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In this paper, we investigate a sink-driven three-layer flow in a radial Hele-Shaw cell.
The three fluids are of different viscosities, with one fluid occupying an annulus-like
domain, forming two interfaces with the other two fluids. Using a boundary integral
method and a semi-implicit time stepping scheme, we alleviate the numerical stiffness
in updating the interfaces and achieve spectral accuracy in space. The interaction between
the two interfaces introduces novel dynamics leading to rich pattern formation phenomena,
manifested by two typical events: either one of the two interfaces reaches the sink faster
than the other (forming cusp-like morphology), or they come very close to each other
(suggesting a possibility of interface merging). In particular, the inner interface can be
wrapped by the other to have both scenarios. We find that multiple parameters contribute
to the dynamics, including the width of the annular region, the location of the sink, and
the mobilities of the fluids.
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1. Introduction

The Hele-Shaw flow or the gap-averaged Stokes flow is an important subclass of fluid
problems, where the flow of fluids occurs between two closely placed plates. In such
a case, one ignores the out-of-plane velocity component and averages the in-plane
velocity over the thickness of the gap to reduce the problem to two dimensions. The
Hele-Shaw flow attracts considerable attention because of its applications in oil recovery
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(Hornof & Baig 1995; She et al. 2022), micro-fluidics (Hashimoto et al. 2008; Chakraborty
et al. 2019) and porous media flow (Saffman & Taylor 1958; Taylor & Saffman 1959), etc.
In the oil recovery process, for example, one might consider that the oil is getting extracted
through a sink while being surrounded by air or a different less viscous fluid that tries to
penetrate the oil and therefore has an impeding effect on the recovery process. The flow
problem is quite challenging – one has to track one or multiple moving interfaces that
typically exhibit Saffman–Taylor-like instability (Saffman & Taylor 1958). As the system
evolves, the interfaces develop viscous fingers giving rise to beautiful and complex patterns
(Paterson 1981; Chen 1989; Li et al. 2009; Zhao et al. 2017, 2018).

The classic Hele-Shaw flow has been studied extensively through experimental
(Paterson 1981; Chen 1989), numerical (Li, Lowengrub & Leo 2007; Zhao et al. 2017;
Morrow, Moroney & McCue 2019; Morrow, De Cock & McCue 2023) and analytical
(Escher & Simonett 1996, 1997; Prokert 1998; Tanveer & Xie 2003; Xie & Tanveer 2003)
means. Extensions of the classical problem have also been formulated and investigated,
where the nature of the fluid (Kondic, Palffy-Muhoray & Shelley 1996; Fast et al. 2001),
the geometry of the system (Dias & Miranda 2013) and driving forces (Miranda & Widom
2000; Zhao et al. 2021, 2023; Anjos et al. 2022) have been varied. The literature is
extensive, and we do not intend to give a comprehensive review here. In the current work,
our interest is in observing such flows in radial cells but in a multi-layer set-up with a sink
as the driving force. We discuss a few key references below.

Various experimental, numerical and analytical studies have been conducted for
the multi-layer Hele-Shaw problem. For example, the annular flow was considered
experimentally (Cardoso & Woods 1995) and in a rotating radial cell (Carrillo, Soriano
& Ortın 1999, 2000). It was found that any perturbation to the outer interface tends
to stabilize as the interfaces approach one another and the annulus region gets thinner
(Cardoso & Woods 1995). In a separate work, an empirical relation between capillary
number and another dimensionless quantity (related to the ratio of centrifugal to capillary
forces) was found for a wide range of values (Carrillo et al. 1999). A linear stability
analysis, carried out in conjunction with experiments, revealed a good match between
theoretical and experimental observations for the number of fingers produced on the
interface (Carrillo et al. 2000). In an early study, the onset of Rayleigh–Bénard convection
in presence of magnetic fields was checked (Aniss, Brancher & Souhar 1993). Logvinov
(2019) investigated the displacement of a more viscous fluid with a less viscous one in
presence of a source. Through linear stability analysis, the author identified a mode that
grew the fastest. Also, the predictions matched quite well with the experimental results in
the low capillary number regime.

In the analytical front, the use of complex variable theory has proven quite fruitful as
the real and complex parts of analytic functions are harmonic. Taking a cue from this,
powerful techniques have been devised (Richardson 1996; Crowdy 1999, 2002; Crowdy
& Kang 2001; Cummings & King 2004). The effect of surface tension is ignored in
these studies as it is not easy to find solutions in the presence of the capillary forces.
More recently, attention was given to the annular problems using a pressure differential
(Dallaston & McCue 2012). Again, surface tension was ignored to bring in the force of
complex analysis. In contrast, a number of other works consider the multi-layer Hele-Shaw
problem with surface tension (Beeson-Jones & Woods 2015; Gin & Daripa 2015, 2021;
Anjos & Li 2020). Instead of using the complex variable approach, all of them took up
a small-perturbation analysis approach to investigate the stability of the interfaces. For
example, authors tried to find the optimal value of the viscosity of the intermediate fluid
in order to inject fluid at the fastest rate possible while not disrupting the stable flow
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(Beeson-Jones & Woods 2015). In a separate work, an upper bound on the growth of
perturbations was found and verified with simulations (Gin & Daripa 2015). The scope of
this analysis was expanded further with analysis carried out for a three layer Hele-Shaw
problem with the middle layer having variable viscosity (Gin & Daripa 2021). The goal
was to find injection schemes that would maintain the stability of the interfaces. Prior
to that, the question of short-time existence and uniqueness of the Hele-Shaw problem
for various initial conditions of the interface and in the presence of surface tension was
settled (Escher & Simonett 1996). Anjos & Li (2020) used a second-order mode coupling
theory to demonstrate that as the thickness of the annulus domain decreases, the interaction
between the interfaces gets strong, with wide fingers forming on the interfaces with
bifurcated tips. However, they observed that if the thickness of the annulus is reduced
too much, then the finger-splitting morphologies are replaced by polygonal-like structures
with narrow fingers.

As mentioned above, most of the analytical studies either disregard the effects of
the surface regularization mechanism, i.e. capillary effects, or prove the existence and
uniqueness of the solutions for a short time, or rely on a perturbation approach that
linearizes the problem and can therefore again be relied upon for a short duration of
time. In some recent analytical works (see Green, Lustri & McCue 2017), attention has
been given to surface tension; however, the geometric set-up has been special in those
works, requiring certain symmetries. This is where the role of the numerical methods
becomes important. For example, in a very recent work, Morrow et al. (2023) performed
simulations in annular domains with surface tension using level set methods to understand
the progression of viscous fingering. The motion was driven by either rotation or pressure
difference. A sharp interface approach involving the boundary integral technique yields
much accurate results for a long time duration of the problem, especially when the
space–time convergence of the problem is of high order. For example, Zhao et al.
(2020) have investigated the pattern formation problem for a three-layer problem driven
by a source at the origin using the boundary integral approach. Nonlinear simulations
are shown to match with experiments and weakly nonlinear analysis, although the
simulations go well beyond the weakly nonlinear regime and provide good insight to
fully nonlinear dynamics. The question of numerical stiffness in the time stepping, due
to interfacial conditions, is dealt with using a small-scale decomposition technique (Hou,
Lowengrub & Shelley 1994). There are several advantages of using the boundary integral
method. In a moving boundary problem such as ours, the method allows us to recast the
original problem formulated in terms of partial differential equations to boundary integral
equations defined only on the interfaces, and then to track the latter. This leads to a
reduction of the problem dimension by one. Other benefits include the exact treatment
of the interface conditions and the existence of highly accurate numerical techniques.
A major downside of the boundary integral method is its inability to deal with topological
changes in the configuration.

An early numerical work in the presence of an eccentric sink is by Kelly & Hinch (1997),
who consider the problem in the presence of small surface tension. Using a boundary
integral method, they show that a zero surface tension cusp formation scenario can be
avoided even if the surface tension effect is small. The scope of this work is expanded
further in Tian & Nie (1998) and Ceniceros, Hou & Si (1999). Both use boundary integral
formulations like Kelly & Hinch (1997); however, the numerical methods differ. One of
the main contributions of Tian & Nie (1998) is to analyse the nature of the singularity
in a sink driven flow. They predict that the interface reaches the sink before all fluid is
sucked out, which is also supported by the experimental evidence found in Paterson (1981).
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In Ceniceros et al. (1999), the authors compute cases of (a) small and (b) large viscosity
ratios between the outer and inner fluids. It is observed that when viscosity ratio is small,
the interface develops a finger that evolves into a wedge having a neck region. In the case
where the ratio is large, the formation of the neck gets suppressed, and the finger that
develops on the interface is thinner.

