
ON DIVISIBILITY AND INJECTIVITY 

GARRY HELZER 

1. Introduction. In the category of abelian groups the concepts of divisible 
group and injective group coincide. In (4) this is generalized to modules over 
an integral domain and it is proved for a (commutative) integral domain that 
the concepts of divisible module and injective module coincide if and only if 
the ring is hereditary if and only if the ring is a Dedekind domain. 

In (8) the assumption of commutativity is dropped and the ring is assumed 
to have a one-sided field of quotients. The result obtained is essentially the 
same as in the commutative case; see the theorem following 6.2. In (13) the 
requirement that the ring have no zero-divisors is also dropped and the ring 
is assumed to possess what we have called an Ore ring (see the definition 
following 6.2). The result obtained is the equivalent of parts (a) and (b) of 
our 6.13. 

Basic to these results are the concepts of l'quotient ring" and "invertible 
ideal" and the relation of "invertible" to "projective." We replace the concept 
of "quotient ring" by the generalized localizations of (7) and approach the 
concept of "invertible ideal" from two directions, that of a "projective basis" 
(see 2.5) and that of an "effacement" (see 5.1). 

Another problem is the definition of "divisible module" for general rings. 
In (4, 8, 11, and 13) a (right) A -module M is called divisible if 

Ext^iA/I.M) = 0 

for a certain set of right ideals I. In (4, 8, and 11) this is the set of principal 
right ideals and in (13) it is the set of principal right ideals generated by a 
non-zero divisor. It follows that the set of divisible modules is closed under 
taking quotient modules and infinite direct sums. In §3 we find the sets of 
right ideals that give such a result; see 3.2, the proof of which is adapted 
from (11 and 1). 

In §4 we associate a concept of torsion and divisibility to every general 
localization and give some results (4.4, 4.5, and 4.6). Since the definitions of 
(11 and 13) do not fall under those of §4, we treat them in §6 after having 
derived a formula for the purpose in §5 which we call the "effacement 
condition." 

We list some notations which will be constantly used. Wherever possible 
we refer to (7). A shorter development of the generalized localization may be 
found in (2, pp. 157-166). 
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Throughout, A will be a ring with a unit element and mod A will denote the 
category of right A -modules and A -module homomorphisms. The symbols 
11M 6 mod A11 and "<£: M -> N G mod 4 " mean that M is a right ^-module 
and 0 is a homomorphism of right A -modules. If F is a topologizing and idem-
potent set of right ideals of A (7 or 2), we let F denote the corresponding 
localizing subcategory of mod A and M —• MF the corresponding localization 
functor. The symbol FM denotes the unique largest submodule of M that 
belongs to F. It is the kernel of the canonical map j M : M —» MF £ mod A. 
Given F, F' and F ' refer to the localization induced by F on the category 
mod AF, i.e. F ' = F H mod AF. We shall often make use of the following 
known result, the proof of which may be found in (14) or, more generally, 
in (17). 

1.1. PROPOSITION. Let F be a topologizing and idempotent set of right ideals 
of the ring A. The following statements are equivalent: 

(1) The functor M —• MF is naturally equivalent to the functor M -+ M ® AAF. 
(2) F ' contains only the zero module. 
(3) All right AF-modules are F-closed (i.e. localized). 
(4) The localization functor is exact and commutes with infinite direct sums. 

By Goldiës theorem we mean Theorems 4.1 and 4.4 of (9). This usage differs 
from that of (7 and 2). 

2. Injectivity of ^-closed modules. In this section we investigate what 
happens when all localized A -modules are injective as A -modules and give a 
result on right hereditary and right noetherian rings. By (7, p. 413, Corollaire), 
this is equivalent to all localized A -modules being injective as ^4F-modules. 

2.1. PROPOSITION. Assume that MF is injective for all M £ mod A. Then the 
localization functor is exact. 

Proof. By (7, p. 377, Prop. 7), it is sufficient to show that if I Ç mod A is an 
injective such that FI = 0 and N is an ^-closed submodule of / , then I/N is 
an .F-closed module. Now N F-closed means N is isomorphic to NF and so N 
is injective. Thus / is isomorphic to N © I/N, which shows that I/N is 
injective and F(I/N) = 0. Thus N is F-closed by (7, p. 370, Lemma 1). 

Recall that right ideal I of A is called large if the only right ideal J of A such 
that I C\ J = 0 is the zero ideal. We always denote the set of large right ideals 
of A by A. 

2.2. PROPOSITION. The following statements are equivalent: 
(1) MF is injective for all M G mod A. 
(2) AF has no large F-closed right ideals. 
(3) Every F-closed right ideal of A F is a direct summand of AF considered as a 

right AF-module. 
(4) F' is the set of large right ideals of AF. 
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Proof. Clearly (1) implies (3) and (3) implies (2). Assume that (2) holds. 
Let I = IFbe an ^-closed right ideal of AF. Let J be a complement of / in AF 

(i.e. J is maximal with respect to the property I C\ J = 0; see (7 or 9)). Then 
I + I = I ® I is large and hence I + J C (I ® I)F = IF ® IF = A F since 
IF + IF is large. Thus (3) holds. 

If (3) holds, le t / : I -> MF G mod AF. Since FAF = 0 and the functor is left 
exact, we have / C IF- Thus fF: IF —» ikfF G mod ̂ 4F extends / . Since i^ is a 
summand of AF, this jf> extends to a mapping ^ —» MF G mod AF. Thus ikfF 

is ^-injective and hence A is injective. Thus (1), (2), and (3) are equivalent. 
Again assume that (2) holds. Let / be a large right ideal of AF. Then IF "D I 

is also a large right ideal and hence IF = AF and thus I £ F'. Conversely, 
I (z F' implies IF = AF and, since IF is an essential extension of / , / is large. 
Thus (2) implies (4). Conversely, suppose (4) holds. Let I £ F'; then if / is 
/^-closed we have I = IF — AF and so / is not a proper ideal. 

