between u-soft separation axioms are given in the next proposition.

Proposition 2.2. Every u-soft Ti space is u-soft Ti−1 space for i= 2, 1.

Proof. Straightforward.

Now, we give counterexamples of the above implications.
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Example 2.3. Let X = {x}, E= {e1, e2} and τ = {X̃, ∅̃, {(e1, {x}), (e2, ∅̃)}}.
It can be easily seen that this space is u-soft T0 but not u-soft T1.

Example 2.4. Let E=N, X be an infinite set, τ = {X̃, ∅̃,GE :Gc
E is finite }.

Clearly, this space is u-soft T1 but not u-soft T2.

Proposition 2.5. An STS is a u-soft T1 space iff ∀ pxe ∈ X̃, pxe = pxe .

Proof. Straightforward.

The following propositions illustrate the relation between u-soft Ti and p-soft Ti spaces for
i= 2, 1. Those implications are based on the finiteness of the parameter set and counterexamples
are given to show that the implications are proper.

Proposition 2.6. Every u-soft T2 space is p-soft T2 space if E is finite.

Proof. Let x �= y and E has m parameters. ∀ pxei ∀ pyej ∈ X̃ \ pxei , there exist two disjoint soft open

sets GE,i,j and FE,i,j such that pxei ∈GE,i,j and pyej ∈ FE,i,j.Then, pxei ∈
m⋂
j=1

GE,i,j and y ��GE,i,j ∀i≤m,

also, y ∈
m⋃
j=1

FE,i,j and pxei /∈
m⋃
j=1

FE,i,j. Thus,

x ∈
m⋃
i=1

[
m⋂
j=1

GE,i,j] and y ∈
m⋂
i=1

[
m⋃
j=1

FE,i,j],

and

[
m⋃
i=1

[
m⋂
j=1

GE,i,j]]
⋂

[
m⋂
i=1

[
m⋃
j=1

FE,i,j]]= ∅̃.

Therefore, the space is p-soft T2.

Proposition 2.7. Every u-soft T1 space is p-soft T1 space if E is finite.

Proof. Let x �= y and E has m parameters.∀ pxei ∀ pyej ∈ X̃ \ pxei , there exists an open set GE,i,j such

that pxei ∈GE,i,j and pyej /∈GE,i,j. Then, pxei ∈
m⋂
j=1

GE,i,j, ∀i≤m. Therefore,

x ∈
m⋃
i=1

[
m⋂
j=1

GE,i,j] and y ��
m⋃
i=1

[
m⋂
j=1

GE,i,j].

Similarly, if we switch y and x we will get soft open sets GE,i,j such that

y ∈
m⋃
i=1

[
m⋂
j=1

FE,i,j] and x ��
m⋃
i=1

[
m⋂
j=1

FE,i,j].

Therefore, the space is p-soft T1.

The converse of the above propositions is not true in general as shown in the following example.

Example 2.8. Let X = {x, y}, E= {e1, e2} and
τ = {X̃, ∅̃, {(e1, {x}), (e2, {x})}, {(e1, {y}), (e2, {y})}, {(e1, ∅), (e2, {x})},
{(e1, {x}), (e2, ∅)}, {(e1, {y}), (e2, ∅)}, {(e1, X), (e2, {x})}, {(e1, X), (e2, {y})},
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{(e1, {y}), (e2, X)}, {(e1, X), (e2, ∅)}, {(e1, {y}), (e2, {x})}}. This space is p-soft T2 but not u-soft T1. If
we view this space as a topology on E× X, it may look simpler.

When the parameter set is infinite, the above inclusions do not hold in general as shown in the
following examples.

Example 2.9. Let X = {x, y}, E= {e1, e2, · · · }. We define a STS τ on X with respect to E as
follows, τ = {X̃, ∅̃,Gai1ai2 ···aik

k :Gai1ai2 ···aik
k = {(e1, f (ai1 ), (e2, f (ai2 ), · · · , (ek, f (aik), (ek+1, X), · · · };

i1, · · · , ik ∈ {0, 1, 2, 3};f (a0)= ∅, f (a1)= {x}, f (a2)= {y}, f (a3)= X}. Clearly, this space is u-soft T1
but it is not p-soft T1 or even p-soft T0. You could view it as a topology on E× X as well.

Example 2.10. Let X = {a, b}, E= {e1, e2, · · · }. We partition N into infinitely many infinite par-
titions N= F1

⋃
F2

⋃ · · · . we define a STS on X with respect to E where its basic open sets are
defined as follows, for each finite set G⊆N we have {paei : i ∈G} and for each finite set G⊆N, n ∈N

we have {pben}
⋃{paei : i ∈ Fn −G}. Clearly, this space is u-soft T2 but it is not p-soft T2.

The following two examples show that u-soft T0 and p-soft T0 spaces are incomparable.

Example 2.11. Let X = {x, y}, E= {e1, e2} and
τ = {X̃, ∅̃, {(e1, {y}), (e2, {x})}, {(e1, ∅̃), (e2, {y})}, {(e1, {y}), (e2, X)},
{(e1, ∅̃), (e2, {x})}, {(e1, ∅̃), (e2, X)}}.

This space is u-soft T0 but not p-soft T0.

Example 2.12. Let X = {x, y}, E= {e1, e2}
and τ = {X̃, ∅̃, {(e1, {x}), (e2, {x})}}.

This space is p-soft T0 but not u-soft T0.

3. Computable u-Soft Separation Axioms
In this section, we define the new notions of computable soft topological spaces and computable
u-soft separation axioms that are based on soft points. We investigate some properties and impli-
cations of those newly defined computable u-soft separation axioms. We also introduce some
counterexamples to prove that some implications are not true in general.

Definition 3.1. A computable STS is a tuple (X, τ ,A, β , ν) such that

(1) (X, τ ,A) is a u-soft T0 space,
(2) ν :�∗ → β is a notation of a base of τ with respect to soft points (i.e. for a soft open setW,

∀ soft points pxe ∈W, there is some U ∈ β such that pxe ∈U ⊆W) with recursive domain,
(3) There is a computable function h :�∗ ×�∗ →�ω such that for all u, v ∈ dom(ν),

ν(u)
⋂

ν(v)= ∪{ν(w) :w ∈ dom(ν) and ι(w)� h(u, v)}.
(4) In computable soft topological spaces when we encode soft points, we need to consider the

parameter of the soft point so that it is encoded as well in the name. That is, δu(p)= pxe
where p is a list of all basic soft open sets containing pxe and the first bit of p encodes the
parameter of the soft point, which is e in this case. When the parameter set E is infinite, we
require it to be computable and countable and to be given of the form E= {e1, e2, · · · }.

The following are the computable u-soft separation axioms which are based on separating soft
points by basic soft open sets.
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Definition 3.2. A computable STS (X, τ ,A, β , ν) is computable u-soft T0 (CuT0, for short ) if
(X, τ ,A) is a u-soft T0 and the multi-function ut0 is (δu, δu, ν)-computable where ut0 maps every
(pxe , p

y
α) ∈ X̃ × X̃ such that pxe �= pyα to some UA ∈ β such that

(pxe ∈UA and pyα /∈UA) or (pxe /∈UA and pyα ∈UA).

