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THE SPECTRAL APPROACH TO
LINEAR RATIONAL EXPECTATIONS

MODELS
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Durham University Business School

This paper considers linear rational expectations models in the frequency domain.
The paper characterizes existence and uniqueness of solutions to particular as well
as generic systems. The set of all solutions to a given system is shown to be a
finite-dimensional affine space in the frequency domain. It is demonstrated that
solutions can be discontinuous with respect to the parameters of the models in
the context of nonuniqueness, invalidating mainstream frequentist and Bayesian
methods. The ill-posedness of the problem motivates regularized solutions with
theoretically guaranteed uniqueness, continuity, and even differentiability properties.

1. INTRODUCTION

Spectral (or frequency-domain) analysis of covariance stationary processes is a
cornerstone of time series analysis. Since its beginnings in the late 1930s, it
has benefited from being at the intersection of a number of fundamental mathe-
matical subjects including probability, functional analysis, and complex analysis
(Rozanov, 1967; Nikolski, 2002; Bingham, 2012a, 2012b). Almost concurrently,
economic theory began to focus on expectations of future earnings, prices, interest
rates, and so forth as determinants of present economic activity (Knight, 1921;
Keynes, 1936; Cagan, 1956). This led to the pioneering work of Muth (1961),
who proposed that expectations, rather than being arbitrary inputs into models or
arbitrarily determined within models, could be made both endogenous and model-
consistent, hence “rational” (see Pesaran, 1987 for further historical context).
Today, rational expectations models are the mainstay of business cycle research
(Canova, 2011; DeJong and Dave, 2011; Herbst and Schorfheide, 2016). This
paper attempts to bridge the gap between the two strands of literature.

Classical linear systems, such as vector autoregressive moving average
(VARMA) models, are linear transformations from an input process to an output
process, with present values of the output depending linearly on present and past
values of the input as well as past values of the output in every time period.
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The linear rational expectations model (LREM) class extends classical linear
systems by allowing linear dependence on expectations of future values of the
output as well. Such models arise naturally from the inter-temporal optimization
problems of households and firms in economic modeling. Spectral analysis has
focused almost entirely on classical linear systems (Brockwell and Davis, 1991;
Pourahmadi, 2001; Lindquist and Picci, 2015). Although a number of works have
considered LREMs in the frequency domain (Whiteman, 1983; Onatski, 2006;
Tan and Walker, 2015; Tan, 2019; Meyer-Gohde and Tzaawa-Krenzler, 2023),
none have attempted a general account that parallels the aforementioned textbook
treatments. Thus, the first aim of this paper is to situate LREMs in the frequency-
domain literature at a high level of generality that extends the aforementioned
textbook treatments.

Using the spectral representation of covariance stationary processes due to
Kolmogorov (1939, 1941a, 1941b) and Cramér (1940, 1942), this paper recasts the
LREM problem in the classical Hilbert space of the frequency-domain literature.
This is demonstrated concretely on simple scalar models before generalizing
to multivariate models. Whereas classical spectral analysis focused entirely on
the backward shift operator, the new spectral analysis of LREMs requires the
introduction of a new operator associated with expectations. The LREM problem
then reduces to a linear system in Hilbert space. However, unlike the special case
of VARMA models, LREMs cannot be solved by simply inverting a polynomial
matrix due to the presence of the new expectation operators. Solving the LREM
problem requires using the method of Wiener–Hopf factorization (Wiener and
Hopf, 1931; Gohberg and Fel’dman, 1974; Clancey and Gohberg, 1981). This
paper characterizes existence and uniqueness of solutions to particular as well as
generic LREMs, generalizing results by Onatski (2006). The set of all solutions to
a given LREM is shown to be a finite-dimensional affine space in the frequency
domain. The dimension of this space is expressed much more simply than in
Funovits (2017, 2020). It is important to note that the underlying assumptions in
this paper are weaker than in the previous literature (Whiteman, 1983; Onatski,
2006; Tan and Walker, 2015; Tan, 2019; Meyer-Gohde and Tzaawa-Krenzler,
2023), which requires the exogenous process to have a purely nondeterministic
Wold (1938) representation, an assumption that is demonstrably unnecessary. The
weaker assumptions of this paper also permit a clear answer as to why unit roots
must be excluded, an aspect of the theory absent from the previous literature.

The main results of the paper concern the ill-posedness of the LREM problem
in macroeconometrics. Hadamard (1902) defines a problem to be well-posed
if its solutions satisfy the conditions of existence, uniqueness, and continuous
dependence on its parameters. The LREM problem is ill-posed because it violates
not just the second condition but also the third. Indeed, it has long been accepted
that nonuniqueness is a feature of the LREM problem and many techniques have
been developed to select a solution for any given LREM exhibiting nonuniqueness
(e.g., Taylor, 1977; McCallum, 1983; Lubik and Schorfheide, 2003; Fanelli, 2012;
Farmer, Khramov, and Nicolò, 2015; Bianchi and Nicolò, 2021). This paper
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highlights the fact that selections that have been proposed in the literature are not
guaranteed to be continuous with respect to parameters of the LREM in the context
of nonuniqueness. This problem seems to be either not well understood or not fully
appreciated so far; to the best of the author’s knowledge, Sims (2007) is the only
acknowledgement of this problem.

The problem of discontinuity is quite serious because it invalidates mainstream
econometric methodology as reviewed, for example, in Canova (2011), DeJong
and Dave (2011), or Herbst and Schorfheide (2016). This methodology takes
a black-box approach to estimation and inference, whereby data are used to
construct certain objective functions (likelihood functions, Generalized Method of
Moments (GMM) criterion functions, or posterior distributions), which are then
either numerically optimized by the Newton–Raphson algorithm or explored by
the random walk Metropolis–Hastings algorithm (or the many variations of such
algorithms) to produce estimates of parameters as well as confidence or credible
intervals. When the discontinuous selected solutions are fed into this methodol-
ogy, the aforementioned objective functions become discontinuous, invalidating
assumptions required for the aforementioned methodologies to work. This paper
illustrates concretely how things can go wrong with a simple example in Section 7.

Fortunately, the literature on ill-posed problems offers an immediate solution
to the problem: regularization. The idea here is that when theory is insufficient
to pin down a unique solution, other information can be brought to bear. The
method can be interpreted in at least two ways: (i) penalizing economically
unreasonable solutions or shrinking toward economically reasonable ones or (ii)
imposing prior beliefs on the frequencies of fluctuations that solutions ought to
exhibit. For example, we may like to avoid solutions where certain variables vary
too wildly or impose the prior that solutions to a business cycle model should
exhibit fluctuations of period between 4 and 32 quarters in quarterly data. The
paper provides conditions for existence and uniqueness of regularized solutions
and proves that they are continuously (even differentiably) dependent on their
parameters. Thus, under nonuniqueness, regularization selects solutions that can
be used in any mainstream econometric method, frequentist or Bayesian.

This work is related to several recent strands in the literature. Komunjer and
Ng (2011), Qu and Tkachenko (2017), Kociecki and Kolasa (2018), Al-Sadoon
and Zwiernik (2019), and Kociecki and Kolasa (2023) study the identification
of LREMs based on the spectral density of observables. Christiano and Vig-
fusson (2003), Qu and Tkachenko (2012), and Sala (2015) utilize spectral-domain
methods for estimating LREMs using ideas that go back to Hansen and Sargent
(1980). Chahrour and Jurado (2021) study the problem of subordination (what
they call “recoverability”) in the context of macroeconometric models. Al-Sadoon
(2018) utilizes a generalization of Wiener–Hopf factorization in order to study
unstable and nonstationary solutions of LREMs. Ephremidze, Shargorodsky, and
Spitkovsky (2020) provide recent results on the continuity of spectral factorization.
Finally, Al-Sadoon (2020) provides numerical algorithms for computing regular-
ized solutions.
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This paper is organized as follows. Section 2 sets up the notation and reviews the
fundamental concepts of spectral analysis of time series. Section 3 considers the
solution of simple LREMs with elementary frequency-domain methods. Section 4
introduces Wiener–Hopf factorization. Section 5 sets up the LREM problem, its
existence and uniqueness properties, and establishes its ill-posedness. Section 6
introduces regularized solutions. Section 7 provides an application of the theory.
Section 8 concludes. Sections A–D comprise the Appendix.

2. NOTATION AND REVIEW

We will denote by Z, R, and C the sets of integers, real numbers, and complex
numbers, respectively. We will denote by T = {z ∈ C : |z| = 1} the unit circle
in C. The letters i, j, n, and m will always stand for natural numbers. By C

m×n,
we will denote the set of m × n matrices of complex numbers. We will use In to
denote the identity n×n matrix. For M ∈C

m×m, tr(M) =∑m
i=1 Mii. For M ∈C

m×n,
M∗ ∈ C

n×m is the conjugate transpose of M, and ‖M‖Cm×n = (tr(MM∗))1/2 =(∑m
i=1

∑n
j=1 |Mij|2

)1/2
.

All random variables in this paper are defined over a single probability space
(�,F,P). For a complex random variable x, the expectation is denoted by Ex =∫
�

x(ω)dP(ω). The space L2 is defined as the Hilbert space of complex-valued
random variables x, modulo P-almost sure equality, such that E|x|2 < ∞ with inner
product and norm

〈x,y〉 = Exy, ‖x‖2
L2

= 〈x,x〉, x,y ∈ L2.

Similar to other Hilbert spaces we will consider in this paper, L2 is a set of
equivalence classes of functions and not a set of functions. However, mathematical
convention “relegate[s] this distinction to the status of a tacit understanding”
(Rudin, 1986, p. 67). Thus, we will write “x = y” instead of “x(ω) = y(ω) for P-
almost all ω ∈ �” and similarly for elements of all of the other Hilbert spaces we
consider in this paper. The Hilbert space L n

2 is defined as the n-fold Cartesian

product, L2 × ·· · × L2, consisting of column vectors x =
[ x1

...
xn

]
, xj ∈ L2, j =

1, . . . ,n, with the inner product and norm

〈〈x,y〉〉 =
n∑

j=1

〈xj,yj〉, ‖x‖2
L n

2
= 〈〈x,x〉〉, x,y ∈ L n

2 .

If S ⊂ L2 is a closed subspace and x ∈ L n
2 , then the minimum of

‖x− y‖2
L n

2
=

n∑
j=1

‖xj − yj‖2
L2

,

with respect to y ∈ S n = S × ·· ·×S , is attained by minimizing each term on
the right-hand side independently with respect to yj ∈ S , j = 1, . . . ,n. It follows
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that the orthogonal projection of x ∈ L n
2 onto S n in L n

2 , denoted by P(x|S n), is

given by

[
P(x1|S )

...
P(xn|S )

]
, where P(xj|S ) is the orthogonal projection of xj onto S in

L2, j = 1, . . . ,n.
Let . . . ,ξ−1,ξ0,ξ1, . . . be a doubly infinite sequence in L n

2 . We will refer to this
stochastic process simply as ξ . The jth element of ξt will be denoted by ξjt. If, for
all t,s ∈ Z, Eξt = Eξs and Eξtξ

∗
s depends on t and s only through t − s, we say that

ξ is a covariance stationary process. Given ξ , we may define a number of useful
objects.

Let H be the closure in L2 of the set of all finite complex linear combinations
of the set {ξjt : j = 1, . . . ,n,t ∈ Z}. We define H n ⊂ L n

2 to be the n-fold Cartesian
product of H .

Traditionally, spectral analysis utilizes the forward (rather than backward) shift
operator,

U : ξjt 	→ ξjt+1, j = 1, . . . ,n, t ∈ Z.

This operator extends uniquely to a unitary operator on H (Rozanov, 1967, Thm.
I.4.1).

We may next define the unique spectral measure F on the unit circle, T, which
satisfies

Eξtξ
∗
s =

∫
zt−sdF, t,s ∈ Z

(Rozanov, 1967, Thms. I.5.1 and I.5.2). Many textbooks express the integral
above as

∫ π

−π
ei(t−s)λdF(λ); the notation here is substantially more compact. When

each element of F is absolutely continuous with respect to normalized Lebesgue
measure on T, defined by

μ
({eiλ : a ≤ λ ≤ b}) = 1

2π
(b−a), 0 ≤ b−a ≤ 2π,

then the Radon–Nikodým derivative dF/dμ is the spectral density matrix of ξ .
Note that the spectral density of n-dimensional standardized white noise is In.
Another important example of a spectral measure is the Dirac measure at w ∈ T

defined as

δw(�) =
{

1, w ∈ �,

0, w �∈ �,

for Borel subsets � ⊂ T. Note that F = δwIn is the spectral measure of the purely
deterministic process ξt = ξ0wt for t ∈ Z, with Eξ0ξ

∗
0 = In.
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We may also define the Hilbert space H of all Borel-measurable mappings φ :
T → C

1×n (i.e., φ(z) is a row vector for z ∈ T) such that
∫

φdFφ∗ < ∞ with inner
product and norm

(φ,ϕ) =
∫

φdFϕ∗, ‖φ‖2
H = (φ,φ), φ,ϕ ∈ H,

where we identify φ = ϕ if ‖φ − ϕ‖2
H = ∫

(φ − ϕ)dF(φ − ϕ)∗ = 0 (Rozanov,
1967, Lem. I.7.1). We define the Hilbert space Hm = H × ·· · × H to be the m-

fold Cartesian product of H consisting of the m × n matrices φ =
[

φ1

...
φm

]
, φj ∈ H,

j = 1, . . . ,m endowed with the inner product and norm

((φ,ϕ)) =
m∑

j=1

(φj,ϕj), ‖φ‖2
Hm = ((φ,φ)), φ,ϕ ∈ Hm.