The current work is motivated by the cusp-like interface morphology that develops
during sink-driven Hele-Shaw flow (Tian & Nie 1998). We are interested in investigating
the effects of the sink on the dynamics of the Hele-Shaw problem with one more interface,
thus the sink location could be in the interior of the inner interface or the annulus region,
as shown in figure 1. It should be noted that in the latter case, one does not have any
results from linear analysis. This makes the problem difficult to solve via analytical
means, hence in this work, we adopt a numerical approach based on boundary integral
formulations (Zhao et al. 2020). To the best of our knowledge, this is the first boundary
integral theory based work applied to the multi-connected Hele Shaw problem driven
by a sink. Through numerical simulations, we observe that the interaction between the
two interfaces introduces rich dynamics beyond the classic cusp-like patterns for a single
interface (Tian & Nie 1998). Our study reveals the importance of initial distance between
the two interfaces in the nature of pattern formation – if the two interfaces are initially
placed ‘close’, then they tend to come close to each other before either one of them
reaches the sink; however, if they are ‘well separated’ at the beginning, then one interface
reaches the sink before the other catches up with it. This leads to two typical events:
(1) a cusp-like pattern forming mechanism if one of the two interfaces reaches the sink
faster than the other; (2) interface-merging patterns if they come close to each other.
In particular, we observe that the inner interface can be wrapped by the other to have
both scenarios. We find that multiple parameters contribute to the dynamics, including the
width of the annular region, the location of the sink and the mobilities of the fluids. An
important practical application of the current study could be in the oil extraction process
where multiple layers of oil get recovered through the sink with air or water trapped
in the oil. The success of the process would depend on how the viscous fingers form.
For example, if the fingers generated by the air bubble reach the sink before the oil is
extracted, then the recovery efficiency might be reduced. Two-interface problems driven
by a Darcy-type equation in a geometric set-up like ours can also found in other areas, such
as tumour dynamics (Lu et al. 2022), where, moving from inner to outer region, we find
necrotic core, tumour and healthy tissues, respectively. Thus the current problem connects
to other areas of application and is of fundamental importance.

The paper is organized as follows. In § 2, we describe the governing equations. In § 3, we
discuss our numerical methods. In § 4, we discuss the main results. In § 5, we summarize
our findings.

2. Governing equations

We consider a radial Hele-Shaw cell with three fluid layers trapped between two plates
separated by a small distance b, which remains unchanged. The innermost fluid region Ω1

is a bounded, simply connected domain in R2. The region Ω1 is surrounded by a second
fluid that occupies an annulus-like region Ω2, and Ω2 in turn is surrounded by a third fluid
domain Ω3, which extends to infinity. The closed interface that separates Ω1 and Ω2 is
denoted by Γ1(t), and the one that separates Ω2 and Ω3 is denoted by Γ2(t), as shown in
figure 1.
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Γ2

Γ1

Ω1
Ω1Ω2Ω2

Ω3 Ω3

Γ1

Γ2

(a) (b)

Figure 1. Schematic diagram of a three-layer Hele-Shaw flow in the presence of a sink. The innermost layer
is Ω1, which is surrounded by a domain Ω2 of annulus-like shape. The outermost layer is Ω3. The moving
interface between Ω1 and Ω2 is Γ1(t), and that between Ω2 and Ω3 is Γ2(t). The sink is represented by the
black dot. We always place the sink at the origin. Depending on the location of Ω1, the sink can be either
(a) in the fluid region Ω1 or (b) in the annulus Ω2.

In each of these regions, the fluid is considered to be incompressible and irrotational.
Therefore the gap-averaged velocity follows Darcy’s law

ui = − b2

12μi
∇Pi = −M̄i ∇Pi, x ∈ Ωi, (2.1)

where ui is the velocity, Pi is the gap-averaged pressure, μi is the viscosity of the fluid, and
M̄i is the mobility in the domain Ωi, i = 1, 2, 3. The incompressibility condition requires

∇ · ui = 0, x ∈ Ωi. (2.2)

The irrotational nature of the velocity fields, i.e. ∇ × ui = 0 in the fluid domains, implies
that the problem can be recast in terms of a velocity potential in each of the domains that
satisfies the Laplace equation there.

In the present problem, the flow is driven by the removal of the fluids through the sink
following the equation

− Q =
∫

Σ0

uk · n ds, (2.3)

where Q is the net flux out of the system. Here, k is either 1 or 2, corresponding to
the location of the sink in Ω1 or Ω2. Also, Σ0 is a small interface around the point of
extraction, mimicking the existence of a tube that is used to extract the fluids, n is the
unit outward normal on Σ0, and s is the arc length of the interface. Note that the point of
extraction is always at the origin of the system. Depending on our goal, we suitably adjust
the geometry to place the extraction point in either Ω1 or Ω2.

The pressure is discontinuous across the two interfaces:

P2 − P3 = σ23κ23 on Γ2(t), and P1 − P2 = σ12κ12 on Γ1(t), (2.4a,b)

where σ12 and σ23 are the surface tensions, and κ12 and κ23 are the curvatures of the
interfaces Γ1(t) and Γ2(t), respectively. The kinematic conditions or the continuity of the
normal components of the fluid velocities on the interfaces read

u2 · n = u3 · n on Γ2(t), (2.5)

u1 · n = u2 · n on Γ1(t). (2.6)

We use the length scale L0 = R1(0) (initial size of the inner interface) and the time
scale T0 = 2π R2

1(0)/Q to non-dimensionalize the system. We obtain the non-dimensional
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equations

ui = −Mi ∇Pi, for x ∈ Ωi, (2.7)

∇ · ui = 0, for x ∈ Ωi, (2.8)

P1 − P2 = 1
Ca

κ12, for x ∈ Γ1(t), (2.9)

P2 − P3 = α

Ca
κ23, for x ∈ Γ2(t), (2.10)

u1 · n = u2 · n, for x ∈ Γ1(t), (2.11)

u2 · n = u3 · n, for x ∈ Γ2(t), (2.12)∫
Σ0

uk · n ds = −2π, k = 1 or 2, (2.13)

where the capillary number Ca indicates the relative importance of the viscous to surface
tension forces:

Ca = Q R1(0)

2πσ12M0
. (2.14)

Here, M0 is a characteristic mobility, and Mi = M̄i/M0 is the dimensionless mobility of
the ith fluid. The parameter α = σ23/σ12 is the ratio of the surface tensions. We define
a new function φi = −MiPi such that 	φi = 0 in each fluid domain. We will formulate
the numerical method using this function φi. Equation (2.13) is the scaled version of (2.3).
Note that in the non-dimensionalization, we scale out the strength Q of the sink. Finally, an
experimental work with real fluids used the ratio of the surface tensions of the interfaces
α = 0.485 (Cardoso & Woods 1995). For simplicity, we assume that α = 1 in this paper,
though we can use different surface tension parameters σ23 and σ12 in our simulations.

3. Boundary integral formulation and time-stepping algorithm

Since the function Pi (or φi = −MiPi) is harmonic in Ωi, using the potential theory, we
rewrite the boundary value problem in terms of integrals:

φi(x) = 1
2π

∫
Γ1

γ1
∂ ln |x − x′|

∂n(x′)
ds(x′) + 1

2π

∫
Γ2

γ2
∂ ln |x − x′|

∂n(x′)
ds(x′) − ln |x|, (3.1)

where the first two terms correspond to the double-layer representation of a harmonic
function φi in the the fluid domain Ωi, using two unknown dipole densities γ1 and γ2. The
density functions γ1 and γ2 are defined on the boundaries Γ1(t) and Γ2(t), respectively.
The effect of a sink has been incorporated in the solution by the term − ln |x| (Greenbaum,
Greengard & McFadden 1993; Zhao et al. 2020). In two dimensions, the Green’s function
G(x, 0) = − ln |x| is harmonic in R2 \ {0} and satisfies the equation −	G = 2π δ(x),
where δ(x) is the Dirac delta function at the origin (also the location of the sink).
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Using the pressure jump conditions across the interface, we obtain a system of integral
equations for the unknown density functions γ1 and γ2:

1
2

(
M2

M1
+ 1

)
γ1(x1) + 1

2π

(
M2

M1
− 1

) (∫
Γ1

γ1(x′)
∂ ln |x1 − x′|

∂n(x′)
ds(x′)

+
∫

Γ2

γ2(x′)
∂ ln |x1 − x′|

∂n(x′)
ds(x′) − 2π ln |x1|

)
= − 1

Ca
κ12, (3.2)

1
2

(
M2

M3
+ 1

)
γ2(x2) + 1

2π

(
1 − M2

M3

) (∫
Γ1

γ1 (x′)
∂ ln |x2 − x′|

∂n(x′)
ds(x′)

+
∫

Γ2

γ2(x′)
∂ ln |x2 − x′|

∂n(x′)
ds(x′) − 2π ln |x2|

)
= − 1

Ca
κ23. (3.3)

These two equations are Fredholm integral equations of the second kind,
well-conditioned from a computational point of view. Both the integral operators in
(3.2) and (3.3) are compact, and the kernels have a removable singularity. Once the
integral equations are solved and dipoles γ1 and γ2 are obtained, one can use the
Dirichlet–Neumann map to compute the normal velocities of the interfaces as

VΓ1 = 1
2π

∫
Γ1

γ1,s′
(x − x′)⊥ · n(x)

|x − x′|2 ds′(x′)

+ 1
2π

∫
Γ2

γ2,s′
(x − x′)⊥ · n(x)

|x − x′|2 ds′(x′) − x · n
|x|2 , (3.4)

VΓ2 = 1
2π

∫
Γ1

γ1,s′
(x − x′)⊥ · n(x)

|x − x′|2 ds′(x′)

+ 1
2π

∫
Γ2

γ2,s′
(x − x′)⊥ · n(x)

|x − x′|2 ds′(x′) − x · n
|x|2 , (3.5)

where the subscript s denotes the partial derivative with respect to arc length, and
x⊥ = (x2, −x1). The interfaces evolve through these velocities.