Definition 3.3. A computable STS (X, τ ,A, β , ν) is computable u-soft T1 (CuT1, for short ) if
(X, τ ,A) is a u-soft T0 and the multi-function ut1 is (δu, δu, ν)-computable where ut1 maps every
(pxe , p

y
α) ∈ X̃ × X̃ such that pxe �= pyα to some UA ∈ β such that

(pxe ∈UA and pyα /∈UA).

Definition 3.4. A computable STS (X, τ ,A, β , ν) is computable u-soft T2 (CuT2, for short ) if
(X, τ ,A) is a u-soft T0 and the multi-function ut2 is (δu, δu, ν)-computable where ut2 maps every
(pxe , p

y
α) ∈ X̃ × X̃ such that pxe �= pyα to some UA,VA ∈ β such that

(pxe ∈UA and pyα ∈VA and UA
⋂

VA = ∅̃).

The next lemma gives the obvious implications between the computable u-soft separation
axioms that are defined so far. The proof is Straightforward by definition.

Lemma 3.5. CuTi ⇒ u-softTi for i ∈ {0, 1, 2}.
Proof. Straightforward.

Lemma 3.6. CuTi ⇒ CuTi−1 for i ∈ {1, 2}.
Proof. Straightforward.

We give a counterexample that is CuT0 but not CuT1.

Example 3.7. Let X = {x} be the universe set, E= {e1, e2} be a set of parameters and τ is a STS
generated by the following base,

ν(01)= {(e1, {x}), (e2, ∅)} , ν(001)= X̃ , where β = range(ν).

We define now some more computable u-soft separation axioms to help us establish the rela-
tion between CuT1 and CuT2. At the end of this section, we will see that some of the following
notions are equivalent.

Definition 3.8. A computable STS is:
WCuT0: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

(1) (∀pxe �= pyα)(∃(u, v) ∈H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
(2) (∀(u, v) ∈H):

(ν(u)
⋂

ν(v)= ∅̃),

∨((∃pxe )ν(u)= {pxe } ⊆ ν(v)),

∨((∃pyα)ν(v)= {pyα} ⊆ ν(u)).

SCuT0: If he multi-function uts0 is (δu, δu, [νN , ν])-computable where uts0 maps every (pxe , p
y
α) ∈

X̃ × X̃ such that (pxe �= pyα) to some (k,UE) ∈N× β such that

(k= 1, pxe ∈UE and pyα /∈UE)∨ (k= 2, pxe /∈UE and pyα ∈UE).
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CuT0
′: If there is a c.e. set H ⊆ dom(νN)× dom(ν)× dom(ν) such that

(1) (∀pxe �= pyα)(∃(w, u, v) ∈H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
(2) (∀(w, u, v) ∈H):

(ν(u)
⋂

ν(v)= ∅̃),

∨(νN(w)= 1(∃pxe )ν(u)= {pxe } ⊆ ν(v)),

∨(νN(w)= 2(∃pyα)ν(v)= {pyα} ⊆ ν(u)).

CuT1
′: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

(1) (∀pxe �= pyα)(∃(u, v) ∈H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
(2) (∀(u, v) ∈H):

(ν(u)
⋂

ν(v)= ∅̃),

∨((∃pxe )ν(u)= {pxe } ⊆ ν(v)).

CuT2
′: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

(1) (∀pxe �= pyα)(∃(u, v) ∈H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
(2) (∀(u, v) ∈H):

(ν(u)
⋂

ν(v)= ∅̃),

∨((∃pxe )ν(u)= {pxe } = ν(v)).

SCuT2: If there is a c.e. set H ⊆ dom(ν)× dom(ν) such that

(1) (∀pxe �= pyα)(∃(u, v) ∈H)(pxe ∈ ν(u) and pyα ∈ ν(v)),
(2) (∀(u, v) ∈H):

(ν(u)
⋂

ν(v)= ∅̃).

Now we investigate the relations between those separation axioms.

Proposition 3.9. CuT0 ⇔ SCuT0 ⇔ CuT0
′.

Proof. SCuT0 ⇒ CuT0: Straightforward.
CuT0 ⇒ SCuT0: There is a machine M on input (p, q) ∈ dom(δu)× dom(δu), it first runs ut0 on
(p, q) that outputs u. Then,M outputs (1, u) if u� p, and outputs (2, u) if u� q.
CuT0

′ ⇒ SCuT0: There is a machineM on input (p, q) ∈�ω ×�ω, it first searches for (w, u, v) ∈
H such that u� p and v� q and then it outputs (w, u) if νN(w)= 1 and (w2, v) for some w2 such
that νN(w2)= 2, otherwise.
SCuT0 ⇒ CuT0

′: Let M be a machine that realizes ut0s. There is another machineM′ that on input
(w, u, v) ∈ (�∗)3 halts iff we can find words u′ ∈ dom(ν), f , h ∈ dom(νfs) and t ≤min (|f |, |h|) such
thatM on (f 1ω, h1ω) halts in t steps outputting (w, u′) and

u� g(f ι(u′)) and v� g(h) if νN(w)= 1,

u� g(h) and v� g(f ι(u′)) if νN(w)= 2,
where g computes the union of a finite set of basic open sets. Now, let H = dom(fM′).
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We need now to show the two conditions of H. For the first condition: Let δu(p)= pxe �= pyα =
δu. Then, M on (p, q) halts and outputs (w, u′) in t steps where νN(w)= 1, pxe ∈ ν(u′) and pyα /∈
ν(u′)(when νN(w)= 2, same argument follows). Then, M also halts on (f 1ω, h1ω) outputting
(w, u′) where f = p<t and h= q<t . Thus, pxe ∈ ⋂

νfs(f ι(u′)) and pyα ∈ ⋂
νfs(h) and hence there are

u, v such that u� νfs(f ι(u′)), u� p and v� νfs(h), v� q. Therefore, there exists some (w, u, v) ∈
H such that pxe ∈ ν(u) and pyα ∈ ν(v).

For the second condition of H: Let (w, u, v) ∈H, νN(w)= 1, pxe ∈ ν(u), pyα ∈ ν(u)⋂ ν(v) and
pxe �= pyα . Then, there are f , h, u′ and t such that t ≤min (|f |, |h|) and M halts on (f 1ω, h1ω) in t
steps outputting (w, u′) and u� g(f ι(u′)) and v� g(h). Therefore, pxe ∈ ν(u)⊆ δu[f�ω]

⋂
ν(u′)

and pyα ∈ ν(v)⊆ δu[h�ω]. We know that pxe ∈ ν(u′) and pyα /∈ ν(u′). But, pyα ∈ ν(u)⊆ ν(u′), which
a contradiction. Therefore, it must be the case that pxe = pyα , hence,

((w, u, v) ∈H, νN(w)= 1 and ν(u)
⋂

ν(v) �= ∅̃)⇒ (∃pxe )ν(u)= {pxe } ⊆ ν(v).

Same argument follows when νN(w)= 2.

Proposition 3.10. SCuT2 ⇒ CuT2 ⇒ CuT0 ⇒WCuT0.

Proof. Similar to the previous proof.

Proposition 3.11. CuT2 ⇔ CuT2
′ ⇔ CuT1 ⇔ CuT1

′.
Proof. CuT1 ⇔ CuT1

′: Straightforward as it is a special case of SCuT0 ⇔ CuT0
′.

