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Abstract

Let K be a field that admits a cyclic Galois extension of degree n ≥ 2. The symmetric group S n acts on
Kn by permutation of coordinates. Given a subgroup G of S n and u ∈ Kn, let VG(u) be the K-vector space
spanned by the orbit of u under the action of G. In this paper we show that, for a special family of groups
G of affine type, the dimension of VG(u) can be computed via the greatest common divisor of certain
polynomials in K[x]. We present some applications of our results to the cases K = Q and K finite.

2010 Mathematics subject classification: primary 11T06; secondary 15A03, 20B35.
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1. Introduction

Let K be a field and let n ≥ 2 be an integer. If S n denotes the group of permutations of
{0, 1, . . . , n − 1}, there is a natural action of S n on the K-vector space Kn. For δ ∈ S n

and u = (u0, . . . , un−1) ∈ Kn, we set δ(u) = (uδ(0), . . . , uδ(n−1)). For u ∈ Kn, let VG(u) be
the K-vector space spanned by the orbit {g(u) | g ∈ G} of u by G and let dG(u) be the
dimension of VG(u). Some natural questions arise.

(1) For u ∈ Kn, what is the value of dG(u)?
(2) As u runs over Kn, what are the possible values of dG(u)?
(3) If K is finite and 0 ≤ r ≤ n, what is the number NG(r) of vectors u ∈ Kn for which

dG(u) = r?

When G = S n, it is a routine exercise to show that

dS n (u) =


0 if u = (0, . . . , 0),
1 if u = (u0, . . . , u0) and u0 , 0,
n − 1 if

∑n−1
i=0 ui = 0 and the ui are not all equal,

n otherwise.
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The main idea of the proof relies on considering W(u) := VS n (u)⊥, the complement of
VS n (u), and showing that one of the vector spaces W(u) or VS n (u) only contains scalar
multiples of the vector v = (1, . . . , 1). In particular, if K = Fq is the finite field with q
elements, where q is a power of a prime p, then

NS n (r) =



1 if r = 0,
q − 1 if r = 1,
qn−1 − c(n) if r = n − 1,
qn − qn−1 − q + c(n) if r = n,
0 otherwise,

where c(n) = q if n ≡ 0 (mod p), and c(n) = 1 otherwise. The proof of this
enumeration formula is quite simple. We observe that dS n (u) = n − 1 if and only if
the sum of the coordinates of u equals zero and u is not of the form (u0, . . . , u0) for
some u0 ∈ Fq. In addition, the equation x0 + · · · + xn−1 = 0 has qn−1 solutions and
contains exactly c(n) solutions where all the variables coincide. From this fact, the
numbers NS n (r) for r , n are easily computed. In addition, NS n (n) = qn −

∑n−1
r=0 NS n (r).

We identify S n with the group of permutations of Zn = {0, 1, . . . , n − 1}. Under this
correspondence, letG be the subgroup of S n of the permutations i 7→ ai + b (mod n) of
affine type. We can observe that G is isomorphic to Zn o Z

∗
n. In fact, the permutations

i 7→ i + k (mod n) with 0 ≤ k < n form a normal subgroup of G (isomorphic to Zn) and
any element ofG can be written as a composition of a permutation i 7→ ai (mod n) with
gcd(a, n) = 1 (such permutations form a group isomorphic to Z∗n) and a permutation
i 7→ i + k (mod n) with 0 ≤ k < n. Moreover, if {a1, . . . , ar} is a set of generators for
Z∗n, the group G is generated by the permutations δa j : i 7→ a j · i (mod n) for 1 ≤ j ≤ r
and the translation τ : i 7→ i + 1 (mod n).

The main result of this paper shows that if K admits a cyclic Galois extension of
degree n and G is any subgroup ofG containing the permutation τ : i 7→ i + 1 (mod n),
we have a simple closed formula for the number dG(u), where u ∈ Kn is arbitrary. More
specifically, we prove the following theorem.

