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The present article is concerned with the Lyapunov stability of stationary solutions
to the Allen–Cahn equation with a strong irreversibility constraint, which was first
intensively studied in [2] and can be reduced to an evolutionary variational inequality
of obstacle type. As a feature of the obstacle problem, the set of stationary solutions
always includes accumulation points, and hence, it is rather delicate to determine the
stability of such non-isolated equilibria. Furthermore, the strongly irreversible
Allen–Cahn equation can also be regarded as a (generalized) gradient flow; however,
standard techniques for gradient flows such as linearization and Łojasiewicz–Simon
gradient inequalities are not available for determining the stability of stationary
solutions to the strongly irreversible Allen–Cahn equation due to the non-smooth
nature of the obstacle problem.
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1. Introduction

The present article concerns the following strongly irreversible Allen–Cahn
equation:

ut =
(
∆u− u3 + κu

)
+

in Ω× (0,∞), (1.1)

where ( · )+ stands for the positive-part function (i.e., (s)+ := max{s, 0} ≥ 0 for
s ∈ R), κ is a positive constant, and Ω is a bounded domain of RN with smooth
boundary ∂Ω and whose solutions are constrained to be non-decreasing in time
(indeed, ut is always non-negative). Equation (1.1) can be regarded as a variant
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of the classical Allen–Cahn equation, which has been well studied so far and is
known as a phase separation model. Moreover, strongly irreversible evolution equa-
tions such as (1.1) also appear in some phase field models of damage and fracture.
More precisely, the phase parameter represents the degree of damage, which is
supposed to evolve monotonely due to the irreversible nature of damage and frac-
ture (see [2, §2] and references therein). Furthermore, similar constrained models
are also introduced to describe various irreversible phase transition phenomena
(see, e.g., [14, 15] and also [24], where a mitochondrial swelling process is studied
and it is a pure irreversible process). Equation (1.1) may be regarded as a simplified
one, and moreover, it is worth studying (1.1) for figuring out various features of
irreversible phase field models, although it is not in itself exactly from any physical
model.

From mathematical points of view, Eq. (1.1) is classified as a fully nonlinear
parabolic equation. On the other hand, it can be reduced to a (generalized) gradient
flow of doubly nonlinear type. Indeed, applying the (multivalued) inverse mapping
of the positive-part function ( · )+ to both sides of (1.1), we see

ut + ∂I[0,∞)(ut) 3 ∆u− u3 + κu in Ω× (0,∞), (1.2)

where ∂I[0,∞) stands for the subdifferential of the indicator function I[0,∞) over the
half-line [0,+∞), that is,

∂I[0,∞)(s) = {ξ ∈ R : ξ(σ − s) ≤ 0 for all σ ≥ 0} =

{0} if s > 0,

(−∞, 0] if s = 0
(1.3)

for s ∈ D(∂I[0,∞)) = [0,∞) (see [2] for more details). A similar problem was also
studied in [5, 28, 29]. Equation (1.2) is classified as a doubly-nonlinear evolution
equation of the form,

A(ut) +B(u) = 0 in X, 0 < t < T

in a Banach space X with two nonlinear operators A : D(A) ⊂ X → X and
B : D(B) ⊂ X → X. Doubly-nonlinear evolution equations were studied in [8, 12],
and then, Colli–Visintin [21] and Colli [20] established a celebrated abstract theory,
which has been applied to many nonlinear evolutionary problems arising from var-
ious phase-field models (see also, e.g., [9, 10, 22, 23, 36, 38–41, 43]). Furthermore,
phase-field models in fracture mechanics (see [6, 7, 26, 27]) have also been vigor-
ously studied in this direction (see, e.g., [13–15, 32, 34, 35, 37, 42] and references
therein).

In this article, we are concerned with the Cauchy–Dirichlet problem (P) for (1.1),
which is equivalently rewritten as

ut + µ−∆u+ u3 − κu = 0, µ ∈ ∂I[0,∞)(ut) in Ω× (0,∞), (1.4)

u = 0 on ∂Ω× (0,∞), (1.5)

u = u0 in Ω. (1.6)
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Lyapunov stability for strongly irreversible Allen–Cahn equations 3

Furthermore, comparing (1.4) with (1.1), one finds that

µ = −
(
∆u− u3 + κu

)
− ,

where (s)− := max{−s, 0} ≥ 0 for s ∈ R. Then the energy functional E : H1
0 (Ω) ∩

L4(Ω) → R defined by

E(w) :=
1

2

∫
Ω

|∇w(x)|2 dx+
1

4

∫
Ω

|w(x)|4 dx− κ

2

∫
Ω

|w(x)|2 dx

for w ∈ H1
0 (Ω) ∩ L4(Ω)

plays a role of Lyapunov functional, that is, t 7→ E(u(t)) is non-increasing in time
along the evolution of solutions t 7→ u(t) to (P) (see [2] for more details). The
Cauchy–Dirichlet problem above was intensively studied in [2], where the well-
posedness is proved in an L2 formulation for initial data u0 belonging to the closure
Dr in H1

0 (Ω) ∩ L4(Ω) of the set

Dr :=
{
u ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω): ‖(∆u− u3 + κu)−‖22 ≤ r
}

for an arbitrary r > 0, and qualitative properties and asymptotic behaviours of
strong solutions are studied. In particular, it is proved that (P) admits the unique
strong solution u = u(x, t) which also solves the Cauchy–Dirichlet problem for the
evolutionary variational inequality of obstacle type,

ut + µ−∆u+ u3 − κu = 0, µ ∈ ∂I[u0(x),∞)(u) in Ω× (0,∞) (1.7)

(see Definition 3.1 and Theorem 3.2 in §3). Therefore every equilibrium ψ = ψ(x)
of (1.4)–(1.6) turns out to solve

∂I[u0(x),∞)(ψ)−∆ψ + ψ3 − κψ 3 0 in Ω, ψ = 0 on ∂Ω (1.8)

(see [2, Theorem 10.1]). Throughout this article, we denote by VI(u0) the set of all
solutions ψ ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω) to the variational inequality (1.8) with the
obstacle function u0 = u0(x), which coincides with the initial datum of (P). Then
the set of stationary solutions to (P) for u0 ∈ Dr is given by

VI :=
⋃{

VI(u0) : u0 ∈ Dr

}
.