CuT2
′ ⇒ CuT1

′: Straightforward.
CuT1

′ ⇒ CuT2
′: Let H be the c.e. set from CuT1

′. Now, let

H′ = {(r, s) : r � g(u, v′), s� g(u′, v) for some (u, v), (u′, v′) ∈H}.
We prove now the two conditions of H′ as the c.e. set of CuT2

′.
Suppose pxe �= pyα . By the first condition of H, there are (u, v), (u′, v′) ∈H such that pxe ∈

ν(u), pyα ∈ ν(v), pyα ∈ ν(u′), and pxe ∈ ν(v′). Then, pxe ∈ ν(u)⋂ ν(v′) and pyα ∈ ν(u′)
⋂
ν(v), and

hence there is (r, s) ∈H′ such that pxe ∈ ν(r) and pyα ∈ ν(s). Thus the first condition of H′ holds.
Now, we prove the second condition of H′. Suppose (r, s) ∈H′ and ν(r)

⋂
ν(s) �= ∅̃. Thus, by

definition ofH′ there are (u, v), (u′, v′) ∈H such that ν(r)⊆ ν(u)
⋂
ν(v′) and ν(s)⊆ ν(u′)

⋂
ν(v).

Hence, ν(u)
⋂
ν(v) �= ∅̃ and ν(u′)

⋂
ν(v′) �= ∅̃. Now, by the second condition ofH, ν(u)= {pxe } ⊆

ν(v) and ν(u′)= {pyα} ⊆ ν(v′). Therefore, ν(r)= {pxe } = ν(s) which shows that the second condi-
tion of H′ holds.
CuT2

′ ⇒ CuT2: There is a machineM that on input (p, q) searches for (u, v) ∈H such that u� p
and v� q and prints (u, v) if the search is successful and diverges, otherwise.
CuT2 ⇒ CuT2

′: By transitivity, which completes the proof.

Now, we give a counterexample of the above implications.

Proposition 3.12. There is a STS that is WCuT0 but not CuT0.

Proof. Follows immediately from the next example.

Example 3.13. Let X = {xi, yi : i ∈N}, E= {e} be a set of parameters, and τ be the soft discrete
topology defined on X w.r.t E.We will define A, B, C, and D as a partition ofNwhere A is a non-c.e.
set. We define a notation ν of a basis of τ as follows:
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0i1 0i2 0i3 0i12 0i13 0i23

i ∈A∪D {pxie } {pyie } ∅̃ ∅̃ ∅̃ ∅̃

i ∈ B {pxie } {pxie , pyie } {pyie } {pxie } ∅̃ {pyie }

i ∈ C {pxie , pyie } {pyie } {pxie } {pyie } {pxie } ∅̃

We define now the intersection of soft basic open sets computably, ν(0im)
⋂
ν(0in)= ν(0imn) for

m �= n and we define the other intersections to be empty. Thus, (X, τ , E, β , ν) is a computable STS.
Let H = {(0im, 0jn) : i, j ∈N;m, n ∈ {1, 2};(i �= j orm �= n)}. Then H satisfies the two conditions of
WuCT0. We show now that this space is not SCuT0. Let r, s ∈�∗ such that νN(r)= 1 and νN(s)= 2.
W.L.O.G. assume that νN is injective. For i ∈N let

Si = {〈r, 0i1〉, 〈s, 0i3〉, 〈r, 0i12〉, 〈s, 0i23〉},

Ti = {〈s, 0i2〉, 〈r, 0i3〉, 〈s, 0i12〉, 〈r, 0i13〉}.
Suppose that uts0 is realized by f :�ω ×�ω →�∗. If δu(p)= pxie and δu(q)= pyie , then

f (p, q) ∈
{
Si if i ∈ B
Ti if i ∈ C.

(1)

∀i ∈N we define pi = ι(0i1)ι(0i1)..., and qi = ι(0i2)ι(0i2)..., where pi, qi ∈�ω. Let F = {f : f :�ω ×
�ω →�∗such that f is computable and f (pi, qi) exists for all i ∈A}. Consider f ∈ F. Then, f ′ : i→
f (pi, qi) is computable such that A⊆ dom(f ′) and dom(f ′) \A is infinite as A is a non-c.e. set. Since
F is countable, there is a bijective function g : E→ F for some E⊆N such that s ∈ dom(g′

s) \A for
all s ∈ E where g(s)= gs and g′

s : i→ gs(pi, qi) for i ∈N and s ∈ E. Then, A
⋂

E= ∅. We can see that
gs(ps, qs) is defined for all s ∈ E. Let

B= {s ∈ E : gs(ps, qs) /∈ Ss}, C = {s ∈ E : gs(ps, qs) ∈ Ss}, (2)

and D=N \ (A∪ B∪ C). Since A
⋂

E= ∅, E= B∪ C and B
⋂

C = ∅, {A, B, C,D} is a partition
of N.

Suppose some computable function f realizes uts0. Since δu(pi)= pxie and δu(qi)= pyie for all i ∈A,
f (pi, qi) exists for all i ∈A, hence f = gs for some s ∈ E. Since gs realizes uts0, gs(ps, qs) ∈ Ss ⇔ s ∈ B
by (3.1). On the other hand, gs(ps, qs) ∈ Ss ⇔ s /∈ B by 3.2. Thus, the space is not CuT0.

Example 3.14. Let X = {x}, E= {e1, e2} be a set of parameters, and τ be a STS defined on X w.r.t.
E where τ = {X̃, ∅̃, {(e1, {x}), (e2, ∅)}} which is generated by the following basis:

ν(01)= {(e1, {x}), (e2, ∅)},

ν(001)= X̃,

where β = range(ν). Thus, (X, τ , E, ν, β) is a computable STS and it is CuT0 nut not CuT1.

Example 3.15. Let A⊆N be a c.e. set with non-c.e. complement. Define a notation ν by

ν(0i1)= {pxie }, ν(0i2)= {pxie } for i ∈A,

ν(0i1)= {pxie }, ν(0i2)= {pyie } for i /∈A,
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for all i ∈N. Then, ν is a notation of a base β of a STS on a subset X ⊆N w.r.t. a parameter set
E= {e} such that (X, τ , E, β , ν) is a computable STS.

This space is CuT′
2 and not SCuT2 as we have a c.e. set H = {(0im, 0in) : i, j ∈N,m, n ∈ {1, 2}}

that satisfies CuT′
2 and let H be the c.e. set for SCuT2. Thus, by the two conditions of SCuT2

i /∈A⇒ (0i1, 0i2) ∈H,

i ∈A⇒ (0i1, 0i2) /∈H,

since H is c.e., the complement of A must be c.e., which is a contradiction.

In the figure below, we summarize the implications of the computable u-soft separation axioms.
Those implications are based on what we investigated above and the non-implications are based
on the counterexamples introduced in this section above. These implications are actually the same
as those of the classical computable separations axioms corresponding to the ones defined in the
computable soft setting.

Figure 1. Relations between computable
u-soft separation axioms.

From the equivalences in Fig. 1, we can see that we have exactly four different notions of
computable u-soft separation axioms.

In the next section, we will define computable p-soft separation axioms as the computable
versions of those defined in El-Shafei et al. (2018). Then, we define more variations of computable
p-soft separations axioms and investigate the relations between them.

4. Computable p-Soft Separation Axioms
In this section, we define the computable versions of partial soft separation axioms defined in El-
Shafei et al. (2018) and then introduce some of the notions corresponding to those defined for
computable u-soft separation axioms.

