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VARIETIES OF STEINER LOOPS AND STEINER 
QUASIGROUPS 

ROBERT W. QUACKENBUSH 

1. I n t r o d u c t i o n . A Steiner Triple System (STS) is a pair ( P , B) where P is 
a set of points and B is a set of 3-elenient subsets of P called blocks (or triples) 
such tha t for distinct p, q £ P there is a unique block b Ç B with {p, q) C b. 
There are two well-known methods for turning Steiner Triple Systems into 
algebras; both methods are due to R. H. Bruck [1]. Each method gives rise to 
a var ie ty of algebras; in this paper we will s tudy these varieties. 

The first method turns the STS (P , B) into a Steiner quasigroup (squag) 
based on P : define x2 = x and otherwise xy = z where {x, y, z} £ B. Note tha t 
( P ; •) satisfies: i) x2 = x, ii) xy = yx, iii) x(xy) = y. Conversely, any algebra 
( P ; •) satifying i) — iii) generates a STS (P, B) where B is the set of 3-element 
subalgebras of ( P ; •). Thus the class of all squags forms a var ie ty which is 
denoted by Sq. 

The second method turns the STS (P , B) into a Steiner loop (sloop) based 
o n P U {1} (where 1 $ P ) : define Ix = x l = x, x2 = 1 and otherwise x;y = s 
where {x, y, z) £ P . Note tha t (P U {1} ; •) satisfies a) Ix = x, b) x2 = 1, c) 
X3> = yx, d) x(x;y) = 3/. Conversely, any algebra ( P ' ; • , 1) satisfying a) — d) 
generates a 5 T S ( P ' — { l j , B) where B is the set of all 3-element subsets of 
P1 — {1} which together with 1 form a subalgebra. Thus the class of all sloops 
forms a variety which is denoted by SI. 

We assume tha t the reader is familiar with the basic concepts of universal 
algebra; for details and notational conventions, see [3]. 

2. Two-var iable i d e n t i t i e s . Sloops are closely related to boolean groups 
(i.e., groups satisfying x2 = 1). In fact, all t ha t we are missing is the associ­
ative lawr; in its place we have the special case of the associative law in two 
variables: x(xy) = (x2)^. Let 21 Ç SI. Then SI has the proper ty tha t every 
2-generated subsloop is a boolean group. Conversely, let 33 be an algebra of 
type (2, 0) with the property tha t every 2-generated subalgebra is a boolean 
group. Then S necessarily satisfies a) — d) and so 93 G SI. T h u s SI = âS^ = 
the class of all algebras of type (2, 0) such tha t every 2-generated subalgebra 
is in Se ( = boolean groups). Equivalently, SI = Se^ is the variety of all algebras 
of type (2, 0) satisfying all 2-variable identities true in Se. 

T h u s we see tha t Se is a subvariety of SI. In fact, since every non-trivial sloop 
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contains a non-trivial boolean group and 38 is generated by each of its non-
trivial members, we see tha t 38 is the unique a tom in the latt ice of subvarieties 
of SI. 

Let us now turn our a t tent ion to squags. Any two dist inct elements of a 
squag generate a 3-element subsquag and all 3-element squags are isomorphic. 
As a canonical example, consider the set {0, 1, 2} and the operation x © y = 
2x + 2y (mod 3) ; thus let 73 = ({0, 1, 2} ; © ). In a similar manner , the var ie ty 
generated by 73, J, is the unique a tom in the lattice of subvarieties of Sq. 
Moreover, Sq = J^(2) = the var ie ty of all algebras of type (2) which satisfy 
all 2-variable identities t rue in J. 

But what is Jl Let C3 = ({0, 1, 2} ; ©, 0 ) ; Then C3 is equivalent to the 
3-element group since x + y (mod 3) = 4x + 4^ (mod 3) = 2(2x + 0) + 
2(2;y + 0) (mod 3) = (x © 0) © (y © 0) . Now if ^ 3 is the var ie ty generated 
by the 3-element group and (A ; + ) G ^ 3 then (A; ®) £ J where x © y = 
2x + 2y. In fact, it is straightforward to show tha t J is the class of all algebras 
(A\@) such tha t (A ; + ) G ^ 3 . 

Finally, note t ha t i) — iii) and iv) x(yz) = (xy)z is an equational base for 
38. Less obvious, bu t still easy to prove, is the fact t ha t a) — d) and e) 
(xy) (uv) = (xu)(yv) is an equational base for J>. 

3. Algebraic propert ies of SI a n d Sq. Since SI = 38 ^ and Sq = J^ we 
know t h a t SI and Sq inherit those properties of 38 and J which depend on only 
two variables. 

T H E O R E M 3.1. (a) SI and Sq each have permutable congruences. 
(b) SI and Sq each have uniform congruences (i.e. if 21 G SI or Sq and 6 G 

^(21) then all 6-classes have the same cardinality). 
(c) SI and Sq each have regular congruences (i.e. if 21 G SI or Sq and 0 G r ^ (21) 

then any 6-class uniquely determines d). 