In particular, all supersolutions ψ ∈ H1
0 (Ω) ∩ H2(Ω) ∩ L6(Ω) to the classical

stationary Allen–Cahn equation,

−∆u+ u3 − κu = 0 in Ω, u = 0 on ∂Ω, (1.9)

(namely, ψ satisfies ∆ψ − ψ3 + κψ ≤ 0 in Ω and ψ=0 on ∂Ω) belong to the
set VI(ψ) ⊂ VI. Hence the set VI involves non-isolated equilibria (see Corollary
5.1 in §3). In contrast with isolated equilibria, it is more delicate to determine the
Lyapunov stability (or instability) of such non-isolated equilibria (see Definition 3.3
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in §3). Linearization and Łojasiewicz–Simon gradient inequalities are often used to
overcome such difficulties (see [1] for applications of ŁS inequalities to stability anal-
ysis of non-isolated equilibria). However, both devices do not seem to be applicable
to the present issue due to the severely nonlinear and non-smooth nature of the
obstacle problem. The main purpose of this article is to investigate the Lyapunov
stability of equilibria ψ ∈ VI under the Dynamical System (DS for short) generated
by (P) = {(1.4)–(1.6)} (or {(1.7), (1.5), (1.6)} equivalently).

In §2, we shall give fundamental properties of equilibria. Section 3 is devoted to
stating main results (see Theorem 3.7) of the present article, which is concerned
with the Lyapunov stability of equilibria lying on a small neighbourhood of the
positive least energy solution φac for the classical elliptic Allen–Cahn equation.
Here we emphasize that, even in small neighbourhoods of φac, every equilibria ψ is
non-isolated. So one cannot expect the asymptotic stability of ψ.

Notation. We denote by ‖ · ‖p, 1 ≤ p ≤ ∞ the Lp(Ω)-norm, that is,
‖f‖p := (

∫
Ω
|f(x)|p dx)1/p for p ∈ [1,∞) and ‖f‖∞ := ess supx∈Ω |f(x)|. Moreover,

we denote by (·, ·) the standard inner product of L2(Ω). We often simply write
u(t) instead of u(·, t), which is regarded as a function from Ω to R, for each fixed
t ≥ 0. Here and henceforth, we use the same notation I[0,∞) for the indicator
function over the half-line [0,∞) as well as for that over the closed convex set
K := {u ∈ L2(Ω): u ≥ 0 a.e. in Ω} in L2(Ω), namely,

I[0,∞)(u) =

0 if u ∈ K,

∞ otherwise
for u ∈ L2(Ω),

when no confusion can arise. Moreover, let ∂I[0,∞) also denote the subdifferential
operator in R (precisely, ∂RI[0,∞)) (see (1.3)) as well as that in L2(Ω) (precisely,
∂L2I[0,∞)), that is,

∂I[0,∞)(u) =
{
η ∈ L2(Ω) : (η, u− v) ≥ 0 for all v ∈ K

}
.

Here, we note that these two notions of subdifferentials are equivalent to each other
in the following sense: for u, η ∈ L2(Ω),

η ∈ ∂L2I[0,∞)(u) if and only if η(x) ∈ ∂RI[0,∞)(u(x)) a.e. in Ω

(see, e.g., [16]). Moreover, φac stands for the positive least energy solution to (1.9).
We denote by C a non-negative constant, which does not depend on the elements
of the corresponding space or set and may vary from line to line.

2. Stationary problem

Let u0 ∈ H1
0 (Ω). We are concerned with the stationary problem,

ψ ∈ H1
0 (Ω), ∂I[u0(x),∞)(ψ)−∆ψ + ψ3 − κψ 3 0 in L2(Ω). (2.1)
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In particular, we address ourselves to least energy solutions, i.e., solutions to (2.1)
achieving the minimum of the Lagrangian functional J( · ;u0) defined by

J(v;u0) := I[u0(x),∞)(v) + E(v) for v ∈ H1
0 (Ω) ∩ L4(Ω).

Let us start with proving existence of global minimizers of J( · ;u0).

Lemma 2.1. For each u0 ∈ H1
0 (Ω), the functional J( · ;u0) has a global minimizer

(i.e., minimizer over H1
0 (Ω) ∩ L4(Ω)).

Proof. The existence of global minimizers of J( · ;u0) can be proved by the Direct
Method. Indeed, the functional v 7→ J(v;u0) is weakly lower semicontinuous in
H1

0 (Ω) ∩ L4(Ω) due to the compact embedding H1
0 (Ω) ↪→ L2(Ω). Moreover, since

E(·) is coercive in H1
0 (Ω) ∩ L4(Ω), so is J( · ;u0). �

The next proposition ensures the H 2-regularity of global minimizers of J( · ;u0),
provided that u0 belongs to H2(Ω) ∩ L6(Ω) and Ω is smooth.

Proposition 2.2. Let Ω be a smooth bounded domain of RN and let
ψ ∈ H1

0 (Ω) ∩ L4(Ω) be a global minimizer of J( · ;u0). If u0 belongs to H2(Ω) ∩
H1

0 (Ω) ∩ L6(Ω), then ψ belongs to H2(Ω) ∩ L6(Ω) and the following pointwise
expression holds true:

(−∆ψ + ψ3 − κψ)(ψ − u0) = 0 a.e. in Ω, (2.2)

−∆ψ + ψ3 − κψ ≥ 0, ψ ≥ u0 a.e. in Ω. (2.3)

In particular, ψ solves (2.1).

Proof. Let ψ ∈ H1
0 (Ω) ∩ L4(Ω) be a global minimizer of J( · ;u0), that is,

ψ ∈ [ · ≥ u0] and

E(ψ) ≤ E(z) for all z ∈ [ · ≥ u0] := {w ∈ H1
0 (Ω) : w ≥ u0 a.e. in Ω},

which implies∫
Ω

∇z · ∇(ψ − z) dx+

∫
Ω

z3(ψ − z) dx ≤ 1

2
‖∇ψ‖22 −

1

2
‖∇z‖22 +

1

4
‖ψ‖44 −

1

4
‖z‖44

≤ κ

2

(
‖ψ‖22 − ‖z‖22

)
=
κ

2
(ψ + z, ψ − z)

for all z ∈ [ · ≥ u0]. Here we also observe that∫
Ω

∇z · ∇(ψ − z) dx+

∫
Ω

z3(ψ − z) dx

≥
∫
Ω

∇ψ · ∇(ψ − z) dx+

∫
Ω

ψ3(ψ − z) dx

− ‖∇(ψ − z)‖22 −
∫
Ω

(
ψ3 − z3

)
(ψ − z) dz
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≥
∫
Ω

∇ψ · ∇(ψ − z) dx+

∫
Ω

ψ3(ψ − z) dx

− ‖∇(ψ − z)‖22 − 3

∫
Ω

(ψ2 + z2)|ψ − z|2 dz.

Let w ∈ [ · ≥ u0] and θ ∈ (0, 1) be arbitrarily fixed and substitute
z = zθ := (1− θ)ψ + θw ∈ [ · ≥ u0]. Then dividing both sides by θ > 0, we see that∫

Ω

∇ψ · ∇(ψ − w) dx+

∫
Ω

ψ3(ψ − w) dx

≤ κ

2
(2ψ + θ(w − ψ), ψ − w) + θ‖∇(ψ − w)‖22

+ 3θ

∫
Ω

(ψ2 + z2θ)|ψ − w|2 dx.

