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Nanocomposite films of metal nitrides such as TiN/Si3N4, TiN/BN, and CrN/AlN have attracted 
substantial attention as new hard coating materials. It is difficult to prepare composite films consisting of 
nitride and oxide by conventional reactive sputtering methods. Nose et al. developed a differential 
pumping cosputtering (DPCS) system with two chambers A and B, which can fabricate different 
nanocomposite films [1]. We elucidated the process and mechanism of film growth in the DPCS system, 
using Cr(Al)N/SiOx nanocomposite layer deposited on the under buffer layers grown on a Si substrate 
[2-4]. Here, we report the mechanical property and structure of Cr(Al)N/Al2O3 layers prepared at various 
conditions in the DPCS system, to demonstrate its usefulness for fabricating superhard coatings. 
Cr50Al50 and Al2O3 targets were set in chambers A and B respectively, and a (001) Si wafer was used as 
the substrate. The substrate was heated at 250oC. First, three depositions were successively performed 
on the Si substrate for making the transition or buffer layers to promote adhesion between the composite 
layer and substrate. Except for a substrate rotational speed of ω =12 rpm, the preparation conditions of 
the gas flow and RF power for these transition layers were the same as that used for the previous 
Cr(Al)N/SiOx nanocomposite coating [2-4]. Next, the main deposition was carried out for 810 min by 
operating both the CrAl chamber A and the Al2O3 chamber B, on the transition layers rotated at the 
same speed ω. The CrAl sputtering and the Al2O3 sputtering were performed with flows of Ar (10 
sccm)+N2 (20 sccm) and Ar (20 sccm) respectively, at different RF powers for preparing composite 
layers with different compositions: e.g. 200 W and 100 W, respectively so as to obtain a nominal 
composition of Cr(Al)N/17 vol.％Al2O3. The structure was observed by analytical electron microscopy 
using JEOL JEM-2800 and ARM200F microscopes, and the indentation hardness HIT and Young’s 
modulus E* of the films were measured using a nanoindentation system (Fischerscope, H100C-XYp) at 
room temperature. 

We got the following conclusion from the experiments such as shown in Figures 1-4. (1) The transition 
or buffer layers prepared successively on the Si substrate by sputtering from the CrAl target with flows 
of (i) Ar (10 sccm), (ii) Ar (10 sccm)+N2 (10 sccm), and (iii) Ar (10 sccm)+N2 (20 sccm) were layers of 
composed of bcc Cr crystallites and a-Al2O3 particles (layer C), Cr crystallites, NaCl-type CrN 
crystallites, and a-Al2O3 particles (D), and Cr(Al)N crystallites and a-Al2O3 particles (E), respectively. 
These layers, where the composition gradually changes from metal (Cr) to nitride (CrN), are appropriate 
to the adhesion between the metal substrate and the composite nitride layer. The multilayered structure 
composed of Cr (or CrN) layers and oxide layers, which were found in the layers prepared at ω =1 rpm, 
was not observed in the present layers prepared at first rotational speeds. (2) The main layer (F) grew in 
a columnar structure normal to the substrate surface. Each column comprises Cr(Al)N crystallites and 
a-Al2O3.particles. The Cr(Al)N crystallites and a-Al2O3 particles were homogeneously dispersed and 
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any multilayered structure was not formed, unlike the nanocomposite layers prepared at ω = 1 rpm. (3) 
HIT and E* increased with increasing ω  within a measured range of 1~12 rpm. In the multilayered 
structure prepared at low rotational speeds, the nitride crystal lattices in the same layer can easily deform 
without interrupt by oxides and the oxide particle layers also act on softening the coating. With 
increasing oxide fraction, HIT and E* increased to reach maximum values and then decreased. This 
shows that the hardness of nitride coatings is improved by fabricating the nanocomposite layer. The 
Cr(Al)N/17 vol. %Al2O3 and Cr(Al)N/17 vol %SiOx layers prepared at ω =12 rpm were superhard 
coatings with HIT = 44~46 GPa and E*＝~350 GPa. They had the structure described in (2). The fine 
a-Al2O3 particles can work as obstacles against the lattice deformation of Cr(Al)N. The increasing 
amount of amorphous oxide (>17 vol. %) reduced the supremacy of hard nitride and consequently 
softens the coatings. Thus, we demonstrated that the DPS system allows us to fabricate superhard 
nanocomposite coatings with a hardness of as high as 45 GPa. Since we have prepared a composite layer 
with a hardness of 48 GPa, DPCS has potential to fabricate harder coating layers by controlling 
preparation condition and searching target materials. 
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Figure 1(top left). (a) STEM-HAADF image of an area including 
layers A−F. (b) HAADF intensity profile, (c−g) EELS intensity 
profiles, and (h−l) EDS intensity profiles along the line indicated in 
(a). 

Figure 2(top middle). HR-TEM image of an area including 
layers E and F. 
Figure 3(top right). (a) STEM-HAADF image of a cross section, 
parallel to the substrate surface, of layer F. (b) EDS spectrum from 
area in (a). (c-f) EDS maps of O-K, Al-K, Cr-K, and N-K signals 
of the same cross section, respectively. 

Figure 4 (bottom left). HIT and E* of Cr(Al)N/17vol.%Al2O3 
composite layers and Cr(Al)N layers prepared at different substrate 
rotational speeds. HIT and E* of Cr(Al)N/17 vol.%SiOx, and 
Cr(Al)N/38 vol.%SiOx layers are added for reference. 
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