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Abstract

Let K be a field that admits a cyclic Galois extension of degree n > 2. The symmetric group S, acts on
K" by permutation of coordinates. Given a subgroup G of S, and u € K", let V(u) be the K-vector space
spanned by the orbit of # under the action of G. In this paper we show that, for a special family of groups
G of affine type, the dimension of V(u) can be computed via the greatest common divisor of certain
polynomials in K[x]. We present some applications of our results to the cases K = Q and K finite.
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1. Introduction

Let K be a field and let n > 2 be an integer. If S, denotes the group of permutations of
{0,1,...,n— 1}, there is a natural action of S, on the K-vector space K". For6 € S,
and u = (ug, ..., u,—1) € K", we set 6(u) = (l/l(;(()), RN M(;(,,_l)). For u € K", let V5(u) be
the K-vector space spanned by the orbit {g(u)| g € G} of u by G and let dg(u) be the
dimension of V(). Some natural questions arise.

(1) Foru € K", what is the value of dg(u)?

(2) Asuruns over K", what are the possible values of dg(u)?

(3) If K is finite and O < r < n, what is the number Ng(r) of vectors u € K" for which
dg(u) =r?

When G = S, it is a routine exercise to show that

0 ifu=(0,...,0),

1 if u = (ug,...,up) and ug # 0,
dSn(u) = . n—1
n—1 if }77) u; = 0 and the u; are not all equal,

n otherwise.
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2] Permutation vector spaces 257

The main idea of the proof relies on considering W(u) := Vs, (u)*, the complement of
Vs, (1), and showing that one of the vector spaces W(u) or Vs, (1) only contains scalar
multiples of the vector v =(1,...,1). In particular, if K = F, is the finite field with ¢
elements, where ¢ is a power of a prime p, then

1 ifr=0,

qg-—1 ifr=1,
Ns, (r) = q”_l —c(n) ifr=n-1,

¢ —q" " -q+cn) ifr=n,

0 otherwise,

where c(n) =g if n =0 (mod p), and c¢(n) =1 otherwise. The proof of this
enumeration formula is quite simple. We observe that ds (1) = n — 1 if and only if
the sum of the coordinates of u equals zero and u is not of the form (uy, ..., 1) for
some uy € F,. In addition, the equation xo + - -+ + x,—; = 0 has ¢"" solutions and
contains exactly c(n) solutions where all the variables coincide. From this fact, the
numbers N, (r) for r # n are easily computed. In addition, Ng, (n) = ¢" — Z’:;é Ng, (7).

We identify S, with the group of permutations of Z, = {0, 1,...,n — 1}. Under this
correspondence, let G be the subgroup of S, of the permutations i — ai + b (mod n) of
affine type. We can observe that G is isomorphic to Z, < Z;. In fact, the permutations
i~ i+ k (mod n) with 0 < k < n form a normal subgroup of G (isomorphic to Z,) and
any element of G can be written as a composition of a permutation i — ai (mod n) with
ged(a, n) = 1 (such permutations form a group isomorphic to Z;) and a permutation
i i+k (mod n) with 0 < k < n. Moreover, if {ay,...,qa,} is a set of generators for
Z,,, the group G is generated by the permutations o, : i +> a;-i (mod n) for 1 < j<r
and the translation 7 : i — i + 1 (mod n).

The main result of this paper shows that if K admits a cyclic Galois extension of
degree n and G is any subgroup of G containing the permutation 7 : i — i + 1 (mod n),
we have a simple closed formula for the number dg (1), where u € K" is arbitrary. More
specifically, we prove the following theorem.

TueoreM 1.1. Suppose that K is a field admitting a cyclic Galois extension of degree

n. Let ay,...,as be positive integers and let H be the subgroup of G comprising
the permutations 64, : i+ aj-i (mod n). For u € K" with u = (uo, ..., u,-1), set
fu(x) = ;’;01 ix'. Then, fort:i—i+1 (mod n)and G ={(t)>H,

dg(u) = n — deg(M,, u(x)), (1.1)

where M, g(x) = ged(x" — 1, f,(x™), ..., fu(x*)) € K[x].

