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Abstract. In this short review we present the recent progresses in modelling fast rotating stars
in two dimensions. We thus give a brief description of the features of the public domain code
ESTER that can compute self-consistently the structure and the large-scale flows (differential
rotation and meridional circulation) of an axisymmetric stellar model of a (fast) rotating early-
type main sequence star. We illustrate these modelling with the recent results obtained on
Altair, a nearby extremely fast rotator. We then discuss the various way mixing takes place
in the stably stratified radiative envelope of early-type stars, and especially in massive ones
where the radiative winds add a new source of large-scale flows, which are shown to be strongly
anisotropic and very difficult to represent in one dimension.

Keywords. Rotation, early-type stars, spin-down

1. Introduction

As far as massive stars are concerned, rotation is a concern! Why? Massive stars
are intrinsically young objects and their formation fueled them with a lot of angular
momentum, so much that most of the time they are members of binary or multiple
systems. Making a binary is indeed an efficient way to store angular momentum. Hence,
the fact that massive stars are almost never alone may be interpreted as a signature of
a formation process that provides the stars with a high amount of angular momentum.
Hence, it is no surprise that fast rotation is commonly detected among massive stars.

The foregoing considerations have motivated several extended observational studies to
measure the impact of rotation in the population of O-type stars (Ramirez-Agudelo et al.
2013, 2015; Holgado et al. 2022). From these studies it turns out that the initial rota-
tion velocity of O-type stars is around 20% of the break-up rotational velocity. Binarity
and strong winds may be reasons for this not so fast rotation. But if we now consider
B-type stars which typically cover the low mass end of massive stars (i.e. from 3 Mg to
~20 Mg), the work of Huang et al. (2010) shows that ~45% of galactic B-type stars
have a V'sini > 150 km/s, while still 30% of these stars show a V sin¢ > 200km/s. This
latter fraction is even higher in the Large Magellanic Cloud, presumably because of its
lower metallicity (e.g. Dufton et al. 2013).

Two well studied stars illustrate fast rotation of massive stars:

e ( Ophiuchi of type 09.5, thus near the upper limit of B-type stars, has a V sini~
400 km/s (Kambe et al. 1990).

e ¢ Persei of type B2 has a V sini ~ 450 km/s (Poeckert 1981).
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For both of these stars, centrifugal effect is quite significant: Repolust et al. (2004)
indicate that the mass of ¢ Oph is around 20 Mg, and that its radius (assumed a polar
radius) is R ~ 8.9 Rg. With a minimum equatorial velocity of 400 km/s, the Roche model
gives a flattening

Ry _ RV

= ~0.16
Req 2GM

e=1-

where R, and R.q are the polar and equatorial radii respectively. V,q is the equatorial
velocity, G the gravitation constant and M the mass of the star.

The same exercise applied to ¢ Per, with a mass M ~9.6 Mg (Schootemeijer et al.
2018), a polar radius of 5.5 R and an inclination ¢ =80° (Gies et al. 1998), we get a
flattening e ~ 0.24.

Such flattened stars obviously require two dimensional models if all the effects of fast
rotation are to be taken into account properly.

2. Two-dimensional stellar models
2.1. The ESTER code

By 2D stellar models we understand models where the sole symmetries are axisymme-
try and symmetry with respect to the equatorial plane. Hence, all quantities describing
the stellar structure like pressure or density, or describing large-scale flows, namely dif-
ferential rotation and meridional circulation, only depend on the spherical coordinates
(r,0). Moreover, they are invariant in the transform § — 7 — 6 (equatorial symmetry).

Any self-consistent 2D model should include the aforementioned large-scale flows. The
main flow is the differential rotation, which is driven by the baroclinic torque. Let us
recall the origin of these motions. If we consider the momentum equation, written in a
galilean frame, it reads:

- — —

. 1
(17 V)ﬁ: _;vp - V¢g + ;Fvisc (21)

for a steady state. In this equation ¢, is the gravitational potential and ﬁvisc the viscous
force. Outside boundary layers (or shear layers), the viscous force is negligible and there-
fore we leave it aside. Since we assume that the model is axisymmetric, the velocity field
¥ reads:

U=rsinf Q(r, 0)e, + v.(r, 0)e, + vy(r, §)ep.