Theorem 1.1. Suppose that K is a field admitting a cyclic Galois extension of degree
n. Let a1, . . . , as be positive integers and let H be the subgroup of G comprising
the permutations δa j : i 7→ a j · i (mod n). For u ∈ Kn with u = (u0, . . . , un−1), set
fu(x) =

∑n−1
i=0 ixi. Then, for τ : i 7→ i + 1 (mod n) and G = 〈τ〉 o H,

dG(u) = n − deg(Mu,H(x)), (1.1)

where Mu,H(x) = gcd(xn − 1, fu(xa1 ), . . . , fu(xas )) ∈ K[x].

On the one hand, dG(u) can always be computed after obtaining a basis for VG(u),
and there are many methods to obtain such a basis. On the other hand, there are
plenty of situations where Theorem 1.1 provides explicit results. For instance, if the
factorisation of xn − 1 over K[x] is known, equation (1.1) gives the possible values of
dG(u). In some cases, dG(u) is readily obtained.
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Corollary 1.2. Suppose n is a prime number and let K and G be as in Theorem 1.1.
In addition, suppose that the polynomial (xn − 1)/(x − 1) = xn−1 + · · · + x + 1 is
irreducible over K. Then dG(u) = dS n (u) for any u ∈ Kn. In particular, if K is finite,
then NG(r) = NS n (r) for 0 ≤ r ≤ n.

The paper is structured as follows. In Section 2 we provide background material
that is used along the way, including definitions and auxiliary results. In Section 3 we
prove Theorem 1.1 and provide some immediate applications to the case K = Q and
K finite. Finally, in Section 4, we explore the applicability of Theorem 1.1 to the case
where G is the dihedral group Dn.

2. Preliminaries

Throughout this paper, n ≥ 2 is a positive integer and K is a field admitting a cyclic
Galois extension L of degree n. Let σ : L→ L be any generator of Gal(L/K), hence σ
has order n.

Definition 2.1.

(i) Let σ0 be the identity map on L and, for each i ≥ 1, set

σi = σ ◦ · · · ◦ σ︸       ︷︷       ︸
i times

.

(ii) Let C(K, n) � K[x]/(xn − 1) be the n-dimensional K-vector space comprising the
polynomials f ∈ K[x] that are constant or have degree at most n − 1.

The normal basis theorem (see [1]) ensures the existence of an element z ∈ L such
that L = K(z) and {σ j(z)}0≤ j≤n−1 is a basis for L as a K-vector space. In this case, the
element z is called normal. We fix β, a normal element of L over K.

Definition 2.2. For f ∈ K[x] with f (x) =
∑m

i=0 aixi and α ∈ L,

f ◦ α =

m∑
i=0

ai · σi(α),

where the indices i are taken modulo n.

It is easy to verify that ( f · g) ◦ α = f ◦ (g ◦ α) and ( f + g) ◦ α = f ◦ α + g ◦ α for
any polynomials f , g ∈ K[x] and any α ∈ L. This gives the field L a K[x]-module
structure. In particular, for any α ∈ L, the set Iα = {g ∈ K[x] | g ◦ α = 0} is an ideal of
K[x], hence is principal.

Lemma 2.3. The ideal Iβ is generated by xn − 1 ∈ K[x]. In particular, for any α ∈ L,
there exists a unique f ∈ C(K, n) such that α = f ◦ β.
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Proof. We first prove that Iβ is generated by xn − 1. Let F be the generator of Iβ and,
without loss of generality, suppose that F is monic. Since

(xn − 1) ◦ β = σ0(β) − σ0(β) = 0,

we see that F divides xn − 1. If F were of degree at most n − 1, the equality
F ◦ β = 0 would be a nontrivial linear combination of the elements {σi(β)}0≤i≤n−1, with
coefficients in K. This contradicts the fact that β is a normal element. Hence F has
degree at least n and so F(x) = xn − 1. To conclude the proof, let Π : C(K, n)→ L
be the map given by f 7→ f ◦ β. From Definition 2.2, Π is a K-linear map between
K-vector spaces of dimension n. In this context, it suffices to prove that Π is onto
or, equivalently, one-to-one. But ker(Π) is not the zero vector space if and only if Iβ
contains a nonzero element of C(K, n), which is impossible since Iβ is generated by
xn − 1. �

The following definitions are useful.

Definition 2.4.

(i) For u ∈ Kn with u = (u0, . . . , un−1), define fu(x) ∈ C(K, n) by

fu(x) =

n−1∑
i=0

uixi.