We define first δp names for xE ⊆ X̃ in a computable STS (X, τ , E, β , ν), where a δp name of
xE ⊆ X̃ contains all soft basic open sets intersecting xE where E is the parameter set associated
with the given STS.

We will define also p-soft separation axioms based on xE ⊆ X̃ and then compare those
separation axioms to the u-soft separation axioms defined in the previous section.

Definition 4.1. Let E be a finite set of parameters. Now, δp(p)= xE where p=
siι(wl)sjι(wm)skι(wn)......., and pxei ∈ ν(wl), pxej ∈ ν(wm) and pxek ∈ ν(wn). In other words, p is a list of
all soft basic open sets intersecting xE, and si ∈�∗ precedes the basic open sets containing pxei .

Now, we define the p-soft separation axioms.

Definition 4.2. A computable STS (X, τ , E, β , ν) is
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• computable p-soft T0 (CpT0, for short) if (X, τ , E) is a u-soft T0 and the multi-function pt0
is (δp, δp, θ)-computable where pt0 maps every xE, yE ⊆ X̃ such that xE �= yE to some UE ∈ τ
such that

(x ∈UE and y ��UE) or (x ��UE and y ∈UE).

• computable p-soft T1 (CpT1, for short) if (X, τ , E) is a u-soft T0 and the multi-function pt1
is (δp, δp, θ)-computable where pt1 maps every xE, yE ⊆ X̃ such that xE �= yE to some UE ∈ τ
such that

(x ∈UE and y ��UE).

• computable p-soft T2 (CpT2, for short) if (X, τ , E) is a u-soft T0 and the multi-function pt2 is
(δp, δp, θ)-computable where pt2 maps every xE, yE ⊆ X̃ such that xE �= yE to someUE,VE ∈ τ
such that

(x ∈UE and y ∈VE, , and UE
⋂

VE = ∅̃).

We can see that CpTi ⇒ CpTi−1 for i ∈ {1, 2}.
Based on the above definitions, we can see that the following implications hold,

CpT2 ⇒ CpT1 ⇒ CpT0

The converses of the above implications are not true in general as shown from the following
examples.

Example 4.3. Let X = {x, y}, E= {e1, e2} be a set of parameters and τ is a STS defined on X w.r.t.
E generated by the following basis,

ν(01)= {(e1, {x}), (e2, ∅)}, ν(001)= {(e1, ∅), (e2, {x})}, ν(0001)= X̃,

and β = range(ν). Thus, (X, τ , E, β , ν) is a computable STS and it is CpT0 since there is a machine
M that realizes CpT0 where M on input (p, q) ∈�ω ×�ω, prints ι(01)ι(001). The space is not CpT1
as it is not even pT1.

Example 4.4. Let X = {ai : i ∈N}, E= {e1, e2} be a parameter set, and τ be a STS defined on X
w.r.t. E generated by the following basis notation,

ν(oi1j)= {(e1,Gi), (e2, Fj)},
where i and j are the canonical indices of Gc

i and Fj, respectively. We define the intersection of finitely
many basic open sets by ν(0i1j)

⋂
ν(0k1l)= ν(0m1n), where m is the canonical index of Gi

⋃
Gk

and n is the canonical index of Fj
⋂

Fl. Thus, the space is computable STS. The space is CpT1 as
there is a machine M that on input (p, q) ∈�ω ×�ω, searches for s2ι(0i1j) and s2ι(0m1n) in p and
q, respectively, and j and n are canonical indices of singletons of X, and i,m ∈N. If the search is
successful, it prints 〈0n1j, 0j1n〉. Hence, machine M realizes CpT1. However, the space is not CpT2 as
it is not pT2.

Now, we give some more p-soft separation axioms and investigate the relations between them.

Definition 4.5. A computable STS (X, τ , E, β , ν) is:
WCpT0: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

(1) (∀xE �= yE)(∃(u, v) ∈H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
(2) (∀(u, v) ∈H):
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(∪ νfs(u)
⋂

∪νfs(v)= ∅̃),

∨((∃xE)∪ νfs(u)= xE ⊆ ∪νfs(v)),
∨((∃yE)∪ νfs(v)= yE ⊆ ∪νfs(u)).

SCpT0: if the multi-function pts0 is (δp, δp, [νN , θ])-computable where pts0 maps every xE, yE ⊆ X̃
such that (xE �= yE) to some (k,UE) ∈N× τ such that

(k= 1, x ∈UE and y ��UE)∨ (k= 2, y ∈UE and x ��UE).

CpT′
0: if there is a c.e. set H ⊆ dom(νN)× dom(νfs)× dom(νfs) such that

(1) (∀xE �= yE)(∃(w, u, v) ∈H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
(2) (∀(w, u, v) ∈H):

(∪ νfs(u)
⋂

∪νfs(v)= ∅̃),

∨(νN(w)= 1(∃xE)∪ νfs(u)= xE ⊆ ∪νfs(v)),
∨(νN(w)= 2(∃yE)∪ νfs(v)= yE ⊆ ∪νfs(u)).

CpT′
1: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

(1) (∀xE �= yE)(∃(u, v) ∈H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
(2) (∀(u, v) ∈H):

(∪ νfs(u)
⋂

∪νfs(v)= ∅̃),

∨((∃xE)∪ νfs(u)= xE ⊆ ∪νfs(v)).
CpT′

2: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

(1) (∀xE �= yE)(∃(u, v) ∈H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
(2) (∀(u, v) ∈H):

(∪ νfs(u)
⋂

∪νfs(v)= ∅̃),

∨((∃xE)∪ νfs(u)= xE = ∪νfs(v)).
SCpT2: if there is a c.e. set H ⊆ dom(νfs)× dom(νfs) such that

(1) (∀xE �= yE)(∃(u, v) ∈H)(x ∈ ∪νfs(u) and y ∈ ∪νfs(v)),
(2) (∀(u, v) ∈H):

(∪ νfs(u)
⋂

∪νfs(v)= ∅̃).

Proposition 4.6. Let CpTi and SCpT0 be the conditions obtained from CpTi and SCpT0, respec-
tively, by replacing θ by ∪νfs. Then, CpTi ⇔ CpTi for i ∈ {0, 1, 2}, and SCpT0 ⇔ SCpT0, when the
parameter set is finite.
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Proof. Let E have n parameters. CpTi ⇒ CpTi: since ∪νfs ≤ θ .
CpTi ⇒ CpTi: There is a machine M that on input (p, q) ∈ dom(δp)× dom(θ) where δp(p) ∈ θ(q)
searches for u1, ...., un where ui � pi and ui � q for all i where pi is a δu name obtained from
p. Then, machine M prints u if the search is successful where u= ι(u1)ι(u2)....... and diverges,
otherwise. Following the same argument, we can prove SCpT0 ⇔ SCpT0, which completes the
proof.

Lemma 4.7. In a computable STS, the predicate x ∈U is (δp, θ)− c.e..

Proof. Let n be the number of parameters of that space. There is a machineM that on input (p, r)
where p ∈ dom(δp), r ∈ dom(θ) halts iff there are u1, · · · un ∈ dom(ν) such that ui � r and ui � pi
for i ∈ {1, · · · , n} where pi is a δu-name obtained from p.

We now introduce some implications between the p-soft spaces defined above.

Proposition 4.8. CpT0 ⇔ SCpT0 ⇐ CpT′
0 ⇒WCpT0.