On the one hand, dg(«) can always be computed after obtaining a basis for Vi (u),
and there are many methods to obtain such a basis. On the other hand, there are
plenty of situations where Theorem 1.1 provides explicit results. For instance, if the
factorisation of x" — 1 over K[x] is known, equation (1.1) gives the possible values of
dg(u). In some cases, dg(u) is readily obtained.
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CoroLLARY 1.2. Suppose n is a prime number and let K and G be as in Theorem 1.1.
In addition, suppose that the polynomial (x" — 1)/(x = 1) =x"'+ -+ x+1 is
irreducible over K. Then dg(u) = ds, (u) for any u € K". In particular, if K is finite,
then Ng(r) = Ng, (r) for0 <r <n.

The paper is structured as follows. In Section 2 we provide background material
that is used along the way, including definitions and auxiliary results. In Section 3 we
prove Theorem 1.1 and provide some immediate applications to the case K = Q and
K finite. Finally, in Section 4, we explore the applicability of Theorem 1.1 to the case
where G is the dihedral group D,,.

2. Preliminaries

Throughout this paper, n > 2 is a positive integer and K is a field admitting a cyclic
Galois extension L of degree n. Let o : L — L be any generator of Gal(L/K), hence o
has order n.

DeFNtTION 2.1.

(i) Let o be the identity map on L and, for each i > 1, set

O—i =g Oo---0Q0.
N———
i times
(i) LetC(K,n)= K[x]/(x" — 1) be the n-dimensional K-vector space comprising the
polynomials f € K[x] that are constant or have degree at most n — 1.

The normal basis theorem (see [1]) ensures the existence of an element z € L such
that L = K(z) and {0 j(2)}o<j<n—1 1S a basis for L as a K-vector space. In this case, the
element z is called normal. We fix 5, a normal element of L over K.

Derinirion 2.2. For f € K[x] with f(x) = 2 ax'anda € L,

m
f°a’=zai'0'i(01),
i=0
where the indices i are taken modulo 7.

It is easy to verify that (f - g)oca = fo(goa@)and (f +g)oa=foa+goa for
any polynomials f, g € K[x] and any @ € L. This gives the field L a K[x]-module
structure. In particular, for any @ € L, the set I, = {g € K[x]| g o @ = 0} is an ideal of
K[x], hence is principal.

Lemma 2.3. The ideal I is generated by x" — 1 € K[x]. In particular, for any a € L,
there exists a unique f € C(K,n) such that @ = f o 3.
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Proor. We first prove that Ig is generated by x" — 1. Let F be the generator of I and,
without loss of generality, suppose that F is monic. Since

(X" =1 oB=00(B) —oo(B) =0,

we see that F' divides x* — 1. If F were of degree at most n — 1, the equality
F o 8 =0 would be a nontrivial linear combination of the elements {o7;(8)}o<i<n—1, With
coeflicients in K. This contradicts the fact that 8 is a normal element. Hence F has
degree at least n and so F(x) = x* — 1. To conclude the proof, let I[1: C(K,n) — L
be the map given by f +— f o 8. From Definition 2.2, IT is a K-linear map between
K-vector spaces of dimension n. In this context, it suffices to prove that II is onto
or, equivalently, one-to-one. But ker(II) is not the zero vector space if and only if Iz
contains a nonzero element of C(K, n), which is impossible since Iz is generated by
X' =1 O
The following definitions are useful.

DEFINITION 2.4.
(i) Forue K" with u = (ug, ..., u,—1), define f,(x) € C(K, n) by

n—1

ful) = > i,

i=0
(i) FordeS,and f € C(K,n) with f(x) = 3 a:x', we set

n—1
o(f) = Z asp X
=0

It is clear that S, acts on C(K, n) via the compositions o(f).

ExampLE 2.5. If f(x) = Zl’.‘z‘ol aix'and T :iw i+ 1 (mod n) is the translation,

n=2
T(f(0)) = apr + ) @™
i=0

We have the following result.

ProrosiTiON 2.6. For any subgroup J of S,, and u € K", the space V;(u) is isomorphic
to the K-vector space spanned by the set {5(f,)}sc; € C(K, n).

Proor. For u € K", let W;(u) and W§(u) be the K-vector spaces spanned by the sets
{0(fi)})ses € C(K,n) and {6(f,) o Blses C L, respectively. From Lemma 2.3, the map
Y : K" — L given by ¥Y(v) = f, o8 is a K-isomorphism of K-vector spaces. Since
WY(V;(u)) = Wi(u), it follows that V;(u) and W7 (u) are isomorphic.