By the same argument as used earlier, if S ⊂ H is a closed subspace, the orthogonal

projection of φ ∈ Hm onto Sm in Hm, denoted by P(φ|Sm), is given by

[
P(φ1|S)

...
P(φm|S)

]
,

where P(φj|S) is the orthogonal projection of φj onto S in H, j = 1, . . . ,m.
The spectral representation theorem states that

ξt =
∫

ztd�, t ∈ Z,

for a column vector of random measures � with �(�) ∈ H n and E�(�)�∗(�) =
F(�) for Borel subsets � ⊂ T (Rozanov, 1967, Thm. I.4.2). Many textbooks
express the integral above equivalently as

∫ π

−π
eitλdZ(λ), where Z(λ) = �({eiτ : τ ∈

(−π,λ]}) for λ ∈ (−π,π ]; again, the notation here is substantially more compact.
The spectral representation theorem establishes a unitary mapping Hm → H m

defined by φ 	→ h = ∫
φd� (Rozanov, 1967, p. 32). We call φ the spectral

characteristic of h. Thus,〈〈∫
φd�,

∫
ϕd�

〉〉
= ((φ,ϕ)),

∥∥∥∥
∫

φd�

∥∥∥∥
2

L m
2

= ‖φ‖2
Hm, φ,ϕ ∈ Hm.

Denote by ej ∈C
1×n the row vector whose elements are all equal to zero except for

the jth, which is equal to one. The spectral representation theorem implies that Ht,
the closure in L2 of the set of all finite complex linear combinations of {ξjs : j =
1, . . . ,n,s ≤ t}, is in correspondence with the closure of the set of all finite complex
linear combinations of {zsej : j = 1, . . . ,n,s ≤ t} in H, denoted Ht. Let H m

t and Hm
t

be m-fold Cartesian products of Ht and Ht, respectively. This implies that

P
(∫

φd�

∣∣∣∣H m
t

)
=
∫

P(φ|Hm
t )d�, t ∈ Z.
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Thus, the best linear prediction of ξt+s in terms of ξt,ξt−1, . . . is given by

P(ξt+s|H n
t ) =

∫
P(zt+sIn|Hn

t )d�, s,t ∈ Z.

It is easily established that Ht = UtH0 and Ht = ztH0 for all t ∈ Z so that
P(Utξ |Ht) = UtP(h|H0) for all t ∈ Z and h ∈ H and likewise P(ztφ|Ht) =
ztP(φ|H0) for all t ∈ Z and φ ∈ H (Rozanov, 1967, p. 52). Thus,

P(ξt+s|H n
t ) =

∫
ztP

(
zsIn|Hn

0

)
d�, s,t ∈ Z.

If ζ is an additional covariance stationary processes such that for every t,s ∈ Z,
Eζsξ

∗
t depends on t and s only through t − s, we will say that ζ is causal in ξ if

ζ0 ∈ H m
0 . Finally, if ν is causal in ξ and satisfies P(νt+1|Ht) = 0 for all t ∈ Z, we

call ν an innovation process.

3. EXAMPLES

Armed with the basic machinery above, we now make a first attempt at solving
LREMs in the frequency domain. We will see that solving simple univariate
LREMs involves only elementary spectral-domain techniques as discussed in
textbook treatments of spectral analysis such as Brockwell and Davis (1991) or
Pourahmadi (2001). The methods also provide strong hints to the general approach
to solving LREMs. In this section, ξ is a scalar covariance stationary process with
U, �, F, H , and H defined as in the previous section.

3.1. The Autoregressive Model

We begin on familiar territory with the stationary autoregression

Xt −αXt−1 = ξt, t ∈ Z, (1)

where |α| < 1. The frequency-domain analysis of this model is available in many
textbooks. For completeness, we provide a treatment here that is geared toward
understanding the more general cases to come.

We require a covariance stationary solution causal in ξ (further motivation of
this restriction can be found in Section 5). Thus, we require

Xt =
∫

ztφd�, t ∈ Z,

for some spectral characteristic φ ∈ H0.
Notice that we may restrict attention to the equation

(1−αU−1)X0 = ξ0.
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If a solution X0 exists, then the rest of the process can be generated as

Xt = UtX0, t ∈ Z,

and clearly satisfies (1).
Thus, we must solve for φ in∫
(1−αz−1)φd� =

∫
d�.

Since integration with respect to � is a unitary mapping H → H , it has an inverse
and the equation above is equivalent to

(1−αz−1)φ = 1 (2)

in the frequency domain.
The linear mapping φ 	→ αz−1φ on H0 is bounded in norm by |α| < 1; thus, the

mapping φ 	→ (1−αz−1)φ is invertible and

φ =
∞∑

s=0

αsz−s

is the unique solution to (2), where the summation is understood to converge with
respect to H-norm (Gohberg, Goldberg, and Kaashoek, 2003a, Thm. 2.8.1). Thus,
we arrive at the unique solution to X0,

X0 =
∫ ∞∑

s=0

αsz−sd� =
∞∑

s=0

αs
∫

z−sd� =
∞∑

s=0

αsξ−s.

The interchange of the summation and the stochastic integral is admissible because
the stochastic integral is a bounded linear operator mapping from H to H and the
inner summation converges in H. It follows that the unique covariance stationary
solution is

Xt = UtX0 =
∞∑

s=0

αsUtξ−s =
∞∑

s=0

αsξt−s, t ∈ Z.

The operator Ut is interchangeable with the summation because it is a bounded
linear operator on H and the summation converges in L2.

3.2. The Cagan Model

The Cagan model is given as

Xt −βP(Xt+1|Ht) = ξt, t ∈ Z, (3)

with |β| < 1. Again, we look for a covariance stationary solution causal in ξ and
we restrict attention to the equation

X0 −βP(UX0|H0) = ξ0,
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and, following a similar argument to that used above, we arrive at the underlying
frequency-domain problem,

φ −βP(zφ|H0) = 1. (4)

Since the linear mapping φ 	→ βP(zφ|H0) on H0 is bounded in norm by |β| < 1,
we see that the mapping φ 	→ φ −βP(zφ|H0) is invertible so that

φ =
∞∑

s=0

βsP(zs|H0)

is the unique solution to (4), where the summation is understood to converge with
respect to H-norm (Gohberg et al., 2003a, Thm. 2.8.1). Thus, we arrive at the
unique solution to X0,

X0 =
∫ ∞∑

s=0

βsP(zs|H0)d� =
∞∑

s=0

βs
∫

P(zs|H0)d� =
∞∑

s=0

βsP(ξs|H0).

The interchange of the summation and the stochastic integral is admissible because
the stochastic integral is a bounded linear operator mapping H to H and the inner
summation converges in H. It follows that the unique covariance stationary solution
is

Xt = UtX0 =
∞∑

s=0

βsUtP(ξs|H0) =
∞∑

s=0

βsP(ξt+s|Ht), t ∈ Z.

The operator Ut is interchangeable with the summation because it is a bounded
linear operator on H and the summation converges in L2.

3.3. The Mixed Model

Now suppose we have the more general model

aP(Xt+1|Ht)+bXt + cXt−1 = ξt, t ∈ Z, (5)

where a,b,c ∈ C and ac �= 0. This leads to the frequency-domain equation

P((az+b+ cz−1)φ|H0) = 1. (6)

As noted by Sargent (1979), the solution to this system depends on the factorization
of

M(z) = az+b+ cz−1 = az−1(z− δ)(z−γ ).

We assume, without loss of generality, that |γ | ≤ |δ|. There are four cases to
consider.

Suppose |γ | < 1 < |δ|. We can then write M(z) = a(z−δ)(1−γ z−1) and express
the system as

P((1− δ−1z)ϕ|H0) = 1, −aδ(1−γ z−1)φ = ϕ.
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The first equation can be solved as in the Cagan model (since |δ−1| < 1), while the
second can be solved as in the autoregressive model (since |γ | < 1). This procedure
leads us to the unique solution

φ = − 1

aδ

∞∑
u=0

∞∑
s=0

γ uδ−sz−uP(zs|H0) = − 1

aδ

∞∑
u=0

∞∑
s=0

γ uδ−sP(zs−u|H−u).

In the time domain, we obtain the following solution:

X0 = − 1

aδ

∞∑
u=0

∞∑
s=0

γ uδ−sP(ξs−u|H−u),

which then gives us the general solution,

Xt = − 1

aδ

∞∑
u=0

∞∑
s=0

γ uδ−sP(ξs+t−u|Ht−u), t ∈ Z.

Thus, when |γ | < 1 < |δ|, there exists a unique solution.
Next, suppose that |δ| < 1. Then we may write M(z) = az(1− δz−1)(1−γ z−1)

and express our system as

P(zϕ|H0) = 1, a(1− δz−1)(1−γ z−1)φ = ϕ.

The first equation does not have a unique solution in general. For example, when
F = μ, then ϕ = z−1 +ψ solves the equation for any ψ ∈C. More generally, every
solution is of the form

ϕ = z−1 +ψ,

where ψ ∈ H0 with zψ orthogonal to H0. We can then solve for φ as

φ = 1

a

∞∑
u=0

∞∑
s=0

γ uδsz−s−u(z−1 +ψ).

In the time domain, this leads to the general solution

Xt = 1

a

∞∑
u=0

∞∑
s=0

γ uδs(ξt−s−u−1 +νt−s−u), t ∈ Z,

where νt =
∫

ztψd� ∈ Ht for t ∈ Z is an arbitrary innovation process. Indeed, νt ∈
Ht for all t ∈ Z because ψ ∈ H0 and νt+1 is orthogonal to Ht for all t ∈ Z because
P(νt+1|Ht) = ∫

P(zt+1ψ |Ht)d� = ∫
ztP(zψ |H0)d� = 0 as zψ is orthogonal to H0.

Thus, when |δ| < 1, there exist potentially infinitely many solutions.
Now suppose |γ | > 1. Then we may write M(z) = aδγ z−1(1−δ−1z)(1−γ −1z)

and

P(aδγ (1− δ−1z)(1−γ −1z)ϕ|H0) = 1, z−1φ = ϕ.
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Clearly, ϕ can be solved as in the Cagan model to produce

ϕ = 1

aδγ

∞∑
u=0

∞∑
s=0

γ −uδ−sP(zs+u|H0).

This implies that

z−1φ = 1

aδγ

∞∑
u=0

∞∑
s=0

γ −uδ−sP(zs+u|H0).

However, this equation cannot hold generally. To see this, let ξ be a standard white
noise so that F = μ. Then {zs : s ∈ Z} is an orthonormal set and the equation above
reduces to

z−1φ = 1

aδγ
.

Since φ is in the closure of the linear span of {zs : s ≤ 0}, the zeroth Fourier
coefficient of the left-hand side is equal to zero, while that of the right-hand side
is equal to 1

aδγ
�= 0. So there is no solution in general when |γ | > 1.

Finally, suppose either |γ | = 1 or |δ| = 1 so that M(w) = 0 for some w ∈T. Then
there is no solution in general, in the sense that there exist processes ξ for which
no covariance stationary solution X can be found. To see this, let F = δw, the Dirac
measure at w. If a solution φ ∈ H0 to (6) exists, then it must satisfy

‖φ‖2
H0

=
∫

|φ|2dF = |φ(w)|2 < ∞.

This then implies that Mφ = M(w)φ(w)= 0 in H, which implies that P(Mφ|H0) = 0,
contradicting the fact that P(Mφ|H0) = 1. Thus, when |γ | = 1 or |δ| = 1, there
exists no solution in general.

We will see that the analysis of the simple models above contains most of the
elements necessary for the general multivariate case with more than one lead and/or
lag and arbitrary covariance stationary ξ . The reader interested in a more complete
elementary analysis of the simple models above (e.g., considering the case |β| > 1
of the Cagan model) is directed to previous versions of this paper available on
arXiv.

4. WIENER–HOPF FACTORIZATION

The approach we have taken in the last section is well understood in the theory of
convolution equations (Gohberg and Fel’dman, 1974). The requisite factorization
of M(z) into two parts, a part to solve like the Cagan model and a part to solve like
the autoregressive model, is known as a Wiener–Hopf factorization (Wiener and
Hopf, 1931). In this section, we state the basic concepts and properties of Wiener–
Hopf factorization that we will need.
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Definition 1. Let W be the class of functions M : T → C defined by

M(z) =
∞∑

s=−∞
Msz

s, (7)

where Ms ∈C for s ∈ Z and
∑∞

s=−∞ |Ms| < ∞. Define W± ⊂W to be the class of
functions (7) with Ms = 0 for s ≶ 0. The sets Wm×n, Wm×n

± are defined as the sets
of matrices of size m×n populated by elements of W and W±, respectively.

The class of functions W is known as the Wiener algebra in the functional
analysis literature (Gohberg, Goldberg, and Kaashoek, 1993, Sect. XXIX.2). Note
that every function analytic in a neighborhood of T defines an element of W , but
the opposite inclusion does not hold (e.g.,

∑∞
s=0 s−2zs ∈ W+ diverges outside T).

For M ∈ Wm×n, we also have that

‖M‖∞ ≤
∞∑

s=−∞
‖Ms‖Cm×n < ∞,

where ‖M‖∞ is the μ-essential supremum of ‖M(z)‖Cm×n . We will also need the
operator[ ∞∑

s=−∞
Msz

s

]
−

=
0∑

s=−∞
Msz

s

defined over Wm×n and, more generally, over the class of square summable series
satisfying

∑∞
s=−∞ ‖Ms‖2

Cn×m < ∞ (Gohberg et al., 1993, Cor. XXIII.3.3).

Definition 2. A Wiener–Hopf factorization of M ∈ Wm×m is a factorization

M = M+M0M−, (8)

where M+ ∈Wm×m
+ , M−1

+ ∈Wm×m
+ , M− ∈Wm×m

− , M−1
− ∈Wm×m

− , M0 is a diagonal
matrix with diagonal elements zκ1, . . . ,zκm, and κ1 ≥ ·· · ≥ κm are integers, called
partial indices.

We remark that the factorization given in Definition 2 is termed a left factor-
ization in the Wiener–Hopf factorization literature (Gohberg and Fel’dman, 1974,
p. 185). It differs from the right factorization utilized in Onatski (2006) and Al-
Sadoon (2018), where the roles of M±(z) are reversed. The difference is due to
the fact that the present analysis works with the forward shift operator, whereas
Onatski (2006) and Al-Sadoon (2018) work with the backward shift operator. A
left factorization of M is obtained from a right factorization of M∗.