(ii) For δ ∈ S n and f ∈ C(K, n) with f (x) =
∑n−1

i=0 aixi, we set

δ( f ) =

n−1∑
i=0

aδ(i)xi.

It is clear that S n acts on C(K, n) via the compositions δ( f ).

Example 2.5. If f (x) =
∑n−1

i=0 aixi and τ : i 7→ i + 1 (mod n) is the translation,

τ( f (x)) = an−1 +

n−2∑
i=0

aixi+1.

We have the following result.

Proposition 2.6. For any subgroup J of S n and u ∈ Kn, the space VJ(u) is isomorphic
to the K-vector space spanned by the set {δ( fu)}δ∈J ⊂ C(K, n).

Proof. For u ∈ Kn, let WJ(u) and W◦J (u) be the K-vector spaces spanned by the sets
{δ( fu)}δ∈J ⊂ C(K, n) and {δ( fu) ◦ β}δ∈J ⊂ L, respectively. From Lemma 2.3, the map
Ψ : Kn → L given by Ψ(v) = fv ◦ β is a K-isomorphism of K-vector spaces. Since
Ψ(VJ(u)) = W◦J (u), it follows that VJ(u) and W◦J (u) are isomorphic.

Let Γu : WJ(u) → W◦
J (u) be the K-linear map given by Γu(g) = g ◦ β. From

Definition 2.4, Γu is onto. Moreover, from Lemma 2.3, g ◦ β = 0 if and only if g(x)
is divisible by xn − 1. Since g ∈ C(K, n) is a constant or has degree at most n − 1, it
follows that g = 0, that is, ker Γu = {0}. Therefore, WJ(u) and W◦

J (u) are isomorphic. �
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3. A formula for dG(u) and applications

In this section we provide the proof of Theorem 1.1 and some of its immediate
applications. We fix a subgroup G of G containing the translation τ and write
G = (τ,H), where H is the unique subgroup of G such that G is generated by H and τ.
We observe that any element of G is written uniquely as τih, where 0 ≤ i ≤ n − 1 and
h ∈ H. In fact, G is isomorphic to the semidirect product 〈τ〉 o H, where 〈τ〉 � Zn is the
group generated by the translation τ : ai 7→ ai+1 (mod n). We recall that, in this case, any
element of H is of the form δa : i 7→ a · i (mod n) where gcd(a, n) = 1. The following
lemma provides a simple way of obtaining δa( f ) and τ( f ), for any f ∈ C(K, n).

Lemma 3.1. For any f ∈ C(K, n) and any integers a, i ≥ 0 such that a and n are
relatively prime,

(i) τi( f (x)) ≡ xi · f (x) (mod xn − 1),
(ii) δa( f (x)) ≡ f (xb) (mod xn − 1) if b is a positive integer such that ab ≡ 1 (mod n).

Proof. Item (i) follows directly from Example 2.5. For (ii), write f (x) =
∑n−1

i=0 aixi and
let b be any positive integer such that ab ≡ 1 (mod n). Then δa( f (x)) =

∑n−1
i=0 aia xi,

where 0 ≤ ia ≤ n − 1 is such that ia ≡ ia (mod n). Therefore, i ≡ iab (mod n) and so
xi ≡ xiab (mod xn − 1). In particular,

δa( f (x)) ≡ g(xb) (mod xn − 1),

where g(x) =
∑n−1

i=0 aia xia = f (x). �

3.1. Proof of Theorem 1.1. Let WG(u) be the K-vector space spanned by the set
{δ( fu)}δ∈G and let a1, . . . , as be a set of positive integers such that H comprises the
permutations {δa j}1≤ j≤s. From previous observations, any element of G can be written
uniquely as τiδa j , where 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ s. Therefore,

WG(u) =

{ s∑
j=1

n−1∑
i=0

ci, j · (τiδa j )( fu(x)) | ci, j ∈ K
}
.

Let b1, . . . ,bs be positive integers such that biai ≡ 1 (mod n). From Lemma 3.1, WG(u)
is isomorphic to the K-vector space

S H(u) :=
{ s∑

j=1

g j(x) · fu(xb j ) (mod xn − 1) | g j ∈ C(K, n)
}
.