Let I'y : Wy(u) — Wj(u) be the K-linear map given by I',(g) = goB. From
Definition 2.4, I';, is onto. Moreover, from Lemma 2.3, g o 8= 0 if and only if g(x)
is divisible by x" — 1. Since g € C(K, n) is a constant or has degree at most n — 1, it
follows that g = 0, that is, ker I, = {0}. Therefore, W;(«) and W7 (u) are isomorphic. O
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3. A formula for d;(u) and applications

In this section we provide the proof of Theorem 1.1 and some of its immediate
applications. We fix a subgroup G of G containing the translation 7 and write
G = (1, H), where H is the unique subgroup of G such that G is generated by H and .
We observe that any element of G is written uniquely as 7', where 0 < i <n — 1 and
h € H. In fact, G is isomorphic to the semidirect product (7) < H, where (1) = Z, is the
group generated by the translation 7 : a; = @i+1 mod n)- We recall that, in this case, any
element of H is of the form ¢, : i = a - i (mod n) where gcd(a, n) = 1. The following
lemma provides a simple way of obtaining 6,(f) and 7(f), for any f € C(K, n).

Lemma 3.1. For any f € C(K,n) and any integers a,i > 0 such that a and n are

relatively prime,

() (@) =x"- f(x) (mod x* - 1),

()  0.(f(x) = f(xP) (mod x" — 1) ifb is a positive integer such that ab =1 (mod n).
n—1

Proor. Item (i) follows directly from Example 2.5. For (ii), write f(x) = >/, a;x' and
n—1 i

let b be any positive integer such that ab =1 (mod n). Then 8,(f(x)) = ;7 ai,x
where 0 < i, <n—1 is such that i, = ia (mod n). Therefore, i = i,b (mod n) and so
x' = x'’ (mod x" — 1). In particular,

Sa(f(x) = g(x") (mod x" - 1),
where g(x) = Y7 a;,x = f(x). o
3.1. Proof of Theorem 1.1. Let Ws(u) be the K-vector space spanned by the set
{0(fu)}sec and let ay, ..., as be a set of positive integers such that H comprises the

permutations {6, }1<j<s- From previous observations, any element of G can be written
uniquely as 7'0,,, where 0 <i<n—1and 1 < j < s. Therefore,

s n—1

Wo) = {3 " iy (Fou)fut i € K.

j=1 i=0
Letby,...,b, be positive integers such that b;a; = 1 (mod n). From Lemma 3.1, W ()
is isomorphic to the K-vector space

Sutw ={Y g/ f(") (mod ¥~ 1)]g; € CK,m)}.
j=1

Therefore, from Proposition 2.6, dg(u) equals the dimension of S y(u). Since H is
a group, the elements a; comprise a (multiplicative) group modulo n. Moreover,
f(x*) = f(x) (mod x" — 1) whenever a = @’ (mod n) and so

M, p(x) = ged(fu(x), ..., fuxP), X = 1) = ged(£u(x™), ..., fulx®),x" = 1).
In addition, since K[x] is a principal domain, we have the isomorphism
Suu) ={g(x)  Myuz(x) (mod x"—1)|g e C(k,n)} = C(K,n — deg(M, u(x)).

In conclusion, dg(u) = n — deg(M,, y(x)).
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3.2. Applications of Theorem 1.1. We present some direct consequences of
Theorem 1.1.

DerinitioN 3.2. For a subgroup G of S, and a field K, let Sgx, € {0, 1,...,n} denote
the spectrum of different values of d;(u), where u runs over K”.

Let K be a field of characteristic zero and, for each positive integer d, let Q(d) be the
set of dth primitive roots of unity. We set ®4(x) = [],eq@)(x — 7), the dth cyclotomic
polynomial. We observe that, for any y € Q(d),

o= [] -¥) (3.1)
1<j<d
ged(jid) = 1

Thus deg(®,(x)) = ¢(d), where ¢ is the Euler phi function, and we easily obtain
the identity x" — 1 = [],, ®4(x). If K has characteristic p > 0, under the restriction
ged(n, p) = 1, @,(x) is defined in the same way and the same properties hold. If
n = p' - ny with ged(no, p) = 1, we have the identity x" — 1 = [T, O (x).