Here, Q(r, 0) is the differential rotation, while (v,,vg) stand for the components of the
meridional circulation. Now, taking the curl of the momentum equation and neglecting
the viscous force, yields the so-called thermal wind equation, well-known in atmospheric
physics (see Cushman-Roisin 1994, for instance),

002 VPxVp

7 sin 9¥ = Tp - €y (2.2)

which shows that the non-alignment of the density and pressure gradients, generates a
torque, the so-called baroclinic torque, that forces a gradient of the angular velocity (2
along Oz, the rotation axis direction. The non-alignment of these two gradients results
from the fact that pressure and temperature obey two independent equations. Further
details on the dynamics of 2D models may be found in Espinosa Lara & Rieutord (2013).
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The full problem to be solved for the construction of an axisymmetric model of a fast
rotating star is actually given by the four partial differential equations:

A¢p=4nGp

dﬁéﬁS:—Dwﬁ+Eﬁ* ) ) (2:3)
p2UNT+T-VT)=—VP — pV(¢p— 3025%) + Fyisc ’
Div(pv) =0.

where we recognise Poisson equation, the entropy equation, the momentum equation
(here written in a frame rotating at the angular velocity ﬁ*), and the mass conservation
equation. For fluid dynamicists these equation are those of a compressible, self-gravitating
fluid harbouring nuclear heating e, (p, T). These partial differential equations are com-
pleted by the equation of state P = P(p,T), the expression of the heat flux F and
boundary conditions. These latter conditions apply at the surface of the star and at
the centre. At the centre, we just demand that the functions be regular, while at the sur-
face the pressure, the velocity and the temperature should meet appropriate conditions
depending on where we stop the modelling. A classical one (see Espinosa Lara & Rieutord
2013), is to fix the surface at the optical depth 7=2/3, where we set the pressure and
the heat flux as a black body radiator. In two dimensions we also need to give boundary
conditions on the velocity field. At the centre, regularity and axisymmetry impose a zero-
velocity while at the surface it is natural to impose stress-free conditions if we neglect
any wind (see below). In a steady state, such conditions generate a weak Ekman layer
which determines a weak meridional circulation and insures a neat zero-flux of angular
momentum across any closed surface inside the star. Of course, if some region of the star
is turbulent, F' and Fyis. should be completed with the appropriate turbulence model.

The above equations form a rather formidable nonlinear problem, which has been
solved for the first time by Espinosa Lara & Rieutord (2013) using a simple turbulence
model. The way to reach the numerical solution is detailed in Rieutord et al. (2016). Very
briefly, it uses the three following items:

e A mapping to follow the star distortion,

e A spectral method (Chebyshev polynomials and spherical harmonics),

e The Newton-Raphson algorithm.
The code where this solution is implemented is the public domain ESTER code that may
be obtained on GitHub at http://ester-project.github.io/ester/. Presently, this
code works well for early-type stars, but still needs developments for late-type stars. The
quality of the solutions are gauged with the energy and virial tests, namely two integrals
that should be vanishing if the solution is exact. The virial test requires that

/ 7. [26 AP+ pii - Vi + pV b — pQ2sE, — Div[a]] dvV =0
(V)

where [0] is the viscous stress tensor. The foregoing integral is normalized by the potential
energy,

W:l/ pd d°F.
2 Jw)

This test usually leads to errors less than 10~ thanks to the spectral discretization. The
energy test, which compares the energy produced by nuclear reactions and the energy
emitted at the surface, is not as good because of rapid variations (and the tabulated
nature) of opacities near the stellar surface.
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Table 1. Fundamental parameters of Altair according to Bouchaud et al. (2020). The luminosity
has been calculated using the same model as Bouchaud et al. (2020). The distance is the one
given by Hipparcos (van Leeuwen 2007).

Star Spectral type Distance Mass Req Rpol Teq Thol Lum.

pc Mg Re Re K K Lo

a Aql AT IV-V 5.130 1.86 2.008 1.565 6780 8620 10.2

+0.015 +0.03 +0.006 +0.014
Flattening Qeq/U incl. Veq Peq Xenv. Xeore Z

deg km/s day

0.220 0.744 50.65 313 0.325 0.733 0.71 0.019

+0.003 +0.01 +1.23 +9 +0.01

Altair - inclination = 50.7 °
15 8600
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8000
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Figure 1. Left: Altair as seen with the CHARA interferometer at Mount Wilson (credit
Monnier et al. 2007). Right: Distribution of the effective temperature at the surface of Altair’s
model by Bouchaud et al. (2020).