Proof. I t is well known tha t an equational class has permutable congruences 
if and only if it has a Mal 'cev polynomial (i.e. a te rnary polynomial p(x, y, z) 
such t ha t p(x, y, y) = p(y, y, x) = x; see [3]). In both SI and Sq consider the 
polynomial p(x, y, z) = y(xz). Then p(x, y, z) is a Mal 'cev polynomial in both 
SI and Sq so a) is proved. Let 21 G SI or Sq and 6 G ^ ( S l ) . Pick a, b G A and 
define ra,h : [a]d —> [b]6 by rfl>&(x) = x(ab). Clearly x = a mod (0) implies 
Ta,b(%) = & mod (6). But r&>a(ra>&(x)) = (x(ab))(ba) = (x(ab))(ab) = x so by 
symmetry ra>6 is a bisection from [a]0 onto [b]d. T h u s SI and Sq each have uni­
form congruences. Moreover, for any x, y G A we see t ha t x = y mod (6) 
if and only if ax = ay mod (6) if and only if a = x(ax) = x(ay) mod (6). T h u s 
[a]0 uniquely determines 6 so SI and Sq have regular congruences. 

Definition. Let 2Ï G SI or Sq and let 33 Q 21. We say S is normal in 21 if 23 is a 
congruence class of a congruence of 21 and in this case we write 33 < 21. 
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PROPOSITION 3.2. a) If 21 G SI then *$ (21) is isomorphic to the lattice of normal 
subloops of 21. 

b) If 21 G Sq and a G A then *¥($&) is isomorphic to the lattice of normal sub-
squags of 21 containing a. 

T H E O R E M 3.3. Let $8 Q 21 G SI. Then^S « 21 if and only if one of the following 
equivalent conditions holds: 

i) For all x, y G A, x(yB) = (xy)B. 
ii) For all x, y, z G A, xy G B if and only if (xz) (yz) G B. 

Proof. From the general theory of loops (see [1]) it is known t h a t © is normal 
if and only if a) xB = Bx, b) x(By) = (xB)y, c){Bx)y = B(xy), d) (xy)B — 
x(yB). Since our loops are commutat ive , a) is trivial and c) and d) are equiva­
lent. Moreover, if d) holds then x(By) = x(yB) = (xy)B = (yx)B = 
y(xB) = (xB)y. Hence i) is equivalent to S3 « 2 1 . 

i) => ii). Using the fact tha t u(vB) = (uv)B for all u, v G A we see tha t 
xy G B ^> (xy)B = B<^x(yB) = B ^xB = yB<^z(xB) = z(yB) <=> (zx)B = 
(zy)B t=> (xz)B = (yz)B <=> B = (xz)((yz)B) ^ B = ((xz)(yz))B <=* 
(xz)(yz) G B. 

ii) => i ) . Using the fact tha t uv £ B t=$ (uw)(vw) G $ for all u, v, w £ A we 
see tha t for x, y, b G A x(;y&) G X(3>J3) <=> 6 = 3>(3^) G ̂  <=> (yx)((yb)x) = 
(xy)(x(yb)) G B ^ x(yb) = (xy)((xy)(x(y&))) G ( x ^ ) ^ . 

T H E O R E M 3.4. Ze/ 33 C 21 G Sq. TTzew 93 « 21 if awd only if for all x, y} z G A 

and for all all b G B, (xb)y G B implies ((xz)b)(yz) G B. 

Proof. Let93 « 21 and let 0 be the congruence induced by 93. Thus let (xb)y G 
B; (xb)y = b mod (0) so xfr = yb mod (0) so x = 3; mod (0) so xz = 3>z mod (0) 
so (#s)6 = (3̂ 2)& mod (0) so ((xz)&) (3^) = b mod (0) so ((xs)&) (yz) G 5 . 
Conversely let 93 satisfy the condition and define x = y mod (0) if (xb)y G £ 
for all b G -S. Since (xb)x = b, 0 is reflexive. Let x = y mod (0) so (x&)^ G £ . 
Hence f> contains ((x(yb))b) (y(yb)) = ((x(yb))b)b = x(yb) = (yb)x so 
y == x mod (0) and 0 is symmetric. Now let x = y mod (0) and y = z mod (0). 
T h u s (xb)y = bi £ B and (3^1)3 = b2 £ B. But then xè = 3^1 = zb2 and so 
&2 = (xb)z G -B. Hence x = z mod (0) and 0 is transit ive. To prove tha t 0 is a 
congruence we need only show tha t x = y mod (0) implies t ha t xz = 3/2 mod 
(0). Bu t x = y mod (0) means (#6)3/ G ^ so ((xz)&) (3/2) G 2$ so xz = yz 
mod (0). Finally, let b G 5 . Then for all £', &" G 5 , (bfb")b G 5 so 6' = b 
mod (0). Conversely if a = b mod (0) then (ab)b = a G B. Thus [fr]0 = B and 
the theorem is proved. 