Theorem 1. Let M ∈ Wm×m and suppose det(M(z)) �= 0 for all z ∈ T. Then M
has a Wiener–Hopf factorization and its partial indices are unique.
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Proof. See Theorems VIII.1.1 and VIII.2.2 of Gohberg and Fel’dman (1974).
�

The condition in Theorem 1 is minimal for existence of a Wiener–Hopf fac-
torization and uniqueness of the M0 part. The M± parts are not unique, but their
general form is well understood (Gohberg and Fel’dman, 1974, Thm. VIII.1.2).
The nonuniqueness of M± has no bearing on any of our results. Wiener–Hopf
factorizations can be computed in a variety of ways (see Rogosin and Mishuris,
2016 for a recent survey).

The partial indices allow us to identify an important subset of Wm×m.

Definition 3. Let Wm×m◦ be the subset of M ∈ Wm×m such that det(M(z)) �= 0
for all z ∈ T and κ1 −κm ≤ 1.

When m = 1, 0 = κ1 − κm ≤ 1 so that W1×1◦ is the set of M ∈ W such that
M(z) �= 0 for all z ∈ T. Notice that for every element of Wm×m◦ , the partial indices
are either all nonnegative, all nonpositive, or all zero. This implies that for every
element of Wm×m◦ ,

sign(κi) = sign

(
m∑

i=1

κi

)
, i = 1, . . . ,m,

where sign is equal to 1, −1, or 0 according to whether the argument is positive,
negative, or zero, respectively. Since

∑m
i=1 κi is the winding number of det(M(z))

as z traverses the unit circle counterclockwise (Gohberg and Fel’dman, 1974, Thm.
VIII.3.1(c)), we can easily determine the sign of the partial indices of elements of
Wm×m◦ by looking at the winding number. The importance of this fact will become
clear in the next section when we combine it with the following fact.

Theorem 2. If Wm×m is endowed with the μ-essential supremum norm, then
Wm×m◦ is open and dense in {M ∈ Wm×m : det(M(z)) �= 0 for all z ∈ T}.

Proof. See Theorems 1.20 and 1.21 of Gohberg, Kaashoek, and Spitkovsky
(2003b). �

Theorem 2 implies that the generic or typical element of Wm×m that admits a
Wiener–Hopf factorization is an element of Wm×m◦ . Said differently, the elements
of Wm×m\Wm×m◦ are nongeneric or exceptional in the space of Wiener–Hopf
factorizable elements of Wm×m.

To see the role played by Wiener–Hopf factorization, consider system (6) again.
In the first case, M factorized as

M+(z) = 1− δ−1z, M0(z) = 1 M−(z) = −aδ(1−γ z−1).

In the second case, M factorized as

M+(z) = 1, M0(z) = z M−(z) = a(1− δz−1)(1−γ z−1).
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In the third case, M factorized as

M+(z) = aδγ (1− δ−1z)(1−γ −1z), M0(z) = z−1 M−(z) = 1.

In the fourth case, M(w) = 0 for some w ∈ T and there does not exist a solution
in general. Notice that the case of existence and uniqueness is associated with a
partial index of zero, the case of existence and nonuniqueness is associated with a
positive partial index, and the cases of nonexistence in general are associated with
a negative partial index and/or a zero of M(z). These associations are not accidental
as we will see in the next section.

5. EXISTENCE AND UNIQUENESS

Given the Wiener–Hopf factorization techniques, we can now address the general
LREM problem in the frequency domain. Our first task is to define existence and
uniqueness of solutions to the LREM problem in the time domain.

Definition 4. An LREM is a pair (M,N) ∈Wm×m ×Wm×n, expressed formally
as

∞∑
s=−∞

MsEtXt+s =
∞∑

s=−∞
NsEtξt+s, t ∈ Z, (9)

where ξ is exogenous and X is endogenous.

Expression (9) is understood as a formal set of structural equations whose
mathematical meaning we will postpone to Definition 5 below. The structural
equations relate current, expected, and lagged values of the endogenous process X
to current, expected, and lagged values of an exogenous process ξ . In particular,
EtXt+s is understood to mean the expectation of Xt+s at time t if s > 0 and Xt−|s| if
s ≤ 0; Etξt+s is understood similarly. The notion of expectation pertinent to us will
be made clear in Definition 5. A textbook example is the New Keynesian LREM,

X1t = θ1EtX1,t+1 + θ2X2t,

X2t = EtX2,t+1 + θ3X3t,

X3t = θ4X1,t−1 + θ5X2,t−1 + θ6ξ1t,

(10)

where X1, X2, and X3 consist of inflation, output, and the interest rate, respectively;
ξ is interpreted as a policy shock; and θ = (θ1, . . . ,θ6) is a parameter. The first
equation of (10) is the New Keynesian Phillips curve, relating current inflation
to one-period-ahead expected inflation and current output, and results from the
inter-temporal optimization of firms; the second equation relates current output to
one-period-ahead expected output and the interest rate and results from the inter-
temporal optimization of households; finally, the third equation is the policy rule
by which the monetary authority sets the interest rate (see, e.g., Galí, 2015). LREM
(10) is represented by the pair,
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M(z,θ) =
⎡
⎣ 1− θ1z −θ2 0

0 1− z −θ3

−θ4z−1 −θ5z−1 1

⎤
⎦, N(z,θ) =

⎡
⎣ 0

0
θ6

⎤
⎦ .

Occasionally, researchers also consider solutions driven by sunspots, economic
forces that do not appear explicitly in the system (their associated columns of Ns

are equal to zero) but are nevertheless considered to influence the behavior of the
solution; we discuss these solutions further in Section 6.

The class of models considered in Definition 4 includes the class of structural
equation models (M and N are constant), the class of VARMA models (M and N
are matrix polynomials in z−1), and all of the LREMs considered in Canova (2011),
DeJong and Dave (2011), and Herbst and Schorfheide (2016). For example,
the model of Smets and Wouters (2007), studied in Section 6.2 of Herbst and
Schorfheide (2016), consists of m = 14 endogenous variables and n = 7 exogenous
shocks.

Now in order to endow (9) with mathematical meaning, we must first note
that LREMs take as inputs not only realizations of exogenous inputs ξ but also
a spectral measure F:

(. . . ,ξt−1(ω),ξt(ω),ξt+1(ω), . . . ,F) (M,N) (. . . ,Xt−1(ω),Xt(ω),Xt+1(ω), . . . )

That is because the output X of an LREM solves a system of equations in past,
present, as well as expected values of X. In the time-domain perspective on
LREMs, the role of F is played by a filtration with respect to which conditional
expectations can be computed (Al-Sadoon, 2018, Def. 4.2). Here, conditional
expectations are substituted by linear projections, the more convenient analogue to
expectations in the frequency domain and, in order to compute projections, F needs
to be specified as well. We will see that the transfer function of solutions requires
the triple (M,N,F), while the realizations of the output require, additionally, the
realizations of the inputs. In following this system-theoretic approach to LREMs,
therefore, we will often use phrases such as “for every spectral measure F” or “for
every covariance stationary process ξ .”

Definition 5. Let ξ be a zero-mean, n-dimensional, covariance stationary
process with spectral measure F, and let (M,N) be an LREM. A solution to (M,N)

(or equation (9)) is an m-dimensional covariance stationary process X, causal in
ξ , and satisfying

∞∑
s=−∞

MsP(Xt+s|H m
t ) =

∞∑
s=−∞

NsP(ξt+s|H n
t ), t ∈ Z, (11)

where the series converge in H m. We say that (M,N) has no solution in general
if it is possible to find a ξ such that no solution to (M,N) exists. A solution X is
unique if whenever Y is also a solution, then Xt = Yt for all t ∈ Z.
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By Definition 5, if a unique solution (or at least a unique selection from among
all possible solutions) exists for every covariance stationary ξ , then the LREM
is a mathematical system that transforms arbitrary covariance stationary inputs
into covariance stationary outputs (Kalman, Arbib, and Falb, 1969; Kailath, 1980;
Caines, 1988; Hannan and Deistler, 1988; Sontag, 1998). If no solution exists for
a given ξ , then the LREM is said to have no solution in general (it will often be
convenient to consider purely deterministic ξ to show that no solution exists in
general). The restriction to covariance stationarity involves no loss of generality
as X and ξ describe deviations away from steady state in modern LREMs (see,
e.g., Galí, 2015; nonstationary LREMs are studied in Al-Sadoon, 2018).

Definition 5 also restricts attention to causal solutions. This is because the
purpose of an LREM is to explain the behavior of economic variables in terms of
past and present economic shocks and to obtain impulse responses. It makes little
sense to consider models where current inflation is determined by a future shock
to technology, for example. Note, however, that we do not impose invertibility of
ξ in terms of X as it is not necessary for our purposes, although it does become
necessary for estimation purposes (see Al-Sadoon and Zwiernik, 2019).

As in the previous section, it suffices to solve the t = 0 equation of (11),

∞∑
s=−∞

MsP(Xs|H m
0 ) =

∞∑
s=−∞

NsP(ξs|H n
0 ).

For if X is a covariance stationary process causal in ξ and satisfies this system,
applying the forward shift operator t times to each equation, we obtain (11). Of
course, the forward shift operator commutes with the summation because the
sum converges in H m. Let X0 have the spectral characteristics φ ∈ Hm

0 . Then the
frequency-domain equivalent is

∞∑
s=−∞

MsP(zsφ|Hm
0 ) =

∞∑
s=−∞

NsP(zsIn|Hn
0). (12)

Classical frequency-domain theory is built on the backward shift operator φ 	→
z−1φ. In order to solve for φ in (12), we will need an additional, closely related,
operator.

Definition 6. Define V,V(−1) : H0 → H0 to be the operators

V : φ 	→ P(zφ|H0), V(−1) : φ 	→ z−1φ.

If κ ≥ 1 (resp. κ ≤ −1), we denote by Vκ the operator V (resp. V(−1)) composed
with itself |κ| times and we define V0 = I, the identity mapping.

The following lemma (proof omitted) lists the most important properties of V
and V(−1).
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Lemma 1. The operators V and V(−1) have the following properties:

(i) V∗ = V(−1).
(ii) (Vφ,Vφ) ≤ (φ,φ) for all φ ∈ H0.

(iii)
(
V(−1)φ,V(−1)ϕ

) = (φ,ϕ) for all φ,ϕ ∈ H0.
(iv) V(−1) is a right inverse of V.
(v) ker(V) = H0 � z−1H0.

(vi) dimker(V) ≤ n.
(vii) For all κ ∈ Z and φ ∈ H0, Vκφ = P(zκφ|H0).

(viii) For κ > 1, ker(Vκ) = ker(V)⊕V(−1) ker(V)⊕·· ·⊕V1−κ ker(V).

Lemma 1(i) states that the backward shift operator V(−1) is the adjoint of
V. Lemma 1(ii) implies that the operator norm of V is bounded above by 1.
Lemma 1(iii) implies that V(−1) is an isometry (Gohberg et al., 2003a, Thm.
X.3.1). This implies that the operator norm of V(−1) is equal to 1. Lemma 1(iv)
establishes that V is right-invertible. Lemma 1(v) clarifies the obstruction to left-
invertibility of V as ker(V) may be nontrivial. For example, when F = μ and φ ∈C,
then V(−1)V(φ) = P(φ |z−1,z−2, . . . ) = 0. Since H0 � z−1H0 is the set of spectral
characteristics associated with innovations to ξ , ker(V) = {0} if and only if ξ is
purely deterministic. Lemma 1(vi) expresses the intuitive fact that the dimension
of the innovation space of a covariance stationary process is bounded above by the
dimension of the process. Lemma 1(vii) is a convenient expression for iterates
of the V operator. Finally, Lemma 1(viii) decomposes the kernel of Vκ into a
direct sum generated by the kernel of V. It follows, since V(−1) is an isometry,
that dimker(Vκ) = κ dimker(V). The time-domain analogue of the decomposition
in Lemma 1(viii) is the familiar one from Broze, Gourieroux, and Szafarz (1985,
1995), where a process ν causal in ξ satisfies

P(νt+κ |H n
t ) = 0, t ∈ Z,

if and only if

νt+κ =
κ∑

s=1

P(νt+κ |H n
t+s)−P(νt+κ |H n

t+s−1), t ∈ Z.

That is, if and only if νt+κ is representable as the sum of the prediction revisions
between t +1 and t +κ for all t ∈ Z.

The fact that the operators Vs are uniformly bounded in the operator norm by 1
(Lemma 1(i) and (ii)) ensures that

∑∞
s=−∞ MsVs is a bounded linear operator on

H0 whenever
∑∞

s=−∞ Mszs ∈ W (Gohberg, Goldberg, and Kaashoek, 1990, Thm.
I.3.2). More generally, we have the following definition, adopted from Gohberg
and Fel’dman (1974).
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Definition 7. For M ∈ Wm×n with ijth element Mij, define Mij : H0 → H0 as

Mij =
∞∑

s=−∞
MsijVs, i = 1, . . . ,m, j = 1, . . . ,n,

where the series converges in the operator norm, and M : Hn
0 → Hm

0 as

Mφ =
⎡
⎢⎣

M11 · · · M1n
...

...
Mm1 · · · Mmn

⎤
⎥⎦
⎡
⎢⎣

φ1
...

φn

⎤
⎥⎦ =

⎡
⎢⎣

∑n
j=1 P(M1jφj|H0)

...∑n
j=1 P(Mmjφj|H0)

⎤
⎥⎦ = P(Mφ|Hm

0 ).

For M ∈ Wm×n, ‖Mφ‖Hm = ‖P(Mφ|Hm
0 )‖Hm ≤ ‖Mφ‖Hm ≤ ‖M‖∞‖φ‖Hn , thus

the operator norm of M is bounded by ‖M‖∞. Note that by Lemma 1(i), the adjoint
of M is

M∗ : ϕ 	→ P(M∗ϕ|Hn
0),

where M∗ ∈ Wn×m is given by (M(z))∗ for z ∈ T.
Definition 7 allows us to express (12) more compactly as

Mφ = NIn. (13)

Recall that the spectral characteristic of ξ is In. Thus, we have arrived at a linear
equation in the Hilbert space Hm

0 . Equations (2), (4), and (6) are clearly special
cases of (13). It is also instructive to consider the special case where (M,N) is a
VARMA model, so Mφ = P(Mφ|Hm

0 ) = Mφ and NIn = P(N|Hm
0 ) = N, and the

system reduces to Mφ = N, a problem that is very well understood (Hannan and
Deistler, 1988, Sects. 1.1 and 1.2).