It is well known (4, p. 11) that if all right modules of a ring are injective, 
then the ring is semi-simple. However, not all ^-modules are localized 
A -modules and so the conditions of 2.2 do not imply that AF is semi-simple. 
The proof of (7, p. 417, Lemma 4) shows that the conditions of 2.2 do imply, 
however, that AF is a self-injective von Neumann ring. 

2.3. PROPOSITION. 

(1) Assume that MF is injective for all M G mod A. Then AF is semi-simple if 
and only if the localization functor is isomorphic to the functor M —• M ®A AF. 

(2) Assume that AF is semi-simple ; then the localization functor is isomorphic 
to the functor M *-* M ®AAF and MF is injective for all M G mod A. 

Proof. This follows easily from 1.1. 
Recall that M G mod A is projective if and only if every generating set of M 

defines a projective basis. That is, a generating set {mp:fi G B] together with a 
set of yl-homomorphismsc^-.M—» A such that all m G M the set {^(w):/3 G B) 
contains only a finite number of non-zero elements and m = Z)/3 w/s #/s(w) î 
see (4, p. 132). 

The next proposition will be used in §6 to generalize a theorem of Gentile. 
The corollary indicates why hereditary rings are often noetherian (e.g. integral 
domains) and thus why our results state "hereditary and noetherian" where 
the familiar results merely state l'noetherian"; cf. (4, p. 132). 

2.4. PROPOSITION. Assume that FA = 0. Then I G F is projective if and only 
if given {xp: fi G B], a set of generators of I, there is a set {q$: f3 G B] C AF 

such that qp I (Z A for all f$ G B and, for x G I, the set {qp x: f$ G B] contains 
only a finite number of non-zero elements and x — Y,p xpQpX', cf. (4 and 13). 

Proof. Suppose the latter condition holds. Take <j>p x = q$ x. Then {xp, <t>p\ 
gives a projective basis for / . Conversely, assume that / is projective. Then 
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for each ft G B we have an 4-module mapping <f>$: I —> A such that 

for all x G 7. Then, since I £ F implies 7F = ^4F, we have a commutative 
diagram 

0 > I >,4F 

(<Ê0 ) F 

0 > ^ > ^ F 

Thus let ^ = (^)F (1) . 

2.5. COROLLARY. Assume that FA = 0 and I £ F. 
(1) 7 is projective and finitely generated if and only if there 

and qi, . . . , qn £ AF such that qt I C A for i = 1, . . . , n and 1 = £ x* qt. 
(2) If I is projective and contains an element that is not a right zero divisor in 

AFj then I is finitely generated. 

Proof. (1) Assume I projective and finitely generated. Then, by 2.4, we 
have the xt and qt such that x = ]Tï Xiq^x for all x G 7. Then 

(1 - Zxtqt)I = 0. 

Thus 1 — ]T Xiqi G FAF — 0. The converse is clear. 
(2) Let y G 7 be such that a G ^4F and a;y = 0 implies a = 0. Then if I is 

projective, y = ]£/3 x# ̂  y shows that 
n 

1 

where the /3/s are such that q^{ y ^ 0. 
Now let A denote the set of large right ideals of the ring A and let 

ZT{A) = {a G ̂ : (0: a) G A}. 

The two-sided ideal Zr(A) is called the right singular ideal of A and it is well 
known that of Zr(A) — 0, then A is topologizing and idempotent; see (7, 
p. 416). In (11, Lemma 2) it is shown that a principal right ideal a A of A is 
projective if and only if there is an idempotent ea G A such that aea = a and 
(0: a) = (0: ea) = (1 — ea)A. Combining these facts, we obtain 

2.6. LEMMA. Let A be a ring for which every principal right ideal is projective. 
Then the set of large right ideals of A is topologizing and idempotent. 

Proof. We need only show that Zr(A) = 0. Notice that if e2 = e G ZT(A), 
then (0: e) = (1 — e)A G A. But (1 — e)A is a direct summand of A. Thus 
(0: e) = A and so e = 0. Now assume that a G Zr(A). Then there is an 
idempotent ea such that aea = a and (0: ea) = (0: a) G A. Thus ea G ZT(A), 
which implies that ea = 0 and hence a = 0. 
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Hattori (11) has studied such rings in connection with his theory of 
divisibility. 

In (7, pp. 416 ff.) it is proved that if A is a ring such that A is topologizing 
and idempotent, then every A-closed right ideal of A is a direct summand of A. 
Thus by 2.2, MA is injective for all M G mod A. Combining this with 2.3, 
2.5, and 2.6, we obtain 

2.7. THEOREM. Let A be a right hereditary and right noetherian ring. Then the 
set A of large right ideals of A is topologizing and idempotent. The ring A is 
semi-simple; MA is injective for all M G mod A; the localization may be identified 
with the functor M —* M (&AA; and if I G A is generated by Xi, . . . , xn, then 
there are qu . . . , an G A such that qt I <Z A for i — 1, . . . , n and 

n 

1 =Hxiqi. 
l 

3. Restricted injectivity and divisibility. 
Definitions. (1 ) Let SI be a set of right ideals of a ring A. A module M G mod A 

is called %-injective if for each 7 G 31 and each / : 7 —> M G mod A, f may be 
extended to a map A —» M G mod A. 

(2) A monomorphism j : M —> N G mod 4̂ is called an %-effacement if for 
7 G 4̂ and every / : 7 —» il7 G mod 4̂ we may find a g: 4̂ —» N G mod 4̂ such 
that g/I = j - / . When 31 is the set of all right ideals of A an 3l-effacement is 
called an injective effacement; cf. (10, p. 135). 

