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SUBALGEBRASWHICH APPEAR IN QUANTUM IWASAWA
DECOMPOSITIONS

GAIL LETZTER

ABSTRACT. Let g beasemisimple Lie algebra. Quantum anal ogs of the enveloping
algebraof the fixed Lie subalgebra are introduced for involutions corresponding to the
negative of a diagram automorphism. These subalgebras of the quantized enveloping
algebra specialize to their classical counterparts. They are used to form an lwasawa
type decompostition and begin astudy of quantum Harish-Chandra modules.

Let g beasemisimple Lie algebraand # an involution of g. The Lie subalgebrag’ of
g, consisting of those elements of g fixed by 0, plays an important role in representation
theory. The classification of involutionsand their invariant subalgebras, dueto E. Cartan,
led to acomplete list of the real forms of g which, in turn, is used to describe symmetric
spaces. Thereis also awell developed theory concerning the structure of U( g)-modules
under the module action restricted to g’. When a U( g)-module can be written as a direct
sum of finite-dimensional simple g’-modules, it is called a Harish-Chandra module for
the pair g, g’. The study of Harish-Chandra modules provides an algebraic approach to
understanding representations of the corresponding real Lie group of g.

The purpose of this paper is to study quantum analogs of pairs g, g’ and their
Harish-Chandramodules. More precisely, let U denote the quantized enveloping algebra
associated to g introduced by Drinfeld and Jimbo. We consider subalgebras By of U,
corresponding to an involution 6 of g, which behave similarly to the enveloping algebra
of ¢’.

Oneof thedifficultiesin the quantum caseis picking the correct subalgebraassociated
to aninvolution. It isunclear how to usethe recently proposed quantum Lie algebrasand
thus we cannot start with a fixed quantum Lie subalgebraasin the classical case. On the
other hand, the associative invariant subalgebra fixed under an involution of U corre-
sponding to the original involution of g is much too large. Because of these difficulties,
we have limited our attention to involutions which restrict to diagram automorphisms
on the set of positive roots. Our criteria for picking a subalgebra By of the correct size,
given aninvolution 6 of g, is whether By can be used to form an lwasawa type decom-
position of U (see Theorem 2.4). The motivation for obtaining this result is that in the
classical case the lwasawa decomposition provides important information concerning
coinduced modules; these are crucial in the study of Harish-Chandra modules. We hope
to investigate coinduced modules from By to U in alater paper.
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The subalgebras By are not themselves quantized enveloping algebras (see Re-
mark 2.3) nor do they have an obvious Hopf algebra structure. They do, however,
satisfy the right coideal condition on comultiplication. We show that for each 6, By is
the unique subalgebrain alarge family of possible analogsof U(g”) which satisfies both
this right coideal condition and the quantum Iwasawa decomposition (Theorem 2.5).
Moreover, we obtain some intriguing results on the structure of U-modules under the
action restricted to B, which suggests there is an interesting Harish-Chandra module
theory for the pair U, By (see Section 4).

M. Nazarov has kindly pointed out to me that Noumi and Sugitani have also stud-
ied quantum analogs of the pairs g, g’ when g is classical (see the research announce-
ment [NS].) Themethodsusedin [NS] for constructing the subalgebrasare quite different
from those presented here, so it is not obvious whether these subalgebras are the same
asthe By (see Remark 2.4.)

This paper is organized as follows. The subalgebras By are introduced in Section 2.
Generators and relations for these algebras are given (implicitly) in Proposition 2.3.
These subalgebras are then used to form an Iwasawatype tensor product decomposition
of U (Theorem 2.4.) Recall that U specializesto U( g) as the defining parameter q goes
to 1. In Section 3, we show that the restriction of this specialization sends By to the
enveloping algebraof g’. In Section 4, we show that the sum of all the finite-dimensional
By-modulessitting inside a U-modul e which admits asemisimple Cartan subgroup action
isequal to the sum of all the finite-dimensional simple U submodules. Asan application,
thelocally finite part of U isthe maximal Harish-Chandramodule containedin U for the
pair U and By using the adjoint action.

We do make one additional assumption that g does not contain a factor of type G,.
This assumption is necessary for Lemma 2.2 (see Remark 2.1).

ACKNOWLEDGEMENTS. Theauthor would liketo thank R. Brylinski whose questions
led to this research project, A. Joseph for hisuseful comments, M. Nazarov for directing
me to the current literature, the referees for constructive suggestions, and D. Farkas for
hisilluminating observations.

1. Preliminaries. Let g=n~ & h® n* be asemisimple Lie algebra over an alge-
braically closed field k of characteristic zero. Let A (resp. A*) denote the set of roots
(resp. positive roots) associated to g and let a4, . . . ., og denote the set of positive simple
weights. Write A = [&;] for the | x | Cartan matrix and let d; be a list of | pairwise
relatively prime integers so that [dia;j] is symmetric. Let (, ) denote the Cartan inner
product where (i, o) = digyj for 1 < i,j < |. For the purposes of this paper, we assume
that g does not contain a factor of type G, (see Remark 2.1). In particular, if i # j, then
ajj isequal to 0, —1, or —2.

Given an indeterminate g over k, we define the quantized enveloping algebra U =
Uq(g) of g as the algebra over k(q) generated by the elements xg, ..., x., tf1. ... 1,
V1. - - -, Y subject to the following relations.

(1.2) tf1....t" generate afree abelian group T of rank I.
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(1.2) tixt7t = gy and iyt = g~y for all 1 <i.j <.

(L.3) xiy; — ¥ :5iji foral1<i,j<l.

& —q

(1.4) Thexy,..., X (resp.yi, . .., i) satisfy the quantized Serre relations. For example,

XX — XX = 0if aj = 0; x2x — (7% + o~ 2)xixx +xx2 = 0iif g = —1;
XX+ (0 + 1+ g ) (xxix +x%F) — 3¢ = 0if @y = —2.

Similar formulas hold with x; and x; replaced by y; andy; respectively. (For amore
general form of the Serre relations using quantum binomial coefficients, see[DK,
1.24and1.2.5].)