A more delicate analysis is required for the general case. Luckily Section 3 hints
toward a solution. First, we obtain a Wiener–Hopf factorization,

M = M+M0M−.

By Theorem 1, this factorization exists if det(M(z)) �= 0 for all z ∈ T. Then M+,
M0, and M− can be defined as in Definition 7 and it is easily checked that

M = M+M0M−,

a fact that at first seems trivial until one recalls that ViVj is not generally equal to
Vi+j when i < 0 < j (Lemma 1(iv) and (v)). Then (13) can be broken up into the
system of equations,

M+ψ = NIn, M0ϕ = ψ, M−φ = ϕ. (14)

Solving each of these systems is completely understood in the Wiener–Hopf
factorization literature (Gohberg and Fel’dman, 1974; Clancey and Gohberg,
1981). Indeed, the first system of equations involves only the V operator and is
solved as in the Cagan model, while the third system of equations involves only
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the V(−1) operator and is solved as in the autoregressive model. To see this, note
that since M−1

+ ,M−1
− ∈ Wm×m, the operators

M−1
+ : φ 	→ P(M−1

+ φ|Hm
0 ) M−1

− : φ 	→ P(M−1
− φ|Hm

0 )

are bounded and linear on Hm
0 . By Lemma 1(vii), since M+,M−1

+ ∈Wm×m
+ , we have

that, for all φ ∈ Hm
0 ,

M+M−1
+ φ = P(M+P(M−1

+ φ|Hm
0 )|Hm

0 ) = P(M+M−1
+ φ|Hm

0 ) = P(φ|Hm
0 ) = φ,

M−1
+ M+φ = P(M−1

+ P(M+φ|Hm
0 )|Hm

0 ) = P(M−1
+ M+φ|Hm

0 ) = P(φ|Hm
0 ) = φ.

On the other hand, since M−,M−1
− ∈Wm×m

− , M− : φ 	→ M−φ and M−1
− : φ 	→ M−1

− φ

for every φ ∈ Hm
0 (i.e., they are multiplication operators). It follows that

M−M−1
− φ = M−M−1

− φ = φ,

M−1
− M−φ = M−1

− M−φ = φ.

We have established that

M+M−1
+ = M−1

+ M+ = M−M−1
− = M−1

− M− = I,

where I is the identity mapping on Hm
0 . The first and third equations of (14) are

therefore uniquely solvable as

ψ = M−1
+ NIn, φ = M−1

− ϕ.

It remains to solve for ϕ in (14). Since M0 is a diagonal operator matrix with ith
diagonal entry equal to Vκi , existence and uniqueness of solutions to (13) depend
on the partial indices of M. Notice that if all of the partial indices of M are equal
to zero, then M0 = I, and (13) has the unique solution φ = M−1

− M−1
+ NIn. If all the

partial indices of M are nonnegative, the operators Vκi above are right invertible,
which implies that M0 is right invertible; in that case, a right inverse of M0 is given
as

M(−1)
0 =

⎡
⎢⎢⎢⎣

V(−κ1) 0 · · · 0
0 V(−κ2) · · · 0
...

...
. . .

...
0 0 · · · V(−κm)

⎤
⎥⎥⎥⎦ . (15)

If κ1 > 0 and κm ≥ 0, there are generally infinitely many other right inverses of M0

and therefore infinitely many right inverses of M; indeed, every right inverse of M
is of the form M−1

− M(−1)
0 M−1

+ for some right inverse M(−1)
0 of M0.

The theoretical foundations for existence and uniqueness are now complete
and all that remains is to apply well-known cookie-cutter results from functional
analysis along with the simple techniques we employed in Section 3.

Lemma 2. If (M,N) is an LREM, det(M(z)) �= 0 for all z ∈ T, and M has a
Wiener–Hopf factorization M+M0M−, then for every spectral measure F, M is
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one-to-one if the partial indices of M are nonpositive and M is onto if the partial
indices of M are nonnegative. In the latter case, the general form of solutions to
(13) is

φ = M(−1)NIn +M−1
− ψ, (16)

where

M(−1) = M−1
− M(−1)

0 M−1
+ , (17)

M(−1)
0 is a right inverse of M0, ψ ∈ ker(M0), and dim(ker(M)) =

dim(ker(V))
∑m

i=1 κi.

Proof. Proposition 2◦ of Section VIII.4 of Gohberg and Fel’dman (1974)
applied to M∗ together with Lemma 1 implies that

dim(coker(M)) = −dim(ker(V))
∑
κi<0

κi, dim(ker(M)) = dim(ker(V))
∑
κi>0

κi.

Thus, M is one-to-one if κ1 ≤ 0 and onto if κm ≥ 0. In the latter case, (16) is clearly
a solution to (13). On the other hand, if φ is a solution to (13), define

ψ = M−φ −M(−1)
0 M−1

+ NIn.

Clearly ψ ∈ Hm
0 . Finally,

M0ψ = M0M−φ −M−1
+ NIn = M−1

+ (Mφ −NIn) = 0. �

Basic linear algebra implies that there exists a solution to (13) if and only if NIn

is in the image of M and a solution is unique if and only if ker(M) = {0}. Thus,
Lemma 2 provides a sufficient condition for existence and necessary and sufficient
conditions for uniqueness of solutions to (13) irrespective of the exogenous inputs.
Recall that we insist on conditions invariant with respect to F in keeping with
our system-theoretic approach to LREMs. Of course, restricting attention to a
particular F, we can say slightly more. For example, if the partial indices are
nonnegative and F has the property that ker(V) = {0}, then by Lemma 1(viii),
ker(M0) = {0} and there is a unique solution to (13). That is to say, there can be
no multiplicity of solutions for a perfectly predictable ξ . This point is made in a
different context in Al-Sadoon (2018, p. 641).

In the special case of a VARMA model, Lemma 2 reduces to the classical
result that if det(M(z)) �= 0 for all |z| ≥ 1, there exists a unique causal covariance
stationary solution for every spectral measure F (Hannan and Deistler, 1988, Sects.
1.1 and 1.2). This is due to the fact that in that case M+ = M0 = Im and M− = M is
a Wiener–Hopf factorization of M. Note that the problem of uniqueness does not
arise in the case of VARMA.
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Consider the case of existence and nonuniqueness (κ1 > 0 and κm ≥ 0) more
closely. Lemma 1(v) and (viii) implies that ker(M0) is made up of spectral
characteristics corresponding to arbitrary innovation processes (see Appendix A
for a detailed analysis). Thus, Lemma 2 states that the set of all solutions to
(13) is generated by spectral characteristics corresponding to arbitrary innovation
processes. The dimension of ker(M) is the dimension of the innovation space of ξ

multiplied by the winding number of det(M). This number is obtained in Funovits
(2017, 2020) based on the Sims (2002) framework (see also Sorge, 2019).

Lemma 2 begs the question of what happens if zeros are present on the unit
circle. This is addressed in the next result.

Lemma 3. If (M,N) is an LREM, det(M(w)) = 0 for some w ∈ T, and
rank[ M(w) N(w) ] = m, there exists a spectral measure F such that (13) has
no solution in Hm

0 .

Proof. Let 0 �= x ∈ C
1×m satisfy xM(w) = 0 and choose F = δwIn. If a solution

φ ∈ Hm
0 to (13) exists, it must satisfy ‖φ‖2

Hm =∑m
j=1

∫
φjdFφ∗

j = ‖φ(w)‖2
Cm×n < ∞.

Since xM(z)φ(z) = 0 for F–a.e. z ∈ T, it follows that xMφ = P(xMφ|H0) = 0.
This implies that 0 = xNIn = P(xN|H0). Since xN(z) = xN(w) for F–a.e. z ∈ T

and xN(w) ∈ H0, xN(w) = P(xN|H0) = 0. This implies that x[ M(w) N(w) ] = 0,
a contradiction. �

The basic idea behind Lemma 3 is that when det(M(w)) = 0 for some w ∈ T,
the system has a form of instability akin to that of a resonance frequency in
a mechanical system. When such a system is subjected to an input oscillating
at frequency arg(w), its output cannot be covariance stationary. In particular, a
mechanical system will oscillate with increasing amplitude until failure (Arnold,
1973, p. 183). In the parlance of system theory, the system is said to have an
unstable mode (Sontag, 1998, Chap. 5).

The rank condition on [ M(w) N(w) ] in Lemma 3 permits inputs at frequency
arg(w) to excite the instability in the system. In the VARMA literature, it is
typically assumed that rank[ M(z) N(z) ] = m for all z ∈C (Hannan and Deistler,
1988, Chap. 2). In the systems theory literature, similar conditions characterize
controllability of the output in terms of the input (Kailath, 1980, Chap. 6). Without
a condition of this sort, there may be no input that can excite the system’s
instability. For example, the LREM (M,N) = (1 − z−1,1 − z−1) has a solution
φ = 1 for any F. Note that this condition permits oscillatory inputs to excite
instability but not necessarily white noise inputs. For example, the LREM (M,N) =
(−z + 3 − 2z−1,3 − 2z−1) has M(1) = 0 and N(1) = 1 so that the conditions of
Lemma 3 are satisfied, but the instability of the system cannot be excited by a
white noise input because, as is easily checked, φ = 1 is a solution to (13) when
F = μ. It is possible to formulate a different condition on N that will permit white
noise inputs to excite instability in the system and, indeed, much more can be said
about stability in LREMs. However, a general analysis of stability of LREMs is
outside the scope of this paper and is left for future research.
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We are now ready to state the following result.

Theorem 3 (Onatski’s first theorem). If (M,N) is an LREM, det(M(z)) �= 0 for
all z ∈ T, and M has a Wiener–Hopf factorization M+M0M−, then:

(i) If the partial indices of M are nonnegative, then for every covariance sta-
tionary process ξ , there exists a solution X to (M,N). The general form of
solutions to (M,N) is

Xt =
∫

ztM(−1)NInd�+
∫

ztM−1
− ψd�, t ∈ Z,

where M(−1) is a right inverse of M, ψ ∈ ker(M0), and the dimension of the
solution space is the dimension of the innovation space of ξ times the winding
number of det(M).

(ii) If the partial indices of M are all equal to zero, there is a unique solution for
every covariance stationary process ξ given by

Xt =
∫

ztM−1
− M−1

+ NInd�, t ∈ Z.

(iii) If M has a negative partial index and the zeroth Fourier coefficient of the last
row of [M−1

+ N]− is nonzero, then there exists no solution to (M,N) in general.

Proof. (i) and (ii) follow immediately from Lemma 2 and the spectral rep-
resentation theorem. (iii) We claim that for F = μIn, there exists no solution
to (M,N). For any solution φ must satisfy M0M−φ = M−1

+ NIn = [M+N]− as
{zsej : j = 1, . . . ,n,s ∈ Z} is orthonormal for our choice of F. But the last row of
this equation is zκmemM−φ = em[M−1

+ N]−, which evidently cannot hold if κm < 0,
as the zeroth Fourier coefficient of the left-hand side is zero, while that of the
right-hand side is not by assumption. �

The relationship between partial indices and existence and uniqueness of
solutions to LREMs was first discovered by Onatski (2006). Theorem 3 generalizes
Onatski (2006) by allowing for arbitrary covariance stationary input and noncon-
stant N. The general expression of solutions in (i) is similar to the one obtained in
Theorem 4.1(ii) of Al-Sadoon (2018); Lubik and Schorfheide (2003), Farmer et al.
(2015), Bianchi and Nicolò (2021), and Al-Sadoon (2020) provide algorithms for
computing these solutions.

Note that the analogue of (iii) in Onatski (2006) is incorrect: if N (� in Onatski’s
notation) is constant and nonzero, and M (A in Onatski’s notation) has a negative
(positive in Onatski’s framework) partial index, it does not follow that a solution

fails to exist. A counterexample is (M,N) =
([

1 0
0 z−1

]
,
[

1
0

])
, which has the unique

solution
[

1
0

]
for any choice of F. It is easy to check, however, that Onatski’s

statement is correct in the scalar case m = 1. Our additional condition on [M−1
+ N]−,

like the coprimeness condition in Lemma 3, permits us to use white noise as
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an input to the system for which there cannot be an admissible output (different
conditions can also be given). We will see shortly that this condition is generic.

The unit-root case can be stated as the following.

Theorem 4. If (M,N) is an LREM, det(M(w)) = 0 for some w ∈ T, and
rank[ M(w) N(w) ] = m, then there exists no solution to (M,N) in general.

Proof. Follows from Lemma 3 and the spectral representation theorem. �

We can also state the following result for generic systems.

Theorem 5 (Onatski’s second theorem). For a generic LREM (M,N) with
det(M(z)) �= 0, for all z ∈ T, there exist possibly infinitely many solutions, a
unique solution, or no solution in general according to whether det(M(z)) winds
around the origin a positive, zero, or negative number of times as z traverses T

counterclockwise.

Proof. By Theorem 2, Wm×m◦ is generic in the space of Wiener–Hopf factoriz-
able elements of Wm×m. For fixed M ∈ Wm×m◦ with Wiener–Hopf factorization
M = M+M0M−, the generic element of Wm×n has a zeroth Fourier coefficient
of em[M−1

+ N]− that is nonzero (i.e.,
∫

em[M−1
+ N]−dμ �= 0). Indeed, when Wm×n

is endowed with the μ-essential supremum norm, N 	→ ∫
em[M−1

+ N]−dμ is a
continuous mapping from Wm×n to C

1×n. The result then follows from Theo-
rem 3(iii). �

In closing, it is important to note that the assumptions underlying existence
and uniqueness in this paper are weaker than in all of the previous literature on
frequency-domain solutions of LREMs, namely the work of Whiteman (1983),
Onatski (2006), Tan and Walker (2015), Tan (2019), and Meyer-Gohde and
Tzaawa-Krenzler (2023). These works require the exogenous process to have
a purely nondeterministic Wold (1938) representation, an assumption that is
demonstrated to be unnecessary. The weaker assumptions of this paper have also
facilitated discussion of zeros of M, an aspect of the theory absent from the
previous literature. The advantage of these stronger assumptions, however, is that
they do permit closed-form expressions of solutions. See Appendix B for a more
detailed discussion.