The next result shows tha t , as with groups, large subalgebras are normal. 
Note t h a t a slight reformulation extends these results to infinite algbras. P a r t 
ii) is due to B. Ganter . 

T H E O R E M 3.5. i) Let % be a finite sloop with 93 Ç 21 and \B\ = %\A\\ then 
93 « 2 1 . 

https://doi.org/10.4153/CJM-1976-118-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-118-1


1190 ROBERT W. QUACKENBUSH 

ii) Let 21 be a finite squag with 93i, 932 Q 2Ï, P i C\ B2 = 0, | 5 i | - \B2\ = 

U | / 3 . Thenïït « 2 1 . 

Proof, i) is well known for loops. For ii) let P 3 = A — Bx — B2. Let bf G B f ; 
then bib2 G P3. Since A is finite, this means t h a t b2Bx = b\B2 = P 3 so (P3)2 = 
P 3 ; i.e. P 3 is also a subalgebra. But now it is easy to see t ha t for {i,j, k} = 
{1,2, 3 } , P , P ; = 5*; i.e. SB, « 21 for i = 1, 2, 3. 

4. S i m p l i c i t y a n d f u n c t i o n a l c o m p l e t e n e s s . I t is well known tha t if 
( P , B) is a finite STS then | P | = 1 or 3 mod (6). T h u s if 31 G SI is finite then 
|^4| = 2 or 4 mod (6) while if 21 G Sq is finite then \A\ = 1 or 3 mod (6). W h a t 
does this say about possible congruences on 31 ? Because of the uniformity of 
congruences and the fact t ha t congruences correspond to normal subalgebras, 
31 can have a proper non-trivial congruence only if \A\ factors appropriately . 
T h u s if 31 G SI is finite and not simple then \A\ = (6m + i) (6w + j) for some 
m, n and some i, j G {2, 4} ; in part icular if \A\ is not divisible by 4 then 21 is 
simple. If 31 Ç Sq is finite bu t not simple then we must have \A\ = 
(6m + i) (6n + j) for some m, n and some i} j G {1, 3} ; in part icular if \A\ is 
prime then 21 is simple. 

T h u s there are very many simple sloops and squags. In fact, the next theo­
rem indicates t ha t most finite squags and sloops are simple. For it we need a 
lemma due to R. Metz and II . Werner [4]. 

L E M M A 4.1 . Let (P, B) be a finite STS with 31 the corresponding sloop and $5 the 
corresponding squag. If 31 has a homomorphism onto C2 then 93 is simple. 

Proof. Let 3l; be the kernel of a homomorphism of 31 onto C2. T h u s for all a, 
a' G A — A',aaf G A'. Let 6 be a non-trivial congruence on93. For a G A — A' 
look a t [a]0; by assumption it is non-trivial and hence has a t least 3 elements. 
T h u s <ja(x) = ax is a bijection between [a]6 — ({a} U A') and [a]0 C\ A' 
(note t ha t as 21' is a subsloop of 2Ï, A' — {1} is a subsquag of 93). This is true 
for all 0-classes intersecting A — A' \ bu t because of the uniformity proper ty , 
no 0-class can be contained entirely in A' — {1}. Since \Af\ = \\A\ there must 
be only one 0-class; i.e. 93 is simple. 

T H E O R E M 4.2 Let (P , B) be a finite STS with 21 the corresponding sloop and 9} 
the corresponding squag. Then either 2Ï is simple or 93 is simple. 

Proof. Suppose 21 is not simple; let 2l; be a proper non-trivial normal subsloop 
of 21 and 6 the corresponding congruence. Let a G A — A''; thus [a]6 W W = 
91" is a subalgebra of 21 and has a homomorphism onto C2. Hence 93„, the 
corresponding squag is simple. Also note t ha t 93 = U |93fl|^ G A — A'\. Now 
we have two cases: i) \A'\ = 2, and ii) \A'\ > 2. In the first case let. A' = 
{1,6}. Pick a, a' G A - A' with a ^ a' mod (6) ; then [a]d U [a']6 U [aaf}6 U 
yl' is an 8-element subsloop of 21 which has a homomorphism onto C2. But the 
corresponding 7-element squag is simple. T h u s we see in 93 t ha t for any two 

https://doi.org/10.4153/CJM-1976-118-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-118-1


STEINER LOOPS AND QUASIGROUPS 1191 

elements a, a' with aa' 9^ b, {a, a', b\ generates a 7-element simple squag. Now 
let X be a non-trivial congruence on 33. Thus we have a = b mod (X) for some 
a £ A — {1}. Let a1 £ A - {1, a] ; if a! = ab then a' = b mod (X). Otherwise 
{a, a', b) generates a 7-element simple squag and the restriction of X to it is a 
non-trivial congruence. Hence a' = b mod (X) ; since this is now true for all 
af, 33 is simple. In the second case we again let b £ A' — {1} and let X be a 
non-trivial congruence on 33. Thus a = b mod (X) for some a £ A — {1, b}. 
But then X is a non-trivial congruence on the simple squag 33a so all of 33G is 
collapsed. In particular, all of A' — {1} is collapsed (and \A' — {1}\ > 1). 
Hence X collapses all of 33 / for every a' so t ha t 33 is simple. 