2.2. Altair’s test case

Altair is a nearby intermediate mass star that is rotating very rapidly (see Tab. 1
for a recap of Altair’s fundamental parameters). Because of its proximity, this star has
been observed in many ways, notably with interferometers (CHARA at Mount Wilson
see Fig. 1, PIONIER and GRAVITY at ESO-Chile) to measure its oblateness. Dedicated
spectroscopy determined its V sini with constraints on ¢, the inclination of the rota-
tion axis over the line of sight (see Reiners & Royer 2004), while asteroseismology also
brought its contribution to the set of data with a small set of identified acoustic frequen-
cies showing delta-scuti-type oscillations (see Buzasi et al. 2005; Bouchaud et al. 2020;
Le Dizes et al. 2021).

This abundant data set motivated Bouchaud et al. (2020) to devise a concordance
model of Altair that matches all known observables. We show in Fig. 1 the effec-
tive temperature distribution that is used to retrieve spectroscopic and interferometric
observables.

At the same time the matching between model and data shows us that ESTER models
can give a faithful representation of real fast rotating early-type stars. Accompanied
with the TOP code (Reese et al. 2021), which can compute the eigenmodes of an ESTER
model, the main conclusion of Bouchaud et al. (2020) was that the mass of Altair is
1.86 £0.03 M and that it is a young star, namely ~100 Myrs old, unlike previous
estimates based on 1D models.
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3. Rapidly rotating massive stars
3.1. Introduction

Altair is by far not a massive star! According to Langer (2012) a massive star is “a star
that is massive enough to form a collapsing core at the end of its life and, thus, avoid
the white dwarf fate”. Hence, the minimum mass is in between 8 and 12 My, depending
on metallicity. The final fate of massive stars is a full research field by itself, which is
however strongly connected to what happens in the early phases of evolution, especially
during the main sequence (see Martins & Palacios 2013). Here, we shall focus on this
main sequence stage and review the recent progresses brought by 2D-models.

Compared to Altair and intermediate mass stars, massive stars own a new feature, such
as a non-negligible mass-loss. This mass-loss is driven by the strong radiation field at the
surface of the star and as far as rotation is concerned, we may anticipate two effects: (i)
a lower critical angular velocity due to radiative acceleration, (ii) an intensified mixing
due to the spin-down associated with angular momentum losses.

3.2. Critical angular velocity

When the radiation field is intense, the radiative acceleration is a non-negligible part of
the forces applied to a fluid element. At some height in the atmosphere this acceleration
dominates and the wind is launched. However, in the lower parts of the photosphere,
where the outflow is largely subsonic, radiative acceleration may help decrease the critical
angular velocity over which equatorial surface matter is just orbiting the star.

This question was first investigated by Maeder (1999) and Maeder & Meynet (2000)
using 1D models. Since the use of 1D-models gives rather uncertain results when one
considers rotation near the critical one, Gagnier et al. (2019a) reconsidered this issue in
light of 2D-models.

Critical angular velocity is reached when, somewhere at the surface of the star the
total acceleration vanishes, namely

gtot = gef'f + grad = 6 (34)

where gog is the effective gravity (the combination of gravity and centrifugal acceleration).
Since the radiative acceleration graq is proportional to the radiative flux, namely graq =
KkF /c, where k is a mean opacity weighted by the flux, we immediately see that a vanishing
total acceleration is reached if the flux reaches the limit Fj;,, = —cgesr /. Then, it is usual
to introduce the Eddington factor as the ratio
_F

Fin,

Ia(9)
and note that

gtot = geﬂ(l —Tq (9))

where the Eddington factor obviously depends on the rotation rate, because of the cen-
trifugal acceleration, and on the colatitude 6 because of the gravity darkening induced
by the centrifugal distortion of the star.