Passing to the limit as θ → 0+, we deduce that∫
Ω

∇ψ · ∇(ψ − w) dx+

∫
Ω

ψ3(ψ − w) dx ≤ κ(ψ,ψ − w) (2.4)

for any w ∈ [ · ≥ u0]. On the other hand, setting f := κψ−ψ3 and recalling (2.4),
one can rewrite the inequality above as∫

Ω

∇ψ · ∇(ψ − w) dx ≤
∫
Ω

f(ψ − w) dx (2.5)

for any w ∈ [ · ≥ u0]. Now, we are ready to apply the regularity theory for
variational inequalities of obstacle type (see [33], [30] and [5, §3]). Then since f =
κψ − ψ3 ∈ L4/3(Ω) and u0 ∈ H2(Ω), we deduce that ψ belongs to W 2,4/3(Ω) and
the following pointwise expression holds true:

(−∆ψ − f)(ψ − u0) = 0, −∆ψ ≥ f, ψ ≥ u0 a.e. in Ω,

which implies (2.2) and (2.3) by the relation f = κψ − ψ3. Hence we can derive

∂I[u0(x),∞)(ψ)−∆ψ + ψ3 − κψ 3 0 in L4/3(Ω).

Now set v = ψ − u0 ≥ 0. Then v solves

∂I[0,∞)(v)−∆v + v3 3 ∆u0 − 3v2u0 − 3vu20 − u30 + κ(u0 + v). (2.6)

Let αn : [0,∞) → [0,∞) be a non-negative bounded increasing function of class
C 2 satisfying

αn(s) =

(n+ 1)3 if s ≥ n+ 2,

s3 if 0 ≤ s ≤ n,
0 ≤ αn(s) ≤ s3 for s ≥ 0
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for each n ∈ N and test (2.6) by αn(v) ∈ H1
0 (Ω)∩L∞(Ω). Then since ηαn(v) = 0

if η ∈ ∂I[0,∞)(v), using Young’s inequality, we have∫
Ω

∇v · ∇αn(v) dx+

∫
Ω

v3αn(v) dx

=

∫
Ω

(∆u0)αn(v) dx− 3

∫
Ω

v2αn(v)u0 dx− 3

∫
Ω

vαn(v)u
2
0

−
∫
Ω

αn(v)u
3
0 + κ

∫
Ω

αn(v)(u0 + v) dx

≤
∫
Ω

(∆u0)αn(v) dx+

∫
Ω

(
1

2
v3 + C|u0|3

)
αn(v) dx

+

∫
Ω

|u0|3αn(v) + κ

∫
Ω

|v|3(|u0|+ |v|) dx

≤ ‖∆u0‖2‖αn(v)‖2 +
1

2

∫
Ω

v3αn(v) dx+ C

∫
Ω

|u0|3αn(v) dx

+ κ
(
‖v‖34‖u0‖4 + ‖v‖44

)
.

Thus, we have∫
Ω

∇v · ∇αn(v) dx+
1

2

∫
Ω

v3αn(v) dx

≤ ‖∆u0‖2‖αn(v)‖2 + C‖u0‖36‖αn(v)‖2 + κ
(
‖v‖34‖u0‖4 + ‖v‖44

)
.

Here we note that∫
Ω

∇v · ∇αn(v) dx ≥ 0 and

∫
Ω

v3αn(v) dx ≥ ‖αn(v)‖22.

Therefore

‖αn(v)‖22 ≤ C
[
‖∆u0‖22 + ‖u0‖66 + κ

(
‖v‖34‖u0‖4 + ‖v‖44

)]
<∞,

which implies

αn(v) → v3 weakly in L2(Ω).

In particular, we deduce that v ∈ L6(Ω). Recalling that v = ψ−u0 and u0 ∈ L6(Ω),
we obtain ψ ∈ L6(Ω). Now, going back to (2.5) and combining it with the improved
regularity f = κψ − ψ3 ∈ L2(Ω), we deduce that ψ ∈ H2(Ω) from the regularity
result for obstacle problems. The proof is completed. �

Remark 2.3. Let ψ be a global minimizer of J( · ;u0) again. In a similar fashion,
one can also prove ψ ∈ W 2,r(Ω) ∩ L3r(Ω) for r ∈ (2,∞), provided that u0 ∈
W 2,r(Ω) ∩ H1

0 (Ω) ∩ L3r(Ω). Hence, for r >N, the Hölder regularity ψ ∈ C1,α(Ω)
with α = 1−N/r ∈ (0, 1) also follows. On the other hand, the C1,1-regularity of ψ
still seems open (cf. see, e.g., [19]).
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3. Lyapunov stability of equilibria

We are concerned with strong solutions for (P) defined in the following (see [2,
Definition 3.1]):

Definition 3.1. (Strong solution [2]) A function u ∈ C([0,∞);L2(Ω)) is said to
be a solution (or a strong solution) of the Cauchy–Dirichlet problem (P), if the
following conditions are all satisfied :

(i) u belongs to W 1,2(0, T ;L2(Ω)), C([0, T ];H1
0 (Ω)∩L4(Ω)), L2(0, T ;H2(Ω)) and

L6(0, T ;L6(Ω)) for any 0 < T <∞;
(ii) there exists η ∈ L∞(0,∞;L2(Ω)) such that

ut + η −∆u+ u3 − κu = 0, η ∈ ∂I[0,∞)(ut) for a.e. (x, t) ∈ Ω× (0,∞)

and η = −
(
∆u − u3 + κu

)
− for a.e. (x, t) ∈ Ω × (0,∞). Hence u also solves

(1.1) a.e. in Ω× (0,∞);
(iii) u(·, 0) = u0 a.e. in Ω.

We further recall the following (see [2, Theorems 3.2, 5.1, and 6.1]):

Theorem 3.2 (Well-posedness [2]). Let r > 0 be arbitrarily fixed and let u0 belong

to the closure Dr
H1
0∩L

4

of Dr in H
1
0 (Ω)∩L4(Ω). Then the Cauchy–Dirichlet problem

(P) admits the unique strong solution u = u(x, t) which solves (1.7) a.e. in Ω ×

(0,∞) as well. Moreover, u(t) = u(·, t) lies on Dr
H1
0∩L

4

for any t ≥ 0.

We set

X = H1
0 (Ω) ∩ L4(Ω)

equipped with the norm ‖ · ‖X := ‖∇ · ‖2 + ‖ · ‖4. Fix r > 0 arbitrarily and let

D = Dr,

which is the closure of Dr in the strong topology of X. Since D is an invariant set
under the evolution of strong solutions to (1.4)–(1.6), one can define a DS generated
by (1.4)–(1.6) on the phase set D.