Such restricted types of injectivity have been used by Hattori (11) and 
Levy (13) as definitions of "divisible module." Hattori takes 31 to be the set 
of principal right ideals and Levy takes SI to be the set of all right ideals gene­
rated by a regular element (i.e. neither a left nor a right zero divisor). 

The usual arguments show that a direct product of modules is 31-injective 
if and only if each factor is 3I-injective; M G mod A is Sl-injective if and 
only if Ext i 1 (A/1, M) = 0 for all 7 G SI; and a monomorphism i: M-+ N is 
an Sl-effacement if and only if Ext^1 (-4/7, i) = 0 for all 7 G SI. The construc­
tion of (4, p. 9) also shows that every M G mod A may be embedded in an 
Sl-injective module. For later use we single out a portion of this statement. 

3.1. PROPOSITION. Let 31 be a set of right ideals ofthering A andletM G mod A. 
Then there is an %-effacement i: M —» 31 (M) G mod A. 

Proof. Let $ = {(7,/) : 7 G 31, / : 7 -> M G mod A}. Let F be the free right 
^4-module on 3>. Let 3l(il7) be the module M © F modulo the submodule 
consisting of all finite sums of elements of the form (f(a), — (7,/)a) where 
(7,/) G $ and a G 7. Let i: m —-> (m, 0) be the composite of the natural maps 
M —•» M © F —» 31 (M). Now i is a monomorphism, for assume that 

i(m) = 0 G Sl(if). 
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Then in M 0 F, (m, 0) = £ (ftau -(Iitft)ai). Thus £ (It,ft)at = 0 t F. 
Since $ is a free basis for F, this shows that m = ]£ /* a* = £ / * (0) = 0 . 

Further, i: M -» 31 (if) is an 2l-effacement ; let / : I -> ilf where / G 21. If 
a £ I, then 

*-/(a) = "(KÔ) = WOTK) ^ (0, (/,/))a. 

Thus define g: A ->2l(M) by g(b) = (0, ( J , / ) ) i . Then g/7 = i-/, which 
completes the proof. 

If SI is actually a topologizing and idempotent set of right ideals of A, we 
may imitate the usual results for injective modules (indeed, we even have an 
"St-injective hull" ; see (17).) The usual proofs require only slight modification. 
We shall need the following statements from (7). 

3.2. PROPOSITION. Let F be a topologizing and idempotent set of right ideals 
of A. For M G mod A the following statements are equivalent: 

(a) M is F-infective. 
(b) If a: P —> Q G mod A is a monomorphism such that coker a G F and if 

/ : P —* M G mod A, then there is a g: Q —> M G mod A such that f = g-a. 
(c) Every exact sequence 0—>M-^N-^P—>0in mod A with P G F s^Zite. 

In integral domains a divisible module is an 2ï-injective module where 2Ï 
consists of all principal ideals. The class of divisible modules, however, is 
closed under arbitrary direct sums and epimorphisms. This is not generally 
true of injective modules. We wish to define ''divisibility" as Sï-injectivity in 
such a manner that the "divisible" modules are closed under arbitrary direct 
sums and epimorphisms. The next proposition shows how this may be accom­
plished. The divisibilities thus defined include those used in (4, 11, and 13) 
but not that of (14) nor the '^-divisibility" of (15). 

3.3. PROPOSITION. Let 21 be a set of right ideals of the ring A. Let 6 be the 
class of ^-injective right A-modules. 

(1) S is closed under epimorphisms if and only if every element of 9Ï is projective. 
(2) S is closed under epimorphisms and arbitrary direct sums if and only if 

every element of 21 is projective and finitely generated. 

Proof. In (11, Prop. 7) Hattori proves (1) for the set 21 of principal right 
ideals. The proof for arbitrary sets 21 is the same. Thus we assume (1) and 
prove (2). This proof is an adaptation of a proof in (1). 

Suppose 2Ï consists of projective and finitely generated ideals. Then 6 is 
closed under epimorphisms. Let M\ G A for each X in some index set A. Let 
M = ®MX. Let I G 21 be generated by xly . . . , xn and let <j>: I —» M G mod A. 
Now, for each i, <t>(Xi) is contained in the sum of a finite number of components 
of M. Thus </>(/) is contained in the sum of a finite number of components of M. 
This latter sum is 2l-injective since Ê is always closed under direct products. 
Thus (j> may be extended to a map A —> M. 
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Conversely, assume that S is closed under arbitrary direct sums. Let / G 2t 
and let J be a countably generated direct summand of I. We claim that J must 
be finitely generated. For let xh x2, . . . be a countable generating set for J. 
Let Qt be an injective module containing J modulo the right ideal generated 
by xx, . . . , xt. Then Q = ®f=iQt is SI-injective, and thus is clearly {J}-
injective. Define <£: J —> Q as follows. Let <j>t be the composition 

J-+J/ilxhA-*Qi. 

Now if x G J, then there is an integer n such that 

n 

x e X xkA. 
k=l 

Thus </>i(x) = 0 for i > n. Hence the map 4>(x) = ($i(x), #2(x), . . .) is a 
well-defined map J —> <2 and thus it extends to a map <j>: A —> Q. Now there 
is an integer 5 such that $(A) = $(1)A C Qi © . • • © (?*. Hence 

0(J) C Q i © . . . ©Q s , 

which shows that J is generated by Xi, . . . , xs. 
Now assume that 21 is also closed under epimorphisms. Then / is projective 

and a result of Kaplansky (12) shows that / = ©A A where each J\ is count-
ably generated. Thus each Jx is finitely generated. We claim that A is a finite 
index set. For suppose A is infinite. Then there is a proper subset B d A such 
that B is countably infinite. Then J = ® B J\ is a countably generated direct 
summand of I that is not finitely generated, which is impossible. 

Definition. Let 21 be a set of right ideals of A. We say that M G mod A is 
^-divisible if M is 2T-injective where W is the set of projective and finitely 
generated elements oi 21. 