Derimnition 3.3. For positive integers n and r, let C[n,r] € {0, 1,..., nr} be the set of
distinct sums of the form )’ ;, es - ¢(d) with e, € {0, 1,...,r}.
Since 4, ¢(d) = nand ¢(1) = 1,
{0,1,n-1,n} CC[n,11C{0,1,...,n},

for any n > 1. The equality C[n, 1] = {0, 1,7 — 1, n} occurs exactly when n is a prime
number. The other extreme yields the so called ¢-practical numbers.

DeriniTion 3.4. A positive integer n is ¢-practical if C[n, 1] ={0,1,...,n}.

Remark 3.5. The g-practical numbers have been extensively explored. In particular,
if s(#) denotes the number of p-practical numbers up to ¢, then lim,_,, s(¢) - logt/tis a
positive constant [3]. This shows that the ¢-practical numbers are, up to a constant, as
frequent as the prime numbers and, in particular, their density in N is zero.

Lemma 3.6. Let G, K and n be as in Theorem 1.1. Then Sk, 2 Cln, 1]. If K has
characteristic p > 0andn = p' - no with gcd(ng, p) = 1, then S g x.» 2 Clno, p']1 2 C[n,1].
In particular, if n is g-practical, Sgx, =1{0,1,...,n}.

Proor. Let p be the characteristic of K. We split the proof into cases.

Case 1: p=0, or p>0 and gcd(n, p) = 1. In this case, x" — 1 is separable and the
equality x" — 1 = [, Pa(x) holds over K. Write G = (7, H), where H is a subgroup of
Zy,andletay,...,a be asetof positive integers such that H comprises their reductions
modulo n. In particular, in the notation of Theorem 1.1, for any u € K" we may write

Mp(3) = ged(fux™), ..., fulx®), " = 1) = [ | Ml (0, (3.2)
d|n

where MY (x) = ged(£,(x), ..., fu(x®), D4(x).
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We claim that if ®4(x) divides f,(x), then it divides every polynomial f,(x“) and
so M, Ld] . (X) = @y(x). To see this, suppose that @ (x) divides f,(x) and let y € K be any
root of ®,4(x) and j any positive integer with 1 < j < s. Since ged(a;j, n) = 1 and ®y(x)
divides f,,(x), from (3.1), y% is a root of f, and so vy is a root of f,(x%). Since x" — 1 is
separable, so is ®4(x). Therefore, ®,(x) divides every f,(x%).

For N = 3, ea - ¢(d) with e € {0, 1}, set fy(x) = [1ap D y(x)' ¢ = :'lz_()l u;x' in
K[x] and u(N) = (ug, ..., u,—1) € K*. From (3.2) and the previous observations,
My vy (x) = fy(x) and so, from (1.1),

de(u(N)) = n — deg(fy(x)) = N.

since Y’ g, p(d) = n.
Case 2. p > 0andn = p'-ny, where gcd(ng, p) = 1. The proof that S ., 2 Clno, p']
follows similar steps to case 1, using
¥ 1= [ 0axy.
d|n()

We are left to prove the inclusion Clng, p'] 2 C[n, 1]. Let N € C[n, 1] and write
N = Y eaq - ¢(d) with e, € {0, 1}. In particular, we may rewrite

N= Z 2 epa-o(p') - e(d) = Z e; - ¢(d).

ding =0 ding

where ¢, Z, 0€pid o(ph) < Zl oe(p' ") = p'. Therefore, N € C[ny, p']. O

The previous lemma implies Sk, 2 Cln, 1]. More than that, our proof provides

a constructive method to produce an element u € K" with prescribed dimension
dg(u) € C[1, n]. The following proposition shows that, under some not too restrictive
conditions, equation (1.1) can be refined to give the equality S x,, = C[1,n].