The integral equations are solved following a Nyström method whereby the integral
equations are discretized at marker points xi using spectrally accurate quadrature rules.
Since the kernels of integral equations are periodic and smooth, the trapezoidal rule
with modified kernels has spectral convergence. One can also use an alternating point
quadrature rule to achieve the same effect (Sidi & Israeli 1988). The resulting linear
system is solved via the generalized minimal residual (GMRES) method (Saad & Schultz
1986). The integral operators in the Dirichlet–Neumann maps can similarly be computed
with the same accuracy, making the overall numerical computation spectrally accurate
in space. A core component of GMRES requires computing the matrix–vector product.
Since in our case the matrix is dense but structured, one can use the fast multipole method
(Greengard & Rokhlin 1987) or fast tree-code (Lindsay & Krasny 2001; Feng et al. 2014)
to expedite the computation. This reduces the cost of matrix–vector products from O(N2)
to O(N log N) or even O(N), where N is the size of the matrix (the total number of marker
points).

One fundamental challenge in the surface-tension-driven Hele-Shaw flow is how to
update the interface efficiently and accurately. A straightforward analysis of the equations
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of motion shows that one has to maintain the condition 	t ∼ 	x3 if the time-stepping
method is explicit. Here, 	t and 	x are the sizes of the time step and space resolution,
respectively. Satisfying this stability constraint requires very small time steps. The
computational cost gets really high, especially for complicated interfaces where a large
number of marker points are needed to maintain good spatial resolution.

The small-scale decomposition (SSD) technique (Hou et al. 1994) alleviates the problem
and reduces the spatio-temporal constraint to 	t ∼ 	x. Following this technique, we
first rewrite the equation of motion in terms of the length L(t) of the interface and the
tangent angle θj that the marker point xj makes with the positive direction of the x-axis.
The equation for arc length L is non-stiff and can be updated using the second-order
Adams–Bashforth method. However, the θ equation is stiff. Following the idea of SSD,
we recast the equation in terms of a stiff part and a non-stiff part. The stiff part is linear
and can be integrated exactly in the Fourier space. For completeness, we briefly describe
the method here.

The algorithm requires the marker points to be equally spaced in arc length at all times.
This is achieved through a direct discretization at t = 0 and by adding a special tangential
velocity TΓi , i = 1, 2, of the form

TΓi(α, t) = TΓi(0, t) +
∫ α

0
sα′κVΓi dα′ − α

2π

∫ α

0
sα′κVΓi dα′ (3.6)

to the equations of motion at later times to maintain the equal space property, where α

parametrizes the interface, and sα = √
x2
α + y2

α. Also, VΓi(x(α, t)) and TΓi(x(α, t)) denote
the normal velocity and tangential velocity of the interface Γi(t).

In the (s, n) (tangent–normal) frame, the equations of motion then become

d
dt

x = VΓi(x) n + TΓi(x) s, for x ∈ Γi(t), i = 1, 2, (3.7)

where n and s represent the unit normal and tangential vectors on each interface. Next,
using the equal arc length frame, we repose the equations of motion in terms of L and θ

coordinates as

θt = Vs + κT, (3.8)

sα,t = (Ts − κV) sα, (3.9)

where we use the relation ds = (L/2π) dα. In both of these equations, we suppress Γi to
keep the notation simple. Also, t in the subscript of different variables denotes derivative
with respect to time. The first equation is stiff, while the second equation is not and can
be updated using an explicit scheme, e.g. the second-order Adams–Bashforth method.
Following (Hou et al. 1994), we recast (3.8) in the form

θt = σ

s3
α

H[θααα] + N(α, t), (3.10)

where the operator H[ · ] denotes the Hilbert transform, and N(α, t) = Vs + κT−
(σ/s3

α)H[θααα] is non-stiff and has a removable singularity. In the Fourier space, it can be
diagonalized as

θ̂t(t) = −σk3

s3
α

θ̂(k, t) + N̂(k, t). (3.11)

We implement a linear-propagator-based Adams–Bashforth scheme of second-order
accuracy to numerically integrate this equation, then perform an inverse Fourier transform
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A three-layer Hele-Shaw problem driven by a sink

to find θ . We also use smoothing filters and cut-off filters to control the onsets of
non-physical high-frequency spurious modes (Jou, Leo & Lowengrub 1997).

4. Results and discussions

In the following subsections, we investigate various mechanisms of instability in the
three-layered configuration. The two interfaces move due to removal of fluid through
a sink, located in either the fluid domain Ω1 or Ω2. Unless stated otherwise, we use
N = 8192 and 	t = 1 × 10−5, where N is the number of marker points on each interface,
and 	t is the time step. The iterative GMRES solver tolerance is set to ε = 10−12, so is
the filter tolerance εtol.

All our computations are carried out using a computer with 3.7 GHz AMD Ryzen
ThreadRipper 3970X CPUs. We start our simulations using smooth interfaces with
relatively simple geometries. At the beginning, it takes only a few GMRES iterations
to obtain the solution. However, all our simulations approach finite time singularities,
and near the breakdown, the count of iterations increases dramatically due to (i) the tiny
distance separating the two interfaces, (ii) the high curvature development (sharp corners),
or (iii) the thin neck formation of the interface.

The capillary number Ca is a dimensionless quantity representing the relative effect
of viscous drag forces versus surface tension forces acting across an interface. Due to a
large length scale R1(0) and the extraction flux time scale Q used to non-dimensionalize
the equations, our definition of the capillary number is Ca = 12μ2Q R1(0)/2πσ12b2.
Following this definition, for example, we find that silicone oil with viscosity
μ2 = 11.4 Pa s, surface tension 0.02 N m−1, gap width b = 0.75 mm, initial size of
the inner interface R1(0) = 3 cm, and Q = 0.1 cm2 s−1 will result in Ca ≈ 580 (Nase,
Derks & Lindner 2011). One could use other less viscous fluid than the silicone oil, with
smaller b or large R1(0), to get this capillary number as well. In this paper, we set Ca = 500
throughout.

4.1. Numerical convergence
In this subsection, we summarize the spatio-temporal convergence studies of our
numerical algorithm. We introduce fluid mobility, which is widely used in porous media
flow and is quite useful for further discussion. In the porous media literature, the mobility
is defined as M = k/μ, where μ is the viscosity of the fluid, and k is the permeability
of the surrounding media. Comparing porous media and Hele-Shaw flow, we observe
that the constant b2/12 takes the role of parameter k in the case of the latter. Hence
M varies inversely with the fluid viscosity. To study interface instabilities, we set the
Mi in such a way that the innermost fluid Ω1 is the most viscous, followed by the
annulus fluid region Ω2, and the outer fluid domain Ω3. In our simulations, we choose
the mobilities of the fluids as M1 = 0.01, M2 = 1 and M3 = 100 in regions Ω1, Ω2
and Ω3, respectively. We set the initial outer interface Γ2(0) with Cartesian coordinates
x = (

√
2/6)(4 cos(α) + cos(2α)) and y = (

√
2/6)(4 sin(α) + sin(2α)), where α ∈ [0, 2π]

is a parametrization. The initial inner interface Γ1(0) is just a circle of radius 0.65 centred
at the origin. Because of the set-up of our problem, the fluid domain Ω1 gets drained from
the system.