4. ^-divisibility and /Mnjectivity. Throughout this section F will denote 
a topologizing and idempotent set of right ideals of the ring A. 

Definition. We say that right A -module M is F-torsion free if FM = 0 and 
F-torsion if FM = M. 

Note that if A is an integral domain and F is the set of all non-zero ideals of 
A, then i^-injective, ^-divisible, ^-torsion, and /^-torsion-free become the usual 
notions of injective, divisible, torsion, and torsion free; see (4, p. 133, Prop. 3.4). 

3.2, of course, gives the following statement. 

4.1. THEOREM. Let F be a topologizing and idempotent set of right ideals of the 
ring A. Then every F-divisible right A-module is F-injective if and only if the 
elements of F are all projective and finitely generated. 

We next show how the localized modules are characterized by our definitions. 

https://doi.org/10.4153/CJM-1966-091-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-091-2


908 GARRY HELZER 

4.2. PROPOSITION. Let M € mod A. Then M is F-closed if and only if M is 
F-torsion-free and F-injective. 

Proof. By (7, p. 370, lemma 1) an .F-closed module is F-torsion-free and 
F-injective. Conversely, if M i s F- torsion -free and .F-injective, then (7, p. 370, 
lemma 1) again shows that M is F-closed since the extension given by 3.2(b) 
must then be unique. 

4.3. LEMMA. Arbitrary direct sums of F-closed modules are F-closed if and only 
if the functor M -* MF commutes with infinite direct sums. 

Proof. Assume that the direct sum of F-closed modules is again F-closed. 
Let [M\: X (E A} be a collection of ^4-modules. For each X Ç A we have the 
canonical exact sequence 

h 
0->FMx-+ Mx -> (Mx)F. 

This gives the exact sequence 
Ejx 

0 -> 0 A FMX -> 0 A Mx > 0 A (MX)F 

and hence 
0-> ( 0 A ^ A ) F - + 0 A (MX)F 

where the map is (EJ'X)F, T O show that this map is onto, we find an inverse 
map. The diagram 

Mx > 0 A Mx 

Jx (Ejx)* 
(i\)F 

(MX)F > (®AMX)F 

where i\ is the canonical inclusion commutes and thus we have a map 

E (i\)r: ©A (MX)F-+ ( 0 A M X ) F . 

Since M —• MF is a functor, we have 

(EXJX)F* (EM MF) = LM [CL\J\)F' MF] = EM Œ\J\'^)F = EM OM)F 

which is the identity on 0 A (M\)F. Thus the localization commutes with direct 
sums. 

Conversely, let {Mx: X £ A} be a collection of F-closed modules. Then 

(®Mx)F^ ®(MX)F^ ®MX. 

Thus ©Mx is F-closed. 

If A is an integral domain, then an A -module is torsion free and divisible 
if and only if it is a vector space over the quotient field of A. The next result 
shows when this is true for general localizations. 
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4.4. THEOREM. Let F be a topologizing and idempotent set of right ideals of the 
ring A. The following statements are equivalent: 

(a) Every F-torsion-free and F-divisible right A-module is an F-infective 
module. 

(b) The localization functor may be taken to be M —• M ®A AF and if M is 
F-torsion-free and F-divisible, then M £ mod AF. 

(c) M is F-torsion-free and F-divisible if and only if M £ mod AF. 

Proof. We first show that (a) implies (b). To show that the localization 
functor may be taken to be M —• M ®A AF, it is sufficient to show that it is 
exact and commutes with direct sums by 1.1. Let {M\\ X G A} be a collection 
of F-closed modules. Then © M\ is -F-divisible and F-torsion-free and hence is 
.F-torsion-free and F,-injective, i.e. F'-closed. Thus by 4.3, the functor commutes 
with direct sums. To show that the functor is exact, it is sufficient to show that 
every exact sequence 

P 
0 -» N -> M -> M/N -> 0 

with N and M F-closed has M/N F-closed; see (7, p. 376, Prop. 7). We first 
show that M/N is F-torsion-free. Let N' = p~l[F{M/N)]. Since N is F-
injective, 3.2 shows that the sequence 

0 -> N -> N' -> F(M/N) -> 0 

splits. Thus F{M/N) is isomorphic to a submodule of M and so F(M/N) = 0. 
Now M is ^-divisible and hence M/N is ^-divisible. Thus, by (a), M/N is 
F,-closed. If M is F-closed, then M is an .4^-module by means of the iso­
morphism j M : M —> MF. 

Now assume that (b) is true. Since the localization functor is M —• M ®A AFl 

1.1 shows that F ; contains only the zero module. Thus mod AF contains only 
F,-closed modules which are, of course, F'-torsion-free and F,-divisible. 

On the other hand, if (c) is true, then F r contains only the zero module and 
(b) is immediate. If (b) is true, then an F-torsion-free and F,-divisible module 
is an ^ -module and thus, since F r contains only the zero module, is F'-closed. 

The next two results generalize the fact that over integral domains the only 
localizations that always give injective modules are M'—• M ®AQ (Q the 
quotient field of A) and M - • (0) for all A -modules M. 

4.5. PROPOSITION. Let F be a topologizing and idempotent set of right ideals of A. 
Every F-torsion-free and F-divisible module is injective if and only if every F-
torsion free and F-divisible module is F-infective and AF is a semi-simple ring. 

Proof. Assume that every F-torsion-free and F,-divisible module is injective. 
Then 4.4 and 2.3 show that AF is semi-simple. Conversely, if every F,-torsion-
free and F,-divisible module is F,-injective, then 4.4(c) shows that every 
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F- torsion -free and F-divisible module is ^4F-injective. Since such a module is 
also ^-closed by 4.2, we see that it is yl-injective (see the remarks beginning §2), 

4.6. THEOREM. Let F be a topologizing and idempotent set of right ideals of 
the ring A. Then every F-divisible right A-module is infective if and only if A is a 
right hereditary, right noetherian ring and every large right ideal of A is an element 
of F. Furthermore, when these conditions hold, the set A of large right ideals is 
topologizing and idempotent, A ̂  is a semi-simple ring, and if A ̂  = Si ® . . . ® Sn 

is the decomposition of A\ by minimal two-sided ideals, then there is a subset J 
of {1, . . . , n) such that AF = ®JSJ. (J may be empty.) 