TueoreM 3.7. Let G, K and n be as in Theorem 1.1. In addition, suppose that K has
characteristic p, where p = 0 or p > 0 and gcd(p,n) = 1. Then, for any u € K",

dowy=n- > @), (3.3)
din
Dy ()| fu(x)

in each of the following cases:

(1) D®u(x) is irreducible over K[x] for any divisor d of n;

i) G=G

In particular, in these cases, S g.xn = Cln, 1]. In additional, in case (i),

dg(u) = n — deg(ged(fu(x), x" — 1)) = dg, (),

where Gy = (1) is the group generated by the translation T : i — i+ 1 (mod n).
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Proor. Under our hypothesis, x" — 1 is separable and the equality x" — 1 = [, ®a(x)
holds over K. Write G = (1, H) and let ay,...,a, be a set of positive integers such
that H comprises their reductions modulo n. We are under the conditions of case 1 in
Lemma 3.6. In the notation of the lemma, for any u € K",

Mpa(x) = | | Myl x),  where MIf)(x) = ged(fu(x™), .., fux™), @y()).

din

Claim. Under the cases (i) or (ii), M}j’]u(x) = ®,(x) or 1, according as ®,(x) does or
does not divide f,(x).

Proor or CrLam. If ®,4(x) divides f,(x), from the proof of case 1 in Lemma 3.6, we
have Mﬁ]u(x) = ®,4(x). Now, suppose that f,(x) is not divisible by ®4(x). If O4(x)
is irreducible over K[x], it follows that gcd(®,4(x), f,(x)) =1 and so Mﬁ]u(x) =1.1If
G = @G, then H = Z;, and so, from (3.1), for any root y of ®,(x), the set {y“},cy contains
the roots of ®,(x). In particular, if v were a root of f,(x?) for every a € H, then f,(x)
would be divisible by ®,(x), contrary to our assumption. Therefore, M};{]u x=1. O

From the claim, MI[;{]M(x) = ged(fu(x), Dg(x)). Also, My, (x) = ged(f,(x), x" — 1)
from (3.2). Hence (3.3) follows from (1.1). Again, from the claim, Mgi’]u(x) =1or
Dy(x). Since My, (x) = [T M};{]u(x) and ®4(x) has degree ¢(d), from (1.1), it follows
that Sg k. C{n—ele e Cln,1]} = C[n, 1]. The reverse inclusion S¢k, 2 Cln, 1]

follows from Lemma 3.6. O

For any subgroup J of S, and any subgroup J, of J, we have V() C V;(u) for any
u € K" and so d;,(u) < dj(u). In particular, dg(u) > dg,(u) for any subgroup G of G
containing Gy = (1) and any u € K". By Theorem 3.7, under the conditions of case (i),
dg(u) = dg,(u). In other words, the group G does not add any extra information when
compared to Gy.

It is well known that Q admits cyclic Galois extensions of any degree and the
cyclotomic polynomials are always irreducible over Q. The following result is
straightforward.

CoroLLARY 3.8. Let G be as in Theorem 1.1. Then, for any positive integer n and
any u € Q", dg(u) = n — deg(ged(f,(x), x" — 1)). In particular, with Sgqn, as in
Definition 3.2,

SG,QJ, = C[n, 1].

The next result follows by the same steps as in the proof of Theorem 3.7.

CoroLLARY 3.9. Let G, K and n be as in Theorem 1.1. In addition, suppose that K has
characteristic p > 0, n = p' - ng with t > 1, and gcd(p, no) = 1. If ®y(x) is irreducible
over K[x] for each divisor d of ny or G = G, for any u € K",

dew=n- > wdu)- (), (3.4)
dlng
Dy ()| fu(x)
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where v(d,u) < p' is the greatest positive integer s such that ®;(x)* divides f,(x). In
particular, S g xn = Clng, p'l.

For completeness, we comment on the proof of Corollary 1.2. Observe that, for
u=(uo,...,up—1) € K", f,(x) is divisible by x" — 1 if and only if u is the zero vector,
fu(x) is divisible by x — 1 if and only if ;’:_01 u; = f,(1) =0, and f,(x) is divisible
by (X" = 1)/(x—=1)=x""'"+---+x+1if and only if u = (u, ...,up). Let K,G and
n be as in Corollary 1.2. Since n is a prime and x*~! + --- + x + 1 is irreducible,
we observe that K has characteristic p, where n # p unless n = p = 2. In particular,
unlessn=p=2,x""!+---+x+1=d,(x) and Corollary 1.2 follows by the previous
observations and (3.3). The case n = p = 2 of Corollary 1.2 follows by the previous
observations and (3.4).