Now, let us define notions of Lyapunov stability and instability of equilibria
ψ ∈ VI in the following sense:

Definition 3.3. (Lyapunov stability of ψ ∈ VI). Let ψ ∈ VI.

(i) ψ is said to be stable, if for any ε> 0 there exists δ > 0 such that for any strong
solution u = u(x, t) of (1.4) and (1.5), it holds that

sup
t≥0

‖u(t)− ψ‖X < ε,

whenever u(0) ∈ D and ‖u(0)− ψ‖X < δ;
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(ii) ψ is said to be unstable, if ψ is not stable;
(iii) ψ is said to be asymptotically stable, if ψ is stable and there exists δ̄ > 0 such

that for any strong solution u = u(x, t) of (1.4) and (1.5), it holds that

lim
t→∞

‖u(t)− ψ‖X = 0,

whenever u(0) ∈ D and ‖u(0)− ψ‖X < δ̄.

Before stating main results of this section, let us briefly recall some well-known
facts for the classical (elliptic) Allen–Cahn equation (1.9): Let d be the infimum of
E(·) over X. Since E is coercive and smooth in X, by the Direct Method, one can
verify that E has a global minimizer φac ∈ X, which solves the Euler–Lagrange
equation (1.9). Moreover, noting that d < 0, we observe that φac 6= 0. Since |φac|
also minimizes E over X, we find that φac is sign-definite in Ω from the strong
maximum principle. The uniqueness of positive solutions to (1.9) can be proved
as in [18]. Thus the infimum d is achieved by the two sign-definite solutions ±φac
to (1.9) only. Furthermore, ±φac is isolated in X from the other critical points of
E(·). Indeed, as in [3, Lemma 4], one can verify that any sign-changing solutions to
(1.9) are isolated in X from the sign-definite solutions due to the strong maximum
principle. In what follows, for simplicity, we shall use the following notation:

[E ≤ a] := {w ∈ X : E(w) ≤ a},
B(u; r) := {w ∈ X : ‖w − u‖X < r}

for a ∈ R, r > 0 and u ∈ X.

Lemma 3.4. (Geometry of E(·))

(i) For all ε> 0, there exists rε > 0 such that B(φac; rε) ∪ B(−φac; rε) ⊂ [E ≤
d+ ε].

(ii) For all r> 0, there exists εr > 0 such that [E ≤ d+εr] ⊂ B(φac; r)∪B(−φac; r).

Proof. This lemma may be standard (cf. see [3, 4, 31]), but we give a proof for the
completeness. Assertion (i) follows immediately from the continuity of E(·) in X. As
for the assertion (ii), suppose to the contrary that there exist a number r0 > 0 and
a sequence (un) in X such that E(un) ≤ d+1/n and un 6∈ B(φac; r0)∪B(−φac; r0)
for n ∈ N. Since E is coercive in X, (un) is bounded in X. Hence, up to a (not

https://doi.org/10.1017/prm.2024.97 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.97


10 G. Akagi and M. Efendiev

relabelled) subsequence, one can verify that un → u weakly in X and strongly in
L2(Ω) for some u ∈ X. Moreover, we find that

1

2
lim sup
n→∞

‖∇un‖22 ≤ lim
n→∞

E(un)−
1

4
lim inf
n→∞

‖un‖44 +
κ

2
lim
n→∞

‖un‖22

≤ d− 1

4
‖u‖44 +

κ

2
‖u‖22

≤ E(u)− 1

4
‖u‖44 +

κ

2
‖u‖22 =

1

2
‖∇u‖22,

which along with the uniform convexity of ‖∇·‖2 yields un → u strongly in H1
0 (Ω).

We can also similarly prove the strong convergence of (un) in L4(Ω). Thus, we
obtain un → u strongly in X and E(u) = d. Since E has only two global minimizers
±φac, the limit u must coincide with either of them; however, it is a contradiction
to the assumption un 6∈ B(φac; r0) ∪B(−φac; r0) for n ∈ N. Thus (ii) follows. �

In what follows, we denote by φac the positive least energy solution of (1.9). Here
we note that φac also belongs to VI, e.g., φac ∈ VI(u0) with u0 ≡ 0. Let us start
with the following simple observation:

Proposition 3.5. The least energy solutions ±φac of (1.9) are stable in the sense
of Definition 3.3 equations (1.4). However, ±φac is never asymptotically stable in
the sense of Definition 3.3.

Proof. This proposition can be proved as in [3, 4, 31], but we give a proof for the
convenience of the reader. Let r := ‖(−φac) − φac‖X > 0. For any ε ∈ (0, r), we
claim that

cε := inf{E(w) : w ∈ X, ‖w − φac‖X = ε} > d. (3.1)

Indeed, suppose to the contrary that there exists a sequence (wn) in X such that
‖wn − φac‖X = ε and E(wn) → d. Since E is coercive in X, one can take a (not
relabelled) subsequence of (n) and w∞ ∈ X such that wn → w∞ strongly in X as
in the proof of (ii) of Lemma 3.4. Hence, we have E(w∞) = d (hence w∞ ∈ {±φac})
and ‖w∞ − φac‖X = ε ∈ (0, r), which however contradicts w∞ ∈ {±φac}. Thus,
(3.1) follows. From (i) of Lemma 3.4, one can take δ ∈ (0, ε) small enough so
that E(w) < cε for w ∈ B(φac; δ). Let u0 ∈ B(φac; δ) and let u = u(x, t) be the
strong solution to (1.4)–(1.6) with the initial datum u0. Then, we observe that
E(u(t)) ≤ E(u0) < cε for t ≥ 0. We claim that u(t) ∈ B(φac; ε) for t ≥ 0. Indeed,
if u(t0) ∈ ∂B(φac; ε) for some t0 > 0, then E(u(t0)) ≥ cε, which is a contradiction.
Therefore φac turns out to be stable. As for the second half of the assertion, see
the following remark. �

Remark 3.6. Comparison to the Allen–Cahn equation Concerning the usual
Allen–Cahn equation, two global minimizers of E are asymptotically stable in
Lyapunov’s sense. However, as for the strongly irreversible Allen–Cahn equation,
φac is never asymptotically stable; indeed, if we take an initial data u0 which is
sufficiently close to φac in X but slightly greater than φac on a subset of Ω, then
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u(t) never converges to φac as t→ ∞ due to the presence of the obstacle function
u0 and the non-decrease of t 7→ u(x, t).