ThealgebraU also hasaHopf algebrastructurewith comultiplication A, augmentation
map e, and antipode 0. More precisely, for 1 <i <l anda € U, we have the following.

AX) =X @I+ X AW =Y @t i+t Oy Al) =t O
ex)=e()=0; et)=1
a(x) = —q%x;  o(y) = -y o) =t

In general, we will use standard Hopf algebra notation and express the sum A(a) as
ag) ®@ag) for atypical elementa € U (seefor example[JL 1, Section 2].) Using the Hopf
agebra structure, one can define an adjoint action by (adb)a = biyyas(b) for aand b
in U. On the generators, the adjoint action takes the following form.

“Mtax; (ady)a=yat —q™tay; (adt)a=tat !

(adx)a = xati —q

Let U* (resp. U—; U°), denote the k(q) subalgebraof U generated by xi. ... X (resp.
yi.... Yt ... 7)) Asavector space, U isisomorphic to the tensor product U~ @
U° ® U* over k(g) ([R]).

An element v € U is called a weight vector of weight A € h* if (adt)v = g™®v
foreachl <i <1.SetQ =1« Zo and Q" = Y1<i< Noy. It iswell known that the
algebraU™* (resp. U™) isadirect sum of its finite-dimensional weight spaces where the
weights that appear are exactly the elements (resp. the negative of the elements) in Q*.
Recall the standard ordering on weightsin h*: 3 > v if 3 — v € Q*. For 3 € h*, denote
the 3 weight space of an ad T submodule M of U by M.

2. Involutionsand Subalgebras. Givenaninvolutiond of g, let g’ denote the fixed
Lie subalgebra of g. In this section we look at certain involutions and (associative)
subalgebras By of the quantized envel oping algebraswhich correspond to the enveloping
algebra U(g”). We give generators and relations for these subalgebras and use them to
form an lwasawa type decomposition of U. We further show that the By are the unique
algebras among a large class of potential quantum analogs of U(g’) to satisfy both the
Iwasawa decomposition and the right coideal property on comultiplication. First, we
describe the involutions that we will be working with throughout this paper.

Let 6 be an automorphism of the root system of g which preservesthe positive simple
roots A. It is standard to call § a diagram automorphism since 6 uniquely determines an
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automorphism of the Dynkin diagram associated to g (see [Hu, Section 12.2]). Assume
further that #? = 1d where |d denotes the identity. Clearly 8 induces a permutation of the
indices 1, ..., | for the positive simple roots. Since the correspondence is faithful, we
frequently identify 6 with this permutation. Notethat if g issimple, the only possibilities
for § are ([Hu, Section 12.2]):

Casel: 6 =Id.

Case2: gisof type A, and () = o for 1 <i <n.

Case 3: gisof typeEg: 0(a1) = a; 0(a3) = as; 0(a2) = oz and 0(as) = ag.

Case4: gisof typeDy: 0(o) = ajforl <i <|—2andf(x_1) = ;. Alsowhen| = 4
we havetwo additional possibilities: 6(a1) = az and 6’ (o) = o fori =2, 4; 6" (1) = ag
and 6" (o) = o fori =2, 3.

A diagram involution ¢ induces an involution, which we also call 6, on g defined
by 6(g) = fg(i), 0(f) = €4(i)s and 9(hy)) = —hg(i) where g, fi.hj,1 < i < | are standard
generatorsfor g. We are now ready to define the quantum subal gebras corresponding to
U(g") which are the focus of this paper.

DEFINITION 2.1. Let # be adiagram automorphism of A such that 62 = 1d. For eachi
between 1 and |, set
B = Xito_(il) + yg(i)ti_l.

Let By be the subalgebraof U generated by {B; | 1 <i <1} and {tit,§ | 1 <i <1}.

Throughout this paper we will be proving results about By that correspond to facts
about the classical enveloping algebraof g’. Unliketheclassical case, however, thereisno
obvious k(qg) algebra automorphism of U which specializesto 6 and fixes the elements
of By. One can, though, lift § to a k-algebra automorphism @ such that 8(x) = Yy,
6(t) = ty), and f(q) = q~*. Note that (B;) = B; for each i. Although f(tity}) # ity for
i # 6(i), we do have 6(tityy — t o)) /(Q — a7 = (tity) — & Moy) /(@ — a ). Henced
fixestheelementsof thek subalgebraof U generated by B; and (tit;y —t *ts)) / (Q—q ),
1 <i <|I.Itfollowsfrom Theorem 3.1 below that this k subalgebra of By specializesto
U(g). Thusthe fact that this large k subalgebra of B, consists of elements fixed by the
involution 6 can be considered aquantum analog of the fact that ¢f is the set of elements
in g fixed by 6.

It would be nice to use the newly proposed quantum Lie algebras to define By (see
for example [S] and [DG]). One of the problems however is understanding the precise
connection between the associative algebra generated by the quantum Lie algebra and
the quantized enveloping algebra U. When g = dl 2, the quantum Lie algebra generates
the locally finite part of U (see [S]); such aresult is unknownin general.

Although By is not defined directly using an involution which specializesto 6, and so
the choice of By might seem arbitrary, it is exactly this subalgebrawhich is small enough
to be used in a lwasawa type decomposition of U (Theorem 2.4) and specializes to the
enveloping algebra of the corresponding fixed Lie subalgebra of g (Theorem 3.1). The
next lemma, which is quite computational, describes crucial relations satisfied by the B;.
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LEMMA 2.2. SetA=B; andB = B;.
(2.1) If & = 0, then AB — BA = 6 4(;) (t°t; ) — iyt 2/ (@ — a=4).
(2.2) If & = —1, then

APB—(qP +q 2% ) ABA+BA? = 5 i) B—6i () (0P +0 2% ) A(G*H Pt S+ >4 15, t72).
(2.3) If & = —2, then
ASB+ (g™ +1+q*)(—A’BA + ABA%) — BA® = (7 + g 24)*(AB — BA).