Proof. Assume that every ^-divisible module is injective. By 3.2 with 21 
taken to be the set of all right ideals of A, we see that A is right hereditary 
and right noetherian. The statements about AA then follow from 2.7. Let 
F* = F r\ A. Then F* is topologizing and idempotent. F*A C. AA = 0 and 
so A C AF* C AA as rings. Now every F*-injective module M is ^-injective 
and hence injective, for if / G .Fand <j>\ I —> M 6 mod A, let J be a complement 
of I in A. Then I + J = I®J£F* and so </> extends to I + J and hence to 
A whenever M is /^-injective. In particular, AF* is injective as a right A-
module and hence AF* = AA since A A is an essential extension of A. By 2.3 the 
T7* localization may be taken to be M - * M ®A AF*. Thus F* and A define 
the same localization and thus F* = A. 

Assume that A is right hereditary and right noetherian and that A C F. 
Then by 4.1 ^-divisible implies F-injective and the above argument on 
complements shows that /^-injectivity implies injectivity. 

Only the statement about minimal ideals remains to be shown. By (3, p. 46, 
Prop. 10) we need only find a ring homomorphism of AA onto AF. Let 
J'A: A —> AK and jF: A —» AF be the canonical maps. Since AF is injective and 
J'A is one-to-one, there is a homomorphism of right A -modules g: A —» AF such 
that g-j = j F . Since A is hereditary, Im g is an injective A -module containing 
jF[A]. But AF is an essential extension of jF[A]. Thus g is onto. We must show 
that g is a ring homomorphism. First notice that any two 

h, h'\ A -* AF € mod A 

such that h'JA = h'-JA are equal. For h — h' induces a map: coker j A —* AF. 
Now A C F shows that coker j A G F. Thus any image of coker j& is /^-torsion. 
But AF is F-torsion-free and so h = h!. Now let y G AA. Define hy, h'y: A —> AF 

by hy(x) = g(yx), hf
y(x) = g(y)g(x). These extend to ^4-mappings of ^4A to AF 

and agree on jA[A]. Thus they have the same unique extension and so 
g(yz) = g(y)g(z) for all y and z elements of A A. This completes the proof of 4.6. 

5. The effacement condition. In this section we derive a condition that 
is useful for analysing 2l-injectivity when 31 is taken to be an arbitrary set of 
right ideals. First we give a preliminary definition. 
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Definition. Let 21 be a set of right ideals of the ring A. We shall say t h a t A 
satisfies the effacement condition for 21 if every 2l-effacement is an injective 
effacement. (See the beginning of §3 for definitions.) 

Notice t h a t if A satisfies the effacement condition for 21, then every 21-
injective M G mod A is injective since 1M: M —> M is an 2l-effacement. 
Although the results of this paper give the converse for a few special 2Ts, we 
have no general results on when the converse holds. 

All our results on the effacement condition stem from the following s ta tement . 

5.1. PROPOSITION. Let %be a set of right ideals of the ring A and J a right ideal 
of A. The following two statements are equivalent: 

(a) Every ^[-effacement is a {J}-effacement. 
(b) There exist an m G J , Xi, . . . , \n elements of A, Iu . . . , In elements 

of 21, and A-homomorphisms </>*: It—>/, i = 1, . . . , n, such that XtJ C lu 
i = 1, . . . , n and p = mp + YA <l>i0^i P) for all p G J. 

Since s ta tement (b) is so complex we shall discuss some consequences of 5.1 
before we give the proof. 

(1) First consider the case where 21 is empty . Then the effacement condition 
asserts t h a t every right A -module is injective and thus is equivalent to 
asserting t h a t A is a semi-simple ring (4, p . 11). Let J be any right ideal of A. 
Then (b) asserts t h a t there is an m G J such t ha t p = mp for every p G J. 
In particular, m = m2. T h u s every right ideal is generated by an idempotent 
and thus is a direct summand of A. But this is again equivalent to saying t h a t 
A is semi-simple. Conversely, if A = J 0 J', J and J' r ight ideals of A, then 
every monomorphism is an 2l-effacement. 

(2) Suppose t ha t J 0 Jf G 21 where J , Jf are right ideals such tha t j n / = 0; 
then clearly (a) is satisfied. In this case we have « = 1, w = 0, Xi = 1, and 
0: J 0 J' —> J the natura l projection. 

(3) Condition (b) may be restated as follows: The mapping 

J - • A 0 Ii 0 . . . 0 In 

given by p —> (p, Xi p, . . . , \n p) is an isomorphism of J onto a direct summand 
of A 0 11 0 . . . 0 In- Suppose A is a (commutat ive) integral domain and 21 
is the set of principal ideals of A. Let J be an ideal of A and assume t h a t (a) 
holds. Then A 0 7i 0 . . . 0 In is a finitely generated free module and hence 
J is a finitely generated projective module. Conversely, suppose t h a t the ideal 
J is finitely generated and projective (actually a projective ideal is au to­
matically finitely generated ; see 2.5 for F = A), say, J = a\ A + . . . + an A. 
Then there are elements qif . . . , qn of the quotient field Q of A (Q = AA) such 
t h a t 

n 

i =J2qidi 
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and qtJ(ZA for i = 1, . . . , n. Let It = atA, m = 0, \ t = qtdf £ A, and 
</>*: /* —> J be the natural inclusion. Then 

n 

p = Y< <t>i(^ip) 
l 

for all p £ J and so (b) holds. Thus for integral domains and SI the set of 
principal ideals, we have that A satisfies the effacement condition if and only 
if A is a Dedekind ring and condition (b) reduces to the concept of a projective 
basis; see (4, p. 133). 