3.2.1. The finite field case. Let K = F, be the finite field with g elements, where g
is a power of a prime p. It is well known that, up to isomorphism, there exists a unique
extension of I, of degree n for any n > 1. In addition, this extension is a cyclic Galois
extension. The following result provides a complete characterisation of the degree
distribution in the factorisation of cyclotomic polynomials over F,.

Lemma 3.10 [2, Theorem 2.47]. For any positive integer n such that gcd(n, p) = 1, let
m := ord,q be the least positive integer such that g™ = 1 (mod n). Then ®,(x) factors
into p(n)/m irreducible polynomials over F,, each of degree m.

In particular, ®4(x) is irreducible if and only if ord;q = ¢(d), that is, g is a primitive
root modulo d. It is well known that, if d is a power of an odd prime, there exist
primitive roots modulo d. In addition, if 7 is an odd prime and ¢q is a primitive root
modulo 72, then g is a primitive root modulo 7 for any 7 > 1. We introduce the Euler
phi function for polynomials over finite fields.

DeriniTioN 3.11. For any nonzero polynomial f € F,[x], the Euler phi function E,(f)
over F,[x] is the number of polynomials g € F,[x] of degree at most deg(f(x)) — 1 such
that ged(g(x), f(x)) = 1. Equivalently,

>

Fylx] )
(f(x)
where (f(x)) is the ideal generated by f over IF,[x].

£ =|(

From the Chinese remainder theorem, E, is a multiplicative function. In addition,
if f € F,[x] is irreducible of degree d, then E (f) = g% — 1. For more details on the
Euler phi function for polynomials over finite fields, see [2, Section 3.4].

TueoreM 3.12. Let G be as in Theorem 1.1. Let t be an odd prime and s a positive
integer. Suppose that q is a primitive root modulo t"', where m =1 if s=1, orm =2 if
s> 2. Then, forn =t* and any u € F’,,

dowy=r'= Y (). (3.5)

0<i<s

@, (0)1fu(x)

https://doi.org/10.1017/S0004972719000340 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972719000340

[10] Permutation vector spaces 265

In particular,
N
Saz,e =CleT={eo+ =1 Y et e e (0.1)),
i=1

ISG.r,.0l = 25*! and any element j € S GF,r satisfies j=0,1 (mod 1 —1). Moreover,
forany r € Sgg, s with

N

r=eg+ (=1 e, e€f01),

i=1

the number Ng(r) of elements u € ]Fﬁ; such that dg(u) = r is given by
N =] [@ ™ -1 =@-D"] J@" -1
i=0 i=1

Proor. We observe that ¢ # p and so x" — 1 = o @i(x). In addition, under our
hypothesis, Lemma 3.10 implies that the polynomials @, (x) with 0 <i < s are
irreducible. In particular, (3.5) and the equality Sg g, = C[#*, 1] follow directly from
Theorem 3.7. For the equality [SGr, | = 25*1 we observe that it suffices to prove that
the elements of the set

feo - 1)-2@-.#‘-1 e (011},

i=1

are pairwise distinct. This is easily deduced from the uniqueness of the expansion of
a natural number in base 7. Finally, let r =g+ (t—1)- Y., ¢; - £~ € C[#*, 1], where
e;€{0,1}. Since 1 + (¢ — 1) - Y0, i1 =15,

N

S
r:ts—[e{)+(t—1)-26;-ti_l]zts—ze:-'sﬁ(l‘i),

i=1 i=0

where e; = 1 —¢;. By the previous observations and (3.5), dg(u) = r if and only if
ful®) = gu(x) - T, ®4(x)¢ for some g,(x) € Fy[x] such that ged(g.(x), X -D=1
Since x” — 1 = _o ©:i(x) is separable, if we write 1.(x) = [, ®,(x)%, the latter is
equivalent to f,(x) = g,(x) - h.(x), where gcd(g,(x), H,(x)) = 1 and

#

x =1 . o
hr(x) = ll;[CD,i(x) .

Since f, has degree at most ¥ — 1, g, has degree at most ¥ — 1 — deg(h,(x)) =
deg(H,(x)) — 1. We observe that the elements u € ]F’qs are in one-to-one correspondence
with the polynomials f € F,[x] of degree at most #* — 1 (plus the zero polynomial).
From this correspondence, Ng(r) equals the number of polynomials g, of degree at
most deg(H,(x)) — 1 that are relatively prime with H,.(x), that is, Ng(r) = E,(H,).