ProOF. Statement (2.1) follows quickly from the definition of the B;. Assume that
aj = —1. Consider the terms on the left hand side of the identity in (2.2) of weight
2a + Qj.

Xttty — (A% + Attt * Xyt Xt

This expression simplifiesto

oo ity Sty — (@ + g el e ity dtac,

2.4)
-+ 25 (o0 i)y x,

-
Note that (crggiy. o) = (i, crggjy) since § is an automorphism of A. Hence (2.4) equals
(:172(050(.)&’(1)*(Oto(.)-oq)(Xixi X — (q2di + qudi )X; XX + XX Xi)t;(%t;(jl)

which isjust the quantum Serre relation (identity (1.4)) and so equals zero. This agrees
with the sum of the terms of weight 2¢; + o; on the right hand side of (2.2). A similar
argument using the quantum Serre relations shows that the sum of the terms on both the
left hand and the right hand side of identity (2.2) of weight —6(2c; + «;) equals zero.

Now consider the terms of weight 2a; — arg(j) on the left hand side of the identity
in(2.2).

Xitg_(ﬁxata_(il))’e(j)tj_l — (g + q_Zd')XitE(il)yM)tj_lXita_(il) + Yo j)tj_lxita_(il)xitg_(%-
This expression simplifies to

o 022000 vy b
(25) _ (qui + qudi) q(fotgﬂ).OCi*(Xo(J))‘F(*O(j.OCi)Xiya(j)Xit;(%t;(j.l')
+ q(*%~2au)+(*ae(n-“')y0( i)XiXi t;(%t;(jl).
Using the fact that (o, o) = diay; = —d;, expression (2.5) reducesto

q—(ofa(l)-ai)—2di _ (qui + q—2di)q—(0m(i)-ai) + q_(aH(i)~Ofi)+2di }Xizyf)(j)tg_(gtj_l
2_ 12

4 t? —t 4 ot t?—t2 _
+5i~6’(j)|:q d'Xi(m) +(q% — (™ +q Zd')qd')(m)xa}ta(s
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which equals —q* (q?* + q~24)xt;3t? wheni = 6(j) and zero otherwise. In either case,
expression (2.5) simplifiesto the samevalue asthe sum of the terms of weight 2o — o)
on the right hand side of identity (2.2). The computation for showing that the sum of
terms of weight —6(2c; — ay(j)) on both the right and left hand side of (2.2) equals
—q 34 (g + g2yt t 2 wheni = 6(j) and zero otherwise is the same.
Now consider the terms on the left hand side of (2.2) of weight o; — gy + o
Kty Xt + Yol itghitic
— (™ + g 2 DXitytach Yot + Yooyt Xty Xita]
+ Xt XitaYent "+ Xitag Yen i Xit)-

This expression simplifiesto
(2.6)

{q(_aﬂ(l)-_aﬂ(i)'*aj)_(ai-aj)xiyg(i)xj + q(_ai-Oli+O‘i)+(_aﬁ(i)30‘j)y9(i)xiXJ.
_(q2d| + q*2d|)[q(*fxe(i)-*fxe(i)+a1)+(f¥9(j)«aa(i))xi %Yoy + q(*fxu-Oq+f¥|)*(09(1)-06|)y9(i)xjXi]

+q(_a9(J)~ai_aH(i))+(a9(|)~aH(i))XjXiyg(i) + q(—ay(j)-ai—Oty(i))’f(—ai-Oti)ijH(i)Xi ]t0_(j1)ti_lt9_(il)'

We can rewrite (2.6) so that each term is in the form a~a*a® where a* € U* and
a® € U°. In particular, the coefficent of yy)xixt 'ty in (2.6) is

q—(ozg(,).aj) [qui +d; + q—Zdi+di _ (q2di + q—2di)(q2di —d; + qdi—2di) + q2di—di + q—di—2di ]

which simplifies to zero. Similarly, the coefficient of yy)XXit t;ijtyfy in (2.6) equals
zero. Hence, the sum of the terms of weight o; — () + ¢ (and not contained in either
XU or x;U°) on both the right and left hand side of hand side of (2.2) equals zero. A
similar argument shows that the coefficients of terms of weight —a) — ag(j) + o (and
not contained in either yy;U° or yy;)U°) on both the right and left hand side of (2.2)
equals zero.

To further simplify (2.6), one needs to consider what happens when i = 6(j) and
i = 6(i). (Note that these are mutually exclusive casessincea; = —1impliesthat i # j.)
We first assumethat 6(i) = i. Using the previous paragraph, (2.6) simplifiesto

(@ — a7 (@ — (@ + )™ )@ — % + P - )]

which after some cancellation equals x;t ™.
Now assumethat i = 6(j). Expression (2.6) simplifiesto

—3d; di tg(i)_tﬂ_(g —24—1 2d; —20k ) 30k tg(i) —t(,‘(% —24—1
(q '+Q')Xi m t t9(i)_(q "+ l)q i m Xit; tH(i)

which reducesto —q 34 (g7 + g~ )xit; it %t3;). Hence (2.6) isequal to it if i = 6(i);
—q (g + g Wity St 2t if 6() = j; and zero otherwise. A similar computation
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shows that the sum of the terms of weight —a) + i — a(j) equalsy;t ™t when 6(i) =1,
—g* (g2 + g2yt St if 6() = j, and zero otherwise. Statement (2.2) now
follows.

Note that when g is simple and not simply laced, we must have # = Id. Hence if
aj = —2, it follows that §(i) = i and 6(j) = j. The identity in statement (2.3) can be
proved using a routine though lengthy computation similar to the calculation for (2.2).
We only sketch the proof here and omit the details. Using the quantum Serre relations,
one can show that the terms of weight 3¢ + o (resp. —3a; — o) on the left hand side of
(2.3) add to zero. A straightforward computation shows that the terms of weight 3o — ¢
(resp. —3a + o) on the left hand side of (2.3) cancel. What remains is checking that the
terms of weight o — o, —o + o, o) + o, and —o — o agree on the left and right hand
sides of (2.3). ]

REMARK 2.1. It seemslikely and preliminary computations suggest that Lemma2.2
extends to include a fourth identity when g contains a subfactor of type G, and B;, B;
are chosen such that &; = —3. However, the calculations are lengthy and tedious, so the
case where g has a subfactor of type G, has been left out of this paper.