Proof of 5.1. We use the notation of 3. If. Assume (a) and consider /embedded 
in St (J), the particular effacement constructed in 3.1. The identity map 
\j\ J —> J then extends to a m a p / : A —» 91 (J) and f/J = l j . Thus, for a 6 A, 
we have f{a) = xa, where x = / ( l ) 6 §1(7), and for £ Ç J we have p = xp. 
Let x = (w, E« (Ia,fa)^a) be a representative of £ in J ® F. Then for p £ J 
we have 

(£ , 0 ) = ( m £ , E a (Ia,fa)Kp) + £ | 8 ( ^ » , - (J/J, 0 / 0 ^ ) 

where J# £ 21, ̂ : J# —> J, and a^ G J^. This may be written as 

(p, 0 ) = imp + Z/3 0 / 3 ^ , E « (Ia,fa)Kp ~ E / Î (J/9, 4>p)aP). 

Thus p = mp + Hp <t>p(ap) and E/s (J/3, 0 )̂̂ /3 = E« (h,fa)K P> Since the pairs 
(J, J) , where I G 91 and / : / —» J, are free generators of F, we see that 
p = ra£ + E« <l>aQ^ap) where \ap £ J«, <£«: J« —» J, and m £ J. This proves (b). 

Conversely, suppose (b) is true and let g: J —•> ikf £ mod 4̂ where i: M —> N 
is an 2t-effacement. Using (b) we have, for each p £ J, 

£ = m£+X) 0,(X,/>) 
l 

where </>*: It —> J. Thus 

i 

where <£*: 7* —> J. Thus 

g(P) = g(mp) + T,g'4>tfrtP) = g(™)P + T,g'4>i(^iP). 

Now g-<t>i\ It —> ikf. Thus it extends to a map g-^f. A —> N. Hence 

g'tifrip) = g'<t>i(^ip) = g'4>ifri)P 
and 

£(£) = [*(w) +Çi7^(X<)J^ 

and so the map g: A —» ikf given by g(l) = g(m) + g-<l>i(\i) extends g. Thus 
i: M —» iV is a {J}-effacement. 
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6. Theorems of Gentile and Levy. In this section we have some results 
on two other definitions of divisibility. We obtain some generalizations of 
theorems due to Gentile (8) and Levy (13). 

In (11) Hattori defines divisibility to be 2I-injectivity where 31 is the set of 
principal right ideals of the ring A. Then, because of 3.2(1), he restricts his 
attention to rings for which every principal right ideal is projective. We take a 
slightly different approach. 

Definition. We say that a right A -module M is Hattori-divisible if it is 
21-injective where 2t is the set of projective principal right ideals of A. 

The next statement is our only result on Hattori-divisibility. It provides 
the most direct generalization of the integral domain case. 

6.1 THEOREM. For a ring A the following two statements are equivalent: 
(a) Every Hattori divisible right A-module is infective. 
(b) A is a right hereditary and right noetherian ring. 

Proof. If (a) is true, then the class of injectives in mod A is closed under 
epimorphisms and arbitrary direct sums. Thus (b) follows from 3.2 applied to 
the set of all right ideals of A. 

Conversely, assume that (b) is true. It is sufficient to show that A satisfies 
the effacement condition with respect to the set 21 of principal right ideals of A. 
By arguing on complements we may restrict our attention to large right ideals. 
By 2.7, A, the set of large right ideals of A, is topologizing and idempotent and if 

n 

J = J^xtA (xi£ A) 
i 

is an element of A, then there are qlt . . . , qn £ A^ such that qtJC_A for all 
i and 

n 

1 =^xtqi. 
l 

Using the notation of 5.1, this gives the effacement condition as follows: take 
m = 0, It = XiA, \ t = XiÇi, and $*: If—> J is the inclusion. This proves (b). 

6.2. COROLLARY. Let 21 be the set of principal right ideals of A. Then A satisfies 
the effacement condition for 2Ï if and only if every Hattori-divisible right A -module 
is infective. 

Definition. Let A be a ring. A right Ore ring AD for A is an overring of A 
such that if d Ç A is neither a right nor a left zero divisor, then d~x £ AD and, 
further, every element of AD may be written in the form ad-1 where a, d £ A. 

In (8) Gentile states the following. 

THEOREM. Let A be a ring without zero divisors that has a right Ore ring which 
is a division ring. Then every {Hattori-) divisible right A-module is infective if and 
only if A is right hereditary. 
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This is an immediate consequence of 6.1 and 2.5. We point out that Goldie's 
theorem (see the last sentence of §1) shows that one hypothesis is unnecessary. 

6.3. THEOREM. Let A be a ring without zero divisors. Then the following two 
statements are equivalent: 

(a) Every Hattori-divisible right A-module is infective. 
(b) A is right hereditary. 
Further, when (a) and (b) hold, A has a right Ore ring which is a division ring. 

Proof. This is just the statement that A A is then a right Ore ring for A. 
This follows from the proof of (7, p. 419). 

We now consider the concepts of torsion-free and divisible studied by 
Levy (13). 

Definitions, (a) A non-zero element of the ring A is called regular if it is 
not a zero-divisor. 

(b) M G mod A is called r-divisible if Md = M for every regular d G A. 
(c) Let M G mod A and m G M. The element m is called an r-torsion 

element if there is some regular d G A such that md = 0. M is called r-torsion-
free if it contains no non-zero r-torsion elements. 

Note that r-divisibility is 21-divisibility for % = {dA : d G A is regular}. 