Example 4.3. A STS (P, B) is planar if it is generated by every triangle and 
contains a triangle (a triangle is a set of 3 elements not in a block). In [2] 
J . Doyen constructed a planar STS of cardinality n for each n ^ 7 with w = 1 
or 3 mod (6). 

T H E O R E M 4.4. Let (P, B) be a finite planar STS; let 21 be the corresponding 
sloop and 33 the corresponding squag. Then: 

a) Either 21 is simple or \A\ = 8. 
b) Either 33 is simple or \B\ = 9. 

Proof. Suppose 21 (33) has a proper non-trivial congruence 6. Then for every 
a t 4̂ ( J3 ) we have |[a]0| > 1 and there are a t least 2 ^-classes. Hence we may 
choose distinct a, b, c G A(B) such tha t a = b mod (6) bu t & ̂  £ mod (0). 
In particular, {a, b, c) is a triangle and so generates 21 (33). Hence 21/0 (33/0) is 
generated by [a]d and [b]0 so |2l/0| = 2 or 4 (|33/0| = 3) ; i.e. 6 has either 2 or 4 
congruence classes id has 3 congruence classes). But in S each 0-class contains 3 
elements since otherwise a 0-class would contain a triangle whereas each 0-class 
is a subalgebra. Therefore \B\ = 9. In 21 similar reasoning tells us t ha t each 
0-class contains a t most 4 elements. Thus \A\ fg 16. But if \A\ = 16 then 21 
would have an 8-element subsloop and so would have a non-generating triangle. 
One the other hand if \A\ = 4 then 21 has no triangle. Thus \A\ =8. 

Definition. A finite non-trivial algebra 33 is functionally complete if every 
function / : Bn —> B is an algebraic function of 33 (i.e. a polynomial with per­
haps some variables replaced by members of B). 

A functionally complete algebra is necessarily simple; in fact if 21 is func­
tionally complete then ^ (2P) = 2n, the boolean algebra with exactly n 
atoms. The next theorem shows tha t for squags and sloops, this proper ty is 
sufficient. The proof can be found in [8]. 

T H E O R E M 4.5. Le/33 be a finite non-trivial algebra in a variety with permutable 
congruences. If *& (33w) = 2n for all positive integers n then 33 is functionally 
complete. 

T h u s in order to determine which sloops and squags are functionally com­
plete we must examine the congruences of direct powers of simple squags and 
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sloops. For this we need to make use of some recent results of H. Werner [8]. 

Notice t ha t neither C2 nor 73 are functionally complete. 

T H E O R E M 4.6 [8]. Let J^ be a variety with permutable congruences and let 3? 
either be idempotent or have 0^-regular congruences with §#-(0) = {0} 0-e- 0 is a 
miliary operation; it is a subalgebra of every algebra of J ^ , and every congruence 
is determined by the class containing 0) . Then for a simple algebra 3f Ç J ^ the 
following are equivalent: 

a) ^ (31) ^ 2n for some n. 

b) For any polynomial p(xi, . . . , xn) of 31 and cii, a2, . . . , an, b2, • • • , bn Ç A 

if p(ai, a2, . . . , an) = p(au b2, . . . , bn) then for all x £ A, p(x, a2, . . . , an) = 

p(x, 62, . . . , 6„). 

Now we are ready to characterize functionally complete squags and sloops. 
P a r t of the next theorem is mentioned in [8]. 

T H E O R E M 4.7. i) If Wis a finite simple sloop with \A | > 2 then 21 is functionally 

complete. 

ii) 7/33 w a finite simple squag with \B\ > 3 then ^8 is functionally complete. 

Proof, i) Let a Ç 4̂ with a ^ 1, T h u s {a, 1} is a proper subsloop of 31 and so 
is not normal. Hence by 3.3 there are x, y, z (E A with xy (E {a, 1} if and only if 
(xz)(yz) (? {a, 1}; in particular, xy ^ (xz)(yz). Let w = xz so x = uz. T h u s 
(uz)y 9^ u(yz). Let £(#i , x2, x3) = x2(xix3) . Then ^(y , 3/, w) = y(yw) = u = 

u(yy) = P(y> u> y) while £(2, ;y, w) = 3/(JSW) = (uz)y 9^ u(yz) = -̂ (2:3/) = 
£(z, w, 3;). Hence by 4.5 and 4.6, 21 is functionally complete. 

ii) Since \B\ > 3 and 33 is simple, 33 (Z J. Hence 33 does not 
satisfy (xy)(uv) = (xu)(yv). T h u s there are a, b, c, d Ç B with (ab)(cd) ^ 
(ac)(bd). Let p(xi, x2, x3, x4) = (xix2) (x3x4). Then £ (a , £>, c, d) ^ £>(a, c, 6, d) 
while £(fc, 6, c, d) = ((bc)b)(cd) = c(cd) = d = b(bd) = ((bc)c)(bd) = 
p(bc, c, b, d). Hence by 4.5 and 4.6, 33 is functionally complete. 