Our next goal is to show that the relations in Lemma 2.2 are sufficient to define
By. Let B be the free algebra generated by the indeterminates B forl1 <i <|I
and let K be the free abelian multiplicative group generated by the indeterminates
{Ki | 1 <i<0() <I}. Consider the automorphism ¢ from K to Aut B? defined by
S(Ki)(By) = g~ et B = BY[K ] denote the skew group ring generated by
Bf andK usi ng ¢ to gluethe two together. (Here the automorphism 6 is understood from
context.) Note that the group generated by the K; is isomorphic to the group generated
by the t; tg(il) under the map which sendsK; to t; tg(il) )

Let | betheidea of B generated by the elements

BiBj — BiBi — &.0j)(KZ — K2/ (q®* — q2)
for al i,j such that &; = 0;

élzéj - (q2di + q72di)% Bj Bi + éj é,z — (Siﬂg(i)éj
+6i.0(j) (@ + 2B (P4 K? + 34K ™2)

for al i,j such that &; = —1; and

é?éj + (q“di +1+ q74d‘)(—éi2éj éi + Bi éj élz) — éi Bls
—(** +a ) (BiB, - B;B)
for all i, j such that a; = —2.
We now define some notation which will be used in Proposition 2.3 below aswell as

in Theorem 2.4 and Theorem 3.1. Let M denote the free monoid generated by the letters
Wi, ..., w. Givenw =w;, ... w,, set

BN:Eil...éimandBN:Bil...Bim.
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Let Sbe the subset of Z' consisting of all I-tuples with zerosin the j-th place whenever
j > 0(j). For S€ S, set KS = [T1<ipgy<1 K7 Note that {KS| S € S} isabasisfor the
group algebra k(q)[K ]. Each element in B can be written in the form Y, saw.sBuKS
wherew € M, S € S, and ays € k(g). We can filter B by highest degree where
degBW= m=degwforw=w,...w_anddegKS=0foral SeS.

We will be using a subalgebra of U which isadlight variation of U™, Set F; = yit;(il)
for 1 <i < | and let Uy denote the agebra generated by the F;, 1 < i < I. For
w=w,...w, €M setFy =F,...F, andyw =i, ...V, One can check that F, is
justapower of gtimesyyt; ! - - - t_* whereboth the power of gandt;* - - - . * only depend
on the weight of y,,. Hence the same quantum Serre relations hold for U, and, moreover,
U, ~ U~. Let U; bethefree algebragenerated by the indeterminates {F; | 1 <i <1}
and set Fy, = Fy, ... Fi,. By [JL1, Section 4], U, is isomorphic to the U, modulo the
ideal generated by the Serre relationsinthe Fi, 1 <i <.

Define a degree function on U by setting DegF; = 1for 1 <i <l and Dega =0
for al a € U°U*. Note that every element of U can be written as a (finite) sum of
homogeneous elements using this degree function.

ProOPOSITION 2.3. Thealgebra B /I isisomorphic to the subalgebra B, of U.

PROOF. Let v bethe map from B to By defined by sending I§i to Bj and K; to t; t;(il) for
al 1 <i <. Since tit;§Bit gy = g =(ww-)B; for all 1 <i,j <, themapy isa
well-defined algebrahomomorphism. By Lemma 2.2, ¢(l) = 0. We show that the kernel
of 1 isexactly . Supposethat X = ¥, s aw,sBwK S isan element of minimal degreein the
kernel of 1 but not contained in | wherethe a,, s are elementsof k(q), w € M ,andS e S.
Setn=degX. Givenw=w;, ... W, in M, set 6w = wy,) . . . wy,,). By the definition of
the B;, it follows that

2.7 vX) = > awsFew ][]t ta(l))S + lower degreetermsin U.
w,Sdegw=n

Now the sum of all the terms in the expansion of (X) of degree n must be zero (where
here we are using the degree function Deg on U). From the triangular decomposition
and defining relations of U (see Section 1) we have that Uy U° >~ U; ® U° is afree
U, -module with basis {ITi(ti H(I))S | Se S}. Hence Sydegwen aWngw = 0 for each
S € S. Therefore Yw.degw=n aWngw must be an element of the ideal in U(, generated
by the Serre relations using the F;. A comparison of the Serre relations (1.4) with the
elementsin theideal | of B showsthat

Z A, Séf)w

w;degw=n

isequal to x + | for some x € B of lower degree than the degree of X. This contradicts
the choice of aminimal degree element X. Hence the kernel of ¢ equalsl. ]

Intherest of the paper wewill identify the group K with the subgroup of By generated
by tityy, 1 < i <. In particular, we set K; = tit;gj for eachi.
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REMARK 2.2. The proof of Proposition 2.3 shows that ¢/ induces a map of degree
filtrations from B to U. Restrict the filtrations to By and U, k(q)[K ] and form the corre-
sponding associated graded algebras. It isstraightforward to check that gr U, k(q)[K ] ~
U, k(@)[K ] and so by the proof of the above proposition it follows that gr By ~
Uy k(@)[K ]. We can exploit this isomorphism to construct a good basis for By which
will be used in Theorem 2.4 and Theorem 3.1. Now B,, = F,,+ terms of lower degreein
U. Let V beabasisfor U, k(q)[K ] over k(g) consisting of elements of the form F,,K®
wherew € M and S € S. Note that these elements are homogeneouswith respect to the
degreefunction on U. It follows that there exists abasisW of By consisting of elements
of the form B,KS wherew € M and S € S with the following property. The map x
sending F, to By, and fixing elements of K inducesa bijection fromV to W such that

x(b) = b+ terms of lower degreein U

for each b € V. We may further assume that the subset V. =V _NU, of V isabasis
for Uy andthat V = {bkS| be V andSe S}. Similarly, set W = {x(b) | be V }.
ThenW = {bKS| be W andSe S}.