First, we demonstrate spatial accuracy. We define numerical error

Err(t) = |A(t) − A(0)| , (4.1)
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Figure 2. (a) Spectral accuracy of the algorithm, plotting − log10 Err(t) versus time t for different values
N = 1024, 2048, 4096 to see that the curves are on top of each other. The inset shows the region near time
t = 0.15 in detail. This is where the simulation stops because inner and outer interfaces come very close to
each other. (b) Second-order accuracy of the time-stepping algorithm, plotting − log10 Err(t) versus time t for
	t = 4 × 10−5, 2 × 10−5, 1 × 10−5, 5 × 10−6.

where A(t) is the area of fluid domain Ω2 and should be equal to its initial value A(0) in
theory, because the location of the sink is in Ω1. We plot − log10 Err(t) with respect to
time t for various values of N, the number of marker points on the interfaces. We choose
	t = 5 × 10−6. In figure 2(a), we observe that the curves are on top of each other,
indicating that the solutions of the integral equation are almost identical as long as the
interface is well resolved. For example, N = 1024 is enough to run the simulation to
t = 0.15, and a further increase in the number of points does not contribute to the accuracy,
suggesting the spectral accuracy of our method (Kress 2014; Trefethen & Weideman
2014). The inset shows the region near time t = 0.15 where the simulation stops. We
note that the smallest distance between the two interfaces at t = 0.15 is approximately
7.8 × 10−3, about twice the spatial resolution 	x = 4 × 10−3. Numerically, the two close
interfaces result in a very ill-conditioned linear system with large condition numbers, and
the GMRES iterations do not converge.

The second-order accuracy of the time-stepping scheme can also be demonstrated by
using different time steps to perform the same simulation. In figure 2(b), we choose
N = 4096 and run four sets of simulations, with 	t = 4 × 10−5, 2 × 10−5, 1 × 10−5 and
5 × 10−6, i.e. each subsequent time step is half of the previous value. This suggests
that when we plot − log10 Err(t) against the time t, the curves should be apart by
log10 4 = 0.602 for a second-order time-stepping method, which indeed is consistent with
the implemented second-order Adams–Bashforth scheme. The inset displays the final
configuration of the interfaces when we stop the simulations.

4.2. Numerical validation
We consider two circles initially centred at the origin, x2

1 + y2
1 = 1 (inner interface) and

x2
2 + y2

2 = 4 (outer interface). The mobilities of the fluids are M1 = 0.01, M2 = 1 and
M3 = 100. We choose the capillary number Ca = 500, and Q = −1. For this perfect
annulus problem with the sink placed right at the centre, there exist analytical solutions.
Namely, the normal velocity of each interface is given by VΓ1 = 1/(

√
1 − 2t) and
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Figure 3. (a) The normal velocity of the interfaces with respect to time. The interfaces are two circles with
radii 1 and 2 centred at the origin. (b) The evolution of the relative perturbations an(t)/R1(t) and bn(t)/R2(t).
The dashed curves show the result given by the numerical approach, and the solid lines are predicted by the
linear theory. The initial conditions for the inner and outer interfaces are r1(α, 0) = 1.5 + 0.05 cos(4α) and
r2(α, 0) = 2 + 0.1 cos(4α), respectively. In addition, we set Ca = 500, M1 = 0.01, M2 = 1 and M3 = 100. In
the case of the fully nonlinear numerical amplitudes, we utilized N = 8192 points along each interface, and
time step 	t = 1 × 10−5.

VΓ2 = 1/(
√

4 − 2t). In figure 3(a), we compare the numerical normal velocities from our
scheme with the theoretical results, and find that they are in excellent agreement with a
discrepancy of approximately 10−12.

Next, we provide a comparison between our numerical calculations and the predictions
of linear stability analysis (Beeson-Jones & Woods 2015; Zhao et al. 2020; Gin &
Daripa 2021). We consider the two interfaces as perturbed circles centred at the origin,
r1(α, t) = R1(t) + an(t) cos(nα) (inner interface) and r2(α, t) = R2(t) + bn(t) cos(nα)

(outer interface). Here, R1(t) represents the size of the inner interface, and an(t) denotes
the cosine perturbation; R2(t) represents the size of the outer interface, and bn(t) denotes
the cosine perturbation. From the linear stability analysis, the motion of the perturbations
satisfies

ȧn = f1

[
n − f −1

1

R2
1

−
(

M1

M1 − M2

)
n(n2 − 1)

Ca R3
1

]
an + f2

[
n

R2
2

−
(

M3

M2 − M3

)
n(n2 − 1)

Ca R3
2

]
bn,

(4.2)

ḃn = f3

[
n

R2
1

−
(

M1

M1 − M2

)
n(n2 − 1)

Ca R3
1

]
an + f4

[
n − f −1

4

R2
2

−
(

M3

M2 − M3

)
n(n2 − 1)

Ca R3
2

]
bn,

(4.3)

where

f1 = A12(1 − A23R2n)

1 + A12A23R2n , f2 = A23(1 + A12)R(n−1)

1 + A12A23R2n ,

f3 = A12(1 − A23)R(n+1)

1 + A12A23R2n , f4 = A23(1 + A12R2n)

1 + A12A23R2n .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.4)
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Here, A12 = (M1 − M2)/(M1 + M2) and A23 = (M2 − M3)/(M2 + M3) are the viscosity
contrasts of fluids 1 and 2, and 2 and 3, written in terms of the fluid mobilities, and
R = R(t) = R1/R2 (Zhao et al. 2020).

For the interface configurations, we choose n = 4, R1(0) = 1.5, an(0) = 0.05,
R2(0) = 2 and bn(0) = 0.1. Other parameters are Ca = 500, M1 = 0.01, M2 = 1 and
M3 = 100. In figure 3(b), we plot the evolution of the relative perturbations an(t)/R1(t) and
bn(t)/R2(t) as functions of time. With the given parameters, both perturbations increase,
indicating that both interfaces are unstable. The dashed curves show the results given by
the numerical method, and the solid lines are predicted by the linear stability analysis
in (4.2) and (4.3). The plot shows excellent agreement between the numerical and linear
analysis at early times, when the perturbations are small and satisfy the assumption of
linear analysis.

4.3. Motivation behind our numerical simulations
Before we discuss our results, we briefly review the important findings of a single-layer
Hele-Shaw flow with suction (Tian & Nie 1998). One starts with an initial shape of the
viscous fluid domain as

f (z) = ã1(t) z + ã2(t) z2, (4.5)

where z ∈ C with |z| < 1, ã1(0) = 2
√

2/3 and ã2(0) = √
2/6, and investigates the

evolution under various strengths of surface tension. Then one can show that in the absence
of surface tension, the interface forms a single cusp well before any part of it reaches the
sink. In the cases with non-zero surface tension, the interface forms a finger that moves
towards the sink. A large surface tension leads to a ‘fat’ finger, and the movement towards
the sink is slow. These findings reaffirm the regularizing nature of surface tension in
sink-driven Hele-Shaw flows.

Our numerical investigation starts with the interface outlined in (4.5); however, we
do not restrict ourselves just to this interface. We scale up the investigation by adding
the second interface and targeting its impact on the dynamics by focusing on the initial
geometry of inner and outer interfaces, the location of the sink, and the effects of mobility
(viscosity). We next use various configurations other than (4.5), and summarize their
common characteristics in § 4.8 in terms of the evolution of surface energy. In this paper,
we are interested in the interfacial instabilities. Thus we choose the outermost fluid to have
the highest mobility, which makes the outer interface more unstable than the inner one. In
the scheme, we can set the mobility parameters to any value. We observe that in certain
cases, when we change the mobility parameters, the interfacial patterns do not change
appreciably. In the next few subsections, we report some of the typical findings that we
have observed.

4.4. Pattern formation with a sink and geometrically similar outer and inner interfaces
As a first variation on the classic simulations (Tian & Nie 1998), we wish to investigate
how the proximity of the outer interface to the inner one affects the pattern formation. We
take the initial shape of the outer interface to be a magnified version of the inner one given
by (4.5).

In figure 4(a), the initial outer interface is 1.2 times larger than the inner one, while
in figure 5(a), it is 1.05 times. The mobilities of the fluids are M1 = 1, M2 = 100 and
M3 = 10 000 in regions Ω1, Ω2 and Ω3, respectively. We place the sink at the origin.
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Figure 4. Effects of geometry. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the inner and outer interfaces are both
given by (4.5). The outer interface is 1.2 times the inner interface. The intermediate and final configurations are
shown in (b,c). In (d), we show a close-up of the inner interface finger at the times t = 0.1118, 0.1128, 0.1138,
0.1148 and 0.1150.

In figures 4(c) and 5(c), we show our numerical results at the time when the simulation
stops. The red and blue curves indicate the outer and inner interfaces, respectively.

In figures 4(a–c), we observe the gradual formation of a finger on the inner interface
that eventually approaches the sink. We have to stop the simulation at T = 0.1150 due
to non-convergence of the linear solver beyond this time. The part of the outer interface
located near the negative x-axis and close to this finger also moves towards the sink. This
result is similar to that observed in figure 2 or figure 7 of Tian & Nie (1998), indicating
that the coupling effects of the two interfaces is weak. In figure 4(d), we show the close-up
of the inner interface finger at the times t = 0.1118, 0.1128, 0.1138, 0.1148 and 0.1150. At
t = 0.1150, the curvature at the cusp-like point is approximately −274, which is quite large
compared with its initial value, 9.16 × 10−10. The distance between the inner interface
and the sink is 1.19 × 10−3, which is about twice the spatial resolution 	x. The GMRES
iterations do not converge because of the resulting ill-conditioned linear system. As a note,
we observe an excellent conservation of mass in the region Ω2(t). The area is preserved
up to ten digits accuracy after the decimal point throughout the simulation.