Proof. SCpT0 ⇒ CpT0: Obvious.
CpT0 ⇒ SCpT0: By Lemma 4.7 there is a machine M that on input (p, q) ∈ dom(δp)× dom(δp),
it tests in parallel whether δp(p) ∈ θ(r) and δp(q) ∈ θ(r) and outputs 〈1, r〉 or 〈2, r〉, accordingly,
where pt0(p, q)= r. We can see easily theM realizes pts0, which completes the proof.
CpT′

0 ⇒ SCpT0: There is a machine M that on input (p, q) ∈ dom(δp)× dom(δp) searches for
(w, r, s) ∈H-The c.e. set of CpT′

0—such that δp(p) ∈ θ(r) and δp(q) ∈ θ(s), which can be tested
using Lemma 4.7. Then, machine M prints ∠w, r〉 if νN(w)= 1 and 〈w, s〉, otherwise. Thus, M
realizes pts0, which completes the proof.
CpT′

0 ⇒WCpT0: Obvious.

We now show that the second and third implications are not reversed in general as shown from
the next two examples.

Example 4.9. Let X = {ai, bi : i ∈N}, E= {e1, e2} be a parameter set, and τ be a STS defined on X
w.r.t. E generated by the following basis where A is a non-c.e. set,

0i11 0i12 0i51 0i52 0i5211

i ∈A pxie1 pxie2 pyie1 pyie2 ∅̃

i /∈A pyie1 pyie2 pxie1 pyie1 ∪ pxie2 pyie1

The finite intersections are all empty except for ν(0i11)
⋂
ν(0i52)= ν(0i5211). Thus, the space

(X, τ , E, β , ν) is computable STS. Let H be the c.e. set of WCpT0, then

i ∈A⇒ (u, v) ∈H where 0i11, 0i12� u and 0i51, 0i52� v,

i /∈A⇒ (u, v) /∈H where 0i11, 0i12� u and 0i51, 0i52� v.

Thus, Amust be a c.e, set which is a contradiction. Hence, the space is notWCpT0 and then not CpT′
0,

however, it is CpT0 as there is a machine M that realizes pt0 where M on (p, q) prints ι(0i11)ι(0i12).

Proposition 4.10. There is a computable STS that is WCpT0 but not CpT0.

Proof. Follows immediately from the following example.
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Example 4.11. Let A⊆N be some non-c.e. set. Let X = {xi, yi}, E= {e1, e2} be a parameter set and
τ be a STS defined on X w.r.t. E generated by the following basis given in the table below.

0i11 0i12 0i21 0i22 0i31 0i32

i ∈A∪D pxie1 pxie2 pyie1 pyie2 ∅̃ ∅̃

i ∈ B pxie1 pxie2 pxie1 ∪ pyie1 pxie2 ∪ pyie2 pyie1 pyie2

i ∈ C pxie1 ∪ pyie1 pxie2 ∪ pyie2 pyie1 pyie2 pxie1 pxie2

We define {A, B, C,D} to be a partition of N. We define the intersection of soft basic open
sets as follows, ν(0ikl)

⋂
ν(0imn)= ν(0iklmn) for k �=m∨ l �= n. Therefore, (X, τ , E, β , ν)

is a computable STS. We can see that the space is WCpT0 as we can have a c.e. set
H = {(ι(0ir1)ι(0ir2, ι(0js1)ι(0js2) : i, j ∈N;r, s ∈ {1, 2};(i �= j∨ r �= s)} that satisfies the two con-
ditions of WCpT0. Now, we define B and C in a way that makes the space not SCpT0. Let
w1,w2 ∈�8 such that νN(w1)= 1 and νN(w2)= 2, and W.L.O.G. we assume that νN is injective.
For i ∈N let
Si = {〈w1, u1〉, 〈w2, u2〉 : u1, u2 ∈ dom(νfs) and u1 is any combination of
{0i11, 0i12, 0i1222, 0i1121} and u2 is any combination of {0i31, 0i32, 0i2131,
0i2232}},
Ti = {〈w1, v1〉, 〈w2, v2〉 : v1, v2 ∈ dom(νfs) and v1 is any combination of
{0i31, 0i32, 0i1131, 0i1232} and v2 is any combination of {0i21, 0i22, 0i1121,
0i1222}},
Suppose the function f :⊆�ω ×�ω →�∗ realizes pts0. If δp(p)= xE,i and δp(q)= yE,i, then

f (p, q) ∈
{
Si if i ∈ B
Ti if i ∈ C.

(3)

∀i ∈N we define pi = ι(0i11)ι(0i12)ι(0i11)ι(0i12) · · · ,
and qi = ι(0i21)ι(0i22)ι(0i21)ι(0i22) · · · , where pi, qi ∈�ω. Let F = {f : f :�ω ×�ω →
�∗such that f is computable and f (pi, qi) exists for all i ∈A}. Consider f ∈ F. Then, f ′ : i→ f (pi, qi)
is computable such that A⊆ dom(f ′) which means that dom(f ′) \A is infinite. Since F is countable,
there is a bijective function g : E→ F for some E⊆N where g(s)= gs and g′

s : i→ gs(pi, qi) for
i ∈N, s ∈ E such that s ∈ dom(g′

s) \A for all s ∈ E. Then, A
⋂

E= ∅. Note that gs(ps, qs) is defined
for all s ∈ E. Let

B= {s ∈ E : gs(ps, qs) /∈ Ss}, C = {s ∈ E : gs(ps, qs) ∈ Ss}, (4)

and D=N \ (A∪ B∪ C). Since A
⋂

E= ∅, E= B∪ C and B
⋂

C = ∅, {A, B, C,D} is a partition
of N.

Suppose some computable function f realizes pts0. Since δp(pi)= xE,i and δp(qi)= yE,i for all i ∈A,
f (pi, qi) exists for all i ∈A, hence f = gs for some s ∈ E. Since gs realizes pts0, gs(ps, qs) ∈ Ss ⇔ s ∈ B
by (3.3). On the other hand, gs(ps, qs) ∈ Ss ⇔ s /∈ B by 3.4. Thus, the space is not CpT0.

Proposition 4.12. CpT′
2 ⇐ SCpT2 ⇒ CpT2 ⇐ CpT′

2 ⇔ CpT′
1 ⇒ CpT1.

Proof. SCpT2 ⇒ CpT′
2: Straightforward.

SCpT2 ⇒ CpT2: There is a machineM that on input (p, q) ∈�ω ×�ω searches for (r, s) ∈H such
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that by Lemma 4.7, δp(p) ∈ θ(r) and δp(q) ∈ θ(s). MachineM prints 〈r, s〉 if the search is successful
and diverges, otherwise.

Thus, let δp(p)= xE �= yE = δp(q). When we apply M on (p, q), the machine searches for
(r, s) ∈H as described above and the search must be successful since by definition of H there
must exist (r, s) ∈H such that x ∈ ∪νfs(r) and y ∈ ∪νfs(s) and ∪νfs(r)⋂ ∪νfs(s)= ∅̃, and thus,
∀i ∈ {1, 2, ....., n} there exists ui � r, vi � s such that pxei ∈ ν(ui) and pyei ∈ ν(vi). Therefore, the
space is CpT2.
CpT′

2 ⇒ CpT2: There is a machine M on input (p, q) ∈�ω ×�ω searches for (r, s) ∈H such that
by Lemma 4.7, δp(p) ∈ θ(r) and δp(q) ∈ θ(s). The machine prints 〈r, s〉 if the search is successful
and diverges, otherwise. Thus, machineM realizes pt2.
CpT′

2 ⇒ CpT′
1: Obvious.