The next theorem is a quantum analog of the lwasawa decomposition. Remark 2.2 is
crucial inthe proof. We also need some additional notation. Let A bethe group generated
by {titsgs) | 1 < i < 1}. Let T’ be the subgroup of T generated by K and A. Set Uj =
k(@)[T'] and U = k(Q)[xaty3y. - - - - Xty y]- Onechecksthat Uy = Uy UPU; isasubalgebra

of U. Furthermore, U is a finitely generated Uy-module with generators from T. Note
that the group T” is isomorphic to the product K x A and so U§ >~ k(g)[K ] @ k(a)[A].

THEOREM 2.4. Thelinear map fromBy @ A @ U; to U which sends elements of the
formb® a® u to the product bau definesa vector spaceisomorphismB, @ A @ U} =~ Uy
where the tensor product is taken over k(g).

PrROOF. We keep the notation of Remark 2.2. It follows from the triangular decom-
position of U (Section 1) and the definitions of U and U that there is an isomorphism
of vector spaces

(2.8) U~U; U U;

over k(q). Identity (2.8) impliesthat AU* isisomorphicto A ® U; as vector spaces. Let
M be abasisfor the vector space AU; . To prove thetheorem, it is sufficient to show that
the set {bm| b € W,m € M} isabasisfor Uy. This follows from (2.8), Remark 2.2
and induction on degree. ]

Unfortunately, By is not a Hopf subalgebraof Uq(g). Though A(tit; ) = tit;* @ tit;?
is an element of By ® By, the same does not hold true for A(B;). However, the image of
B; under A is still rather nice. In particular,

AB) = (it + Yot ) @ Mg + tityy @ Xty + 6 M) © Yoyt
Hence each generator b (equal to either B; or tit; 1) of By satisfies
(2.9) Ab) ebT+BNT) R U.
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Condition (2.9) implies the right coideal property on comultiplication:
(2.10) Ab)eBy@U

for al b € By. We shall see below that (2.10) combined with the Iwasawa decomposi-
tion of Theorem 2.4 are enough to distinguish B, from other subalgebras as potential
candidates for the quantum analog of U(g’).

Given arbitrary elementsr; and s of T, let B be the subalgebra of U generated by
Ci and (tit;(il))i1 for 1 <i < | where G = Xirj + yy;)S. Assume further that B satisfies
A(B) C B® U. Recall that K is the group generated by tit;gj for 1 <i <|.

For eachi,

(2.11) A(C) = X1 @ 1t + ypis © Sty + it @ X + Stggy © Vo) S-
(i)
We can rewrite (2.11) A(G) as
A(C) =it @ (it — sty) + Bi @ Sty +1iti @ Xl + Sty © VoS-

Hence A(C)) € B@ U if andonly if xri € Borrit! = st;(il) and both rit;, sty € BNT.
WhenC; = B; foreach1 <i <, then B = By and weknow that x;r; ¢ B,andB,NT = K
by Theorem 2.4. So if we assume in addition (using the notation of Theorem 2.4) that B
isused to form a quantum Iwasawatype decomposition, in particular Uy >~ B@ Up @ Uy,
then B also satisfies xiri ¢ Band BNT = K. Thusunder this assumption, A(C;) satisfies
the stronger coproduct condition (2.9).

The following theorem showsthat B is actually equal to By.

THEOREM 2.5. Let B be the subalgebra of U generated by C; and (tit,g§)** for 1 <
i <lwhereC; = xri +YyyiS and ri and s, are some elements of T. If B satisfiesthe right
coideal property (2.10) and can be used to form a quantum Iwasawa decomposition,
then B = By.

PROOF. Since the image of C; under A satisfies (2.9), we must have s, = rit ™.
Hence there exists @ € T such that t(,‘(ﬁai = r; and t7la = s. But we also have
rit = aitg(il)ti € K and sincetg(il)ti € K, it followsthat & € K. Therefore Cia; ! = Bj is
an element of B and B is generated by B; and (tit,5)™* for 1 <i <. ThusB=B;. =

REMARK 2.3. In the next section we show that the subalgebras B, specialize to
the enveloping algebra of ¢’ at g = 1. However, when ¢ is semisimple, By is not
isomorphic to the Drinfeld-Jimbo quantization Uq( gf). To seethis, recall [JL1] that the
set of invertible elements of U is exactly T. Hence the set of invertible elements of By
is By N T. By Theorem 2.4, this group is just the group K generated by the tit(,‘(il) for
1 <i <. Thisisamaximal subgroup of By which, one checksusing the specializations
in Corollary 3.2, hasrank strictly smaller than the rank of the Cartan subgroup of Uq( gp).
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REMARK 2.4. Wheng =dl(n) and 6 = Id, it is easy to show that By isisomorphic to
the quantization of so(n) introduced by [GK]. By [NS, pp. 4, 6] it followsthat in this case
By is also isomorphic to the subalgebra constructed by Noumi and Sugitani. For other
pairs of classical Lie algebrag and involution @ it is not clear whether the subalgebras
constructed in [NS] have a connection to the By. However, the By satisfy the right coideal
condition (4.10), an important property of the subalgebras considered in [NS].

3. Specialization. In this section, we determine the specialization at q = 1 of the
subalgebras By defined in Section 1. More precisely, set A equal to the localization of
k[g, q1] at the ideal generated by q — 1. Let U be the free A-module generated as an
algebraby x, yi. t, (t — 1)/(q— 1) for 1 < i < I. Note that U° N U is generated by
the elementst; and (t — 1) /(g — 1) asi rangesfrom 1 to |. The tensor product U @akis
isomorphic to U(g)[t. . . ., t*] where the t; are now central elements such that t* = 1.
Further modding out by theideal generated by {ti — 1 | 1 <i < |} recoversthe ordinary
enveloping algebra U( g). (Seefor example[JL2, 6.11] or [KD, Prop 1.5].) This process
of tensoring and then modding out is called specialization at g = 1.