Therefore, from Proposition 2.6, dG(u) equals the dimension of S H(u). Since H is
a group, the elements a j comprise a (multiplicative) group modulo n. Moreover,
f (xa) ≡ f (xa′) (mod xn − 1) whenever a ≡ a′ (mod n) and so

Mu,H(x) = gcd( fu(xb1 ), . . . , fu(xbs ), xn − 1) = gcd( fu(xa1 ), . . . , fu(xas ), xn − 1).

In addition, since K[x] is a principal domain, we have the isomorphism

S H(u) = {g(x) · Mu,H(x) (mod xn − 1) | g ∈ C(k, n)} � C(K, n − deg(Mu,H(x)).

In conclusion, dG(u) = n − deg(Mu,H(x)).

https://doi.org/10.1017/S0004972719000340 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000340


[6] Permutation vector spaces 261

3.2. Applications of Theorem 1.1. We present some direct consequences of
Theorem 1.1.

Definition 3.2. For a subgroup G of S n and a field K, let S G,K,n ⊆ {0, 1, . . . , n} denote
the spectrum of different values of dG(u), where u runs over Kn.

Let K be a field of characteristic zero and, for each positive integer d, let Ω(d) be the
set of dth primitive roots of unity. We set Φd(x) =

∏
γ∈Ω(d)(x − γ), the dth cyclotomic

polynomial. We observe that, for any γ ∈ Ω(d),

Φd(x) =
∏

1 ≤ j ≤ d
gcd( j, d) = 1

(x − γ j). (3.1)

Thus deg(Φd(x)) = ϕ(d), where ϕ is the Euler phi function, and we easily obtain
the identity xn − 1 =

∏
d|n Φd(x). If K has characteristic p > 0, under the restriction

gcd(n, p) = 1, Φn(x) is defined in the same way and the same properties hold. If
n = pt · n0 with gcd(n0, p) = 1, we have the identity xn − 1 =

∏
d|n0

Φd(x)pt
.

Definition 3.3. For positive integers n and r, let C[n, r] ⊆ {0, 1, . . . , nr} be the set of
distinct sums of the form

∑
d|n ed · ϕ(d) with ed ∈ {0, 1, . . . , r}.

Since
∑

d|n ϕ(d) = n and ϕ(1) = 1,

{0, 1, n − 1, n} ⊆ C[n, 1] ⊆ {0, 1, . . . , n},

for any n ≥ 1. The equality C[n, 1] = {0, 1, n − 1, n} occurs exactly when n is a prime
number. The other extreme yields the so called ϕ-practical numbers.

Definition 3.4. A positive integer n is ϕ-practical if C[n, 1] = {0, 1, . . . , n}.

Remark 3.5. The ϕ-practical numbers have been extensively explored. In particular,
if s(t) denotes the number of ϕ-practical numbers up to t, then limt→∞ s(t) · log t/t is a
positive constant [3]. This shows that the ϕ-practical numbers are, up to a constant, as
frequent as the prime numbers and, in particular, their density in N is zero.

Lemma 3.6. Let G, K and n be as in Theorem 1.1. Then S G,K,n ⊇ C[n, 1]. If K has
characteristic p > 0 and n = pt · n0 with gcd(n0, p) = 1, then S G,K,n ⊇C[n0, pt] ⊇C[n,1].
In particular, if n is ϕ-practical, S G,K,n = {0, 1, . . . , n}.

Proof. Let p be the characteristic of K. We split the proof into cases.

Case 1: p = 0, or p > 0 and gcd(n, p) = 1. In this case, xn − 1 is separable and the
equality xn − 1 =

∏
d|n Φd(x) holds over K. Write G = (τ,H), where H is a subgroup of

Z∗n, and let a1, . . . ,as be a set of positive integers such that H comprises their reductions
modulo n. In particular, in the notation of Theorem 1.1, for any u ∈ Kn we may write

MH,u(x) = gcd( fu(xa1 ), . . . , fu(xas ), xn − 1) =
∏
d|n

M[d]
H,u(x), (3.2)

where M[d]
H,u(x) = gcd( fu(xa1 ), . . . , fu(xas ),Φd(x)).
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We claim that if Φd(x) divides fu(x), then it divides every polynomial fu(xa j ) and
so M[d]

H,u(x) = Φd(x). To see this, suppose that Φd(x) divides fu(x) and let γ ∈ K be any
root of Φd(x) and j any positive integer with 1 ≤ j ≤ s. Since gcd(a j, n) = 1 and Φd(x)
divides fu(x), from (3.1), γa j is a root of fu and so γ is a root of fu(xa j ). Since xn − 1 is
separable, so is Φd(x). Therefore, Φd(x) divides every fu(xa j ).