CpT′
1 ⇒ CpT′

2: We define the c.e. set of CpT′
2 to be H2 = {(r, s) : ui � r ⇒ ui � g(r, s′), vi � s⇒

vi � g(r′, s) for some (r, s), (r′, s′) ∈H} where H is the c.e. set of CpT′
1 and g is a computable

function that computes the intersection of two open sets.
We check now the two conditions of H2. Let xE �= yE. There are (r, s), (r′, s′) ∈H such that

x ∈ ∪νfs(r)⋂ ∪νfs(s′), y ∈ ∪νfs(s)⋂ ∪νfs(r′). Then, x ∈ θ(r′′)= ∪νfs(r)⋂ ∪νfs(s′), y ∈ θ(s′′)=
∪νfs(s)⋂ ∪νfs(r′) and hence ∀i ∈ {1, 2, ....., n} there are ui � r′′ and vi � s′′ where pxei ∈ ν(ui) and
pyei . Thus, there is (r, s) where r = ι(u1)....ι(un), s= ι(v1)....ι(vn) and x ∈ ∪νfs(r), y ∈ ∪νfs(s).

Now, we prove the second condition of H2. Suppose (r, s) ∈H2 and ∪νfs(r)⋂ ∪νfs(s) �=
∅̃. Thus, there are (r, s), (r′, s′) ∈H such that ∪νfs(r)⊆ ∪νfs(r)⋂ ∪νfs(s′), and ∪νfs(s)⊆
∪νfs(r′)⋂ ∪νfs(s), and then ∪νfs(r)⋂ ∪νfs(s) �= ∅̃, and ∪νfs(r′)⋂ ∪νfs(s′) �= ∅̃. Hence, there are
xE and yE such that ∪νfs(r)= xE ⊆ ∪νfs(s), and ∪νfs(r′)= yE ⊆ ∪νfs(s′). Therefore, ∪νfs(r)⊆ xE
and ∪νfs(s)⊆ yE, which means that xE = yE. Now, we prove that xE ⊆ ∪νfs(r). If not, then there is
some pxei /∈ νfs(r)⊆ ∪νfs(r)⋂ ∪νfs(s′) for some parameter ei. Hence, pxei /∈ ∪νfs(s′) which is a con-
tradiction as xE ⊆ ∪νfs(s′). Thus, the second condition of H2 is satisfied.
CpT′

1 ⇒ CpT1: This is a special case of CpT′
0 ⇒ SCpT0, which completes the proof.

Remark 4.13. CpT ′
2 ⇒ CpT ′

0

Proof. Straightforward.

We introduce now counterexamples to show that the implications of the previous proposition
are not reversed in general.

The next example shows a space that is CpT′
2 but not SCpT2.

Example 4.14. Let A⊆N be a c.e. set with non-c.e. complement. We define a notation of a basis of
a topology τ on a subset X ⊆N as follows,

0i11 0i12 0i21 0i22 0i31 0i32

i ∈A pxie1 pxie2 pxie1 pxie2 pyie1 pyie2

i /∈A pxie1 pxie2 pyie1 pyie2 ∅̃ ∅̃

We extend names to finite intersections of basic open sets as follows: ν(0imn)∩ ν(0irs)=
ν(0imnrs) and for i �= j the intersections are empty. Thus, (X, τ , E, β , ν) is a computable STS. The
space is CpT′

2 as we have a c.e. set that satisfies the two conditions of it, namely,
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H = {(ι(0imn)ι(0ilk)), (ι(0jm′n′)ι(0jl′k′)) : i, j ∈N;l,m, l′,m′ ∈ {1, 2, 3};n, k, n′, k′ ∈ {1, 2};((l=
m and l′ =m′) and (k �= n and k′ �= n′))}.

Now, we show that the space is not SCpT2. Let H′ be the c.e. set of SCpT2. then by the first
condition of H′,

i /∈A⇒ (u, v) ∈H′ where 0i11, 0i12� u and 0i21, 0i22� v,

and by the second condition of H′,

i ∈A⇒ (u, v) /∈H′ where 0i11, 0i12� u and 0i21, 0i22� v.

Since H′ is c.e., the complement of A must be c.e. which is a contradiction.

The next example shows that there is a space that is CpT2 but not CpT′
1.

Example 4.15. Let A⊆N be a non-c.e. set, E= {e1, e2} be a parameter set and X = {xi, yi : i ∈N}
be a set on which a STS τ is defined where τ is generated by the following basis which is given by the
following notation,

0i11 0i12 0i13 0i14 0i1112 0i1113 0i1114

i ∈A xE,i yE,i pxie1 ∅̃ ∅̃ pxie1 ∅̃

i /∈A xE,i ∪ pyie1 xE,i ∪ pyie2 ∅̃ pyie2 xE,i ∅̃ ∅̃

0i1213 0i1214 0i1314 0i61 0i6111 0i6112 0i6113 0i6114

i ∈A ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃ ∅̃

i /∈A ∅̃ pyie2 ∅̃ pyie1 pyie1 ∅̃ ∅̃ ∅̃

Thus, (X, τ , E, β , ν) is a computable STS. The space is CpT2 as there is a machineM that on input
(p, q) ∈�ω ×�ω searches for 0i13 and 0i14 where on of the following cases hold:

(1) 0i13� p and:
a. 0i12� q, the machine prints 〈0i11, 0i12〉,
b. 0j12 ∨ 0j11� q for some j �= i, the machine prints 〈0j11, ι(0j11)ι(0j12)〉

(2) 0i13� q and:
a. 0i12� p, the machine prints 〈0i12, 0i11〉,
b. 0j12 ∨ 0j11� p for some j �= i, the machine prints 〈ι(0j11)ι(0j12), 0j11)〉

(3) 0i14� p and:
a. 0i1112� q, the machine print〈ι(0i14)ι(0i61), 0i1112〉
b. 0j12 ∨ 0j11� q for j �= i, the machine prints 〈ι(0i11)ι(0i12), ι(0j11)ι(0j12)〉

(4) 0i14� q and:
a. 0i1112� p, the machine print〈0i1112, ι(0i14)ι(0i61)〉
b. 0j12 ∨ 0j11� p for j �= i, the machine prints 〈ι(0j11)ι(0j12), ι(0i11)ι(0i12)〉
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Hence, M realizes CpT2. Now, we prove that the space is not CpT′
1. Let H be the c.e. set of CpT′

1, then

i ∈A⇒ (u, v) ∈H where 0i11� u, 0i12� v,

i /∈A⇒ (u, v) /∈H where 0i11� u, 0i12� v.
Since H is a c.e. set, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT′

1.

In the following figure, we represent all implications between the computable p-soft separation
axioms we defined so far. The implications are based on the results that we got in this section and
the non-implications come from the counterexamples that we introduced above.

Figure 2. Relations between computable
p-soft separation axioms.

We can see from Fig. 2 that we have exactly seven different notions of p-soft separation axioms
compared to four different notions of u-soft separation axioms.

In the next section, we study the relation between computable u-soft separation axioms and
computable p-soft separation axioms.