Gagnier et al. (2019a) used the w-model of Espinosa Lara & Rieutord (2011), which
assumes that the flux in a radiative envelope is just anti-parallel to the effective gravity
(but see also Rieutord 2016). This models is very close to complete 2D-models and allows
a simple analysis of this problem. The main results, confirmed by the full 2D-models, are
that:

e the critical angular velocity is always reached at equator, in line with the results of
the first investigations of Maeder & Meynet (2000),
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e the critical angular velocity reads

Q.= Q1 -T2 (3.5)

where ) is the Keplerian angular velocity at equator. 1D-models lead to a slightly
different law Q. oc /1 —I'¢q if I' > 0.639 and 2. = Q. otherwise, which shows a stronger
impact of graq than (3.5).

Actually, the investigations by Gagnier et al. (2019a), show that the decrease of opacity
with density, still reduces the impact of the radiative acceleration on the critical angular
velocity. Gagnier et al. (2019a) conclude that below 40 My, . and €y differ only very
slightly.

3.3. Ewolution with mass-loss

To follow the evolution of a mass-losing star, and especially to follow its rotation
rate, one usually peels off the star: some amount of mass is removed with the angular
momentum it contains, assuming it comes from the surface layers. Gagnier et al. (2019b)
used the same technique but applied to 2D-models. To be operative, one needs to know
the mass-loss at each colatitude, namely the function ().

In a fast rotator, gravity darkening and centrifugal acceleration control the local radia-
tive flux and the local effective gravity respectively. Hence, with metallicity, to which we
may attribute a global value, we need to derive the dependence of the local mass flux
m(f) with respect to the local effective temperature and gravity. Gagnier et al. (2019b)
devised such a relation based on the works of Castor et al. (1975), Pauldrach et al. (1986)
and Vink et al. (1999, 2001), mainly. In particular, the work of Vink et al. (1999) noticed
the bi-stability jump at Teg ~25,000 K in radiative winds of early-type supergiants and
discovered that it is due to the growing importance of Felll transitions at effective tem-
perature below 25,000 K. Since the surface of fast rotating stars can support a large
range of effective temperatures, thanks to gravity darkening, Gagnier et al. (2019b) log-
ically found that such massive stars may be endowed with a two-winds regime: a slow
and “cold” wind in the equatorial regions where effective temperatures are below the
threshold, and a faster hotter wind near the poles. Not surprisingly, the slow equatorial
wind is efficient at removing angular momentum of the star.

The foregoing wind processes lead to the following evolution of rotation in massive
stars: As the star evolves (along the main sequence) and inflates, it gets closer to the
critical rotation if mass-loss is weak enough. In a few words, this behaviour comes from
the fact that as the star evolves, and loses a negligible amount of angular momentum, its
rotation rate decreases because of radius expansion, however the Keplerian angular veloc-
ity at equator decreases even more, hence the ratio w = Qqq/Q increases with time. If the
initial angular velocity is large enough the star may reach the critical rotation within the
main sequence. However, the wind may modify this evolution. If we consider a star whose
initial effective temperature is above 25,000K, it will lose mass in a single wind régime. In
addition, mass-loss is stronger at the pole because of gravity darkening. But around the
pole angular momentum loss is weak and the star actually follows a route similar to the
no-mass-loss case. However, at some time gravity darkening can be strong enough to put
the equatorial effective temperature below the threshold and a two winds régime starts.
Here the angular momentum loss is much more efficient and the star can move away from
criticality. This scenario is illustrated in Fig. 2 taken from Gagnier et al. (2019b).

3.4. Interior flows

The peeling off process is valid as long as the mass-loss timescale is longer than the
timescale of angular momentum transfer inside the star. As shown in Gagnier et al.
(2019b) (see their Tab. 1), this is quite the case for stars up to 20Mg.
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Figure 2. Left: the surface mass flux as a function of colatitude for various rotation rates
scaled to the critical one (Gagnier et al. 2019a). Right: Evolution of rotation rate scaled by the
critical angular velocity according to Gagnier et al. (2019b) for a mass-losing model (solid line)
and a no-mass-loss model (dashed line); time is represented by the hydrogen mass fraction in
the convective core scaled by its initial value. For both figures a 15 My model is used.

Qs(e)\

Figure 3. Set-up used to study the internal motion of a fluid in a spinning-down spherical
shell braked by a shear stress.

However, this spin-down process also induces some mixing inside the star, which is
still not well known. Gagnier & Rieutord (2020) thus investigated the steady flows that
results from the spinning down star.