Let 6 be adiagram automorphism asin Section 2. Recall that § inducesalLie algebra
involution on g which sends g to fy;) and h; to —hy). Here g, fi, hj, 1 < i < | are
standard generators of g such that x; (resp. y;) specializesto g (resp. fi.) We also refer to
this induced automorphism as 6 with the meaning clear from context. The Lie subalgebra
fixed by 6 is denoted by ¢’

THEOREM 3.1. The subalgebra B, N U of U specializes to the subalgebra U(gf) of
U(9).

PROOF. Let By denote the image of By N U in U(g) under the specialization of U at
g = 1. Notethat B; specializesto g + fy;) for each 1 <i <. Furthermore, for eachi,

6 — %t _ B (& — 672 — 725, — )
q-1 q-1

is an element of U N By which specializes to h; + hggi) up to a (nonzero) scalar. Now
[Q + fg(i).g_"' fg(j)] = [Q, Q] + [fg(i).fg(j)] + 5i9(j)(hi — hg(i)). Hence e, + fg_(a) is also an
element of By for all positive roots . Therefore U(¢’) is a subalgebraof B,.

Let S* denote the intersection of S with the set of I-tuples with nonnegative entries.

1<|<(9(|)<|

whererecall that K; isidentified with ; t;(il). Recall the notation of Remark 2.2 of Section 2.
Given X € By one can find M € S such that XKM is a linear combination over k(q) of

S —
elements of the form By, (K—‘l) with B, € W and S € S'. Hence X can be written in

g-1
the form <
X = / Z awSBW(E) ) K—M
\BWEV\_/.SES* q-1
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whereay s € k(q). Assumethat X € B, U and let n be the maximum degree such there
exists a nonzero a,, s with Deg B, = n. It follows that the highest degree term of X,

Z aw,sFows
{w,SDegB,=n}

is an element of U for each choice of S € S*. By Remark 2.2 of Section 2, the set
V =V NU; = {xXBw) | By € W}isabasisfor U,. Therefore ays € A for each
Se S" andB,, € W with DegB,, = n. Hence
K—1)%
X=( % B[y ) K
ByweW ,S=S+;DegBy=n q-

isan element of By N U of lower degree. By (reverse) induction on Deg X, we have that
X e BynUif andonly if a, s € Afor all By, and S. In particular B, U is spanned over A

S J—
by elements of theform B,, (%) KM whereB,, € W andS< S'. Itisstraightforward

S
to check that the specialization of B, (*;%11) KM is an element of U(g’). It follows
that the specialization of By is a subalgebra of U(g’) which completes the proof of the
theorem. ]

REMARK 3.1. Consider the A subalgebra B, of B, generated by the B,
() — 1) /(@ — 1), and (titzy)*™* for 1 < i < I. We can specialize By directly to
the algebra (By @a K) / <tit9‘(% — 1). It follows from the proof of Theorem 3.1 that the
direct specialization of By is isomorphic to the specialization of By N U considered as a
subalgebraof U.

We can now usethe description of such algebrasin the classical case(dueto E. Cartan)
to determine the specializations of the quantum subalgebrasBy. For asimpleLiealgebrag
and aninvolution ¢ induced from adiagram automorphism as above, it is straightforward
to show that the dimension of g’ isequal to |A*] +#{i | i < 6(i)}.

COROLLARY 3.2. Let g be a simple Lie algebra over the complex numbersk = C
and let 6 be a diagram automorphism. The image I§9 ~ U(d’) of By N U under the
specialization of U at g = 1 can be described as follows.

(3.1) Ifg=sl(n) and 6 = Id, then By =~ U(so(n)). B

(3.2) If g=4dl(n) and # is defined asin Case 2 of Section 1, then By ~ RwhereRisthe
subalgebra generated by hy and e.f for 1 <i <n—1andi # pwithp=n/2
(resp. (n— 1)/2) if nis even (resp. odd).

(3.3) Ifg=s0(2n+1) (n > 2) and § = Id then By = U(so(n) & so(n+ 1)).

(34) Ifg=sp(n),n=2m> 2,and ¢ = Id then By = U(gl(m)).

(3.5) If g =so(2n) and § = Id then By = U(so(n) & so(n)).

(3.6) If g=s0(2n) and § # Id then By = U(so(n — 1) & so(n + 1)).

(3.7) If gisof type Es and § = Id, then By = U(sp(4)).
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(3.8) If gisof type Es and 6 # Id, then By = U(sl(6) & s(2)).
(3.9) If gisoftype E7 and 6 = Id, then By =~ U(sl(8)).
(3.10) If gisof type Eg and 6 = Id, then By = U(s0(16)).
(3.11) If gisof typeF4 and 6 = Id, then By = U(sp(3) & §I(2)).

PrROOF. When 6 = Id, the algebra By specializesto the Lie subalgebrag’ generated
by g +f, 1 <j < |. By [He, Definition on p. 426] and [He, p. 183, Theorem 7.2], ¢’
correspondsto the complexification of the fixed subalgebrain the Cartan decomposition
of the normal (or split) real form of g. Thus the cases when § = Id follows from
[He, pp. 451455, 517, 518] by taking the complexification of the appropriate fixed
subalgebras. For  # Id, we can compute the dimensions of the ¢’ and this is enough
to determine the desired fixed Lie algebras. In particular, for (3.2), dimg’ = (* — 2) /2
when n is even and equals (n? — 1) /2 when n is odd; for (3.6), dimg’ = n> — n+1;
and for (3.8), dimg’ = 38. The result now follows by comparing dimensions of the
complexified fixed subalgebrasin [He, pp. 451455, 518]. ]

4, Quantum Harish-Chandra Modules. In this section we begin the the study of
guantum Harish-Chandramodulesfor the pair U, By. These modules are defined exactly
asintheclassical case (see[D, Section 9.1.4]). In particular, we have the following.

DerINITION 4.1. Let V be a subalgebra of U. A Harish-Chandra module for V is a
U-module which can be written asadirect sum of finite-dimensional simple V-modules.