6.4. LEMMA. For any ring A the following statements are equivalent: 
(a) A possesses a right Ore ring. 
(b) For each M G mod A the set of r-torsion elements of M is a submodule of M. 
(c) / / d G A is regular, then A/dA consists of r-torsion elements. 

Proof. The equivalence of (a) and (b) is proved in (13). Assume that (b) 
is true. Let d G A be a regular element. Then 1 + dA is an r-torsion element of 
A/dA and generates A/dA. Now assume that (c) holds and let a G A, d G A 
with d regular. Then a + dA is an r-torsion element of A/dA. Thus there is a 
regular d' G A such that ad' G dA. Thus conditions (*) and (**) of (7, p. 415) 
hold and thus A has a right Ore ring. 

We next find conditions under which every r-torsion-free and r-divisible 
module is injective. To this end we define a special localization. 

Definition. Let T be the class of all right A -modules M such that 
HomA(M, X) = 0 for all r-torsion-free and injective X G mod A. It is easy to 
see that T is a localizing subcategory of mod A. Let T denote the corresponding 
set of topologizing and idempotent right ideals of A. 

6.5. LEMMA. If M G mod A is generated by r-torsion elements, then M G T. 
In particular, dA G T for all d regular in A. 

Proof. Let X be any r-torsion-free A -module and l e t / : M —» X G mod A. 
Then if m G M is r-torsion, we have/(m) = 0. T h u s / is zero on a set of genera­
tors and hence is the zero map. Thus M G T. 
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Now dA G 7" if and only if A/dA G T and if d is regular, then 

1+dA e A/dA 
is an r-torsion element. 

6.6. PROPOSITION. Let d be a regular element of A. Then jA(d) is invertible in 
A T where j A : A —> A T is the canonical map. 

Proof. We have a commutat ive diagram 

0 
0 > A > A -> A/dA > 0 

JA JA 

0 > AT >AT > 0 = (A/dA)T 

where the rows are exact and 0(a) = da for all a £ A. By the universal 
mapping property of the functor M —• MT, <j>T is the unique map that renders 
the left-hand square commutative. Thus 4>T is multiplication by jA(d) and 
k W - 1 = 0r~1(iA(l)). 

6.7. COROLLARY. Let M G mod 4̂ y. Then, considered as an A-module, M is 
r-torsion-free and r-divisible. In particular, every T-closed module is r-torsion-free 
and r-divisible. 

Definition (6). (1) Let D, B G mod A. A partial homomorphism 0: B —-> D 
is a m a p <j>: Br -^> D G mod 4̂ where i ^ is a submodule of 5 . 

(2) Let D, B, C G mod 4̂ such t ha t C C B and let p: B -+ B/C be canonical. 
We write C < B(D) if the only partial homomorphism 0: B —> D for which 
there exists a part ial homomorphism ^: B/C ^ D such tha t 0 = ^p is the zero 
homomorphism. 

(3) A right ideal / of the ring A is called dense if / < A (A). We denote the 
set of dense right ideals of A by A. 

For details concerning the relation C < B(D), see (6). We remark tha t , if 
E(A) G mod A is the injective envelope of A, then / G A if and only if 
H o r n A ( A / 1 , E(A)) = 0. Thus A is topologizing and idempotent by the same 
reasoning used for T. 

6.8. PROPOSITION. If M G mod A, let E(M) denote the injective envelope of M. 
Then 

(1) E(M) is r-torsion-free if and only if the canonical map jM: M—> MT is 
a monomorphism. 

(2) The following statements are equivalent: 
(a) E(A) is r-torsion-free. 
(b) Every element of T is dense. 
(c) dA is dense for all regular d G A. 
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Proof. (1) Assume E(M) is r-torsion-free. Then every submodule of M has a 
non-zero map into an r-torsion-free injective. Thus TM = 0. But TM = ker j M . 
Conversely, assume E(M) is not r-torsion-free. Then there is a non-zero x in 
E(M) and a regular d in A such that 0 = xd. Thus, by 6.5, 0 ^ xA C TE(M) 
and so 0 ^ T£(M") C\ M C TM = kerjM. 

(2) Suppose E(i4) is r-torsion-free and I G T. Let / : J —> E(A) G mod 4̂ 
where J is a right ideal of A and ke r / 3 J. Then the induced map J /I —> E(A) 
must be zero since J /I G T. Thus (a) implies (b). Clearly (b) implies (c), so 
assume that (c) is true, i.e., assume that dA < A(E(A)) for all d regular in A. 
Let x G E(A) and d be a regular element such that 0 = xd. Define <t>\ A —> £ (A ) 
by <£(#) = xa- Then 0 factors through A/dA and hence 0 = 0. Thus x = 0 
and £(^4) is r-torsion-free. 

6.9. THEOREM, r&e statements below are connected as follows: (a) is equivalent 
to (b), (a) implies (c), and if M r-torsion-free implies TM = 0, then (c) 
implies (a). 

(a) Every r-torsion-free and r-divisible right A-module is injective. 
(b) A T is semi-simple and M G mod A is r-torsion-free and r-divisible if and 

only if M G mod A T. 
(c) A T is semi-simple and, if j A : A —•» A T is the canonical map, AT is 

generated (as a ring) by jA[A] and {j(d)~l\ d G A is regular}. 

Proof. First assume that (a) is true. Then, by 6.7, every M G mod A T is 
r-torsion-free and injective as an A -module. Thus TM = 0 and so T ' 
( = T H mod A T) contains only the zero module. Thus by 1.1 the T localization 
is M -* M © AA T and hence by 2.3 A T is semi-simple. Let M G mod A be 
r-torsion-free and r-divisible. Thus HomA(rikf, M) = 0 and hence TM = 0. 
Thus M is T-closed and hence is an A ^-module. This proves (b). Clearly (b) 
gives (a). 

Again assume that (a) is true. Then the subring generated by7A[^4] and 
{jA(d)_1: d is regular in A} is clearly r-torsion-free and r-divisible as an 
A -module. But A T is the injective envelope oijA[A]. Thus this ring is all of A T. 