The main result of the present article is stated as follows:

Theorem 3.7 (Lyapunov stability of equilibria close to ±φac) Assume that N ≤ 4.
Let ψ ∈ VI be such that ψ ∈ B(φac; δ0) ∪ B(−φac; δ0) for some δ0 > 0 sufficiently
small. Then ψ is stable in the sense of Definition 3.3.

In order to prove Theorem 3.7, the assumption N ≤ 4 will be used only for
deriving the continuous embedding H1

0 (Ω) ↪→ L4(Ω), which enables us to assure
that the functional E is well defined on the Hilbert spaceH1

0 (Ω). Indeed, the Hilbert
structure of the domain for E will essentially be used in the proofs of Lemmas 4.1
and 4.5.

4. Proof of Theorem 3.7

We shall prove the assertion for ψ ∈ VI lying in a small neighbourhood of φac only.
However, it can also be proved for −φac in the same manner. Let us start with
verifying the strict convexity of E(·) in a small neighbourhood of φac.

Lemma 4.1. The functional v 7→ E(v) is strictly convex in a small neighbourhood
B(φac; δ0) of φac.

Proof. The linearized operator Lφac : D(Lφac) = H2(Ω)∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω)

given by

Lφac(u) := −∆u+ 3φ2acu− κu for u ∈ H1
0 (Ω)

is self-adjoint and has a compact resolvent. Hence Lφac possesses a sequence (λj , ej)
of eigenpairs such that λj ↗ ∞ as j → ∞ and (ej) forms a complete orthonormal
system (CONS for short) of L2(Ω) (as well as a CONS of H1

0 (Ω) with different
normalization). Moreover, the principal eigenvalue λ1 of Lφac is positive; indeed,
let (e1, λ1) be the principal eigenpair of Lφac . Test Lφac(e1) = λ1e1 by φac and
integrate by parts to observe that

(−∆φac, e1) + 3

∫
Ω

φ3ace1 dx− κ(φac, e1) = λ1(φac, e1),

which along with (1.9) gives

2

∫
Ω

φ3ace1 dx = λ1

∫
Ω

φace1 dx.

Since the principal eigenfunction e1 and the least energy solution φac of (1.9) are
sign-definite, we obtain λ1 > 0 (see, e.g., [25, §6.5.2], [17, §9.8] for properties of e1).
Therefore, we have
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〈E′′(φac)(u), u〉 ≥ λ1‖u‖22 for all u ∈ H1
0 (Ω),

where E′′ : H1
0 (Ω) → L(H1

0 (Ω),H
−1(Ω)) denotes the second (Fréchet) derivative

of E and which also implies

〈[E′′(φac)](u), u〉 = θ

(
‖∇u‖22 + 3

∫
Ω

φ2
acu

2 dx− κ‖u‖22
)

+ (1− θ)〈E′′(φac)(u), u〉

≥ θ‖∇u‖22 + {(1− θ)λ1 − κθ} ‖u‖22 ≥ θ‖∇u‖22 for all u ∈ H1
0 (Ω)

by choosing θ > 0 small enough. Now, let z ∈ B(φac; δ0), where δ0 > 0 will be chosen
below. Since E(·) is obviously of class C 3 in H1

0 (Ω) from N ≤ 4, one observes that

〈E′′(z)u, u〉 ≥ 〈[E′′(φac)](u), u〉

− sup
w∈B(φac;δ0)

‖E(3)(w)‖L(H1
0 (Ω),L(H1

0 (Ω),H−1(Ω)))‖∇z −∇φac‖2‖∇u‖22

≥

(
θ − sup

w∈B(φac;δ0)
‖E(3)(w)‖L(H1

0 (Ω),L(H1
0 (Ω),H−1(Ω)))δ0

)
‖∇u‖22

≥ θ

2
‖∇u‖22 for u ∈ H1

0 (Ω),

where E(3) : H1
0 (Ω) → L(H1

0 (Ω),L(H1
0 (Ω),H

−1(Ω))) stands for the third-order
(Fréchet) derivative of E, by choosing δ0 > 0 small enough. Thus, E(·) is strictly
convex in the neighbourhood B(φac; δ0). �

One can assume δ0 > 0 small enough so that

B(φac; δ0) ∩B(−φac; δ0) = ∅ (4.1)

without any loss of generality. Due to (ii) of Lemma 3.4, there exists ε0 > 0 such
that

[E ≤ d+ ε0] ⊂ B(φac; δ0/2) ∪B(−φac; δ0/2). (4.2)

Moreover, by (i) of Lemma 3.4, one can take r0 ∈ (0, δ0/2) such that

B(φac; r0) ∪B(−φac; r0) ⊂ [E ≤ d+ ε0] (4.3)

(cf. see [3, 4]).

Lemma 4.2. Let u = u(x, t) be a solution of (1.4)–(1.6). If u0 lies on B(φac; r0),
then u(t) stays on B(φac; δ0/2) for all t ≥ 0.

Proof. From the fact that u0 ∈ B(φac; r0), we find by (4.3) that u0 ∈ [E ≤ d+ ε0].
Hence u(t) lies on B(φac; δ0/2) ∪B(−φac; δ0/2) by (4.2), since E(u(t)) ≤ E(u0) ≤
d+ ε0 for all t ≥ 0. We deduce by (4.1) that u(t) ∈ B(φac; δ0/2) for all t ≥ 0. �

The following lemma is concerned with existence and uniqueness of (local)
minimizers of the functional v 7→ J(v;u0).
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Lemma 4.3. If u0 ∈ B(φac; δ0), then J( · ;u0) has a unique minimizer over

B(φac; δ0).

Proof. As in Lemma 2.1, one can prove the existence of a minimizer of J( · ;u0)
over B(φac; δ0) by employing the direct method. It remains to prove uniqueness.

Suppose that there exist two different minimizers u1, u2 ∈ B(φac; δ0) of J( · ;u0)
over B(φac; δ0). Then the convex combination uθ := (1 − θ)u1 + θu2 ∈ B(φac; δ0)
belongs to the closed convex set [ · ≥ u0] := {v ∈ H1

0 (Ω): v ≥ u0 a.e. in Ω}.
Moreover, by the strict convexity of E(·) in B(φac; δ0) (recall Lemma 4.1) and by
u1 6= u2, it follows that

J(uθ;u0) = E(uθ) < (1− θ)E(u1) + θE(u2)

= (1− θ)J(u1;u0) + θJ(u2;u0) = inf
v∈B(φac;δ0)

J(v;u0),

which contradicts the assumption that u1, u2 minimize J( · ;u0) over B(φac; δ0). �

The next lemma provides a relation between solutions to (2.1) and (local)
minimizers of J( · ;u0) for u0 ∈ H1

0 (Ω).

Lemma 4.4. Let z be a solution of (2.1) with the obstacle u0 ∈ H1
0 (Ω) such that

z ∈ B(φac; δ0). Then z minimizes J( · ;u0) over B(φac; δ0).