In light of theorems 4.2 and 4.7 we see t h a t if (P, B) is a finite STS with 
| P | ^ 7 then any func t ion / : Pn —> P can be expressed as an algebraic function 
(where, of course, we must indicate how to evaluate x2). 

5. Varie t ies of s q u a g s a n d s loops . Throughou t this section 21 will denote 
a finite simple planar squag or sloop; we wish to determine the var ie ty gen­
erated by 31. Let 3Io denote C2 if 31 is a sloop and 73 if 31 is a squag. Let J ^ be a 
class of algebras and denote by P / ( J f ) the class of all algebras isomorphic to 
a direct product of finitely many copies of members of J ^ . 

L E M M A 5.1. A subdirect product of finitely many simple algebras in a permutable 
variety is isomorphic to a direct product of some of these simple algebras. 

COROLLARY 5.2. SPf(K) = P,({21, 3l0}). 

Proof. Since a subalgebra of a direct product of algebras from j f is a sub-
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direct product of algebras from S(Ctf) = {§1, 2Io, 0} (where 0 is the trivial 
1-element algebra) , the result follows from 5.1. 

Definition. Let 93 = 11^/93*. A congruence 6 on 93 is skew if it is not of the 
form (0<)<€/where*, G ^(93<). 

LEMMA 5.3 [8]. Let 3ti, . . . , 2lra be members of a permutable variety. Then 
211 X . • . X 2lw has a skew congruence if and only if for some i ^ j , 21, X 21 ; has 
a skew congruence. 

LEMMA 5.4 [8]. Let J T be a permutable variety with 93, 5) G J ^ . Tfen 93 X © 
/^as a s&ew congruence if and only if there are homomorphic images 93' of 93 and 
35' 0/ 35 awd a 1-1 ma^ AX with dom (/x) ÇZ B', |dom (xx)| > 1, range (/*) C £)' 
S^C/Ê / t o {(fr, /x(6))| & G dom (/x)} is a congruence class onW X J) ' . 

LEMMA 5.5 [9]. Ze/ Jt be a permutable variety and 93, 3) G J T . / f 
{(bi} Ci)\i G /} is a congruence class of 93 X 35 £/&ew {fr*|i G /} w a congruence 
class of $5 (i.e. ^ projection of a congruence class is a congruence class). 

T H E O R E M 5.6. HSPf{%) = P r (2l , 2I0). 

Proof. Every member of SP/(2l) is of the form %m X 2Ion; we want to show 
tha t every homomorphic image is of the form W X 2Io(Z for some p ^ m, 
q ^ n. We know tha t a homomorphic image of 21 ow is isomorphic to 2lo5 for 
some q ^ n and since ^ ( 2 I m ) = 2m, any homomorphic image of 2IW is isomor­
phic to 2P for some p ^ m. Thus we need only show tha t ^ ( 2 l m X 2l0

w) = 
&(%") X ^ ( 2 I 0

m ) ; i.e. t ha t 2P X 2Iow has no skew congruences. Since 2P 
has no skew congruences and 2P X 2l0

n = 21 X . . . X 21 X 2I0
W, 5.3 tells us 

tha t 21m X 2tow has a skew congruence if and only if 21 X 2tow has a skew con­
gruence. 

So suppose 21 X 2Iow has a skew congruence. Now we invoke 5.4; since 21 is 
simple, W = 2Ï while (2V) ' = 2fo<? for some q g n. Next 5.5 tells us t ha t dom 
(/x) is a congruence class of 21; since |dom (/x)| > 1 and 21 is simple, this means 
t ha t dom (21) = A. If 21 is a squag then /x = {(a, /x(a)} is a subalgebra of 
21 X 2Ioff. If 21 is a sloop, t ranslate /x to the congruence class containing 1 ; this 
congruence class also satisfies all the conditions tha t /x does. Hence without loss 
of generality we may assume tha t /x is a subalgebra of 21. But this means t ha t AX 
is an isomorphism of 21 into 2lo<z, which is impossible. Hence 2Im X 2low has no 
skew congruence and the theorem is proved. 

LEMMA 5.7 [6]. Let Jf be a variety generated by a finite algebra and having 
only finitely many finite subdirectly irreducible algebras. Then J ^ has no infinite 
subdirectly irreducible algebras; i.e. if 2li, . . . , 2In are all the finite subdirectly 
irreducible algebras in J ^ then S^ = P s(2l i , . . . , 2IW). 

T H E O R E M 5.8. ^ ( 2 1 ) = Ps({21, »<>}). 