6. ILL-POSEDNESS AND REGULARIZATION

We have seen in the previous section that LREMs may have infinitely many solu-
tions. In order to estimate and conduct inference, various selection mechanisms
have been proposed in the macroeconometrics literature to associate a unique
solution with any given set of parameters. We will review these proposals and show
that, unfortunately, continuity of the selected solutions is not guaranteed. This
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Figure 1. Solutions to linear rational expectations models.

leads to the development of a new regularized solution with guaranteed regularity
properties.

6.1. Nonuniqueness

The first approach to nonuniqueness, proposed by Taylor (1977), selects the
solution that minimizes the variance of the price variable in the model if one
exists. Taylor motivates this solution by arguing that collective rationality of
economic agents will naturally lead them to coordinate their activities to achieve
this equilibrium. Unfortunately, this provides no guidance for models in which
indeterminacy afflicts non-price variables.

The second approach to nonuniqueness commits to a particular algorithm
for obtaining a solution and ignores all other solutions. That is, it commits to
a particular choice of right inverse to M, say M(−1), and selects the solution
M(−1)NIn, ignoring all other solutions M(−1)NIn +ker(M). This is the “minimum
state variable” approach of McCallum (1983). Although this may appear to solve
the problem of selecting a unique solution, there are generally infinitely many
algorithms for obtaining solutions as there are infinitely many right inverses of M.
Thus, the concept of minimum state variable solution is not well defined without
specifying the particular algorithm or right inverse to be used for the solution.
Geometrically, there is a minimum state variable solution at every single point
of M(−1)NIn + ker(M) (see Figure 1). Without sound economic reasoning for the
choice of algorithm or right inverse, it cannot be argued that one minimum state
variable solution obtained by one algorithm is a more appropriate choice than
another, obtained by a different algorithm.

Finally, the modern approach to nonuniqueness, as exemplified by Lubik
and Schorfheide (2003), Farmer et al. (2015), and Bianchi and Nicolò (2021),
parametrizes the full set of solutions. Like the minimum state variable approach, it
commits to a particular algorithm or right inverse of M, say M(−1), and represents
each solution as a sum M(−1)NIn + χ . The first part, M(−1)NIn, is interpreted
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Figure 2. Indeterminacy of sunspots in solutions to linear rational expectations models.

as generated by fundamental economic forces (the ones that appear explicitly
in the model (9)), while the second part, χ ∈ ker(M), generated as we have
seen by arbitrary innovation processes, is interpreted as non-fundamental sunspots
(Farmer, 1999). The coordinates on ker(M) are appended to the parameters
of (M,N) and both estimated by either frequentist or Bayesian methods. The
geometry of the spectral approach allows us to see very clearly a serious conceptual
problem with this approach. Various papers in the literature claim to present
evidence of the importance of sunspots as drivers of macroeconomic activity
by showing that the contribution of sunspots, as measured by the size of the
estimated χ , is not insignificant empirically. However, it is clear from Figure 2
that the size of χ very much depends on the choice of algorithm or right inverse
of M: by one representation, M(−1)NIn + χ1, sunspots play a large role, and by
another representation, M[−1]NIn +χ2, sunspots play a small role. Without a sound
economic reason for the choice of algorithm or right inverse of M, it is unclear
that the contribution of sunspots is being measured correctly. Thus, the modern
approach suffers from a similar difficulty as the minimum state variable approach.

6.2. Discontinuity

We have established in Lemma 2 that the set of all solutions to (13) is of the
form M(−1)NIn + ker(M) for some right inverse M(−1) of M. In the course of
proving Theorem 7 below, we will see that small variations of M in the μ-
essential supremum norm lead to small variations in the orthogonal projection
onto ker(M) in the operator norm. Unfortunately, small changes in M in the μ-
essential supremum norm are not guaranteed to lead to small changes in M(−1)NIn

in the Hm-norm. Discontinuity can occur when M falls inside the nongeneric set
Wm×m\Wm×m◦ . We will illustrate this discontinuity with the simplest possible
example. It is, of course, possible to illustrate discontinuity using a more realistic
example similar to (10), but doing so comes at the cost of analytic tractability,
as solving even the simplest multivariate LREMs can be quite cumbersome.
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It is important to keep in mind that LREMs are typically parametrized purely
on theoretical considerations, without any regard to statistical properties, so that
elements of Wm×m\Wm×m◦ are not expressly excluded from the parametrization
(Onatski, 2006; Sims, 2007).

Consider the following example:

F = μI2, M(z,θ) =
[

z2 0
θz 1

]
, N(z) =

[
1 0
0 1

]
, (18)

with θ ∈ R. Thus, ξ is a standardized white noise process.
In order to compute solutions, we will need to obtain a Wiener–Hopf factoriza-

tion,

M(z,θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
1 0

0 1

][
z2 0

0 1

][
1 0

0 1

]
, θ = 0,

[
1 z

0 θ

][
z 0

0 z

][
0 −θ−1

1 θ−1z−1

]
, θ �= 0.

Thus, there exists a (nonunique) solution for every θ ∈ R. Define M(θ) as in
Definition 7, φ 	→ P(M( ·,θ)φ|H2

0). Define M(θ)(−1) as in (17) with M0(θ)(−1)

defined as in (15). We will restrict attention to minimum state variable solutions
(i.e., ψ = 0 in (16)),

φ(θ) = M(θ)(−1)NIn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
z−2 0

0 1

]
, θ = 0,

[
z−2 θ−1z−1

−θz−1 0

]
, θ �= 0.

This solution is clearly discontinuous at θ = 0. In particular,

‖φ(θ)−φ(0)‖2
H2 =

∫
|θ−1z−1|2dμ+

∫
|θz−1|2dμ+

∫
|1|2dμ = θ−2 + θ2 +1

tends to infinity as θ → 0. Thus, discontinuities can arise in the process of solving
an LREM.

While this discontinuity may be quite jarring to readers acquainted with the
LREM literature, from the Wiener–Hopf factorization literature point of view,
there is nothing surprising about this discontinuity. Indeed, (18) is a minor
modification of the example given in Section 1.5 of Gohberg et al. (2003b).
The fact that only multivariate systems with nonunique solutions can exhibit this
discontinuity may explain why discontinuity has not received sufficient attention
in the LREM literature, as solving such models is difficult to do analytically. The
heart of the problem is that, when m > 1, there are points in Wm×m at which partial
indices are discontinuous, these are precisely the nongeneric set Wm×m\Wm×m◦
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(Gohberg et al., 2003b, Cor. 1.22). That is, if M ∈ Wm×m has partial indices
satisfying κ1 − κm > 1, then there are small (in the μ-essential supremum norm)
changes in M that lead to a jump in M0 and since M has undergone only a small
change, M± must also jump. If we then choose a fixed right inverse M(−1)

0 in the
solution (16) (e.g., choosing M(−1)

0 as in (15)), then the discontinuity can affect
the solution. This is, unfortunately, what is done in all existing solution algorithms
(Al-Sadoon, 2018, 2020). In our example, the partial indices of M(z,θ) are (2,0)

for θ = 0 and (1,1) for θ �= 0; M(z,0) ∈ W2×2\W2×2◦ and M(z,θ) ∈ W2×2◦ for
θ �= 0. The discontinuity in the partial indices is what generates the discontinuity
of the Wiener–Hopf factors, which in turn generates a discontinuity in the solution.

It bears emphasizing that this discontinuity is a feature of the mathematical
problem, it is not a feature of the particular algorithm used to solve the problem;
Al-Sadoon (2020) shows how it arises in the Sims (2002) framework, Al-Sadoon
(2018) shows how it arises in a linear systems framework, and Appendix C shows
how it arises when solving the system by hand. It is also important to note that
the discontinuity of Wiener–Hopf factorization implies that there can exist no
numerically stable way to compute it generally (see Example C.2 of the online
supplement to Al-Sadoon (2018) for an illustration). While the elements of Wm×m◦
can be factorized using finite precision arithmetic, the elements of Wm×m\Wm×m◦
cannot be factorized without infinite precision. Thus, it is a nonstarter to verify
numerically whether a given system is generic or not in the process of estimation
and inference. Note that an analogous problem arises in the computation of the
Jordan canonical form, which is discontinuous at a nongeneric set of matrices in
C

m×m when m > 1 (Horn and Johnson, 1985, pp. 127–128); there, the recommen-
dation is to compute the Schur canonical form instead; and in the next section,
we will propose, similarly, to compute different solutions to LREMs than the ones
proposed in the literature.

6.3. Regularization

Having established that the LREM problem in macroeconometrics is ill-posed,
we now consider how to obtain economically meaningful solutions amenable to
mainstream econometric techniques.

Perhaps the most natural solution to the ill-posedness problem is to avoid it
altogether and restrict attention to systems with unique solutions (i.e., LREMs
(M,N), where the partial indices of M are equal to zero). Al-Sadoon and Zwiernik
(2019) have shown that unique solutions are not only continuous in the parameters
of an LREM but also analytic (see the proof of Theorem 6.2). A less restrictive
solution is to allow for nonuniqueness but restrict attention to generic systems (i.e.,
Wm×m◦ ). However, genericity cannot be taken for granted as both Onatski (2006)
and Sims (2007) have warned and some models may be parametrized to always
fall inside Wm×m\Wm×m◦ (interestingly, Sims, 2007 is widely but erroneously
considered to be a critique of Onatski, 2006; see Al-Sadoon, 2019). Moreover, we
need differentiability, not just continuity, in order to ensure asymptotic normality
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of extremum estimators (Hannan and Deistler, 1988; Pötscher and Prucha, 1997)
as it facilitates the construction of confidence intervals as well as hypothesis testing
(Newey and McFadden, 1994). Therefore, we opt for a more straightforward
solution, regularization.

With the geometry of the spectral approach in view, one is led inexorably to
consider the Tykhonov-regularized solution to (13), which minimizes the total
variance, ‖X0‖2

H m = ‖φ‖2
Hm among all solutions to (11),

φI = argmin
{‖φ‖2

Hm : Mφ = NIn
}

.

It can be shown that φI = M†NIn, where M† is the Moore–Penrose inverse of M
(Groetsch, 1977, p. 41). This takes a particularly simple form in our context.

Lemma 4. If M ∈ Wm×m, det(M(z)) �= 0 for all z ∈ T, and the partial indices of
M are nonnegative, then

M† = M∗(MM∗)−1.

Proof. By Lemma 2, M is onto. It follows that M† = M∗(MM∗)† (Groetsch,
1977, Thm. 2.1.5). Since M is onto, M∗ is one-to-one and so (MM∗)† = (MM∗)−1.

�

Lemma 4 implies a very simple technique for computing the Tykhonov-
regularized solution. Whenever a solution to (13) exists, the Tykhonov-regularized
solution is obtained from the unique solution to the auxiliary block triangular
frequency-domain system,[

MM∗ 0
−M∗ I

][
ϕ

φI

]
=
[

NIn

0

]
.

This implies that whenever a solution exists, the regularized solution is obtained
uniquely by solving an auxiliary LREM. For example, in the mixed model from
Section 3, the Tykhonov-regularized solution is the solution X to the auxiliary
LREM,

acEtYt+2 + (ab+bc)EtYt+1 + (|a|2 +|b|2)Yt +|c|2Et−1Yt

+ (ba+ cb)Yt−1 + caYt−2 = ξt,

Xt = aYt−1 +bYt + cEtYt+1.

This regularized solution exists and is unique whenever the original system
satisfies the conditions for existence.

Note that when the partial indices of M are all equal to zero, M† =
M∗(MM∗)−1 = M∗(M∗)−1(M)−1 = (M)−1. In other words, Tykhonov-
regularization has no effect if the solution is unique.

More generally, we may consider

φL ∈ argmin
{‖Lφ‖2

Hl : Mφ = NIn
}
,
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where L : Hm → Hl is a bounded linear operator chosen by the researcher. Next,
we consider economic motivation for a number of choices of L.

If the researcher wishes to shrink the variance of the ith component of X, they
can set

L : φ 	→ φi.

Note that when the ith component is the price variable, we obtain the Taylor (1977)
solution.

One can also shrink expected values of X. For example, if certain solutions
obtained by the methods reviewed above yield expectations of output that are too
variable relative to what one expects empirically, then one can impose this prior
by using

L : φ 	→ Vφj,

where j is the coordinate corresponding to output in X.
Linear combinations of lagged, current, and expected values of coordinates of

X can also be shrunk similarly. The operator

L : φ 	→
⎡
⎢⎣

(V −2I +V(−1))φ1
...

(V −2I +V(−1))φm

⎤
⎥⎦

shrinks the second difference of all variables, imposing smoothness on solutions,
similar to the idea of the Hodrick and Prescott (1997) filter.

Note that the operators above belong to the class of operators defined in
Definition 7. Thus, we can more generally use any L ∈ W l×m to construct the
weight

L : φ 	→
⎡
⎢⎣

∑m
j=1 L1jφj

...∑m
j=1 Lljφj

⎤
⎥⎦ .

More importantly, regularization can allow the researcher to shrink not just across
time but across frequencies. For example, the researcher may wish to shrink
the spectrum of the solution toward frequencies of between 2π/32 and 2π/4
corresponding to business cycle fluctuations of period 4–32 quarters in quarterly
data, that is, using

L : φ 	→ Lφ, L(z) =
{

0, π/16 ≤ |arg(z)| ≤ π/2,

Im, otherwise.

Finally, we can consider solutions that minimize a finite weighted sum of individ-
ual criteria as reviewed above,

a1‖L1φ‖2
Hl1

+·· ·+ad‖Ldφ‖2
Hld

,
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Figure 3. Regularized solutions to linear rational expectations models.

where Li : Hm → Hli and ai > 0 for i = 1, . . . ,d. This would allow the researcher to
impose d different criteria according to the weights a1, . . . ,ad. This can be achieved
by using

L : φ 	→
⎡
⎢⎣

√
a1L1
...√

adLd

⎤
⎥⎦φ.