For N =
∑

d|n ed · ϕ(d) with ed ∈ {0, 1}, set fN(x) =
∏

d|n Φd(x)1−ed =
∑n−1

i=0 uixi in
K[x] and u(N) = (u0, . . . , un−1) ∈ Kn. From (3.2) and the previous observations,
MH,u(N)(x) = fN(x) and so, from (1.1),

dG(u(N)) = n − deg( fN(x)) = N,

since
∑

d|n ϕ(d) = n.

Case 2. p > 0 and n = pt · n0, where gcd(n0, p) = 1. The proof that S G,K,n ⊇ C[n0, pt]
follows similar steps to case 1, using

xn − 1 =
∏
d|n0

Φd(x)pt
.

We are left to prove the inclusion C[n0, pt] ⊇ C[n, 1]. Let N ∈ C[n, 1] and write
N =

∑
d|n ed · ϕ(d) with ed ∈ {0, 1}. In particular, we may rewrite

N =
∑
d|n0

t∑
i=0

epid · ϕ(pi) · ϕ(d) =
∑
d|n0

e∗d · ϕ(d),

where e∗d =
∑t

i=0 epid · ϕ(pi) ≤
∑t

i=0 ϕ(pi) = pt. Therefore, N ∈ C[n0, pt]. �

The previous lemma implies S G,K,n ⊇ C[n, 1]. More than that, our proof provides
a constructive method to produce an element u ∈ Kn with prescribed dimension
dG(u) ∈ C[1, n]. The following proposition shows that, under some not too restrictive
conditions, equation (1.1) can be refined to give the equality S G,K,n = C[1, n].

Theorem 3.7. Let G, K and n be as in Theorem 1.1. In addition, suppose that K has
characteristic p, where p = 0 or p > 0 and gcd(p, n) = 1. Then, for any u ∈ Kn,

dG(u) = n −
∑
d|n

Φd(x)| fu(x)

ϕ(d), (3.3)

in each of the following cases:

(i) Φd(x) is irreducible over K[x] for any divisor d of n;
(ii) G = G.

In particular, in these cases, S G,K,n = C[n, 1]. In additional, in case (i),

dG(u) = n − deg(gcd( fu(x), xn − 1)) = dG0 (u),

where G0 = 〈τ〉 is the group generated by the translation τ : i 7→ i + 1 (mod n).
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Proof. Under our hypothesis, xn − 1 is separable and the equality xn − 1 =
∏

d|n Φd(x)
holds over K. Write G = (τ,H) and let a1, . . . , as be a set of positive integers such
that H comprises their reductions modulo n. We are under the conditions of case 1 in
Lemma 3.6. In the notation of the lemma, for any u ∈ Kn,

MH,u(x) =
∏
d|n

M[d]
H,u(x), where M[d]

H,u(x) = gcd( fu(xa1 ), . . . , fu(xas ),Φd(x)).

Claim. Under the cases (i) or (ii), M[d]
H,u(x) = Φd(x) or 1, according as Φd(x) does or

does not divide fu(x).

Proof of Claim. If Φd(x) divides fu(x), from the proof of case 1 in Lemma 3.6, we
have M[d]

H,u(x) = Φd(x). Now, suppose that fu(x) is not divisible by Φd(x). If Φd(x)
is irreducible over K[x], it follows that gcd(Φd(x), fu(x)) = 1 and so M[d]

H,u(x) = 1. If
G = G, then H = Z∗n and so, from (3.1), for any root γ of Φd(x), the set {γa}a∈H contains
the roots of Φd(x). In particular, if γ were a root of fu(xa) for every a ∈ H, then fu(x)
would be divisible by Φd(x), contrary to our assumption. Therefore, M[d]