Proof. Define a convex functional ϕ : H1
0 (Ω) → R by

ϕ(w) :=
1

2
‖∇w‖22 +

1

4
‖w‖44 for w ∈ H1

0 (Ω).

By (2.1) and the definition of subdifferential, it follows that

I[u0(x),∞)(v) + ϕ(v)− I[u0(x),∞)(z)− ϕ(z)

≥ κ(z, v − z) =
κ

2
‖v‖22 −

κ

2
‖z‖22 −

κ

2
‖v − z‖22

for all v ∈ L2(Ω), that is,

J(v;u0)− J(z;u0) ≥ −κ
2
‖v − z‖22 for all v ∈ L2(Ω). (4.4)

By Lemma 4.1, the functional J( · ;u0) is (strictly) convex in B(φac; δ0), and hence,
let w ∈ B(φac; δ0), θ ∈ (0, 1) and substitute v = (1−θ)z+θw ∈ B(φac; δ0) to (4.4).
Then we see that

J(w;u0)− J(z;u0) ≥ −κθ
2
‖w − z‖22 for all w ∈ B(φac; δ0).

Letting θ→ 0, we deduce that z minimizes J( · ;u0) over B(φac; δ0). �

Moreover, we have

https://doi.org/10.1017/prm.2024.97 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.97


14 G. Akagi and M. Efendiev

Lemma 4.5. If u0,n → u0 strongly in H1
0 (Ω) and u0 ∈ B(φac; δ0), then each

sequence (ψn) of minimizers of J( · ;u0,n) over B(φac; δ0) converges, up to a

subsequence, to the minimizer ψ of J( · ;u0) over B(φac; δ0) strongly in H1
0 (Ω).

Proof. Assume that u0,n → u0 strongly in H1
0 (Ω) and denote Kn := [ · ≥ u0,n] ∩

B(φac; δ0) and K := [ · ≥ u0] ∩B(φac; δ0). Then we claim that

Kn → K on H1
0 (Ω) in the sense of Mosco as n→ +∞

(in other words, IKn converges to IK on H1
0 (Ω) in the sense of Mosco, see, e.g., [11]),

more precisely, it holds that

(i) (Existence of strong-recovery sequences) For any u ∈ K, there exists a sequence
(un) such that un ∈ Kn for all n ∈ N and un → u strongly in H1

0 (Ω).
(ii) (Weak-liminf condition) Let u ∈ H1

0 (Ω) and let (un) be a sequence such that
un ∈ Kn for all n ∈ N and un → u weakly in H1

0 (Ω). Then u belongs to K.

We first prove (i). Let us u ∈ K. If u = u0, one can take un := u0,n ∈ Kn to satisfy
the desired property of (i). Hence we assume u 6= u0. We set wn := u− u0 + u0,n.
Then wn ∈ [ · ≥ u0,n] and wn → u strongly in H1

0 (Ω). In case ‖u−φac‖H1
0(Ω) < δ0,

for n ∈ N large enough, un := wn belongs to Kn. In case ‖u− φac‖H1
0(Ω) = δ0, we

set un := θnwn + (1 − θn)u0,n ∈ Kn, where θn ∈ [0, 1] is determined as follows:
If ‖wn − φac‖H1

0(Ω) ≤ δ0, then we set θn = 1 (and hence, un = wn). Otherwise,

we take θn ∈ [0, 1) such that ‖un − φac‖H1
0(Ω) = δ0 (indeed, it is possible since

u0,n ∈ B(φac; δ0) for n large enough), namely, we have

δ20 = ‖un − φac‖2H1
0(Ω)

= ‖u0,n − u+ θn(u− u0) + u− φac‖2H1
0(Ω)

. (4.5)

By θn ∈ [0, 1], up to a (not relabelled) subsequence, it holds that θn → θ ∈ [0, 1].
In case θ=1, we obtain

un → u strongly in H1
0 (Ω).

In case θ < 1, we see that

0 = (1− θ)‖u0 − u‖2
H1
0(Ω)

− 2(u0 − u, φac − u)H1
0(Ω) (4.6)

from the fact that ‖u− φ‖H1
0(Ω) = δ0 as well as (4.5). We also note that1.

2

(
u0 − u

‖u0 − u‖H1
0(Ω)

, φac − u

)
H1
0(Ω)

≥ ‖u− u0‖H1
0(Ω), (4.7)

1.Indeed, since u0 ∈ B(φac; δ0) and u ∈ ∂B(φac; δ0), one can take k > 1 such that ũ := u+k(u0−
u) ∈ ∂B(φac; δ0). Moreover, we note that ‖ũ−u‖H1

0 (Ω) = 2((ũ−u)/‖ũ−u‖H1
0 (Ω), φac −u)H1

0 (Ω)

from the parallelogram law in H1
0 (Ω). Thus, (4.7) follows from ũ− u = k(u0 − u) and k > 1.
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which along with (4.6) yields θ=0. Therefore, limn→∞(un − u0,n) =
limn→∞ θn(wn − u0,n) = 0, and hence, δ0 = ‖u0 − φac‖H1

0(Ω). However, it is

a contradiction to the fact u0 ∈ B(φac; δ0). Hence we conclude that θ=1, and
hence, un → u0 strongly in H1

0 (Ω). As for (ii), if un ∈ Kn and un → u weakly
in H1

0 (Ω), then ‖u − φac‖H1
0(Ω) ≤ δ0, and moreover, by the compact embedding

H1
0 (Ω) ↪→ L2(Ω), we deduce that un → u strongly in L2(Ω), and therefore, u ≥ u0

a.e. in Ω.
By using the Mosco convergence, we shall prove the convergence of minimizers

ψn and identify the limit. One first finds that (ψn) is bounded in H1
0 (Ω). Therefore

ψn → ψ weakly in H1
0 (Ω) up to a subsequence. Due to the weak-liminf condition

(see (ii) above), it follows that ψ ∈ K. Noting that

J(ψn;u0,n) ≤ J(v;u0,n) for all v ∈ H1
0 (Ω), (4.8)

we can deduce that

J(ψ;u0) ≤ J(v;u0) for all v ∈ H1
0 (Ω).

Indeed, for any v ∈ K, one can take a strong-recovery sequence (vn) in Kn such
that vn → v strongly in H1

0 (Ω) (see (i) above). Substitute v = u0,n to (4.8). Then
by letting n→ ∞, the right-hand side converges as follows:

lim
n→∞

J(vn;u0,n) = lim
n→∞

E(vn) = E(v) = J(v;u0).