One part of the problem is the determination of the flow that results from the vis-
cous stress generated by the out moving layers. To study the implications of this effect
Gagnier & Rieutord (2020) first analysed the flow of a rotating fluid confined into a
spherical shell representing the radiative envelope of a massive star. At its surface they
imposed a stress of the form:

Orp=T«(0) =—Asind

which extract angular momentum from the fluid. The set-up is reproduced in Fig. 3.

In this set-up the core is rotating as a solid body and no-slip boundary conditions are
used at its interface with the envelope. This is supposed to represent the viscosity jump
at the core-envelope boundary. The convective core is endowed with a high viscosity that
reflects the turbulent diffusion there (e.g. Rieutord 2006).
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Figure 4. Meridional circulation (left) and differential rotation (right) generated in a spinning-
down radially stably stratified spherical shell braked by a shear stress. The Ekman number is
E=10"7 and the Boussinesq approximation is used (from Gagnier & Rieutord 2020).

The solution of this spin-down problem is shown in Fig. 4 with a meridional cut.
There are two striking features characterizing these solutions. First, we note that the
meridional circulation is concentrated in a thin shear layer that is tangent to the core,
lying on the tangent cylinder. This layer is well known in the theory of rotating fluids
as the Stewartson layer (e.g. Stewartson 1966). In Fig. 4, the fluid in the spherical shell
is stably stratified radially, as in the actual radiative envelope. A stable stratification
may actually inhibit the raise of a Stewartson layer, but Gagnier & Rieutord (2020) have
found that this inhibition is controlled by the parameter

N2
A=Pie

where P is the Prandtl number and N the Brunt-Vaiséla. A similar result was also found
in previous work (Garaud 2002; Rieutord 2006). In stars, heat diffusion is large and this
parameter is small when the star is rapidly rotating. Indeed, N?/4Q? is less than 100
in fast rotating stars, while the Prandtl number P is of order of 1075. Hence, A <1 for
these stars. In that case the role of stratification is negligible. Of course, if the star rotates
slowly A may be much larger than unity and in that case stratification suppresses the
Stewartson layer (e.g. Gagnier & Rieutord 2020).

The Stewartson layer is a feature that is not taken into account in 1D models, while
we see that it is linking the core and the surface of the star. Hence, it is able to carry
elements from the deep interior to the surface where they may be observed.

The second feature that may be noticed in Fig. 4, is the concentration of the differential
rotation in the outer part of the tangent cylinder. As far as the transport properties are
concerned, we note that any turbulent transport sustained by the shear associated with
the differential rotation is therefore confined outside the tangent cylinder. Moreover,
as shown by Fig. 5, when the density stratification is taken into account, this same
differential rotation, generated by the spin-down (or the surface stress actually), is now
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Figure 5. The same as in Fig. 4, but using the anelastic approximation with a density
contrast between core and surface of 10*.

confined in an even narrower region of the radiative envelope. It shows again that the
transport properties in a radiative envelope are strongly anisotropic and inhomogeneous.

4. Conclusions and outlook

After this brief overview of the internal dynamics of rapidly rotating massive stars, we
certainly feel that much work is ahead of us. Such stars indeed require two-dimensional
models, not only because they are flattened by centrifugal effect but also because they
own internal flows that strongly break the spherical symmetry. As a consequence, the
way chemical elements and angular momentum is transported between the core and the
envelope is quite far from what 1D model can predict.

We have seen that baroclinic and spin-down flows span the radiative envelope of these
stars, but we should expect that magnetic fields also add their part of anisotropy. They
have been detected in many sorts of massive stars like 5 Cephei or Be stars (Hubrig et al.
2011). As is well-known, winds and magnetic fields give rise to magnetic braking which is
a strong effect, but of higher complexity since in such a problem the geometry generally
loses any symmetry, leaving us with a 3D problem.

But before attacking the foregoing challenging problem, some simpler questions can
be addressed with present 2D models. Let us point out three of them:

e The secular time evolution along the main sequence of a 2D-model including mass-
loss and its coupling with the interior flows,

e the launch of matter near critical rotation,

e the role of Stewartson layers in the mixing process and the angular momentum
transport at the core-envelope interface.
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