H,(x) =
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TasLE 1. The nonzero values of Ng(r) for (K, n) = (F,, 25).

r 01 4 5 20 21 24 25
Ne(r) 1 1 15 15 2%—-1 21 15-2°-1) 15-(2%-1)

Finally, since H,(x) = [1;_, ®,:(x)*, E, is multiplicative and each ®,i(x) is irreducible
of degree ¢(t),

Ey(H0) = [ J@* - . 0
i=0

Exampie 3.13. Let ¢ =2,K =F, and n =25 = 5. It is easy to verify that 2 is a
primitive root modulo 25. For G as in Theorem 1.1, Sg 5,25 ={0,1,4,5,20,21, 24, 25}.
Table 1 shows the nonzero values of Ng(r) for r € S, 25.

4. The dihedral action and the reciprocal of a polynomial

In this section we consider the natural action of the dihedral group D,, = Z, < Z;
over K". There is a natural embedding D, into S, as follows: D, = (t,7), where
T:i—> i+ 1 (mod n) is the translation and 7 : i — n — i (mod n) is the reflection.
Geometrically, n7 can be viewed as the reflection of K" with respect to the variety V,
determined by the equations x; = x,,_; with 1 <i<n/2. Sincen —i = (n — 1)i (mod n),
Theorem 1.1 implies that, for any u = (ug, ..., u,-1) € Fg.

dp, (u) = n = deg(ged(fu(x), fux"™1), ¥ = 1)),

where f,(x) = 215, ! u;x. For a nonzero polynomial f(x) = >roaix! in K[x] of degree
m, the reciprocal of fis the polynomial f*(x) = x" f(1/x) = 21, ap_ix'. The following
result is straightforward.

Lemmva 4.1. For a nonzero polynomial f € K[x] and a nonzero element « in the
algebraic closure of K, « is a root of f with multiplicity j if and only if 1/« is a
root of its reciprocal polynomial f* with multiplicity j.

Lemva 4.2. If u = (uy, . .., u,—1) € K" is not the zero vector, write
n—1
Ful) = ) i = gu(x) - hu(),
i=0

where h,(x) is relatively prime to x" — 1. Then
dp,(u)=n-4d,

where d,, is the degree of gcd(f,(x), f;/(x), x" — 1) = ged(g,(x), g;,(x), x" = 1).
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Proor. Let @ be any root of M, (x) = gcd(f,(x), f,(x"1), x" — 1). In particular, @ # 0 is
a root of g,(x). We observe that "' = 1/a and so f,(1/a) = 0, that is, fi(@) =0.
Since 1/« is also a root of x" — 1, it follows that 1/« is not a root of A,(x). In
conclusion, " — 1 = g,(@) = g,(1/a@) = 0. From Lemma 4.1, the latter occurs if and
only if g,(@) = g/ (a) = 0. Since g, divides f, (and g, divides f),

Mu(x) = ng(fu(x)’ f;(x)s xﬂ - 1) = ng(th(x)s g;(x)s x”l - 1)5
and the result follows. O

From the previous lemma, we can obtain information on the value of dp, («) without
even computing the greatest common divisor of polynomials. This is exemplified in
the following corollary.

CoroLLARY 4.3. Let n be odd such that x" — 1 has only simple roots over the algebraic
closure of K. Then, for u € K", we have Z?;OI u; = 0 if and only if dp, (u) is even.

Proor. Since 7 is odd, 1 is the only common root of the polynomials x" — 1 and x> — 1.
In particular, whenever f,(x) = 2, u;x' and f have acommon root @ of X" — 1, 1/a is
also a common root and such elements are distinct if @ # 1. In other words, if we write
Ju(x) = Zf;ol u;x' = g,(x) - h,(x), where h,(x) is relatively prime to x" — 1, the common
roots of g,(x) and x" — 1 come in pairs whenever they are distinct from 1 € K. From
the hypothesis, the polynomial x" — 1 has only simple roots. In particular, if we set
M, (x) = ged(g,(x), g,(x), x" — 1), M, (x) has odd degree if and only if it is divisible by
x — 1. The latter is equivalent to f,(1) = 0, that is, Z;:Ol u; = 0. Since n is odd, from

Lemma 4.2, M, (x) has odd degree if and only if dp, (u) is even. O
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