5. Relations Between u-Soft and p-Soft Separation Axioms
In this section, we investigate how computable u-soft separation axioms are related to their
counterparts computable p-soft separation axioms. We just consider the case when the set of
parameters is finite.

At the end of this section, we will be able to compare the four different notions of u-soft
separation axioms to the seven different notions of the p-soft separation axioms.

Proposition 5.1. Computable u-soft Ti ⇒ computable p-soft Ti, for i= 1, 2.

Proof. Case 1: i= 1. Assume computable u-soft T1. Let δp(p)= xE �= yE = δp(q). There are n
machines Mi such that machine Mi translates p into a δu-name pi for pxei . Similarly, there are n
machines Ni where Ni translates q into a δu-name qi for p

y
ei . Now, ∀i∀j ut1 on input (pi, qj) out-

puts wi,j where ν(wi,j)=UE,i,j ∈ β and pxei ∈UE,i,j and pej /∈UE,i,j. ∀i, let wi = ι(wi1 ).....ι(win) and
since ν ≤ θ and the intersection of a finite set of open sets is (θ fs, θ)-computable, there is a com-
putable function f such that

⋂
νfs(wi)== θ ◦ f (wi). Thus, ∀i∀j , pei ∈ θ(ri) and pej /∈ θ(ri) where

ri = f (wi). Also, since the union of a finite set of open sets is open, there is a computable function
g such that ∪θ fs(〈1n, r1, ....., rn〉)= θ ◦ g(〈1n, r1, ....., rn〉) and hence x ∈ θ(r) and y �� θ(r) where
r = 〈1n, r1, ....., rn〉. Therefore, the space is p-soft T1.

Case 2: i= 2. Assume u-soft T2. Let δp(p)= xE �= yE = δp(q). There are n machines Mi such
that machineMi translates p into a δu-name pi for pxei . Similarly, there are n machinesNi whereNi
translates q into a δu-name for pyei . ∀i∀j ut2 on input (pi, qj) outputs (ui,j, vi,j) where ν(ui,j)=GE,i,j ∈
β and ν(vi,j)=HE,i,j ∈ β such that pxei ∈GE,i,j and pyej ∈HE,i,j and GE,i,j

⋂
HE,i,j = ∅̃. ∀i, let ui =

ι(ui1 )....ι(uin) and vi = ι(vi1 )....ι(vin). By functions f and g from case 1, ∀i we have f (ui)= ri and
g(vi)= si where pei ∈ θ(ri) and y ∈ θ(si) and θ(ri)⋂ θ(si)= ∅̃. Now, we use g and f again, where
g(〈1n, r1, ...., rn〉)= r and f (〈1n, s1, ....., sn〉)= s. Thus, x ∈ θ(r) and y ∈ θ(s) and θ(r)⋂ θ(s)= ∅̃.
Therefore, the space is p− soft T2 which completes the proof.
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We give a counterexample that the converse of the above implications is not true in general.

Example 5.2. Let X = {x, y}, E= {e1, e2} be a parameter set, and τ be a STS defined on X w.r.t.
E and generated by the following base ν(01)= {(e1, {x}), (e2.{x})}, ν(001)= {(e1, {y}), (e2.{y})}.
ν(0001)= {(e1, {x}), (e2.{y})}. The space is computable STS and it is CpT1 as we have a machine
M on (p, q) ∈�ω ×�ω outputs ι(01) if 01� p and outputs ι(001) if 01� q. Thus, M realizes pt1
but the space is not CuT1 as it is not u-soft T1. We can see also that this space is CpT2 but not CuT2.

In the next example, we show that the above result does not hold when the set of parameters is
infinite.

Example 5.3. Let X = {a, b}, E= {e1, e2, · · · }. We partition N into infinitely many infinite par-
titions N= F1 ∪ F2 ∪ · · · , and we assume that partition to be computable. We define a STS on
X with respect to E where its basic open sets are defined as follows, for each finite set G⊆N we
have {paei : i ∈G} and for each finite set G⊆N, n ∈N we have {pben} ∪ {paei : i ∈ Fn −G}. Clearly,
this space is u-soft T2 but it is not p-soft T2. We effectivize this space by introducing a notation
ν for the set of basic open sets β as follows, ν(0k1)=G where k is the canonical index of G, and
ν(0m10n1)= {pbem} ∪ {paei : i ∈ Fm −G} where m is the index of Fm and n is the canonical index of
G. We define the finite intersection of basic open sets as follows,

• ν(0k1)
⋂
ν(0l1)= ν(0r1) where r is the canonical index of the intersection of two sets, the

canonical index of the first set is k while the canonical index of the other one is l.
• ν(0m10n1)

⋂
ν(0r10s1)= ∅̃ for m �= r.

• ν(0m10n1)
⋂
ν(0r10s1)= ν(0m10t1) for m= r, where t is the canonical index of the set

resulting from the union of two sets whose canonical indices are s and n.
• ν(0k1)

⋂
ν(0m10n1)= ν(0s1) where s is the canonical index of H where H =G

⋂
Fm − I and

k, n are the canonical indices of G, I, respectively, and m is the index of Fm.

Finite intersections can be obtained directly from the cases above. Thus, the space (X, τ , E, ν, β) is a
computable STS.

Now, we show that the space is CuT2. There is a machine M that on input (p, q) ∈�ω ×�ω does
the following: in p, q, it looks for 0r1, 0s1, or 0i10j1, 0m10n1 with i �=m, or 0j1, 0m10j1 where j is the
index of a singleton, and outputs the pair that is found.

Thus, machine M realizes ut2, and hence the space is CuT2. However, the space is not even
p-soft T1.

The following two examples show that CuT0 and CpT0 are incomparable.

Example 5.4. Let X = {xi, yi : i ∈N}, E= {e1, e2} be a parameter set, and τ be a STS defined on X
w.r.t. E and generated by the following base notation where A is a non-c.e. set,

0i11 0i12 0i21 0i22 0i31 0i1131 0i2131 0i1112 0i1231

i ∈A pxie1 pxie2 pyie1 pyie2 ∅̃ ∅̃ ∅̃ ∅̃ ∅̃

i /∈A xEi xEi yEi ∅̃ pxie1 ∪ pyie2 pxie1 pyie2 xEi pxie1

We extend names to the finite intersections as follows ν(0imn)
⋂
ν(0ikl)= ν(0imnkl) and the

intersection of more than two basic open sets is empty except for ν(0i11)
⋂
ν(0i12)

⋂
ν(0i31)=

ν(0i111231). Thus, the space is computable STS. The space is CpT′
2, which implies CpT2 —and

hence CpT0—as we have the following c.e. set,
H = {(ι(0im1)ι(0im2), ι(0in1)ι(0in2)) :m, n ∈ {1, 2};i, j ∈N}.
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Assume now that the space is WCuT0. Thus, there is a c.e. set H′ that satisfies the two conditions of
WCuT0 which means the following,

i ∈A⇒ (0i11, 0i12) ∈H′,

i /∈A⇒ (0i11, 0i12) /∈H′.

Hence, A must be a c.e. set which is a contradiction. Therefore the space is not WCuT0 (Thus not
CuT0 as well).