The argument for regularization is the same as employed throughout the inverse
and ill-posed problems literatures: if theory is insufficient to pin down a unique
continuous solution, other information can be employed. In our case, regularization
allows economically meaningful shrinkage criteria to select the best among all
possible solutions or, what amounts to the same, it allows the researcher’s priors
about economic behavior to select the most appropriate solution. Regularization
resolves the problem of selecting an economically grounded solution and, as we
will soon see, also ameliorates the discontinuity problem.

Existence of regularized solutions is guaranteed whenever the given LREM
satisfies the already minimal conditions for existence of solutions. That is because,
according to Lemma 2, the set of all solutions is finite-dimensional and so the
problem of minimizing ‖Lφ‖2

Hl subject to Mφ = NIn reduces to a problem of
minimizing a nonnegative quadratic form (see Figure 3). Uniqueness of regularized
solutions, on the other hand, is the subject of the next result.

Lemma 5. If (M,N) is an LREM, det(M(z)) �= 0 for all z ∈T, the partial indices
of M are nonnegative, and L : Hm → Hl is a bounded linear operator, then

φL = (I − (L|ker(M))
†L)M†NIn,

where L|ker(M) is the restriction of L to ker(M), is a regularized solution to (13). φL

is the only element of argmin
{
‖Lφ‖2

Hl : Mφ = NIn

}
in Hm

0 if and only if ker(L)∩
ker(M) = {0}.
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Proof. See Appendix D. �

In the course of proving Lemma 5, we find that the set of regularized solutions is
φL +ker(M)∩ker(L). Thus, regularization produces a unique solution if and only
if ker(L)∩ker(M) = {0}. Geometrically, this condition requires the operator L to
put weight on all directions of indeterminacy of the LREM; if ker(L)∩ker(M) �=
{0}, it will be possible to perturb φL in any direction in ker(L) ∩ ker(M) to
arrive at another regularized solution and uniqueness will fail. A host of other
representations of φL are obtained in Appendix D.

Some special cases of Lemma 5 are particularly instructive. When ker(L) = {0},
the regularized solution is unique regardless of M. That is, when L puts weight on
all directions in the solution space, the regularized solution is unique. An example
of this is L = I, which produces the Tykhonov-regularized solution φI = M†NIn.
When ker(M) = {0} (i.e., the solution to the LREM is unique), the regularized
solution is the unique solution regardless of L. This is due to the fact that (L|ker(M))

†

is the zero operator (because L|ker(M) is the zero operator) and M† = (M)−1 so that
φL = (M)−1NIn, the unique solution.

Recalling that φL is a solution to the LREM, note how the mapping from
parameters to the set of all solutions, (M,N) 	→ φL + ker(M), compares to the
mapping from parameters to the set of regularized solutions (M,N) 	→ φL +
ker(M)∩ ker(L). The difference is simply a matter of dimension reduction. It is
important to note that neither mapping is generally one-to-one and solution sets
associated with different parameters may intersect.

Theorem 6. If (M,N) is an LREM, det(M(z)) �= 0 for all z ∈ T, the partial
indices of M are nonnegative, and L : Hm → Hl is a bounded linear operator, then
for every covariance stationary process ξ , there exists a solution X minimizing
‖Lφ‖Hl given by

Xt =
∫

zt(I − (L|ker(M))
†L)M†NInd�, t ∈ Z.

The solution is unique if and only if ker(M)∩ker(L) = {0}.

Proof. Follows from Lemma 5 and the spectral representation theorem. �

The expression for regularized solutions in Theorem 6 is primarily of theoretical
interest. It will allow us to study continuity and differentiability with respect to
underlying parameters. For estimation and inference, on the other hand, Al-Sadoon
(2020) provides a numerical algorithm for computing regularized solutions in the
Sims (2002) framework, which leads to equivalent algebraic rather than geometric
criteria for existence and uniqueness.

We have shown that, with an appropriate choice of L, the regularized solution
can overcome the nonuniqueness problem. Our next result shows that regularized
solutions also overcome the discontinuity problem. The continuity guarantee that
we require for mainstream econometric methodology is not with respect to the Hm-
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norm but with respect to the μ-essential supremum norm (see, e.g., the continuity
results for bounded spectral densities and the Gaussian likelihood functions in
Hannan, 1973; Deistler and Pötscher, 1984; Anderson, 1985). If we parametrize M
and N as M(z,θ) and N(z,θ), then it is clear that we need M(z,θ) and N(z,θ) to be
jointly continuous in z and θ . However, Green and Anderson (1987) note that this
is not sufficient to ensure continuity of the Wiener–Hopf factors in the μ-essential
supremum norm. Thus, we use Green and Anderson’s idea of imposing control
over d

dz M(z,θ) and d
dz N(z,θ).

Theorem 7. Let M : T × � → C
m×m and N : T × � → C

m×n. Under the
conditions:

(i) F = μIn.
(ii) � ⊂ R

d is an open set.
(iii) M( ·,θ) and N( ·,θ) are analytic in a neighborhood of T for every θ ∈ �.
(iv) M(z,θ), N(z,θ), d

dz M(z,θ), and d
dz N(z,θ) are jointly continuous at every

(z,θ) ∈ T×�.
(v) ker(L)∩ker(M(θ)) = {0} for all θ ∈ �.

(vi) det(M(z,θ)) �= 0 for all z ∈ T, and the partial indices of M(z,θ) are all
nonnegative for all θ ∈ �.

Then φL(θ) = (I − (L|ker(M(θ)))
†L)M(θ)†N(θ)In is continuous in the μ-essential

supremum norm.

Proof. See Appendix D. �

The assumptions of Theorem 7 are quite strong relative to the discussion so
far. However, the relevant case for most macroeconometric applications is the
case where F = μIn, while M(z,θ) and N(z,θ) are Laurent matrix polynomials
of uniformly bounded degree. In this case, the continuity of the coefficients of
M(z,θ) and N(z,θ) is sufficient to ensure conditions (iii) and (iv) of Theorem 7.
The New-Keynesian model (10) satisfies these conditions, as do all of the LREMs
in Canova (2011), DeJong and Dave (2011), or Herbst and Schorfheide (2016).

For the purpose of establishing asymptotic normality, we typically need not just
continuity in the essential supremum norm but also differentiability in the essential
supremum norm (i.e., the finite differential in θ converges to the infinitesimal
differential in the essential supremum norm over z ∈ T). This stronger form
of differentiability allows us to differentiate under integrals, which appear in
the asymptotics of maximum likelihood and generalized method of moments
estimators. The following result provides exactly what we need.

Theorem 8. Let p be a positive integer. Under assumptions (i)–(vi) of Theo-
rem 7,

(vii) M(z,θ), N(z,θ), d
dz M(z,θ), and d

dz N(z,θ) are jointly continuously differen-
tiable of all orders up to p for all (z,θ) ∈ T×�.
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Then φL(θ) = (I − (L|ker(M(θ)))
†L)M(θ)†N(θ)In is continuously differentiable of

order p with respect to θ in the μ-essential supremum norm.

Proof. See Appendix D. �

Condition (vii) of Theorem 8 is a direct strengthening of condition (iv) of
Theorem 7. When M(z,θ) and N(z,θ) are Laurent matrix polynomials of uniformly
bounded degree, as is usually the case in macroeconomic models, the pth-order
continuous differentiability of the coefficients of M(z,θ) and N(z,θ) is sufficient
to ensure this condition is satisfied.

To see Theorem 8 in action, consider the regularized solution to the example
from the previous subsection. This can be obtained analytically in just a handful
of steps.

φI(θ) = M(θ)∗(M(θ)M(θ)∗)−1I2

=
[

V(−2) θV(−1)

0 I

]([
V2 0
θV I

][
V(−2) θV(−1)

0 I

])−1[
1 0
0 1

]

=
[

V(−2) θV(−1)

0 I

][
I θV

θV(−1) (θ2 +1)I

]−1[
1 0
0 1

]
.

To invert the operator in the expression above, we note that it is of the form defined

in Definition 7, with underlying W2×2 element,
[

1 θz
θz−1 (θ2+1)

]
. This matrix has the

Wiener–Hopf factorization
[

1 θ

θ2+1
z

0 1

][
1 0
0 1

][ 1
θ2+1

0

θz−1 θ2+1

]
. Thus,

φI(θ)

=
[

V(−2) θV(−1)

0 I

]([
I θ

θ2+1
V

0 I

][ 1
θ2+1

I 0
θV(−1) (θ2 +1)I

])−1[
1 0
0 1

]

=
[

V(−2) θV(−1)

0 I

]([
(θ2 +1)I 0
−θV(−1) 1

θ2+1
I

][
I − θ

θ2+1
V

0 I

])[
1 0
0 1

]

=
[

V(−2) − θ

1+θ2 V(−2)V + θ

1+θ2 V(−1)

−θV(−1) 1
1+θ2 I + θ2

1+θ2 V(−1)V

][
1 0
0 1

]

=
[

z−2 θ

1+θ2 z−1

−θz−1 1
1+θ2

]
,

where the last equality follows from the fact that ker(V) =C
1×2 when F = μI2. As

guaranteed by Theorems 7 and 8, this solution is not just continuous as a function
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of θ but also smooth. Note that the implicit right inverse of M0 in M† is

M−(θ)M(θ)†M+(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
V(−2) 0

0 1

]
, θ = 0,

[
V(−1) 1

1+θ2

(
V(−1)V − I

)
0 V(−1)

]
, θ �= 0.

Thus, it is only by using a special right inverse of M0(θ) that we can absorb the
effect of discontinuity in the partial indices at θ = 0 on the solution.

To summarize, the LREM problem in macroeconometrics is ill-posed. However,
regularization produces solutions that are unique, continuous, and even smooth
under very general regularity conditions.

7. APPLICATION

As an application of the spectral approach to LREMs, we apply mainstream
methodology to estimate and draw inference on the nongeneric model of Section 6.
We will see that the Gaussian likelihood function displays very irregular behavior,
invalidating underlying assumptions of mainstream frequentist and Bayesian anal-
ysis. In turn, regularized solutions can avoid some of these anomalies.

Consider the nongeneric system of Section 6 in the time domain,

P(X1t+2|Ht) = ξ1t,

θ0P(X1t+1|Ht)+X2t = ξ2t,
t ∈ Z,

with ξ an i.i.d. Gaussian sequence of mean zero and covariance matrix I2. The
objective is to estimate and draw inference on θ0 ∈ R from an observed dataset
xT = (X∗

1, . . . ,X
∗
T)∗. We will follow mainstream methodology in disregarding

uniqueness, identifiability, and invertibility in parametrizing the model (see Al-
Sadoon and Zwiernik, 2019 for a careful parametrization that addresses all of these
considerations). The solution we computed in the previous section is

Xt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
ξ1t−2

ξ2t

]
, θ0 = 0,

[
ξ1t−2 + θ−1

0 ξ2t−1

−θ0ξ1t−1

]
, θ0 �= 0,

t ∈ Z.

Let �T(θ) be the covariance of xT according to the model parametrized by θ . Then
the likelihood function is

p(xT |θ) = (2π)−T det(�T(θ))−
1
2 exp

{
−1

2
x∗

T�T(θ)−1xT

}
.
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It is more convenient to work with

�T(θ) = 1

T
logdet�T(θ)+ 1

T
x∗

T�T(θ)−1xT .

We will refer to �T(θ) as the log-likelihood function. Observe that

�T(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I2T, θ = 0⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 G1 0 0 · · · 0

G∗
1 G0 G1 0 · · · 0

0 G∗
1 G0 G1

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 G∗
1 G0 G1

0 · · · 0 0 G∗
1 G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, θ �= 0,

where

G0 =
[

1+ θ−2 0
0 θ2

]
, G1 =

[
0 0

−θ 0

]
.

Then �T(0)−1 = I2T and it is easily checked that for θ �= 0,

�1(θ)−1 =
[

θ2

1+θ2 0
0 θ−2

]

�T(θ)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B 0 0 · · · 0
B∗ C B 0 · · · 0

0 B∗ C B
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 B∗ C B
0 · · · 0 0 B∗ D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T > 1,

where

A =
[

θ2

1+θ2 0

0 θ2+1
θ2

]
, B =

[
0 0
θ 0

]
, C =

[
θ2 0

0 θ2+1
θ2

]
,

D =
[

θ2 0
0 θ−2

]
.

It is also easily checked that det(�T(θ)) = 1 + θ2 for θ �= 0 for all T ≥ 1.
Substituting into the log-likelihood function, we find that

�T(0) = 1

T

T∑
t=1

X∗
t Xt
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Figure 4. Log-likelihood of non-regularized solutions to the nongeneric model.

and, for θ �= 0,

�T(θ) =

⎧⎪⎨
⎪⎩

log(1+ θ2)+ θ2

1+θ2 X2
11 + θ−2X2

21, T = 1,
1
T log(1+ θ2)+ 1

T X∗
1 AX1 + 1

T

∑T−1
t=2 X∗

t CXt

+ 2
T

∑T−1
t=1 X∗

t BXt+1 + 1
T X∗

TDXT, T > 1.

It is clear that

lim
0�=|θ |→0

�T(θ) = lim|θ |→∞�T(θ) = ∞, T ≥ 1,

almost surely because xT has a continuous distribution regardless of the value of
θ0. Since �T(θ) is continuous on R\{0} and bounded from below, �T(θ) must attain
local minima somewhere to the left and to the right of θ = 0 with probability
1. Thus, almost surely, �T(θ) is W shaped, diverging as 0 �= |θ | → 0 and as
|θ | → ∞, although it has a finite value at θ = 0. See Figure 4 for an illustration
with simulated data. It follows that the likelihood function p(xT |θ) almost surely
has at least three local maxima, one of which is θ = 0. Moreover, almost surely,
lim0�=|θ |→0 p(xT |θ) = 0 and p(xT |θ)|θ=0 > 0, so the likelihood function almost
surely has a simple discontinuity at θ = 0.