On the other hand,

lim inf
n→∞

J(ψn;u0,n) = lim inf
n→∞

E(ψn) ≥ E(ψ) = J(ψ;u0)

due to the weak lower-semicontinuity of E(·) in H1
0 (Ω). Thus J(ψ;u0) ≤ J(v;u0)

for all v ∈ K. We finally prove the strong convergence of (ψn) in H
1
0 (Ω) as n→ ∞.

Let (ψ̂n) be a recovery sequence in H1
0 (Ω) of ψ (hence, ψ̂n ∈ Kn and ψ̂n → ψ

strongly in H1
0 (Ω)). Then

1

2
lim sup
n→∞

‖∇ψn‖22 ≤ lim sup
n→∞

J(ψn;u0,n)−
1

4
lim inf
n→∞

‖ψn‖44 +
κ

2
lim
n→∞

‖ψn‖22

≤ lim sup
n→∞

J(ψ̂n;u0,n)−
1

4
‖ψ‖44 +

κ

2
‖ψ‖22

≤ J(ψ;u0)−
1

4
‖ψ‖44 +

κ

2
‖ψ‖22 =

1

2
‖∇ψ‖22,

which together with the uniform convexity of H1
0 (Ω) ensures that ψn → ψ strongly

in H1
0 (Ω) as n→ ∞. �

Furthermore, we observe that
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Lemma 4.6. Let u0 ∈ H1
0 (Ω) and let ψ be a minimizer of J( · ;u0) over B(φac; δ0).

Let [u0, ψ] := {v ∈ H1
0 (Ω): u0 ≤ v ≤ ψ a.e. in Ω}. Then ψ also minimizes J( · ; v)

over B(φac; δ0) for any v ∈ [u0, ψ]. In particular, it holds that

ψ = argmin{J(v;ψ) : v ∈ B(φac; δ0)}.

Proof. We observe that

J(ψ; v) = E(ψ) = J(ψ;u0) ≤ J(u;u0) = E(u)

for all u ∈ [ · ≥ u0] ∩ B(φac; δ0). In particular, for any v ∈ [u0, ψ] and u ∈ [ · ≥
v] ∩B(φac; δ0), it holds that

J(ψ; v) ≤ E(u) = J(u; v).

Therefore, ψ also minimizes J( · ; v) over B(φac; δ0). �

Lemma 4.7. Let ψ ∈ VI be such that ψ ∈ B(φac; r0). For any ε> 0, there exists

a constant δ ∈ (0, r0) such that for each u0 ∈ B(ψ; δ), the minimizer ψ̂ of J( · ;u0)
over B(φac; δ0) belongs to B(ψ; ε).

Proof. By assumption, ψ is a solution of (2.1) with some u0 ∈ D. Then, ψ
also solves (2.1) with u0 replaced by ψ; indeed, ∂I[u0(x),∞)(ψ(x)) ⊂ (−∞, 0] =
∂I[ψ(x),∞)(ψ(x)). Hence by ψ ∈ B(φac; r0) and Lemma 4.4, ψ turns out to be the

(unique) minimizer of J( · ;ψ) over B(φac; δ0), and it lies on B(φac; δ0/2). We prove
the assertion by contradiction. Suppose to the contrary that there exists ε0 > 0
such that for all n ∈ N one can take u0,n ∈ B(ψ; 1/n) so that minimizers ψ̂n of

J( · ;u0,n) over B(φac; δ0) do not belong to B(ψ; ε0). Then u0,n → ψ strongly in

H1
0 (Ω). By Lemma 4.5, up to a subsequence, ψ̂n converges strongly in H1

0 (Ω) to

a minimizer of J( · ;ψ) over B(φac; δ0), which is uniquely determined (due to the
fact ψ ∈ B(φac; r0) and Lemma 4.3) and nothing but ψ. However, it contradicts

the fact that ψ̂n 6∈ B(ψ; ε0). �

We finally set up the following lemma:

Lemma 4.8. Let ψ ∈ VI be such that ψ ∈ B(φac; r0/2). For any ε> 0 there exists
δ > 0 such that, for any solution u(x, t) of (P), it holds that

sup
t≥0

‖u(t)− ψ‖4 < ε,

whenever ‖∇u(0)−∇ψ‖2 < δ and u(0) ∈ D.

Proof. First, note that ψ is the minimizer of J( · ;ψ) over B(φac; δ0) (see Lemmas
4.4 and 4.6). Let ε> 0 and let u0 ∈ B(ψ; δ)∩D be fixed for some δ ∈ (0, (r0/2)∧ε).
Then u0 ∈ B(φac; r0). By Lemma 4.2, u(t) lies on B(φac; δ0/2) for all t ≥ 0. On the

other hand, u(t) converges to a solution ψ̂ ∈ B(φac; δ0) of (2.1) (with u0) strongly

in H1
0 (Ω) as t → ∞ (see [2, Theorem 10.1]). Then Lemma 4.4 ensures that ψ̂
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minimizes J( · ;u0) over B(φac; δ0). Hence, by Lemma 4.7, if δ > 0 is small enough,

then the minimizer ψ̂ also lies on the ε-neighbourhood B(ψ; ε) of ψ.
Now, recalling the non-decrease of u(x, t) in t, we deduce that

u0 − ψ ≤ u(t)− ψ ≤ ψ̂ − ψ a.e. in Ω

for all t ≥ 0, and therefore, since H1
0 (Ω) ↪→ L4(Ω), we obtain

sup
t≥0

‖u(t)− ψ‖4 ≤ max{‖u0 − ψ‖4, ‖ψ − ψ̂‖4} < Cε.

This completes the proof. �

Now, we are in a position to prove the assertion of Theorem 3.7.

Proof of Theorem 3.7. Subtract (2.1) from (1.4) and test it by wt = (u− ψ)t = ut,
where w := u− ψ. Then we see that

‖wt‖22 +
1

2

d

dt
‖∇w‖22 +

d

dt

(
1

4
‖u‖44 − (ψ3, w)

)
≤ κ

2

d

dt
‖w‖22.

Here we used the facts that

(η, wt) = (η, ut) = 0, (−ζ, ut) ≥ 0

for η ∈ ∂I[0,∞)(ut) and ζ ∈ ∂I[u0(x),∞)(ψ). Hence

1

2
‖∇w(t)‖22 +

1

4
‖u(t)‖44 − (ψ3, w(t))− κ

2
‖w(t)‖22

≤ 1

2
‖∇w(0)‖22 +

1

4
‖u(0)‖44 − (ψ3, w(0))− κ

2
‖w(0)‖22.