In figures 5(a–c), because the distance between the two interfaces is small, the outer
interface feels the presence of the sink quite strongly (though the sink is in Ω1), and
moves towards the sink along with the inner interface. By the time the inner interface
starts to develop a finger to reach the sink, the outer interface is already very close to the
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Figure 5. Effects of geometry. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the inner and outer interfaces are both
given by (4.5). The outer interface is 1.05 times the inner interface. The intermediate and final configurations
are shown in (b) and (c).

inner interface, and the simulation stops at T = 0.1068. In this simulation, at very early
times, the distance between the two interfaces increases slightly from 0.0354 to 0.0357.
That is because the inner interface moves a little faster than the outer one. Then the
outer interface tends to catch up with the inner interface, and the distance between them
decreases. The approaching velocity of the interfaces increases as time evolves, which
follows approximately an exponential relation 0.0148 exp(43.39t). Unfortunately, we have
to stop the calculation at later times, as the distance separating the two interfaces is quite
small 2.05 × 10−3 ≈ 3 	x, where the spatial resolution 	x is approximately 7.36 × 10−4.
We found that the discretized linear system is very ill-conditioned, and the GMRES
iteration solver does not converge.

These simulations suggest a new pattern forming mechanism by interface merging. The
sink is the driving force; nevertheless, the precise nature of the instability is a result of
the interaction between the two interfaces and the sink. As long as the interfaces are well
separated, the inner interface approaches the sink before the outer one captures it; while if
they are close initially, then it is more likely that they will come very close to each other
before the inner interface reaches the sink.

4.5. Pattern formation with a sink and dissimilar outer and inner interfaces
The next extension is to consider cases where the inner and outer interfaces are no longer
scaled versions of each other. We keep the outer interface as before (given by (4.5)), while
the inner one is changed to a circle. All other parameters are the same as those used in
figure 4. We set the radius of the inner interface, r = 0.7 and r = 0.6 initially, and display
the simulation results in figures 6 and 7, respectively.

In figure 6(a), the outer and inner interfaces are placed quite close to each other on
the negative x-axis at time t = 0. At later times, the outer interface does not develop any
fingers, while the inner interface shows an early sign of developing two fingers, marked by
the two arrows pointing to the sink. However, before they fully develop, the outer interface
comes very close to the inner one. The computation stops when the minimum distance
between the interfaces is approximately 4.2 × 10−4, while the spatial resolution 	x is
approximately 2.37 × 10−4.

The development of these two fingers on the inner interface is far more prominent for
r = 0.6, as shown in figures 7(a–c). Here, we observe two well-developed fingers racing
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Figure 6. Effects of geometry. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5), and
the inner interface is a circle with r = 0.7. The intermediate and final configurations are shown in (b,c).
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Figure 7. Effects of geometry. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100 and
M3 = 10 000. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5), and the
inner interface is a circle with r = 0.6. The intermediate and final configurations are shown in (b,c).

to the sink and forming two equal angles, giving the inner interface two distinct parts:
(i) a bigger portion having a crescent shape; and (ii) a smaller region having the shape
of an elongated drop along the negative x-axis. The inset of figure 7(c) zooms into the
region where the parts of the inner interface come very close to each other. Compared
with the single-interface case (Tian & Nie 1998), the existence of a simple circular inner
interface fundamentally alters the dynamics. At the end, the curvature at the cusp-like
point is approximately −250. The distance between the inner interface and the sink is
approximately 5.03 × 10−3.

4.6. Pattern formation with a sink in the annulus region
We next consider that the sink is in the annular region, i.e. the fluid in Ω2 gets extracted.
We keep the outer interface the same as before. The inner interface is a circle of radius
r = 0.2 with its centre placed initially at (i) (0.3, 0), (ii) (0.9, 0) and (iii) (−0.3, 0).
The sink remains at the origin. The results are summarized in figures 8(a–c), 9(a–c)
and 10(a–c), where we show the evolution of morphologies of the two interfaces, and
in figures 8(d), 9(d) and 10(d), where we plot the velocity of characteristic points on the
interfaces at the positive (right) and negative (left) x-axis as a function of time.

In figures 8(c) and 9(c), we observe that the outer interface develops a finger with the tip
on the negative x-axis, which moves towards the sink. It is evident that the inner interface
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Figure 8. Effects of sink location. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5), and
the inner interface is a circle of radius r = 0.2 with centre at (0.3, 0). The intermediate and final configurations
are shown in (b,c). In (d), we plot the velocity of various points on the interface.

is not circular, though in figure 9(c), it looks more circular. To quantify these results, we
check the normal velocity of four characteristic points on the x-axis for both the inner and
outer interfaces. As shown in figures 8(d) and 9(d), the point on the negative x-axis on
the outer interface (in solid red) is the fastest moving. The near vertical segment of the
curve implies the fact that the interface is rapidly approaching the sink towards the end
of the simulation. On the other hand, the velocity of the point on the positive x-axis of
the outer interface (in dashed red) is small, indicating that this point moves very slowly
(normal velocity ≈ 0.01). The difference of the normal velocities inner left (in solid blue)
and inner right (in dashed blue) in figure 8(d) explains the morphological change from the
initial circular shape. In figure 9(d), we find that the normal velocities of both the points
on the inner interface are nearly equal and very small, suggesting the better preservation
of the circular shape of the inner interface.

For the case in figure 8(d), with our simulation data, the velocity seems to fit a
relationship 0.7227(0.18499 − t)−0.4654 + 2.166 even though in figure 9(d), the velocity
seems to fit 4.126 × 10−4(0.21671 − t)−0.1.581 + 4.639. We note that our simulations stop
at t = 0.1848 and t = 0.21661, respectively. Even though infinite velocity is not observed
in our simulation, the velocity might blow up at a finite time. In figure 8(c), the distance
between the outer interface and the sink is approximately 1.51 × 10−3. For figure 9(c), the
distance between the outer interface and the sink is approximately 2.63 × 10−3, while the
minimum distance between the interfaces is approximately 1.58 × 10−2.
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Figure 9. Effects of sink location. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5), and
the inner interface is a circle of radius r = 0.2 with centre at (0.9, 0). The intermediate and final configurations
are shown in (b,c). In (d), we plot the velocity of various points on the interface.

A significantly different scenario is observed when the centre of the inner domain
is initially placed at (−0.3, 0). As shown in figure 10(c), both interfaces are distorted
considerably from their initial appearances. The region of the outer interface in the vicinity
of the inner interface tends to bend around the inner one in its motion towards the sink, and
eventually comes very close to the inner interface. This introduces a completely different
final appearance for the outer interface as compared to the cases discussed above. The
normal velocities also show a very different qualitative behaviour. The rightmost point
on the outer interface moves quite fast towards the sink, while the leftmost point has
a non-monotonic normal velocity. The velocity increases at early times when the outer
and inner interfaces are well separated in space. But at later times, the velocity shows
a rapid decrease when the outer interface comes close to the inner one. Note that the
leftmost point on the inner interface hardly moves, while the rightmost point shows a
normal velocity of magnitude close to 0.2. This novel ‘wrapping’ mechanism indicates
non-trivial interactions between the two interfaces.

4.7. Effects of mobility
The relation between the viscosity ratio and the interfacial morphology is indeed a
complicated one. In the case of a growing Hele-Shaw bubble, it is well known that at
later stages of evolution, the fingering patterns depend strongly on the viscosity ratio of
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Figure 10. Effects of sink location. The sink is at the origin. The mobilities of the fluids are M1 = 1, M2 = 100
and M3 = 10 000. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5). The
inner interface is a circle of radius r = 0.2 with centre at (−0.3, 0). The intermediate and final configurations
are shown in (b,c). In (d), we plot the velocity of various points on the interface.

the fluids involved in a two-fluid system (Bischofberger, Ramachandran & Nagel 2015;
Coutinho & Miranda 2020). Multi-layer cases have also been examined (Beeson-Jones
& Woods 2015; Gin & Daripa 2015). However, the investigation of such problems in the
case of sink-driven flow remains less explored. In this subsection, we check the effects of
mobility in our problem.