H,u(x) = 1. �

From the claim, M[d]
H,u(x) = gcd( fu(x),Φd(x)). Also, MH,u(x) = gcd( fu(x), xn − 1)

from (3.2). Hence (3.3) follows from (1.1). Again, from the claim, M[d]
H,u(x) = 1 or

Φd(x). Since MH,u(x) =
∏

d|n M[d]
H,u(x) and Φd(x) has degree ϕ(d), from (1.1), it follows

that S G,K,n ⊆ {n − e | e ∈ C[n, 1]} = C[n, 1]. The reverse inclusion S G,K,n ⊇ C[n, 1]
follows from Lemma 3.6. �

For any subgroup J of S n and any subgroup J0 of J, we have VJ0 (u) ⊆ VJ(u) for any
u ∈ Kn and so dJ0 (u) ≤ dJ(u). In particular, dG(u) ≥ dG0 (u) for any subgroup G of G
containing G0 = 〈τ〉 and any u ∈ Kn. By Theorem 3.7, under the conditions of case (i),
dG(u) = dG0 (u). In other words, the group G does not add any extra information when
compared to G0.

It is well known that Q admits cyclic Galois extensions of any degree and the
cyclotomic polynomials are always irreducible over Q. The following result is
straightforward.

Corollary 3.8. Let G be as in Theorem 1.1. Then, for any positive integer n and
any u ∈ Qn, dG(u) = n − deg(gcd( fu(x), xn − 1)). In particular, with S G,Q,n as in
Definition 3.2,

S G,Q,n = C[n, 1].

The next result follows by the same steps as in the proof of Theorem 3.7.

Corollary 3.9. Let G, K and n be as in Theorem 1.1. In addition, suppose that K has
characteristic p > 0, n = pt · n0 with t ≥ 1, and gcd(p, n0) = 1. If Φd(x) is irreducible
over K[x] for each divisor d of n0 or G = G, for any u ∈ Kn,

dG(u) = n −
∑
d|n0

Φd(x)| fu(x)

ν(d, u) · ϕ(d), (3.4)
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where ν(d, u) ≤ pt is the greatest positive integer s such that Φd(x)s divides fu(x). In
particular, S G,K,n = C[n0, pt].

For completeness, we comment on the proof of Corollary 1.2. Observe that, for
u = (u0, . . . , un−1) ∈ Kn, fu(x) is divisible by xn − 1 if and only if u is the zero vector,
fu(x) is divisible by x − 1 if and only if

∑n−1
i=0 ui = fu(1) = 0, and fu(x) is divisible

by (xn − 1)/(x − 1) = xn−1 + · · · + x + 1 if and only if u = (u0, . . . , u0). Let K,G and
n be as in Corollary 1.2. Since n is a prime and xn−1 + · · · + x + 1 is irreducible,
we observe that K has characteristic p, where n , p unless n = p = 2. In particular,
unless n = p = 2, xn−1 + · · · + x + 1 = Φn(x) and Corollary 1.2 follows by the previous
observations and (3.3). The case n = p = 2 of Corollary 1.2 follows by the previous
observations and (3.4).

3.2.1. The finite field case. Let K = Fq be the finite field with q elements, where q
is a power of a prime p. It is well known that, up to isomorphism, there exists a unique
extension of Fq of degree n for any n ≥ 1. In addition, this extension is a cyclic Galois
extension. The following result provides a complete characterisation of the degree
distribution in the factorisation of cyclotomic polynomials over Fq.

Lemma 3.10 [2, Theorem 2.47]. For any positive integer n such that gcd(n, p) = 1, let
m := ordnq be the least positive integer such that qm ≡ 1 (mod n). Then Φn(x) factors
into ϕ(n)/m irreducible polynomials over Fq, each of degree m.

In particular, Φd(x) is irreducible if and only if orddq = ϕ(d), that is, q is a primitive
root modulo d. It is well known that, if d is a power of an odd prime, there exist
primitive roots modulo d. In addition, if r is an odd prime and q is a primitive root
modulo r2, then q is a primitive root modulo rt for any t ≥ 1. We introduce the Euler
phi function for polynomials over finite fields.