Intheclassical case, Harish-Chandramodulesarise naturally inside atypical g module
as the sum of all the finite-dimensional simple g’ submodules. The proof uses the Hopf
structure, or more precisely, the diagonal map of U(g”). Though B, satisfies the coideal
property on comultiplication (4.10), it is not enough to make the same argument work
for the pair U, By. In this section, using different methods, we prove a quantum analog
for U-modules on which the subgroup T acts semisimply.

One of the basic U-modules is U itself considered as a module using the adjoint
action. Recall [JL1] that U contains a large locally finite subalgebra which we denote
F(U). Note that F(U) is the sum of all the finite-dimensional simple (ad U)-modules
contained in U. Asa consequenceof our results on general U-modulesin this section, it
followsthat the (ad U)-module F(U) isthe maximal Harish-Chandramodule for the pair
U, By inside U.

For the purposes of this section, we assume that k = C. The Chevalley anti-
automorphism « on U is a k(g) anti-automorphism of U which sends x; to y;, y; to
x;, and fixes elements of T. Let Ur(g denote the R(q) subalgebra of U generated over
R(q) by X, yi, and t*1 for 1 <i < |. The anti-automorphism « can be restricted to the
real quantized enveloping algebra Ur(g and then extended to the anti-automorphism x*
of U using complex conjugation“ ~". In particular, x*(av) = ax(v) wherea € C and
S UR(q).

Our first god is to show that any finite-dimensional U-module is a Harish-Chandra
module. We use atwisted version of the quantum Shapoval ov form which behavesnicely
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in terms of the By action. To define this form, first twist the antiautomorphism x* using
elements of h* as follows. Seth; = {\ € h* | (\.«) € Z foreach1 < i < |}. For
A € h% and avector v of weight 3 in Ur(g), Set

(4.1) (V) = g Dr(V).

Define k% (aw) asax, (W) wherea € C andw € Ug(g).

Let ¢ denote the Harish-Chandramap of U onto U° using the direct sum decomposi-
tion U = (UUT + U;U) @ U°. (Here U}, U; denote the augmentation ideals of U*, U™
respectively.) Set G- = k(g)[yiti | 1 <i <] and G* = k(g)[xt; | 1 <i <]. Note that
k1 (GT) =G andx}(G") =G™.

Recall that finite-dimensional ssmple U-modules can be parametrized by pairs 7,
(&1, ... &) wherey isadominant integral weight and (¢1. . . . &) is a sequence of fourth
roots of unity (see[L] and [R]). In particular, given such apair v and (§1, ... &), Set A
equal to the algebra homomorphism from U° to C(q) defined by A(t) = &), The
corresponding finite-dimensional simple U module L(A\) isgenerated by ahighest weight
vector v such that xiva = 0 and tiva = £q0*vp for 1 <i < |. It is easy to check that
G Vva = L(N). Define a conjugate linear form S= S on L(A) using x5 as follows. Set
S(Va,Vp) = 1and S(fva. gvp) = A (Lp (r3( f)g)) wheref and g areelementsof G"NUg(q-
Itisstraightforward to check that S(fw, v) = S(W. /-ej(f)v) foranyw, vinL(A) andf € U.
When &; = 1 for each i, we simply write L(Y) for the corresponding finite-dimensional
simple module with highest weight vector v, and S/ for the corresponding bilinear form.

The next nondegeneracy result uses specialization to the classical case.

LEMMA 4.2. Let S = S be the conjugate linear form on L(A) as described above.
Then S(w, w) # 0 for any nonzerow in L(A).

PrROOF. Let 7 be a dominant integral weight and let &4, ..., & be a segquence of
fourth roots of unity. Set A equal to the homomorphism from U° to C(q) such that
A(t) = &90) foreach1 <i <.

Note that (3 (a)b) € C()[t]. .. .. t] for any choice of a,b € G~. Since A(t}) =
g0 for eachi, it follows that S}(fva. bva) = S)(fv,. bv,) for each f.b € G~. Since
G vp = L(N), it is sufficient to prove the lemma for simple modules of the form L(7)
where isadominant integral weight.

Recall the definition of U (Section 3) and set L(Y) = Uv,. Notethat L(7) specializesto
the simplefinite-dimensional U( g)-module L;(7) with highest weight generating vector
v; which isthe image of vy under specialization (see for example [JL1, Lemma5.10]).

Let x1 denote the conjugate linear antiautomorphism of U(g) defined by x1(g) = fi,
rk1(f)) = g, r1(h)) = hy foreach 1 < i < |. Write ¢, for the classical Harish-Chandra
map (see, for example, [D, Section 7.4.3]). Defineaconjugatelinear form S on L1 (V) by
Si(vi,v1) = 1and S(fvy, bvp) = “/(apl(m(f)b)) for f,b € U(Qg). Notethat S;(fiw. m) =
Sw, em) and S;(gw, m) = S(w, fim) foral w,m € Ly(v)and1 <i < I. Hencethisform
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agrees with the one defined in [K, Section 11.5]. By [K, Theorem 11.7], S is positive
definite on L(V).

Forany b e U, & A(b) specializesto x1(b1) where by denotes the specialization of b.
Furthermore for w, m € L@), we have S,(m, w) specializesto S;(my, wi) where my, wy
denotes the images of m and w under specialization. Now consider a nonzero element
w € L(7). Multiplying by asuitableinteger power of g— 1 we may assumethat w € L/@)
andw ¢ (q— 1)L@). In particular the image w; of w under specialization is nonzero.
Hence S, (w, w) is nonzero since it specializesto S;(wy, wi) which is positive. It follows
that S(w. w) # O for all nonzerow € L(V). "

Now choose A such that (A, o) = —(ayy. o) for each 1 <i <|. Note that

Hi(BI) = q*(ao(l).oti)t;(i]jyi + q(ai-ao(l))trlxa(i)
= yit;T(il) + Xt = B
and hence x}(b) = bfor all b € By M Ur(g. It follows that

(4.2) K3 (Bg) = By.

LEMMA 4.3. When k = C, each finite-dimensional simple U-module is a Harish-
Chandra module for the pair U, By.