In figures 11 and 12, we investigate the effects of mobility on the pattern formation.
We select a new set of mobilities M1 = 0.01, M2 = 1 and M3 = 100 for regions Ω1, Ω2
and Ω3, respectively, different from the values used before. We keep the capillary number
Ca unchanged. Therefore, other parameters remaining the same, the increase of mobilities
by a factor of 100 can be understood as the same as increasing the rate of extraction Q
a hundred times, or decreasing the surface tension parameter by the same factor. In the
initial configuration, the outer interface remains unchanged. We choose the inner interface
to be a circle of radius r = 0.2, centred at two different locations, (−0.5, 0) and (0.25, 0).
The sink stays at the origin and hence inside the annular region. In figure 11(c), which
corresponds to the inner interface being placed at (−0.5, 0) initially, the outer interface
tries to reach the sink from the left and almost wraps the inner interface. This results in the
formation of two long fingers (fluid of Ω3) penetrating into fluid in Ω2 towards the sink,
and a neck-like region of fluid 2 wrapping the inner interface.

We suspect that at the tip of both fingers, two cusp-like singularities are about to form.
This is because, in the adjacent θ–α plot of the outer interface shown in figure 11(d),
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Figure 11. Effects of mobility. The sink is at the origin. The mobilities of the fluids are M1 = 0.01, M2 = 1
and M3 = 100. In (a), we display the initial configuration. At t = 0, the outer interface is given by (4.5). The
inner interface is a circle of radius 0.2 initially centred at (−0.5, 0). The intermediate and final configurations
are shown in (b,c). In (d), we show the tangent angle θ versus parametrization α. In (e), we show the close-up
of the outer interface finger at the times t = 0.1182, 0.1198 and 0.12133.

where θ is the tangent angle and α is the parameter that parametrizes the outer interface,
we observe a sharp transition in the value of θ near the region marked ‘a’ in the inset of
figure 11(c), similar to the calculation of cusp-like formation observed earlier (Tian & Nie
1998). Figure 11(e) shows a close-up of the inner interface fingers at the times t = 0.1182,
0.1198 and 0.12133.

A remarkable situation is observed when the centre of the inner interface is placed at
(0.25, 0) at t = 0, shown in figure 12(a). Here, we plot a sequence of morphologies as
insets, and the curves are the θ–α relation of the inner interface at different times close
to the point where simulation fails. The inner interface clearly experiences the presence
of the sink and is pulled strongly towards it, forming what looks to be a small but distinct
cusp-like pattern, which distinguishes itself from those reported earlier by Tian & Nie
(1998): the cusp-like morphology in our case forms in the outward direction, whereas in
their case the cusp is inwards. Again, the θ–α curve of the inner interface shows a steep
transition near α = 3.14. Finally, the normal velocity plots of the left point on the outer
and inner interfaces are shown in figures 12(b) and 12(c), respectively, for various initial
locations of the initial centre of the inner circle. The curves indicate that the motion of the
two interfaces approaches a possible (quasi-)steady state as time progresses.
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Figure 12. Effects of mobility. The sink is at the origin. The mobilities of the fluids are M1 = 0.01, M2 = 1 and
M3 = 100. The outer interface is given by (4.5). The inner interface is a circle of radius 0.2 initially centred at
(0.25, 0) in (a). In (b), we show the normal velocity of a left point on the outer interface, and in (c), the normal
velocity of a left point on the inner interface, for various location of centres of the inner circle.

4.8. Evolution of surface energy
In this subsection, we investigate the evolution of surface energy. The energy of the
interface is defined as E(t) = ∫

Γ (t) σ ds, where σ is the surface tension of the interface
Γ (t). Apparently, E(t) is related to the length of the interface. For example, when the sink
is at the centre of a circle, E(t) = 2σ

√
π A(t) in theory for a constant surface tension,

where A(t) is the area enclosed by the interface at time t. To scale out the size of the
interface, we consider a non-dimensional energy and obtain E(t)/E(0) = √

A(t)/A(0) for
the circle. When all the fluid is removed, the energy goes to zero, i.e. the interface shrinks
to a point.

First, we explore the evolution of E(t)/E(0) with respect to A(t)/A(0) for the inner
interface in our simulations when the sink is in the interior region of the inner interface.
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Figure 13. (a) The evolution of non-dimensional energy E(t)/E(0) with respect to the non-dimensional area
A(t)/A(0) when the sink is in the inner interface. (b) The evolution of non-dimensional energy E(t)/E(0) with
respect to the non-dimensional area A(t)/A(0) when the sink is in the annulus region.

Different types of various initial configurations of the two interfaces are used (see table 1).
The result is summarized in figure 13(a), and one dataset is chosen from each type. The
theoretical formula is used for the result of two circles, where the sink is placed right at
the centre of the annulus. Our simulation results coincide with the formula, while the area
does not go to zero in our simulation. For other cases, the interface remains smooth and the
energy decreases as the area shrinks at early times. When the inner interface experiences
long fingers, the energy starts to increase while the area decays. The energy evolution of
simulations shown in § 4.4 (figure 4) and § 4.5 (figure 7) also demonstrate the behaviour.
Note that for the case in figure 7, the inner interface is a circle centred at the origin.
The interactions between the inner interface and outer interface make the inner interface
deform from the circle. It takes a long time for the interface to form long fingers. Thus
the energy evolution agrees very well with the theoretical results (two circles) for a long
period.

Next, we investigate the evolution of E(t)/E(0) for the outer interface when the sink is
in the fluid region Ω2, i.e. A(t) represents the area of fluid domain Ω2, and E(t) is the
surface energy of Γ2(t). Again, different types of various initial configurations of the two
interfaces are used (see table 2). The result is summarized in figure 13(b), and one dataset
is chosen from each type. At early times, the energy and the area both decay. These data
could be fitted as E(t)/E(0) ∼ (A(t)/A(0))0.658. During this moment, the outer interface
is smooth and does not experience long fingers. Later, multiple long fingers are formed
and the surface energy starts to grow. The energy evolution of simulations shown in § 4.6
(figures 8 and 10) and § 4.7 (figure 11) also satisfies the behaviour.

5. Conclusion

In this paper, we have investigated a three-layer Hele-Shaw problem where the interfaces
move due to the presence of a sink. We present the governing equations of the
problem and the corresponding boundary integral formulation. The boundary integral
equations are discretized by spectrally accurate quadratures, and we march in time
with a second-order-accurate time-stepping technique after alleviating the numerical
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stiffness issue. We have performed simulations by varying the initial geometry of the
interfaces, the location of sink and the mobility of the fluids. In a single-interface problem,
the singularity occurs when the interface reaches the sink. However, in the multi-layer
problem, we observe that the singularity may also occur because the interfaces come very
close to each other. We observe rich interface dynamics, and report novel cases beyond
those reported previously in the literature (Tian & Nie 1998). A natural extension of
our work would be to consider a more practical geometry consisting of multiple inner
regions of fluids Ω11, Ω12, . . . , Ω1n instead of just Ω1, which would be all surrounded
by the interface Γ2. This would better capture the scenario where multiple air bubbles (or
regions of less viscous fluids) are trapped within, for example, a system with two additional
fluids. Further, it would be interesting to see the effects of multiple sinks and, possibly, a
combination of both sources and sinks.

Apart from the Hele-Shaw community, the current work could be of interest for the
multi-phase flows in permeable media, where the flow is well approximated by Darcy’s
laws. In oil-filled rocks, several fluids such as water, oil and air might be present. There
could be areas where all these fluids of contrasting viscosity flow while interacting with
each other. Our present work would prove quite relevant in such situations, especially if
we extend this problem to more complicated set-ups.

Finally, we make some comments on the experimental side of our problem. It is not
hard to find experimental studies looking into a single-layer problem (Logvinov 2019).
Multi-layer experiments are few (Cardoso & Woods 1995); however, these studies are
gaining momentum. For example, there has been work to explore the effect of squeezing
the plates, which reduces the gap distance, on the flow pattern (Moffatt, Guest & Huppert
2021). A very recent work explores the gravity-driven flow in four-layer cells (Brahim &
Thoroddsen 2022). Since the external force, i.e. gravity, drives the flow, the arrangement
does not need injection or removal of the fluid. Finally, we wish to add that suction-related
Hele-Shaw experiments are limited, and our findings might serve as a benchmark for the
experimental fluid mechanics community, and shed light on or motivate the development
of analytical works for this practically important problem.
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Appendix

In this Appendix, we display the initial configurations corresponding to figures 13(a) and
13(b) in tables 1 and 2, respectively.
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Inner interface Outer interface

Two circles x = cos(α), y = sin(α) x = 2 cos(α), y = 2 sin(α)

x = cos(α), y = sin(α) x = 3 cos(α), y = 3 sin(α)