Proof. By 5.6, 21 and 310 are the only finite subdirectly irreducible algebras in 
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i^ (%) since every finite algebra in 7^(21) is a member of HSP/(?()• T h u s the 
theorem follows from 5.7. 

T H E O R E M 5.9. Let 2li, . . . , 2ïn be pairwise non-isomorphie finite simple planar 

squags or sloops. Then ^ ( { 2 I i , . . . , 2IJ ) = P,({2li , . . . , ? I J ) . 

Proof. The only additional fact we need is t ha t 2L X ?Ij has no skew con­
gruence for i ^ j . But as in the proof of 5.6, if 2L X 91 ; has a skew congruence 
then 21* ^ 2 1 , , 

T H E O R E M 5.10. The lattice of varieties of sloops (squags) contains as a cover 
preserving sublattice the lattice of all finite subsets of a countable set; the empty set 
corresponds to 38 (J). In particular, 3ë (J) has infinitely many covers. 

6. Free a lgebras . Let J T be a var ie ty generated by finitely many finite 
simple planar squags or sloops. Thus J f is locally finite ( that is, finitely gen­
erated algebras in J ^ are finite); so it is natura l to ask what is S J T M » the 
free algebra in j f on n free generators and in part icular what is |SV M l . 
As a special case let us assume tha t J ^ is generated by the 7-element squag; 
the general case will follow immediately from the analysis of this special case. 

Let X denote the 7-element squag. We know tha t %#(n) = X {an) X T^n) 

for some an, ftn. Now \$f(n) = 2V*-1; X%-{n) has a homomorphism onto 
%s(n)\ ^ ( o V M ) = ^(X(an)) X h^n\ and Xian) has no homomorphism onto 
J3. Hence fin = n — 1. 

T h u s we must determine an. Recall t ha t (é (Xk) = 2k so an is the number 
of congruences 6 of %#(n) for which %^(n)/d = X. Next consider maps 8, e 
from {xi, . . . , xn\, the set of free generators of %^(n), into X, and let the 
corresponding congruences be 6(d\, . . . , a„), d(b\, . . . , bn) where at = 8(xt) 
and bt = e(xt). 

L E M M A 6.1. 6(ci\, . . . , an) = 6(b\, . . . , bn) if and only if the map a t —» /;z-, 
1 ^ i ^ n, induces an isomorphism from [c/i, . . . , afl) onto [bi, . . . , bn]([X] is 
the subalgebra generated by X). 

Proof. Consider the homomorphism from $yr(n) into X2 induced by 
%t —> (<ii, bt). Then it is clear t ha t 0(tti, . . . , a„) = 0(/>i, . . . , />„) if and only if 
[au . . . , an] ^ [(«!, ^ ) , . . . , («„, &J] ^ [^, . . . , &„]. 

We are only interested in those 8 whose image generates X. Wri te 8 ^ e 
if and only if they have the same kernel (i.e. d(ii\, . . . , an) = 0(/>i, . . . , b„)). 
T h u s ô '—' e if and only if they differ by an automorphism of X. T h u s an is 
the number of ^ -c l a s ses whose members generate X. To count this number 
we make use of a special case of Polya's counting theory. 

Let G be the automorphism group of X; it is well known that \G\ = ION. 
Let G act on Tn in the obvious way (i.e. componentwise) . T h u s we can think 
of 8, e G Tn so tha t 8 ^ e if and only if they are in the same orbi t ; we want to 
count the number of orbits of Tn under G all of whose elements generate X. 
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T H E O R E M 6.2. an = [(7n - 7) - 7(Sn - 3)] /168. 

Proof. The 7 constant maps each generate a .1-element algebra; this leaves 
7n — 7 maps generating non-trivial subalgebras of X. Of these, there are 
7(3n — 3) maps which generate h: there are 7 copies of 73 in X (i.e. the 
7-element STS has 7 triples) and there are 3n — 3 maps into 73 which generate 
7~3. Thus there are exactly 7* — 7 — 7(3W — 3) maps which generate X. If <5 
is such a map then the size of its orbit is 1G8. Thus an is as claimed. 

T H E O R E M 6.3. Let 31 be a finite simple planar sqiiag. Then %%(n) ~ 3la"(2l) X 
hn~l where an(St) = [\A\n - \A\ - \A\(\A\ - l ) ( 3 n - 3 ) / 6 ] / | A u t (3l)| where 
Aut (31) -is the automorphism group of 31. 

Proof. The proof is the same as above; note tha t the number of 3-element 
subalgebras of 31 is M | ( | / l | - l ) / 6 . 

T H E O R E M 6.4. Let 3ïi, . . . , 3Im be pairwise non-isomorphic finite planar 
squags; let J f be the variety they generate. Then %^{n) ~ §lian(Sll) X . . . X 
»„«»<*»> X hn~l. 