Therefore

1

2
‖∇w(t)‖22 +

1

4
‖u(t)‖44

≤ 1

2
‖∇w(0)‖22 +

1

4
‖u(0)‖44 − (ψ3, w(0))− κ

2
‖w(0)‖22 + (ψ3, w(t)) +

κ

2
‖w(t)‖22

≤ 1

2
‖∇w(0)‖22 +

1

4
‖u(0)‖44 + ‖ψ‖34‖w(0)‖4 + ‖ψ‖34‖w(t)‖4 +

κ

2
‖w(t)‖22,

which implies

1

2
‖∇w(t)‖22

≤ 1

2
‖∇w(0)‖22 + ‖ψ‖34‖w(0)‖4 + ‖ψ‖34‖w(t)‖4 +

κ

2
‖w(t)‖22

+
1

4

∫
Ω

(
|u(x, 0)|2 + |u(x, t)|2

)
(|u(x, 0)|+ |u(x, t)|) |u(x, t)− u(x, 0)| dx

≤ 1

2
‖∇w(0)‖22 + ‖ψ‖34‖w(0)‖4 + ‖ψ‖34‖w(t)‖4 +

κ

2
‖w(t)‖22

+ C
(
‖u(t)‖24 + ‖u(0)‖24

)
(‖u(t)‖4 + ‖u(0)‖4) (‖w(t)‖4 + ‖w(0)‖4) .
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Combining this fact with Lemma 4.8 and u ∈ L∞(0, T ;L4(Ω)), for any ε> 0, one
can take δ > 0 small enough so that

‖∇w(t)‖22 ≤ C
(
‖∇w(0)‖22 + ‖w(0)‖4 + ‖w(t)‖4 + ‖w(t)‖22

)
< ε2,

provided that ‖∇w(0)‖2 < δ and u(0) ∈ D (here we also used continuous embed-
dings H1

0 (Ω) ↪→ L4(Ω) ↪→ L2(Ω) since Ω is bounded and N ≤ 4). Therefore, ψ is
stable in the sense of Definition 3.3. This completes the proof. �

5. Corollaries

As a by-product of the proof for Theorem 3.7 in the last section, one can also prove

Corollary 5.1. Assume N ≤ 4. Any ψ ∈ VI ∩ B(φac; r0) is an accumulation
point of equilibria in the strong topology of H1

0 (Ω).

Proof. Indeed, by Lemmas 4.3 and 4.6, ψ is the unique minimizer of J( · ;ψ) over
B(φac; δ0). Now, let w ∈ H2(Ω) ∩ H1

0 (Ω) be a positive function, e.g., a principal
eigenfunction of the Dirichlet Laplacian, and let u0,n := ψ + 1

nw. Then one can
check that u0,n lies on B(φac; r0) for n large enough and u0,n → ψ strongly in
H2(Ω) ∩ H1

0 (Ω) as n → ∞, since ψ belongs to H2(Ω) ∩ H1
0 (Ω). Hence thanks

to Lemma 4.5, we assure that the sequence (ψn) of minimizers of J( · ;u0,n) over

B(φac; δ0) also converges to ψ strongly in H1
0 (Ω), up to a subsequence, as n→ ∞.

Moreover, noting that ψn ≥ u0,n > ψ in Ω, we conclude that ψ is an accumulation
point of equilibria. �

We shall further characterize equilibria ψ ∈ VI near the global minimizer φac
of the energy E. The following lemma ensures that by choosing δ0 > 0 sufficiently
small, one can leave the δ0-neighbourhood of −φac out of consideration in order to
minimize J( · ;u0).

Lemma 5.2. There exists δ0 > 0 small enough so that

B(−φac; δ0) ∩ [ · ≥ u0] = ∅ for all u0 ∈ B(φac; δ0).

Proof. We first observe that −φac 6∈ [ · ≥ φac] by φac > 0. Hence by virtue of the
Hahn–Banach separation theorem, there exist ξ ∈ H−1(Ω) \ {0} and α, β ∈ R such
that

f(−φac) =: α < β ≤ f(u) for all u ∈ [ · ≥ φac]

where f(w) := 〈ξ, w〉H1
0(Ω) for w ∈ H1

0 (Ω). Now, choose δ0 > 0 small enough so

that

0 < δ0 ≤ β − α

4‖ξ‖H−1(Ω)

.
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Then for any w ∈ B(−φac; δ0), one finds that

f(w) = f(−φac) + 〈ξ, φac + w〉H1
0(Ω) ≤ f(−φac) + ‖ξ‖H−1(Ω)‖φac + w‖H1

0(Ω)

≤ α+
β − α

4
=: α′.

Similarly, for any v ∈ [ · ≥ u0], we obtain

f(v) = f(v + φac − u0)− 〈ξ, φac − u0〉H1
0(Ω) ≥ β − ‖ξ‖H−1(Ω)‖φac − u0‖H1

0(Ω)

≥ β − β − α

4
=: β′.

From the fact that α′ < β′, one deduces that

f(w) ≤ α′ < β′ ≤ f(v)

for any w ∈ B(−φac; δ0) and v ∈ [ · ≥ u0]. Consequently, we conclude that
B(−φac; δ0) ∩ [ · ≥ u0] = ∅. �

Moreover, we have

Lemma 5.3 Assume N ≤ 4. If u0 ∈ B(φac; r0), then the set B(φac; δ0) includes a
unique global minimizer of J( · ;u0), and moreover, it lies on B(φac; δ0/2).

Proof. This lemma can be obtained as a corollary of Lemma 4.3. Indeed, by Lemma
4.3, for any u0 ∈ B(φac; r0), the functional J( · ;u0) admits a unique minimizer ψ

over B(φac; δ0). Then, we note that

J(ψ;u0) = inf
v∈B(φac;δ0)

J(v;u0) ≤ J(u0;u0) = E(u0)
(4.3)

≤ d+ ε0,

since u0 belongs to B(φac; r0). Hence ψ ∈ B(φac; δ0/2) by (4.2). Furthermore, (4.2)
yields

B(φac; δ0/2)
c ∩B(−φac; δ0/2)c ⊂ [E > d+ ε0]. (5.1)

Therefore thanks to Lemma 5.2, ψ minimizes J( · ;u0) over the whole ofH1
0 (Ω). The

uniqueness of global minimizers of J( · ;u0) follows from that of (local) minimizers

over the set B(φac; δ0) (see Lemma 4.3) as well as (5.1) and Lemma 5.2. �

Thus, we obtain

Corollary 5.4. Assume N ≤ 4. Let δ0 and r0 be small positive constants given
above. Let u0 ∈ B(φac; r0) and let ψ ∈ VI be such that ψ ∈ B(φac; δ0). Then ψ
(globally) minimizes J( · ;u0) over H1

0 (Ω), and moreover, it is the unique global
minimizer.

Remark 5.5. The statement above may not hold true for the negative ground
state −φac. Indeed, if u0 ∈ B(−φac; r0), then the cone [ · ≥ u0] may include the
positive ground state φac, and therefore, J( · ;u0) achieves the minimum at φac.
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