ProOOF. Let L = L(A) be a finite-dimensional simple U-module and write Sfor the
corresponding conjugate linear form S on L. Let M be a nonzero By submodule of L.
If M = L then we are done. Otherwise set M+ = {m € L | §m. M) = 0}. Recall that
S satisfies S(af vy, bvy) = S(ny./ﬁ?i(a)bV'y) for al a € U. Using (4.2) it follows that
S(Byr.s) = §r.x}(By)s) = S(r.Bys) for all r.s € L. Hence M is a By module. By the
previous lemma, Srestricted to M is nondegenerate so M N M+ = 0 and M @& M+ is
isomorphic to L. Now apply induction to M and M. ]

Consider U-modules on which T acts semisimply. The next lemma alows one to
embed finite-dimensional B, submodules of U-modules which admit a semisimple T
action inside a direct sum of simple finite-dimensional U-modules.

Let k(g)* denote the multiplicative group generated by the nonzero elementsin k(q).
We expand the notion of weight given in Section 1. Let M be a U-module. For A €
Hom(T.k(a)*), set My = {ve M | tv=A(t)vforall t,1 <i <I.} Given3 € h", let
q°’ denote the element of Hom(T. k(q)") which sendst; to g®®*). (Note that the notation
here differs from the notation defined in Section 1 concerning weight spaces.) We can
extend the standard partial order on weightsin h* to Hom(T. k(q)*) as follows: A > A’
if A =g’/ for some 3 € Q". Now let M be a U-module which admits a semisimple T
action. We can write M = &M, where A\ runs over nonzero elements of Hom(T, k(q)").

So each element in M can be written as a sum of T weight vectors 3° VA

AeHom(T.k(q)*)
whereva € Mp. Definethesupport of vby supp(v) = {A | va # 0} and set max(supp(v))

https://doi.org/10.4153/CJM-1997-059-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-059-4

SUBALGEBRASIN IWASAWA DECOMPOSITIONS 1221

equal to the set of maximal weights in the support of v with respect to the partial order

on Hom(T. k(q)*). Write v for the element 5 VA.

/\emax(supp(v))

LEMMA 4.4. Let M be a U-module such that the action of T on M is semisimple.
Let W be a finite-dimensional B, submodule of M. Then W generates a semisimple U
submodule of M.

ProoF. Letv € W. Choosel < i < I. Note that B'v = (xit;(il))m\ﬂ terms of non-
maximal weight. By assumption, {BM | m > 0} spansafinite-dimensional vector space.
Now the supports of (X t;(il))mv are distinct for different choices of m, hence for large m,
(Xityy)™v = 0. It follows that for large m, X™a = (xit;5)™va = O for al A in the support

of v.

Setv, = v—V. Given A € Hom(T.k(q)*), (B"), isalinear combination of terms of
the form
(4.3) Xinhyg%i) e X:“ygh)v/\’

whereM = ym, N = ©n;, gMaNwoA” = A and A’ € supp(V). Using the defining
relation (1.3) of Section 1, we have x™yy, - - - X" yjry € Ux~N for M > N. Hence (4.3)
is zero whenever M — N is large. It follows that supp((xi t;(il))m\Tl) has zero intersection
with supp B for mlarge enough. As before, the supports of (x; tg(il))m\Tl are digjoint for
different choices of mand so (xit;(%)mvl = O for large m. Therefore for m large enough,
X" = (xitg(il))mv,\ = 0for al A inthe support of v;1. Repeat this argument using the fact
that supp(v) is afinite set to show that X™va = (; te—(il))mv,\ =0 for very large mand for all
N € supp(V).

We have shown that for each 1 < i < I, x acts nilpotently on Tv, the T-module
generated by v, and hence on the T-module TW generated by W. A similar argument
holdsfor y;.

Recall that F(U) denotes the (maximal) locally finite subalgebra of U (see [JL1]).
Using the Hopf algebra structure on U, it is straightforward to check that aF(U)TW =
((eda@)F(U))anTW for a € U. In particular using standard Hopf algebra notation,
properties of Hopf algebras (see for example [JL1, Section 2], and the definition of ad
(see Section 1),

((ada)F(U))an TW = amF(U)o(ag Jag TW
=amF(V)e(ap)TW
= apye(ap) )F(U)TW = aF(U)TW.

Given theimage of x™ and y™ under A (see [JL1, Section 3.7]) and the fact that x; and y;
act locally nilpotent on F(U) using the adjoint action, it follows that x; andy; act locally
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nilpotent on F(U)TW. Clearly, T acts semisimply on F(U)TW. Now F(U) % (TW) =

(F(U)T) x W and F(U)T = U by [JL1]. Hence F(U)TW is just the U-module generated

by W and the theorem follows from applying [JL 1, Theorem 5.9]. ]
Putting Lemma 4.3 and Lemma 4.4 together yields:

THEOREM 4.5. Assume k = C. Let M be a U-module with a semisimple T action.
Then the sum of all the finite-dimensional simple By submodulesis a (maximal) Harish-
Chandra module for B, and equals the sum of all the finite-dimensional simple U
submodules of M.

PrOOF. By Lemma 4.4, each simple finite-dimensional By submodule is contained
in a direct sum of finite-dimensional simple U submodules of M. By Lemma 4.3, each
of these simple U-modules can be written as a direct sum of finite-dimensional simple
By-modules. Hence the sum of all the simple By submodules of M is equal to the sum
of al the simple finite-dimensional U submodulesof M, which clearly isaU-module. It
follows immediately that this sum is the maximal Harish-Chandra module for the pair
U, By contained inside M. n

The locally finite part F(U) of U can be realized as a direct sum of all the finite-
dimensional ad U simple submodules of U. Hence Theorem 4.5 implies the following.

COROLLARY 4.6. Assume k = C. The (ad U)-module F(U) is the maximal Harish-
Chandra modulefor the pair U, By inside of U.

REMARK 4.1. The results of this section can be extended to F(U) the locally finite
part of the simply connected quantized enveloping algebra. For definition of the simply
connected quantized enveloping algebra, see [JL2, Section 3.1]. The reader is also
referred to comments following Remark 8.3in[JL3].
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