T H E O R E M 6.5. Let 3li, . . . , 3Im be pairwise non-isomorphic finite simple planar 
sloops and let ^ be the variety they generate. Then %%-(n) = 3ï/' l (2Il) X . . . X 
^[Jn^m) X Qn where 

/3n(8li) = [\At\ - 1 - (\At\ - 1)(2» - 1) - ( |T, | - 1) 

X (\At\ - 2)(4re - 3(2* - 1) - l ) / 6 ] / | Aut (3l,)|. 

Proof. In counting the number of n-tuples in 311 not generating 31 i} there is 
one generating a 1-element algebra, there are \At\ — 1 2-element subalgebras 
each generated by 2:

n — 1 ^-tuples, and there are (\A t\ — 1)(|^4^| — 2 ) / 6 
4-element subalgebras each generated by (4W — 3(27i — 1) — 1) w-tuples. 

7. Project iv i ty , in jec t iv i ty , and c o n g r u e n c e e x t e n s i o n . In this section 
we will be concerned with various properties of homomorphisms in varieties 
generated by finitely many finite planar squags or sloops. 

Definition. An algebra 31 contained in a class of algebras J ^ is projective in 
J ^ if for any 3ti, 3Î2 G $f, any homomorphism <p : 31 —> 3li, and any onto 
homomorphism <p2 : 2Ï2 —» 311 there is a homomorphism <p : 21 —> 2t2 such tha t 
(f2cp = <pi. 

Note tha t in any variety the free algebras are projective; it is well known 
tha t in the case of varieties the projective algebras are closely related to the 
free algebras. 

Definition. An algebra 21 is a retract of W if there is an onto homomorphism 
(pi : W —> 31 and a 1 — 1 homomorphism cp2 : 31 —» 3T with <pnp2 being the 
identi ty map on 31. 
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L E M M A 7.1. In a variety the projective algebras are exactly the retracts of the 
free algebras. 

T H E O R E M 7.2. Let Jf be a variety generated by finitely many finite planar 

squags or sloops; then each finite algebra in J T is projective. 

Definition. An algebra 21 £ J ^ is (weak) injective in j f if for any 2Ii, 
212 G J f with 211 Q 312 and any ^ : 2d - ^ 21 (onto 21) there is a <̂ 2 : 2d -> 21 such 
t ha t <p2 is an extension of <pi. 

T H E O R E M 7.3. Let 2d, . . . , 2d be finite simple planar squags or sloops and 3£ 
the variety they generate; then <3f has no non-trivial injectives. 

Proof. Note t ha t the 1-element algebra is injective in J ^ . Now 2d (the 
2-element sloop or the 3-element squag) is not injective in J ^ because it is a 
subalgebra of 2d, bu t 2ti has no homomorphism onto 2lo- Also 21 * is not injective 
in j f since (2lo)2 has more maximal congruences than (21*)2. Next let 21 be a 
non-trivial injective in jf. I t is well known tha t a re t ract of an injective 
algebra is also injective; hence if we can show tha t for some i between 0 and 
n, 21 i is a re t ract of 21 we will have arrived a t the desired contradiction. Since 
21 is non-trivial, we know by 5.9 tha t SI has a homomorphism onto some 2d 
via the homomorphism <pi. Since J^ is locally finite we may restrict our a t ten­
tion to a finitely generated subalgebra of 31, say SI7, such tha t <pi restricted to 
31' is onto 31*. But now it is easy to see tha t 31* is a re t ract of 21' and hence of 31. 

T H E O R E M 7.4. Let 3li, . . . , 3In be finite simple planar squags or sloops and J f 
the variety they generate-, then 211, . . . , 2d are weak injective in 3f. 

Proof. Let 21 Ç W with / : 21 —> 21* being onto. If W is finite then it is easy 
to find f : 21' —> 21* extending / . For infinite 21', use the fact t ha t finite sub-
algebras of 21' form a directed set whose union is 2I/. On this set form an inverse 
limit system of finite non-empty sets of homomorphisms extending / . The 
inverse limit is non-empty and any member induces an extension of / to 3f. 

T H E O R E M 7.5. Let 2d, . . . , 2d be pairwise non-isomorphic simple planar 
squags or sloops and Jt the variety they generate. If 21 is weak injective in J^f 
then 21 ̂  3li[23j] X . . . X 3lw[93w] where 2l*[93J is the extension of 21* by the com­
plete boolean algebra 53*. 

Proof. For a discussion of boolean extensions see [7] ; a detailed proof of this 
theorem is similar to the proof of Theorem 7.5 of [7] and only the two necessary 
modifications are given here. The first is tha t if 21** is the result of making eacli 
element of 21* the value of a miliary operation, then 2d*, . . . , 2tw* are indepen­
dent primal algebras; this is because 2d, . . . , 2d belong to a congruence 
permutable var ie ty and hence so do 2d*, . . . , 2d*. The second is tha t the 
injectives in a var iety generated by finitely many independent primal algebras 
are jus t the products of extensions of the primal algebras by complete boolean 
algebras. 
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Definition. An algebra 21 has the congruence extension property (ce .p . ) if for 
every 33 C 31 and 0' G ^(SB) there is a (9 Ç ^(21) with 0 | s = 0' (equivalently, 
the restriction mapping from ^(21) to ^ (95) is onto) . A variety has c e . p . if 
every algebra in the variety has c e . p . 