Definition 3.11. For any nonzero polynomial f ∈ Fq[x], the Euler phi function Eq( f )
over Fq[x] is the number of polynomials g ∈ Fq[x] of degree at most deg( f (x)) − 1 such
that gcd(g(x), f (x)) = 1. Equivalently,

Eq( f ) =

∣∣∣∣∣( Fq[x]
( f (x))

)∗∣∣∣∣∣,
where ( f (x)) is the ideal generated by f over Fq[x].

From the Chinese remainder theorem, Eq is a multiplicative function. In addition,
if f ∈ Fq[x] is irreducible of degree d, then Eq( f ) = qd − 1. For more details on the
Euler phi function for polynomials over finite fields, see [2, Section 3.4].

Theorem 3.12. Let G be as in Theorem 1.1. Let t be an odd prime and s a positive
integer. Suppose that q is a primitive root modulo tm, where m = 1 if s = 1, or m = 2 if
s ≥ 2. Then, for n = ts and any u ∈ Fts

q ,

dG(u) = ts −
∑

0 ≤ i ≤ s
Φti (x)| fu(x)

ϕ(ti). (3.5)
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In particular,

S G,Fq,ts = C[ts, 1] =

{
e0 + (t − 1) ·

s∑
i=1

ei · ti−1 | ei ∈ {0, 1}
}
,

|S G,Fq,ts | = 2s+1 and any element j ∈ S G,Fq,ts satisfies j ≡ 0, 1 (mod t − 1). Moreover,
for any r ∈ S G,Fq,ts with

r = e0 + (t − 1) ·
s∑

i=1

ei · ti−1, ei ∈ {0, 1},

the number NG(r) of elements u ∈ Fts

q such that dG(u) = r is given by

NG(r) =

s∏
i=0

(qϕ(ti) − 1) = (q − 1)e0

s∏
i=1

(qti−1(t−1) − 1)ei .

Proof. We observe that t , p and so xts
− 1 =

∏s
i=0 Φti (x). In addition, under our

hypothesis, Lemma 3.10 implies that the polynomials Φti (x) with 0 ≤ i ≤ s are
irreducible. In particular, (3.5) and the equality S G,Fq,ts = C[ts, 1] follow directly from
Theorem 3.7. For the equality |S G,Fq,ts | = 2s+1, we observe that it suffices to prove that
the elements of the set {

e0 + (t − 1) ·
s∑

i=1

ei · ti−1 | ei ∈ {0, 1}
}
,

are pairwise distinct. This is easily deduced from the uniqueness of the expansion of
a natural number in base t. Finally, let r = e0 + (t − 1) ·

∑s
i=1 ei · ti−1 ∈ C[ts, 1], where

ei ∈ {0, 1}. Since 1 + (t − 1) ·
∑s

i=1 ti−1 = ts,

r = ts −

[
e′0 + (t − 1) ·

s∑
i=1

e′i · t
i−1

]
= ts −

s∑
i=0

e′i · ϕ(ti),

where e′i = 1 − ei. By the previous observations and (3.5), dG(u) = r if and only if
fu(x) = gu(x) ·

∏s
i=0 Φd(x)e′i for some gu(x) ∈ Fq[x] such that gcd(gu(x), xts

− 1) = 1.
Since xts

− 1 =
∏s

i=0 Φti (x) is separable, if we write hr(x) =
∏s

i=0 Φd(x)e′i , the latter is
equivalent to fu(x) = gu(x) · hr(x), where gcd(gu(x),Hr(x)) = 1 and

Hr(x) =
xts
− 1

hr(x)
=

s∏
i=0

Φti (x)ei .

Since fu has degree at most ts − 1, gu has degree at most ts − 1 − deg(hr(x)) =

deg(Hr(x)) − 1. We observe that the elements u ∈ Fts

q are in one-to-one correspondence
with the polynomials f ∈ Fq[x] of degree at most ts − 1 (plus the zero polynomial).
From this correspondence, NG(r) equals the number of polynomials gu of degree at
most deg(Hr(x)) − 1 that are relatively prime with Hr(x), that is, NG(r) = Eq(Hr).
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Table 1. The nonzero values of NG(r) for (K, n) = (F2, 25).

r 0 1 4 5 20 21 24 25
NG(r) 1 1 15 15 220 − 1 220 − 1 15 · (220 − 1) 15 · (220 − 1)

Finally, since Hr(x) =
∏s

i=0 Φti (x)ei , Eq is multiplicative and each Φti (x) is irreducible
of degree ϕ(ti),

Eq(Hr(x)) =

s∏
i=0

(qϕ(ti) − 1). �

Example 3.13. Let q = 2, K = F2 and n = 25 = 52. It is easy to verify that 2 is a
primitive root modulo 25. For G as in Theorem 1.1, S G,F2,25 = {0,1,4,5,20,21,24,25}.
Table 1 shows the nonzero values of NG(r) for r ∈ S G,F2,25.