Two
perturbed
circles

r1(α, 0) = 1 + 0.05(sin(3α) + cos(4α)) r2(α, 0) = 2 + 0.1(sin(5α) + cos(6α))
x = r1 cos(α), y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 1 + 0.05(sin(5α) + cos(6α)) r2(α, 0) = 2 + 0.1(sin(3α) + cos(4α))

x = r1 cos(α), y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 1 + 0.05(sin(4α) + cos(5α)) r2(α, 0) = 2 + 0.01(sin(10α) + cos(11α))

x = r1 cos(α), y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 1 + 0.01(sin(10α) + cos(11α)) r2(α, 0) = 2 + 0.05(sin(5α) + cos(6α))

x = r1 cos(α), y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

Two shifted
circles

x = cos(α) − 0.5, y = sin(α) x = 3 cos(α) − 0.5, y = 3 sin(α)

x = cos(α) − 0.25, y = sin(α) x = 3 cos(α) − 0.25, y = 3 sin(α)

x = 2 cos(α) − 0.75, y = 2 sin(α) x = 3 cos(α) − 0.75, y = 3 sin(α)

x = 2 cos(α) − 1.75, y = 2 sin(α) x = 3 cos(α) − 1.75, y = 3 sin(α)

Two shifted
perturbed
circles

r1(α, 0) = 1 + 0.05(sin(3α) + cos(4α)) r2(α, 0) = 2 + 0.1(sin(5α) + cos(6α))
x = r1 cos(α) − 0.65, y = r1 sin(α) x = r2 cos(α) − 0.65, y = r2 sin(α)

r1(α, 0) = 1 + 0.05(sin(3α) + cos(4α)) r2(α, 0) = 2
x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α) − 0.5, y = r2 sin(α)

r1(α, 0) = 2 + 0.1(sin(5α) + cos(6α)) r2(α, 0) = 3
x = r1 cos(α) − 1, y = r1 sin(α) x = r2 cos(α) − 1, y = r2 sin(α)

r1(α, 0) = 1 + 0.01(sin(10α) + cos(11α)) r2(α, 0) = 2 + 0.1(sin(4α) + cos(5α))

x = r1 cos(α) − 0.1, y = r1 sin(α) x = r2 cos(α) − 0.2, y = r2 sin(α)

Table 1. Initial configurations of the two interfaces when the sink is inside the inner interface.

Inner interface Outer interface

Two circles x = 0.2 cos(α) − 0.65, y = 0.2 sin(α) x = cos(α), y = sin(α)

x = 0.2 cos(α) − 0.5, y = 0.2 sin(α) x = 2 cos(α), y = 2 sin(α)

Two
perturbed
circles

r1(α, 0) = 0.2 + 0.01(sin(3α) + cos(4α)) r2(α, 0) = 1 + 0.05(sin(5α) + cos(6α))
x = r1 cos(α) − 0.65, y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 0.2 + 0.01(sin(5α) + cos(6α)) r2(α, 0) = 1 + 0.05(sin(3α) + cos(4α))

x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 0.2 + 2 × 10−3(sin(9α) + cos(10α)) r2(α, 0) = 1 + 0.05(sin(5α) + cos(6α))

x = r1 cos(α) − 0.65, y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

r1(α, 0) = 1 + 2 × 10−3(sin(5α) + cos(6α)) r2(α, 0) = 2 + 0.05(sin(9α) + cos(10α))

x = r1 cos(α) − 0.65, y = r1 sin(α) x = r2 cos(α), y = r2 sin(α)

Two shifted
circles

x = 0.2 cos(α) − 0.5, y = 0.2 sin(α) x = cos(α) − 0.5, y = sin(α)

x = 0.2 cos(α) − 0.65, y = 0.2 sin(α) x = cos(α) − 0.65, y = sin(α)

x = 0.25 cos(α) − 0.5, y = 0.2 sin(α) x = 2 cos(α) − 0.5, y = 2 sin(α)

x = 0.5 cos(α) − 0.7, y = 0.5 sin(α) x = 2 cos(α) − 0.3, y = 2 sin(α)

Two shifted
perturbed
circles

r1(α, 0) = 0.2 + 0.01(sin(3α) + cos(4α)) r2(α, 0) = 2 + 0.1(sin(5α) + cos(6α))
x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α) − 0.5, y = r2 sin(α)

r1(α, 0) = 0.2 + 0.01(sin(5α) + cos(6α)) r2(α, 0) = 2 + 0.1(sin(3α) + cos(4α))

x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α) − 0.5, y = r2 sin(α)

r1(α, 0) = 0.25 + 2 × 10−3(sin(4α) + cos(5α)) r2(α, 0) = 2 + 0.05(sin(10α) + cos(11α))

x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α) − 0.5, y = r2 sin(α)

r1(α, 0) = 0.25 + 2 × 10−3(sin(10α) + cos(11α)) r2(α, 0) = 2 + 0.05(sin(4α) + cos(5α))

x = r1 cos(α) − 0.5, y = r1 sin(α) x = r2 cos(α) − 0.2, y = r2 sin(α)

Table 2. Initial configurations of the two interfaces when the sink is in the annulus region.

998 A35-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.688


M. Zhao, A.K. Barua, J.S. Lowengrub, W. Ying and S. Li

REFERENCES

ANISS, S., BRANCHER, J.P. & SOUHAR, M. 1993 Thermal convection in a magnetic fluid in an annular
Hele-Shaw cell. J. Magn. Magn. Mater. 122 (1–3), 319–322.

ANJOS, P.H.A. & LI, S. 2020 Weakly nonlinear analysis of the Saffman–Taylor problem in a radially
spreading fluid annulus. Phys. Rev. Fluids 5 (5), 054002.

ANJOS, P.H.A., ZHAO, M., LOWENGRUB, J.S. & LI, S. 2022 Electrically controlled self-similar evolution
of viscous fingering patterns. Phys. Rev. Fluids 7 (5), 053903.

BEESON-JONES, T.H. & WOODS, A.W. 2015 On the selection of viscosity to suppress the Saffman–Taylor
instability in a radially spreading annulus. J. Fluid Mech. 782, 127–143.

BISCHOFBERGER, I., RAMACHANDRAN, R. & NAGEL, S.R. 2015 An island of stability in a sea of fingers:
emergent global features of the viscous-flow instability. Soft Matt. 11 (37), 7428–7432.

BRAHIM, A.A. & THORODDSEN, S.T. 2022 Bubble eruptions in a multilayer Hele-Shaw flow. Phys. Rev. E
105 (4), 045101.

CARDOSO, S.S.S. & WOODS, A.W. 1995 The formation of drops through viscous instability. J. Fluid Mech.
289, 351–378.

CARRILLO, L., SORIANO, J. & ORTIN, J. 1999 Radial displacement of a fluid annulus in a rotating Hele-Shaw
cell. Phys. Fluids 11 (4), 778–785.

CARRILLO, L., SORIANO, J. & ORTIN, J. 2000 Interfacial instabilities of a fluid annulus in a rotating
Hele-Shaw cell. Phys. Fluids 12 (7), 1685–1698.

CENICEROS, H.D., HOU, T.Y. & SI, H. 1999 Numerical study of Hele-Shaw flow with suction. Phys. Fluids
11 (9), 2471–2486.

CHAKRABORTY, I., RICOUVIER, J., YAZHGUR, P., TABELING, P. & LESHANSKY, A.M. 2019 Droplet
generation at Hele-Shaw microfluidic T-junction. Phys. Fluids 31 (2), 022010.

CHEN, J.D. 1989 Growth of radial viscous fingers in a Hele-Shaw cell. J. Fluid Mech. 201, 223–242.
COUTINHO, I.M. & MIRANDA, J.A. 2020 Control of viscous fingering through variable injection rates and

time-dependent viscosity fluids: beyond the linear regime. Phys. Rev. E 102 (6), 063102.
CROWDY, D. 1999 Circulation-induced shape deformations of drops and bubbles: exact two-dimensional

models. Phys. Fluids 11 (10), 2836–2845.
CROWDY, D. 2002 Theory of exact solutions for the evolution of a fluid annulus in a rotating Hele-Shaw cell.

Q. Appl. Maths 60 (1), 11–36.
CROWDY, D. & KANG, H. 2001 Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell.

J. Nonlinear Sci. 11, 279–304.
CUMMINGS, L.J. & KING, J.R. 2004 Hele-Shaw flow with a point sink: generic solution breakdown. Eur.

J. Appl. Maths 15 (1), 1–37.
DALLASTON, M.C. & MCCUE, S.W. 2012 New exact solutions for Hele-Shaw flow in doubly connected

regions. Phys. Fluids 24 (5), 052101.
DIAS, E.O. & MIRANDA, J.A. 2013 Taper-induced control of viscous fingering in variable-gap Hele-Shaw

flows. Phys. Rev. E 87 (5), 053015.
ESCHER, J. & SIMONETT, G. 1996 On Hele-Shaw models with surface tension. Math. Res. Lett. 3 (4),

467–474.
ESCHER, J. & SIMONETT, G. 1997 Classical solutions for Hele-Shaw models with surface tension. Adv. Differ.