T H E O R E M 7.6. Let 21 be a finite simple sloop or squag with |2I| > 3. Then any 
variety containing 21 does not have c e . p . 

Proof. By 4.7, 21 is functionally complete so tha t | ^ ( 2 I 2 ) | = 4. On the other 
hand, 2Io Ç 21 and | ^ ( ( 2 I 0 ) 2 ) | > 4. Thus 2l2 does not have c.e.p. so tha t no 
var ie ty containing 21 has c.e.p. 

8. C o m m e n t s a n d p r o b l e m s . 1) Theorem 4.2 is not true for infinite STSs. 
The following example was contructed by Eric Mendelsohn and the author : 
Let ®i be the 1-element STS. Given ©z-, 8Z- is the corresponding loop and Q< 
the corresponding quasigroup. If ©^ is defined and i is odd then @*+i is the STS 
corresponding to the 3-generated free algebra over 8*; if i is even then © l + i 
is the STS corresponding to the 3-generated free algebra over £xt. Thus @2 is 
the 3-element STS and @3 is the 9-element STS. Notice tha t each ©7- is finite 
so t ha t we can apply 4.2. 

C L A I M . If i is odd (even) then 8*+i (Qz-+i) is a direct product of simple algebras. 

Proof. Let i be odd (even). Now 2i+i ( Q i + i ) is a subdirect product of sub-
algebras of 8* ( O i ) . As Q , (g<) is free, 8Z-(G*) is simple. If G C Q , (g Ç g,) 
is not simple then the corresponding subalgebra of 8z-(Qt-), namely 8 ( Q ) , is 
simple by 4.2. Thus assume tha t Q ( 8 ) is simple. But by induction, Q*.(8*) 
is a direct product of simple algebras, each of which is a subalgebra of 
O i_ i (8 i_ i ) . Hence g ÇZ 8 z - i ( Q C 0^_ i ) so by induction 8 ( Q ) is semi-simple. 
T h u s ? Î + I ( Q , + I ) is a subdirect product of semi-simple algebras and hence is a 
direct product of simple algebras as claimed. 

This means tha t @z- C ® i + i . Thus we can form the direct limit @w with 
corresponding sloop 8W and squag Q u . Note tha t ®w is the direct limit of 
©i Q ©3 Q @5 £ . . . and @2 ÇZ @4 ÇZ @6 . . . Thus 8W is the direct limit of 
82 ç 84 ç 86 c . . . J since 822+2 has a homomorphism onto 822, 8W has a 
homomorphism onto 821 for all i. Therefore 8W is not simple. Similarly, Q w is 
not simple. 

2) Does there exist a proper subclass of STSs which is both a variety of 
sloops and a var iety of squags? Note tha t by reasoning similar to point 1 above, 
there is a class of finite .STSs which is a proper subclass of the finite STSs and 
which is closed under H, S, and finite products both as sloops and squags. 

3) There are other varieties generated by finite squags and sloops which 
cover the a tom in their lattice of subvarieties. First there are the semi-planar 
STSs: A squag (sloop) 21 is semi-planar if every triangle either generates 21 or 
the 9 (7) element squag (sloop) and if 2Ï is simple. Undoubtedly there are 
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infinitely many such. Then there are those like the semi-planar algebras bu t 
which are subdirectly irreducible and not simple; moreover, any proper 
homomorphic image must be contained in J (Se ). These can be shown to 
have bounded cardinali ty and hence there are only finitely many of them. 
Finally there is the 81-element squag of AI. Hall [1] which has the proper ty 
tha t every triangle generates the 9-element squag bu t is itself not in J>. Note 
tha t there is no such corresponding sloop since SS is defined by 3-variable 
identities wrhereas J needs a 4-variable identi ty. 

4) Find 2Xo varieties of squags and sloops. 

5) One of the consequences of a variety °fS having c e . p . is tha t for any 
j f Ç / , HS(Stif ) = SH(J^). An interesting open question is: is there a 
var ie ty V such t ha t HS(tf ) = SH(jf ) for all j f C -f but not having 
ce .p .? If 21 is a simple planar sloop or squag then i^ (31) seems to be a good 
candidate for a yes answer. By 7.6, 'f (21) does not have c e . p . On the other 
hand, for any finite 93 G ^ (21) it is easily seen t ha t HS(%) = SFI($). 

6) Find a finite squag 21 with a subsquag 33 such tha t |2I| = 3|33| and such 
t h a t 23 is not normal in 21. 

7) Finally, the au thor thanks the Technische I Iochschule, D a r m s t a d t and 
especially the Arbeitsgruppe Algemeine Algebra under the direction of Rudolf 
Wille for the oppor tuni ty to develop the ideas of this paper during his s tay 
in Darms tad t . 
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