4. The dihedral action and the reciprocal of a polynomial

In this section we consider the natural action of the dihedral group Dn = Zn o Z2

over Kn. There is a natural embedding Dn into S n as follows: Dn = 〈τ, η〉, where
τ : i 7→ i + 1 (mod n) is the translation and η : i 7→ n − i (mod n) is the reflection.
Geometrically, η can be viewed as the reflection of Kn with respect to the variety Vn

determined by the equations xi = xn−i with 1 ≤ i ≤ n/2. Since n − i ≡ (n − 1)i (mod n),
Theorem 1.1 implies that, for any u = (u0, . . . , un−1) ∈ Fn

q,

dDn (u) = n − deg(gcd( fu(x), fu(xn−1), xn − 1)),

where fu(x) =
∑n−1

i=0 uixi. For a nonzero polynomial f (x) =
∑m

i=0 aixi in K[x] of degree
m, the reciprocal of f is the polynomial f ∗(x) = xm f (1/x) =

∑m
i=0 am−ixi. The following

result is straightforward.

Lemma 4.1. For a nonzero polynomial f ∈ K[x] and a nonzero element α in the
algebraic closure of K, α is a root of f with multiplicity j if and only if 1/α is a
root of its reciprocal polynomial f ∗ with multiplicity j.

Lemma 4.2. If u = (u0, . . . , un−1) ∈ Kn is not the zero vector, write

fu(x) =

n−1∑
i=0

uixi = gu(x) · hu(x),

where hu(x) is relatively prime to xn − 1. Then

dDn (u) = n − du,

where du is the degree of gcd( fu(x), f ∗u (x), xn − 1) = gcd(gu(x), g∗u(x), xn − 1).
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Proof. Let α be any root of Mu(x) = gcd( fu(x), fu(xn−1), xn − 1). In particular, α , 0 is
a root of gu(x). We observe that αn−1 = 1/α and so fu(1/α) = 0, that is, f ∗u (α) = 0.
Since 1/α is also a root of xn − 1, it follows that 1/α is not a root of hu(x). In
conclusion, αn − 1 = gu(α) = gu(1/α) = 0. From Lemma 4.1, the latter occurs if and
only if gu(α) = g∗u(α) = 0. Since gu divides fu (and g∗u divides f ∗u ),

Mu(x) = gcd( fu(x), f ∗u (x), xn − 1) = gcd(gu(x), g∗u(x), xn − 1),

and the result follows. �

From the previous lemma, we can obtain information on the value of dDn (u) without
even computing the greatest common divisor of polynomials. This is exemplified in
the following corollary.

Corollary 4.3. Let n be odd such that xn − 1 has only simple roots over the algebraic
closure of K. Then, for u ∈ Kn, we have

∑n−1
i=0 ui = 0 if and only if dDn (u) is even.

Proof. Since n is odd, 1 is the only common root of the polynomials xn − 1 and x2 − 1.
In particular, whenever fu(x) =

∑n
i=0 uixi and f ∗u have a common root α of xn − 1, 1/α is

also a common root and such elements are distinct if α , 1. In other words, if we write
fu(x) =

∑n−1
i=0 uixi = gu(x) · hu(x), where hu(x) is relatively prime to xn − 1, the common

roots of gu(x) and xn − 1 come in pairs whenever they are distinct from 1 ∈ K. From
the hypothesis, the polynomial xn − 1 has only simple roots. In particular, if we set
Mu(x) = gcd(gu(x), g∗u(x), xn − 1), Mu(x) has odd degree if and only if it is divisible by
x − 1. The latter is equivalent to fu(1) = 0, that is,

∑n−1
i=0 ui = 0. Since n is odd, from

Lemma 4.2, Mu(x) has odd degree if and only if dDn (u) is even. �
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