Conversely, if the hypothesis holds, we may take j A to be inclusion since 
TA = 0. If Mis r-torsion-free and r-divisible, then division by regular elements 
gives a unique result and so, since A T has this special form, M is an A ^-module 
and so is injective as an A -module (since it is T-closed). 

We now give the connection between A T and the Ore ring. Let D be the 
multiplicative set of regular elements of A. Let FD be the topologizing and 
idempotent set of right ideals of A defined by D; see (7, p. 414). When the 
Ore ring exists, FD becomes the set of right ideals of A which contain an 
element of D and, for M G mod A, FD M becomes the set of r-torsion elements 
of M, and, further, ^ C ^ b y 6.5. 

6.10. PROPOSITION. Let A be a ring for which the right Ore ring exists. Then 
FD = T and so A T is the Ore ring. 
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Proof. Since FD C T, we have FD M C TM for all M 6 mod A. We wish to 
show equality. First notice that if FD = 0, then TM = 0. For FD M = 0 
means that M is r-torsion-free and implies that FD(E(M)) = 0. Thus E(M) 
is r-torsion-free and so, by 6.8, TM = 0. Then TM/FD M C M / ^ M shows 
that FD{TM/FDM) = 0 and hence TM/FDM = T(TM/FDM) = 0, i.e. 
TM = FDM for all M G mod 4 , i.e. F D = T, and hence FD = T. 

Thus 6.9 gives the following result of Levy (13). 

THEOREM. Let A be a ring possessing a right Ore ring. Then every r-torsion-free 
and r-divisible right A-module is injective if and only if the right Ore ring of A is 
semi-simple. 

We now give a result on r-divisibility and prove a theorem of Levy. 

Definition. We say a monomorphism in mod A is an r-effacement if it is an 
2t-effacement where SI = {dA: d is regular in A}. 

6.11. PROPOSITION. For any ring A, the following two statements are equivalent: 
(a) Every r-effacement is an infective effacement. 
(b) The set A of large right ideals is topologizing and idempotent and every 

right ideal I has a projective basis of the following form: there is a generating 
set po, . . . , pn in I and q0y . . . , qn in A such that for p £ I we have 

n 

p = Hpig.iP 
i 

where qt I d A and qt = df^i where dt is a regular element of A and \ t is an 
element of A. 

Proof. Assume that A satisfies the r-effacement condition. Then every 
r-divisible module is injective. Thus A is right hereditary and right noetherian 
by 3.2, and so by 2.7 A A exists. By 5.1, there exist an m Ç / , di, . . . , dn regular 
elements of A, mappings 4>t: dfA—^I and m, . . . , /zw in A such that for all 
p G I, Vip G dtA and 

n 

P = mp+H <t>i(vip)-
i 

Let MO = 1, $o: A —•> / by <t>o(a) = ma, d0 = 1, and I0 = A. Then we may 
write this as 

n 

p = ]C <i>i{»ip)> 
0 

Now ( f j i U (since A is noetherian) and so considering 4>t to be a map 
f rom^yl to A A, we see that 4>t has an extension qf c A —>^4A where q' i(x) — qf

 tx 
where q't G AA. Let pt = 4>i(dt) = q'tdi G I- Then q't = pid^1 G AA. Thus 
we have the equation 

n n n 

P = 2 4>i(v>ip) = 23 Q!'iViP = 23 Pidi~ ViP 
o o o 
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for all p £ I. Now ni I C dtA and so, given p G / , there is an a £ 4̂ such 
that fxt p = d^aand so d^Hip = d{~ldia = a £ A. Thus if we put g* = df~V*, 
we obtain (b). Conversely, if (b) is true, we merely interpret this as 5.1(b). 

6.12. LEMMA. Let A be a ring for which every r-divisible right A-module M is 
injective. Then T = A. 

Proof. 5.1 shows that A is right hereditary and right noetherian. Thus the A 
localization is M - • M ®A Ak by 2.7. If d G A is regular, then dA € A, which, 
in this case, is equal to A, the set of dense ideals. Thus by 6.8 TA = 0. Since 
A T is r-divisible, we have A T = A A (as rings) and so by 2.7 AT is semi-simple. 
Thus by 2.3, the T localization is M -+ M ®A A T. Thus T and A define the 
same localization and hence T = A. 

In the next theorem the equivalence of (a) and (b) is the theorem of Levy 
already mentioned. 

6.13. THEOREM. Let A be a ring possessing a two-sided Ore ring (i.e., A has a 
right Ore ring every element of which may also be written in the form d~la 
where d, a 6 A and d is regular). The following statements are equivalent: 

(a) Every r-divisible right A-module is injective. 
(b) A is right hereditary and the Ore ring is semi-simple. 
(c) A satisfies the r-effacement condition. 

Proof. For the equivalence of (a) and (b), see (13, p. 141, Theorem 3.4). 
Assume that (b) is true. Then, since the Ore ring is semi-simple (9, Theorem 
4.4 and 7, p. 419, théorème 2) show that A A is the Ore ring. Since every element 
of A contains a regular element (7, ibid.), 2.5 shows that A is noetherian and 
that there are %i, . . . , xn generating each / G A and qi, . . . , qn G AA such that 

n 

P = J2 xi°ip 
0 

where qt I C A. Since A\ is a two-sided Ore ring, it follows by the proof of 6.11 
that every r-effacement is a A-effacement. But every right ideal is a direct 
summand of a large right ideal. Thus (c) is true. Clearly (c) implies (a). 

Added in proof. It has come to my notice that Theorem 1 is actually a con­
sequence of a result (obtained by other methods and stated in a different 
context) in Y. Hinohara, Note on non-commutative semi-local rings, Nagoya 
Math. J., 17 (1960), 161-166. 
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