Equ. 2 (4), 619–642.
FAST, P., KONDIC, L., SHELLEY, M.J. & PALFFY-MUHORAY, P. 2001 Pattern formation in non-Newtonian

Hele-Shaw flow. Phys. Fluids 13 (5), 1191–1212.
FENG, H., BARUA, A., LI, S. & LI, X. 2014 A parallel adaptive treecode algorithm for evolution of elastically

stressed solids. Commun. Comput. Phys. 15 (2), 365–387.
GIN, C. & DARIPA, P. 2015 Stability results for multi-layer radial Hele-Shaw and porous media flows. Phys.

Fluids 27 (1), 012101.
GIN, C. & DARIPA, P. 2021 Stability results on radial porous media and Hele-Shaw flows with variable

viscosity between two moving interfaces. IMA J. Appl. Maths 86 (2), 294–319.
GREEN, C.C., LUSTRI, C.J. & MCCUE, S.W. 2017 The effect of surface tension on steadily translating

bubbles in an unbounded Hele-Shaw cell. Proc. R. Soc. A 473 (2201), 20170050.
GREENBAUM, A., GREENGARD, L. & MCFADDEN, G.B. 1993 Laplace’s equation and Dirichlet–Neumann

map in multiply connected domains. J. Comput. Phys. 105 (2), 267–278.
GREENGARD, L. & ROKHLIN, V. 1987 A fast algorithm for particle simulations. J. Comput. Phys. 73 (2),

325–348.
HASHIMOTO, M., GARSTECKI, P., STONE, H.A. & WHITESIDES, G.M. 2008 Interfacial instabilities in a

microfluidic Hele-Shaw cell. Soft Matt. 4 (7), 1403–1413.

998 A35-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.688


A three-layer Hele-Shaw problem driven by a sink

HORNOF, V. & BAIG, F.U. 1995 Influence of interfacial reaction and mobility ratio on the displacement of oil
in a Hele-Shaw cell. Exp. Fluids 18 (6), 448–453.

HOU, T.Y., LOWENGRUB, J.S. & SHELLEY, M.J. 1994 Removing the stiffness from interfacial flows with
surface tension. J. Comput. Phys. 114 (2), 312–338.

JOU, H.-J., LEO, P.H. & LOWENGRUB, J.S. 1997 Microsructural evolution in inhomogeneous elastic media.
J. Comput. Phys. 131, 109–148.

KELLY, E.D. & HINCH, E.J. 1997 Numerical simulations of sink flow in the Hele-Shaw cell with small surface
tension. Eur. J. Appl. Maths 8 (6), 533–550.

KONDIC, L., PALFFY-MUHORAY, P. & SHELLEY, M.J. 1996 Models of non-Newtonian Hele-Shaw flow.
Phys. Rev. E 54 (5), R4536.

KRESS, R. 2014 Linear integral equations. 3rd edn, Applied Mathematical Sciences, vol. 82. Springer.
LI, S., LOWENGRUB, J.S., FONTANA, J. & PALFFY-MUHORAY, P. 2009 Control of viscous fingering patterns

in a radial Hele-Shaw cell. Phys. Rev. Lett. 102 (17), 174501.
LI, S., LOWENGRUB, J.S. & LEO, P.H. 2007 A rescaling scheme with application to the long-time simulation

of viscous fingering in a Hele-Shaw cell. J. Comput. Phys. 225 (1), 554–567.
LINDSAY, K. & KRASNY, R. 2001 A particle method and adaptive treecode for vortex sheet motion in

three-dimensional flow. J. Comput. Phys. 172 (2), 879–907.
LOGVINOV, O.A. 2019 Immiscible viscous fingering in an annular Hele-Shaw cell with a source. J. Porous

Media 22 (1), 119–130.
LU, M.J., HAO, W., LIU, C., LOWENGRUB, J.L. & LI, S. 2022 Nonlinear simulation of vascular tumor

growth with chemotaxis and the control of necrosis. J. Comput. Phys. 459, 111153.
MIRANDA, J.A. & WIDOM, M. 2000 Parallel flow in Hele-Shaw cells with ferrofluids. Phys. Rev. E 61 (2),

2114.
MOFFATT, H.K., GUEST, H. & HUPPERT, H.E. 2021 Spreading or contraction of viscous drops between

plates: single, multiple or annular drops. J. Fluid Mech. 925, A26.
MORROW, L.C., DE COCK, N. & MCCUE, S.W. 2023 Viscous fingering patterns for Hele-Shaw flow in a

doubly connected geometry driven by a pressure differential or rotation. Phys. Rev. Fluids 8 (1), 014001.
MORROW, L.C., MORONEY, T.J. & MCCUE, S.W. 2019 Numerical investigation of controlling interfacial

instabilities in non-standard Hele-Shaw configurations. J. Fluid Mech. 877, 1063–1097.
NASE, J., Derks, D. & Lindner, A. 2011 Dynamic evolution of fingering patterns in a lifted Hele-Shaw cell.

Phys. Fluids 23 (12), 123101.
PATERSON, L. 1981 Radial fingering in a Hele-Shaw cell. J. Fluid Mech. 113, 513–529.
PROKERT, G. 1998 Existence results for Hele-Shaw flow driven by surface tension. Eur. J. Appl. Maths 9 (2),

195–221.
RICHARDSON, S. 1996 Hele-Shaw flows with time-dependent free boundaries involving a concentric annulus.

Phil. Trans. R. Soc. A 354 (1718), 2513–2553.
SAAD, Y. & SCHULTZ, M. 1986 GMRES: a generalized minimum residual method for solving nonsymmetric

linear systems. SIAM J. Sci. Comput. 7, 856–869.
SAFFMAN, P.G. & TAYLOR, G.I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell

containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312–329.
SHE, Y., AOKI, H., WANG, W., LI, Z., NASIR, M., MAHARDIKA, M.A., PATMONOAJI, A.,

MATSUSHITA, S. & SUEKANE, T. 2022 Spontaneous deformation of oil clusters induced by dual
surfactants for oil recovery: dynamic study from Hele-Shaw cell to wettability-altered micromodel. Energy
Fuels 36 (11), 5762–5774.

SIDI, A. & ISRAELI, M. 1988 Quadrature methods for periodic singular and weakly singular Fredholm integral
equations. J. Sci. Comput. 3, 201–231.

TANVEER, S. & XIE, X. 2003 Analyticity and nonexistence of classical steady Hele-Shaw fingers. Commun.
Pure Appl. Maths 56 (3), 353–402.

TAYLOR, G.I. & SAFFMAN, P.G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous
medium. Q. J. Mech. Appl. Maths 12 (3), 265–279.

TIAN, F.R. & NIE, Q. 1998 Singularities in Hele-Shaw flows. SIAM J. Appl. Maths 58 (1), 34–54.
TREFETHEN, L.N. & WEIDEMAN, J.A.C. 2014 The exponentially convergent trapezoidal rule. SIAM Rev.

56 (3), 385–458.
XIE, X. & TANVEER, S. 2003 Rigorous results in steady finger selection in viscous fingering. Arch. Ration.

Mech. Anal. 166 (3), 219–286.
ZHAO, M., ANJOS, P.H.A., LOWENGRUB, J.S. & LI, S. 2020 Pattern formation of the three-layer

Saffman–Taylor problem in a radial Hele-Shaw cell. Phys. Rev. Fluids 5 (12), 124005.
ZHAO, M., ANJOS, P.H.A., LOWENGRUB, J.S., YING, W. & LI, S. 2023 Numerical study on viscous

fingering using electric fields in a Hele-Shaw cell. Commun. Comput. Phys. 33 (2), 399.

998 A35-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.688


M. Zhao, A.K. Barua, J.S. Lowengrub, W. Ying and S. Li

ZHAO, M., LI, X., YING, W., BELMONTE, A., LOWENGRUB, J.S. & LI, S. 2018 Computation of a shrinking
interface in a Hele-Shaw cell. SIAM J. Sci. Comput. 40 (4), B1206–B1228.

ZHAO, M., NIROOBAKHSH, Z., LOWENGRUB, J.S. & LI, S. 2021 Nonlinear limiting dynamics of a shrinking
interface in a Hele-Shaw cell. J. Fluid Mech. 910, A41.

ZHAO, M., YING, W., LOWENGRUB, J.S. & LI, S. 2017 An efficient adaptive rescaling scheme for computing
moving interface problems. Commun. Comput. Phys. 21 (3), 679–691.

998 A35-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

68
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.688

	1 Introduction
	2 Governing equations
	3 Boundary integral formulation and time-stepping algorithm
	4 Results and discussions
	4.1 Numerical convergence
	4.2 Numerical validation
	4.3 Motivation behind our numerical simulations
	4.4 Pattern formation with a sink and geometrically similar outer and inner interfaces
	4.5 Pattern formation with a sink and dissimilar outer and inner interfaces
	4.6 Pattern formation with a sink in the annulus region
	4.7 Effects of mobility
	4.8 Evolution of surface energy

	5 Conclusion
	Appendix
	References