Example 5.5. Let X = {x, y}, E= {e1, e2} be a parameter set, and τ be a STS defined on X w.r.t. E
and generated by the following base notation,

ν(01)= {(e1, {x}), (e2, ∅)},
ν(02)= {(e1, {y}), (e2, ∅)},
ν(03)= {(e1, {x}), (e2, {y})},
ν(04)= {(e1, {y}), (e2, {x})},
We give names to the finite intersections of basic open sets as follows, ν(0m)

⋂
ν(0n)= ν(0mn)

for m, n ∈ {1, ...., 4}, and the intersection of any three basic open sets is empty.
Now, we show that this space is CuT0. There is a machine M that on input (p, q) ∈�ω ×�ω, scans
p and q and prints ι(u) whenever it scans first u� p or u� q such that u ∈ {01, 02} at any point of
the computation. If M scans first 0m� p or 0m� q for m ∈ {3, 4}, then it prints the first word v of
the other name if v �= 0m, otherwise, it prints ι(01) if m= 3 and prints ι(02) if m= 4.

Therefore, machine M realizes ut0, and hence, the space is CuT0. However, it is not CpT0 as it is
not pT0.

Proposition 5.6. SCuT2 ⇒ SCpT2.

Proof. Let H be the c.e. set of SCuT2, and n be the number of parameters. Let H′ ⊆�∗ ×�∗ be
the set of all pairs (u, v) of words for which there are some n such that u= ι(u1)....ι(un) and v�
θ ◦ f (ι(v1)....ι(vn)), where f is the computable function that computes the finite intersection of soft
open set and u1, .., u2 ∈ dom(ν) and v1, ..., vn ∈ dom(νfs), and ∀i(ui � ⋂

νfs(wi) where νfs(wi)=
Pr1(N) and νfs(vi)= Pr2(N) for some finite set N ⊆H, where Pr1(N)= {li : (li,mi) ∈N} and
Pr2(N)= {mi : (li,mi) ∈N}.

Let xE �= yE. Then, ∀pxei ∈ xE∀pyej ∈ yE there are pairs (ri1 , si1 ), ...., (rin , sin) ∈H such that pxei ∈
ν(rij)and pyej ∈ ν(sij), and ν(rij)

⋂
ν(sij)= ∅̃. Then, pxei ∈

⋂
νfs(wi) where wi = ι(ri1 )...ι(rin) and

hence there is some ui � νfs(wi) where pxei ∈ ν(ui), and y ∈ ∪νfs(vi) where vi = ι(vi1 )...ι(vin).
Thus, there are some u ∈ νfs and v ∈ νfs where u= ι(u1....ι(un)) and x ∈ ∪νfs(u), and v� θ ◦
f (ι(v1)....ι(vn)) where y ∈ ∪νfs(v). It is obvious that ∪νfs(u)⋂ ∪νfs(v)= ∅̃. Therefore, H′ is the
c.e. set for SCpT2.

Example 5.7. Let X = {xi, yi : i ∈N}, E= {e1, e2} be a parameter set, and τ be a STS defined on X
w.r.t. E and generated by the following base notation where A is a non-c.e. set,

0i11 0i12 0i21 0i22 0i2122

i ∈A pxie1 pxie2 pyie1 pyie2 ∅̃

i /∈A pxie1 pxie2 yEi yEi yEi
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We extend names to the finite intersections as follows ν(0imn)
⋂
ν(0ikl)= ν(0imnkl) and the

intersection of two basic open sets is empty except for ν(0i21)
⋂
ν(0i22)= ν(0i2122). Thus, the space

is computable STS. This space is SCpT2 as we have a c.e. set H1 where
H1 = {(ι(0im1)ι(0im2), ι(0jn1)ι(0jn2)) : i, j ∈N;m, n ∈ {1, 2};m �= n}. Let H2 be the c.e. set for
SCuT2, then for

i ∈A⇒ (0i21, 0i22) ∈H2,

i /∈A⇒ (0i21, 0i22) /∈H2.

Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not SCuT2.

We now give a counterexample for a space that is CuT′
1 but not CpT

′
1.

Example 5.8. Let X = {xi, yi : i ∈N}, E= {e1, e2} be a parameter set, and τ be a STS defined on X
w.r.t. E and generated by the following base notation where A is a non-c.e. set,

0i1 0i2 0i3 0i4 0i5 0i6

i ∈A pxie1 pxie2 pyie1 pyie2 ∅̃ pyie2

i /∈A pyie1 pyie2 pxie1 xE,i ∪ pyie1 pxie2 pxie1 ∪ pyie2

We define names to the finite intersections as follows ν(0im)
⋂
ν(0in)= ν(0imn) and the

intersection of more than two basic open sets is empty except for ν(0i3)
⋂
ν(0i4)

⋂
ν(0i6)=

ν(0i346).
Thus, the space is computable STS. This space is CuT′

1 as we have the following c.e. set that satisfies
the conditions of CuT′

1,

H = {(0im, 0jn), (0i46, 0jm) : i, j ∈N;m ∈ {1, 2, 3, 5};n ∈ {1, 2, 3, 4}}.
However, it is not CpT′

1, as if it was, there would exist a c.e. set H′ that satisfies the conditions of
CpT′

1 and hence for,

i ∈A⇒ (r, s) ∈H′,

i /∈A⇒ (r, s) /∈H′,
where

ι(0i1), ι(0i2)� r ∧ ι(0i3), ι(0it)� s for t ∈ {4, 6, 46}.
Thus, A must be a c.e. set which is a contradiction. Therefore, the space is not CpT′

1.

Remark 5.9. SCuT0 and SCpT0 are incomparable.

Proof. This follows directly from Propositions 3.9, 4.8 and Examples 5.3 and 5.4.

Remark 5.10. CuT′
i and CpT′

i are incomparable for i ∈ {0, 1, 2}.

Proof. For i= 0: Use Example 5.5 where in which the space is not WCuT0 and Example 5.4, and
Propositions 3.9, 3.10.

For i= 1, 2: Use Examples 5.5, 5.7, and Propositions 3.11, 4.12.
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Remark 5.11. WCuT0 andWCpT0 are incomparable.

Proof. Use Examples 5.5, 4.9 where in the latter example the space is WCuT0 as we have the
following c.e. set,

H = {(0imk, 0inl) : i, j ∈N;m, n ∈ {1, 5};k, l ∈ {1, 2}}.
However, it is notWCpT0 as shown earlier.

So far we have defined nine computable separation axioms based on soft points and another
nine separation axioms based on soft singletons. We also investigated how the ones based on soft
points are related and how the other ones based on soft singletons are related. Counterexamples
have been provided to show the non-implications between them. Some of them turned out to
be equivalent and others turned out to be incomparable. Equivalences between the ones that are
based on soft points exist for instances:
CuT2 ⇔ CuT′

2, CuT1 ⇔ CuT′
1, and SCuT0 ⇔ CuT′

0. However, these equivalences do not exist for
their counterparts that are based on soft singletons.

In the following Fig. 3, all relations between computable u-soft and p-soft separation axioms
are represented. As seen from the figure, there are some implications between some separation
axioms and some other separation axioms turn out to be incomparable.

Figure 3. Relations between computable u-soft and computable p-soft separation
axioms.
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6. Conclusion
In this paper, we defined the effective versions of soft separation axioms.We introduced two sets of
computable soft separation axioms, namely computable u-soft and computable p-soft separation
axioms, and investigated many relations between them. Finally, We showed how the effective and
classical versions of these soft separation axioms differ.
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