Taking the limit T → ∞ is straightforward as most terms vanish. By the strong
law of large numbers, almost surely,

lim
T→∞�T(θ) =

{
tr(E(X0X∗

0)), θ = 0,

tr(CE(X0X∗
0)+2BE(X1X∗

0)), θ �= 0.
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The moments above can be read from G0 and G1 evaluated at θ = θ0, so the right-
hand side is

�(θ,θ0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, θ = 0, θ0 = 0,

θ2
0 +1+ θ−2

0 , θ = 0, θ0 �= 0,

θ2 +1+ θ−2, θ �= 0, θ0 = 0,

θ2(1+ θ−2
0 )+ (1+ θ−2)θ2

0 −2θθ0, θ �= 0, θ0 �= 0.

See Figure 4 for plots of �(θ,0) and �(θ,1). It is easy to check that �(θ,0) has
local minima at 0, +1, and −1 and if θ0 �= 0, �(θ,θ0) has local minima at 0, θ0,
and a third point of the opposite sign to θ0 (the expression is complicated so we
omit it). Note that for θ ∈ R\{0}, �T(θ)− �(θ,θ0) is expressible as a sum of eight
terms, each of which is a product of a continuous function in θ and a quantity that
converges almost surely to zero. Thus, limT→∞ supθ∈� |�T(θ) − �(θ,θ0)| = 0 for
any compact subset � ⊂ R\{0}.

Consider the case θ0 = 0. It is clear from the discussion above that the maximum
likelihood estimator is consistent, although it is not asymptotically normal, and
any prior that has an atom at the point θ = 0 will yield a posterior distribution that
concentrates at the true value. However, this analytical approach cannot be carried
over to a general methodology because analytical descriptions of solutions are
generally infeasible for all but the simplest LREMs; the mapping from (M,N) to
any solution is highly nonlinear. The practitioner who seeks to estimate this model
on a computer may suspect a discontinuity at θ = 0 because they will be able to
see the solution behaving erratically near that point but being short of an analytical
description of the solution: (i) they will not have any theoretical guarantees as to
what happens when θ → 0 because none exist and (ii) they will not be able to
compute the solution at θ = 0 reliably due to the numerical instability of computing
Wiener–Hopf factorizations of nongeneric elements of Wm×m.

Now consider the likely outcome of applying mainstream econometric method-
ology to the data when θ0 = 0.

Let us begin with the most basic of empirical analyses: plotting the likelihood
function. Each evaluation of the likelihood function is obtained by solving the
model numerically then using the Kalman filter (Canova, 2011; DeJong and Dave,
2011; Herbst and Schorfheide, 2016). Without knowing a priori the importance of
the likelihood function at θ = 0, the researcher will not know to include that point
specifically in the list plot of the likelihood function. Even if they did include it,
the plot is not guaranteed to reveal the value of the likelihood function at this point
because of the numerical instability of the computation at this point. Thus, the plot
of the likelihood function will appear to have modes near ±1, while the population
parameter, θ0 = 0, may (and most likely will) appear to be the least likely point of
the parameter space because lim0�=|θ |→0 p(xT |θ) = 0.

Mainstream frequentist analysis utilizes variations of the Newton–Raphson
algorithm to minimize �T(θ), then obtains confidence intervals from derivatives
of �T(θ) (Canova, 2011; DeJong and Dave, 2011). This exercise is almost certain
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to fail in our setting because, again, without knowing a priori that the point θ = 0
is crucial to the analysis, the algorithm will be initialized in R\{0} and it will
converge almost surely to (approximately) either +1 or −1 depending on where
it is initialized. The standard error of the estimate, computed using the second
derivative of �T(θ) at the estimated θ , will be of order O(T−1/2) almost surely so
as the sample size gets larger it will appear to the researcher that the estimate is
precise when it is in fact completely wrong.

Mainstream Bayesian analysis utilizes variations on the random walk
Metropolis–Hastings algorithm to sample from the posterior distribution function,

p(θ |xT) ∝ p(xT |θ)p(θ),

where p(θ) is a prior distribution function, before reporting estimates of the mean
or median of the posterior distribution as well as credibility regions (Canova, 2011;
DeJong and Dave, 2011; Herbst and Schorfheide, 2016). Here, again, estimation
is certain to fail because, being unaware of the significance of the point θ = 0, the
researcher is likely to use a continuous prior that places probability zero at the set
{0}. The result is that the posterior distribution will concentrate around ±1. The
only way to allow the prior to be informative about θ is to allow for an atom in the
prior at θ = 0, but none of the aforementioned textbooks present algorithms that
can accommodate posterior distributions with atoms.

In contrast to the above, the regularized solution,

X̃1t = ξ1t−2 + θ0

1+ θ2
0

ξ2t−1,

X̃2t = −θ0ξ1t−1 + 1

1+ θ2
0

ξ2t,

displays no such anomalies. If x̃T = (X̃∗
1, . . . ,X̃

∗
T)∗ and �̃T(θ) is the covariance

of x̃T according to the model parametrized by θ , then the ijth block of �̃T(θ)

is of the form
∫

zi−jφI(θ)φI(θ)∗dμ. Since φI(θ) is continuously differentiable of
any order with respect to θ in the μ-essential supremum norm, we can exchange
the integration with differentiation with respect to θ , so �̃T(θ) is continuously
differentiable of any order with respect to θ . This implies that the same is true
of the likelihood function at every point θ ∈ R where �̃T(θ)−1 exists. It is easy
to check that �̃T(θ) and �̃T(θ)−1 have the same block structure as �T(θ) and
�T(θ)−1, respectively. The only difference is that now

G0 =
⎡
⎣ θ2

(θ2+1)
2 +1 0

0 θ2 + 1

(θ2+1)
2

⎤
⎦, G1 =

⎡
⎣ 0 0

θ

(
1

(θ2+1)
2 −1

)
0

⎤
⎦,

A =
⎡
⎣ (θ2+1)2

θ4+3θ2+1
0

0 θ4+3θ2+1

(θ2+1)
2

⎤
⎦, B =

⎡
⎣ 0 0

θ3
(
θ2+2

)
(θ2+1)

2 0

⎤
⎦,
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Figure 5. Log-likelihood of regularized solutions to the nongeneric model.

C =
⎡
⎣ θ6+2θ4+θ2+1

(θ2+1)
2 0

0 θ4+3θ2+1

(θ2+1)
2

⎤
⎦, D =

⎡
⎣ θ6+2θ4+θ2+1

(θ2+1)
2 0

0 (θ2+1)2

θ4+3θ2+1

⎤
⎦ .

Figure 5 provides a plot of the log-likelihood function of the regularized solution
with simulated data along with the almost sure limit in T. It is clear now that
frequentist and Bayesian analyses can be carried out using the regularized solution.
Note that the first, second, and third derivatives of the limiting log-likelihood
function vanish at θ = 0 when θ0 = 0. Thus, a slightly more delicate frequentist
analysis is necessary (see, e.g., Rotnitzky et al., 2000). This is, again, made possible
by the existence of derivatives of all orders, thanks to regularization.

8. CONCLUSION

This paper has extended the LREM literature in the direction of spectral analysis.
It has done so by relaxing common assumptions and developing a new regularized
solution. The spectral approach has allowed us to study examples of limiting Gaus-
sian likelihood functions of simple LREMs, which demonstrate the advantages of
the new regularized solution as well as highlighting weaknesses in mainstream
methodology. For the remainder, we consider some implications for future work.

The regularized solution proposed in this paper is the natural one to consider
for the frequency domain. However, its motivation has been entirely econometric
in nature and this begs the question of whether it can be derived from decision-
theoretic foundations as proposed by Taylor (1977). Regularization has already
made inroads into decision theory (Gabaix, 2014). This line of inquiry may
yield other forms of regularization which may have more interesting dynamic or
statistical properties.
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The parameter space in LREMs can be disconnected, and it can matter a
great deal where one initializes their optimization routine to find the maximum
likelihood estimator or their exploration routine for sampling from the posterior
distribution. Therefore, it would be useful to develop simple preliminary estimators
of LREMs analogous to the results for VARMA (e.g., Sections 8.4 and 11.5 of
Brockwell and Davis, 1991) that can provide good initial conditions for frequentist
and Bayesian algorithms.

Wiener–Hopf factorization theory has been demonstrated here and in previous
work (Onatski, 2006; Al-Sadoon, 2018; Al-Sadoon and Zwiernik, 2019) to be the
appropriate mathematical framework for analyzing LREMs. This begs the question
of what is the appropriate framework for nonlinear rational expectations models.
The hope is that the mathematical insights from the theory of linear models will
allow for important advances in nonlinear modeling and inference.

Finally, researchers often rely on high-level assumptions as tentative placehold-
ers when a result seems plausible but a proof from first principles is not apparent.
Continuity of solutions to LREMs with respect to parameters has for a long time
been one such high-level assumption in the LREM literature. The fact that it is
generally false should give us pause to reflect on the prevalence of this technique.
At the same time, the author hopes to have conveyed a sense of optimism that
theoretical progress from first principles is possible.

APPENDICES

A. Parametrizing the Set of Solutions

By Lemma 2, the set of solutions to (13) when κm ≥ 0 is the affine space M(−1)NIn +
ker(M), where

ker(M) = M−1− ker(M0).

It suffices to parametrize

ker(M0) =
⎧⎨
⎩
⎡
⎣ ψ1

...
ψm

⎤
⎦ : ψi ∈ ker(Vκi), i = 1, . . . ,m

⎫⎬
⎭ .

The problem then reduces to the parametrization of ker(Vκ ) for κ ≥ 0 and, by Lemma
1(viii), the problem reduces even further to the parametrization of ker(V). No, if ker(V) =
{0}, then ker(Vκ ) = {0}, for all κ ≥ 0, and so ker(M0) = {0}. If ker(V) �= {0}, we may find
an orthonormal basis for it,

ϒ1, . . . ,ϒr ∈ ker(V).

Note that r ≤ n by Lemma 1(vi). Lemma 1(viii) then implies that

ϒ1, . . . ,ϒr,V(−1)ϒ1, . . . ,V
(−1)ϒr, . . . ,V(1−κ)ϒ1, . . . ,V

(1−κ)ϒr
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is an orthonormal basis for ker(Vκ ) for κ ≥ 0. Thus,

ker(M0)

=
⎧⎨
⎩Kϒ : Kij(z) =

κi−1∑
s=0

Ksijz
−s,Ksij ∈ C, i = 1, . . . ,m, j = 1, . . . ,r, s = 0, . . . ,κi −1

⎫⎬
⎭,

where

ϒ =
⎡
⎢⎣

ϒ1
...

ϒr

⎤
⎥⎦ .

Therefore, ker(M0) is the space obtained by pre-multiplying ϒ by the space of m × n
complex matrix polynomials in z−1 with ith row degrees bounded by κi − 1. Notice that
the rows of K associated with partial indices at zero are identically zero. The dimension of
ker(M) can be obtained by counting the coefficients Ksij above, dimker(M) = r(κ1 +·· ·+
κm).

B. Relation to Previous Literature

This section provides a review of the approaches of Whiteman (1983), Onatski (2006), Tan
and Walker (2015), Tan (2019), and Meyer-Gohde and Tzaawa-Krenzler (2023) (hence-
forth, the previous literature). We will see that the previous literature makes significantly
stronger assumptions about ξ that also make it cumbersome to address the topic of zeros of
det(M). On the other hand, the stronger assumptions do allow for closed-form expressions
of solutions.

The previous literature takes as its starting point the existence of a Wold decomposition
for ξ with no purely deterministic part. Thus, it imposes that F be absolutely continuous
with respect to μ and that the spectral density matrix has an analytic spectral factorization
with spectral factors of fixed rank μ–a.e. (Rozanov, 1967, Thm. II.4.1). The conditions are

dF = ��∗dμ,

∞∑
s=0

�sz−s converges for |z| > 1, where �s =
∫

zs�dμ, (A.1)

rank(�(z)) = r, μ− a.e. z ∈ T.

Theorem II.8.1 of Rozanov (1967) provides equivalent analytical conditions. This paper has
demonstrated that a complete spectral theory of LREMs is possible without imposing any
such restrictions.

Clearly, the spectral factorization in (A.1) is not unique. However, there always exists a
spectral factor � unique up to right multiplication by a unitary matrix such that there is an
ϒ ∈ Hr

0 satisfying

ϒ(z)�(z) = Ir, μ− a.e. z ∈ T
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(Rozanov, 1967, Sect. II.4). This choice of spectral factor yields a Wold representation. To
see this, let

ζt =
∫

ztϒd�, t ∈ Z.

Then

Eζtζ
∗
s =

∫
zt−sϒdFϒ∗ =

∫
zt−sϒ��∗ϒ∗dμ =

∫
zt−sIrdμ =

{
Ir, t = s,

0, t �= s.

Thus, ζ is an r-dimensional standardized white noise process causal in ξ . It follows easily
that ker(V) = {x∗ϒ : x ∈ C

r} so that dimker(V) = r. Since ϒ is a left inverse of �,

‖�ϒ − In‖2
Hn = tr

(∫
(�ϒ − In)��∗(�ϒ − In)∗dμ

)
= 0

and so

ξt =
∫

ztd� =
∫

zt�ϒd� =
∫

�ztϒd� =
∞∑

s=0

�sζt−s, t ∈ Z,

is a Wold representation with

�s =
∫

zs�dμ, s ≥ 0.

The previous literature imposes a priori the representation

Xt =
∞∑

s=0

�sζt−s, t ∈ Z

before attempting to solve for the coefficients �s by complex analytic methods (Whiteman,
1983; Tan and Walker, 2015; Tan, 2019; Meyer-Gohde and Tzaawa-Krenzler, 2023) or by
Wiener–Hopf factorization (Onatski, 2006). This method cannot yield the correct solution
if ξ has a nontrivial purely deterministic part. In fact, the representation above need not be
assumed a priori and can be derived as a consequence of Theorem 3 under conditions (A.1).

Xt =
∫

zt
(

M(−1)NIn +M−1− ψ
)

d�

=
∫

zt
(

M(−1)NIn +M−1− ψ
)
�ϒd�

=
∫

�ztϒd�, t ∈ Z,

where

� =
(

M(−1)NIn +M−1− ψ
)
�.

Thus, we have obtained the spectral characteristic of X relative to the random measure
associated with ζ . It follows that X is indeed representable as a moving average in ζ with
coefficients,

�s =
∫

zs�dμ, s ≥ 0.
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It is important to note, however, that the stronger assumptions of the previous literature lead
to a more explicit expression for spectral characteristics of solutions. In particular,

NIn = P(N|Hm
0 )

= P(N�ϒ |Hm
0 )

= [N�]−ϒ .

This follows from the fact that {ztϒ : t > 0} is orthogonal to Hm
0 . It then follows that

M(−1)NIn +M−1− ψ = M−1− M(−1)
0 M−1+ ([N�]−ϒ)+M−1− ψ

= M−1− M−1
0 P(M−1+ [N�]−ϒ |Hm

0 )+M−1− ψ

= M−1− M−1
0 [M−1+ [N�]−]−ϒ +M−1− ψ

= M−1− M−1
0 [M−1+ N�]−ϒ +M−1− ψ,

because [M−1+ [N�]−]− = [M−1+ N�]− − [M−1+ [N�]+]− = [M−1+ N�]− −0. Finally, using

the results of Appendix 1, ψ = Kϒ , where K is a matrix polynomial in z−1. Thus,

φ = M−1− M−1
0 [M−1+ N�]−ϒ +M−1− Kϒ

and so

� = M−1− M−1
0 [M−1+ N�]− +M−1− K.

An interesting special case is when M, N, and � are rational. If M is rational, any Wiener–
Hopf factors M± are rational as well (Clancey and Gohberg, 1981, Thm. I.2.1). If � is
rational, the associated ϒ can also be chosen to be rational (Baggio and Ferrante, 2016,
Thm. 1). Thus, φ and � are also rational.

Finally, we note that the previous literature has avoided any mention of zeros of det(M).
Indeed, it is substantially more difficult to deal with zeros of det(M) without the general
theory of this paper because one no longer has access to degenerate spectral measures (e.g.,
the Dirac measure) that can straightforwardly excite the instability of the system.

C. Solving the Nongeneric System

Consider solving the system (18) by hand when θ �= 0. In the time domain, this is given by

P(X1t+2|Ht) = ξ1t, (A.2)

θP(X1t+1|Ht)+X2t = ξ2t, (A.3)

where ξ is a standard white noise process. Macroeconomic textbooks (e.g., Sargent, 1979)
implicitly assume the admissibility of the following elementary operations for solving
LREMs.

(i) Multiply both sides of equation i by a nonzero constant.
(ii) Apply the mapping, h 	→ P(Ush,|Ht), to both sides of equation j �= i and add the

resultant to equation i.
(iii) Permute equations i and j.
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These elementary operations are a direct generalization of the familiar row-reduction
elementary operations in linear algebra (s = 0) as well as the elementary operations for
VARMA manipulation (s ≤ 0). See page 39 of Hannan and Deistler (1988).

We seek a process X causal in ξ that solves (A.2) and (A.3). The most immediate solution
does not require any of the elementary operations above. It can be obtained by noting that,
since P(ξ1t|Ht) = ξ1t, we can set

X1t = ξ1t−2

then substitute into equation (A.3) and, noting that P(ξ1t−1|Ht) = ξ1t−1, we obtain

θξ1t−1 +X2t = ξ2t.

We therefore obtain the solution

X1t = ξ1t−2,

X2t = −θξ1t−1 + ξ2t,

which is clearly causal in ξ . However, this is not the only way of solving the problem. If we
multiply both sides of equation (A.2) by −θ (operation (i)), we obtain

−θP(X1t+2|Ht) = −θξ1t.

Now apply h 	→ P(Uh|Ht) to both sides of equation (A.3) and add the resultant to equation
(A.2) (operation (ii)) to obtain

P(X2t+1|Ht) = −θξ1t.

Thus, we can set

X2t = −θξ1t−1.

Plugging this into (A.3), we obtain

θP(X1t+1|Ht)− θξ1t−1 = ξ2t,

which allows us to set (using operation (i)),

X1t = ξ1t−2 + θ−1ξ2t−1.

Finally, permuting the two equations we have obtained (operation (iii)), we obtain the
alternative solution

X1t = ξ1t−2 + θ−1ξ2t−1,

X2t = −θξ1t−1.

This is precisely the solution obtained in Section 6.

D. Proofs

Theorems 7 and 8 require some additional technical results that we need to develop first.
Define for φ ∈ Hm and ω ∈ R, Sωφ(z) = φ(zeiω) and, for ω �= 0, �ωφ = 1

ω (Sωφ −φ).
Set dφ to be the Hm limit of �ωφ as ω → ∞ whenever it exists. Clearly, Sω is a unitary
operator on Hm

0 , �ω is a bounded operator on Hm
0 , and d is not generally bounded on Hm

0 .
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We will need the following inequality, inspired by similar inequalities of Anderson
(1985) and Green and Anderson (1987), to prove our main results.

Lemma 6. If F = μIn and φ,dφ ∈ Hm, then

‖φ‖∞ ≤ ‖φ‖Hm +‖dφ‖Hm .

Proof. Let τ(v,w) be the counterclockwise segment of T from v ∈ T to w ∈ T, and let
1τ(v,w) be the indicator function for that segment. By a change of variables,

∫
1τ(v,w)�ωφdμ = 1

ω

∫
τ(w,weiω)

φdμ− 1

ω

∫
τ(v,veiω)

φdμ.

Since φ ∈ Hm, φ is μ-integrable, so the right-hand side converges to φ(w)−φ(v) for μ –
a.e. w and v, the Lebesgue points of φ (Rudin, 1986, Theorem 7.10). On the other hand,
since �ωφ converges in Hm, the continuity of the inner product implies that the left-hand
side converges to

∫
1τ(v,w)dφdμ. Therefore,

∫
1τ(v,w)dφdμ = φ(w)−φ(v), μ− a.e. w,v ∈ T.

It follows by the triangle and Jensen’s inequality that

‖φ(w)‖Cm×n ≤ ‖φ(v)‖Cm×n +
∫

1τ(v,w)‖dφ‖Cm×n dμ, μ− a.e. w,v ∈ T.

Now, among all Lebesgue points of φ, choose a v such that ‖φ(v)‖2
Cm×n ≤ ‖φ‖2

Hm . Thus,

‖φ(w)‖Cm×n ≤ ‖φ‖Hm +
∫

‖dφ‖Cm×n dμ, μ− a.e. w ∈ T.

Since
∫ ‖dφ‖Cm×n dμ ≤

(∫ ‖dφ‖2
Cm×n dμ

)1/2 = ‖dφ‖Hm , we have

‖φ(w)‖Cm×n ≤ ‖φ‖Hm +‖dφ‖Hm, μ− a.e. w ∈ T.

Now simply take the μ-essential supremum on the left-hand side (Rudin, 1986, p. 66). �

We will also need a notion of differentiation of operators that interacts well with d. For
an arbitrary A : Hm → Hl, define dA to be the operator limit of 1

ω (SωAS−ω −A) as ω → 0
if it exists. It is easily shown that for φ ∈ Hm and B : Hn → Hm,

d(Aφ) = dAφ +Adφ, d(AB) = dAB+AdB,

whenever dφ, dA, and dB exist.
If M : C → C

m×n is analytic in a neighborhood of T, dM takes a particularly simple
form.

Lemma 7. Let M : C → C
m×n be analytic in neighborhood of T and let M′ be its

derivative, then dM : φ 	→ P
(
izM′φ

∣∣Hm
0

)
.
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Proof. Since izM′ is also analytic in a neighborhood of T (Rudin, 1986, Cor. 10.16), its
restriction to T is in Wm×n and izM′ is well defined on Hn

0. Next, since Sω is a unitary
operator on Hm

0 ,

1

ω
(SωMS−ω −M)φ = 1

ω

(
P
(
Sω(MS−ωφ)|SωHm

0
)−P

(
Mφ|Hm

0
))

= 1

ω

(
P
(
(SωM)φ|Hm

0
)−P

(
Mφ|Hm

0
))

= P
(
(�ωM)φ|Hm

0
)
,

where we have used the fact that SωHm
0 = Hm

0 and the fact that Sω(MS−ωφ) = (SωM)φ

for all φ ∈ Hn. Since �ωM − izM′ restricted to T is in Wm×n, the discussion following
Definition 7 implies that 1

ω (SωMS−ω −M)− izM′ is bounded in the operator norm by

∥∥�ωM − izM′∥∥∞ = sup
z∈T

∥∥∥∥ 1

ω

∫ ω

0
izeiλM′(zeiλ)− izM′(z)dλ

∥∥∥∥
Cm×n

≤ sup
z∈T

sup
0≤λ≤ω

∥∥∥izeiλM′(zeiλ)− izM′(z)
∥∥∥
Cm×n

.

This converges to zero as ω → 0 by the uniform continuity of izM′ on T. �

The final lemma consists of technical results, more general versions of which are due to
Locker and Prenter (1980) and Callon and Groetsch (1987). Our proofs are specialized and
modified so that they follow from first principles.

Lemma 8. Let M ∈ Wm×m, let det(M(z)) �= 0 for all z ∈ T, and suppose the partial
indices of M are nonnegative. Let L : Hm

0 → Hl be a bounded linear operator, let ker(M)∩
ker(L) = {0}, and let W = M∗M +L∗L. Then the following holds:

(i) For φ,ψ ∈ Hm
0 , the inner product

[[φ,ψ]] = ((Mφ,Mψ))+ ((Lφ,Lψ))

defines a Hilbert space Hm
0 and we write ‖φ‖2

Hm
0

= [[φ,φ]].

(ii) Hm
0 and Hm

0 have equivalent norms.
(iii) If A : Hm

0 → Hm
0 , then its Hm

0 adjoint is given by

A× = W−1A∗W.

(iv) The Hm
0 Moore–Penrose inverse of M is

M− = (I − (L|ker(M))
†L)M†.

Proof. (i) Clearly, [[ ·, · ]] is an inner product and it remains to show that Hm
0 is complete.

Let {φi : i = 1,2, . . . } ⊂ Hm
0 be an Hm

0 Cauchy sequence. Then both Mφi and Lφi are

Cauchy in Hm and Hl, respectively. They must therefore have limits ϕM ∈ Hm and ϕL ∈ Hl,
respectively. Now write

φi = φi, ker(M) +φi, ker(M)⊥, i = 1,2, . . . ,
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where φi, ker(M) ∈ ker(M) and φi, ker(M)⊥ ∈ ker(M)⊥, the orthogonal complement to
ker(M) in Hm

0 . Then

Mφi = Mφi, ker(M)⊥ → ϕM in Hm
0 .

We have already established in Lemma 4 that M† is a bounded linear operator. Since M†M
is the orthogonal projection onto ker(M)⊥ in Hm

0 (Groetsch, 1977, p. 47),

φi, ker(M)⊥ = M†Mφi, ker(M)⊥ → M†ϕM in Hm
0 .

It follows, since L is a bounded linear operator, that

Lφi, ker(M)⊥ → LM†ϕM in Hl.

Therefore,

L|ker(M)φi, ker(M) = Lφi, ker(M) → ϕL −LM†ϕM in Hl.

It has already been established in Lemma 2 that dim(ker(M)) < ∞; thus, L|ker(M) is of

finite rank and its image is closed. It follows that (L|ker(M))
† exists and is a bounded

linear operator (Groetsch, 1977, Cor. 2.1.3). Moreover, ker(M) ∩ ker(L) = {0} implies
that L|ker(M) is injective; therefore, the image of (L|ker(M))

∗ is ker(M). By Theorem

2.1.2 of Groetsch (1977), the image of (L|ker(M))
∗ is the image of (L|ker(M))

†. Thus,

(L|ker(M))
†(L|ker(M)) is the orthogonal projection onto ker(M) in Hm

0 and so

φi, ker(M) = (L|ker(M))
†(L|ker(M))φi, ker(M) → (L|ker(M))

†
(
ϕL −LM†ϕM

)
in Hm

0 .

Therefore, φi converges in Hm
0 to a point, call it φ0. Finally,

‖φi −φ0‖2
Hm

0
= ‖M(φi −φ0)‖2

Hm +‖L(φi −φ0)‖2
Hl

and the boundedness of M and L imply that φi converges to φ0 in Hm
0 as well.

(ii) Since M and L are bounded linear operators, there exists an upper bound c > 0 on
their operator norms and

‖φ‖Hm
0

=
(
‖Mφ‖2

Hm +‖Lφ‖2
Hl

)1/2 ≤ √
2c‖φ‖Hm, φ ∈ Hm

0 .

The equivalence of ‖ · ‖Hm and ‖ · ‖Hm
0

on Hm
0 then follows from Corollary XII.4.2 of

Gohberg et al. (2003a).
(iii) For φ,ψ ∈ Hm

0 ,

[[φ,ψ]] = ((Wφ,ψ)).

This implies that

((WA×φ,ψ)) = [[A×φ,ψ]] = [[φ,Aψ]] = ((Wφ,Aψ)).

Since the last term is equal to ((A∗Wφ,ψ)) and φ and ψ are arbitrary,

WA× = A∗W.

If Wφ = 0, then 0 = ((Wφ,φ)) = ‖φ‖2
Hm

0
. This implies that W is injective. Next, if φ is

orthogonal to the image of W, then ((φ,Wϕ)) = 0 for all ϕ ∈ Hm
0 . Since W is self-adjoint as
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an operator on Hm
0 , we have that ((Wφ,ϕ)) = 0 for all ϕ ∈ Hm

0 , in particular 0 = ((Wφ,φ)) =
‖φ‖2

Hm
0

. Thus, W is surjective. It follows that W is invertible (Gohberg et al., 2003a, p. 283),

and the expression for A× follows.
(iv) By the arguments used in Lemma 4, we have the following representation:

M− = M×(MM×)−1

= W−1M∗ (MW−1M∗)−1

= W−1M∗ (MW−1M∗)−1
MM†

= W−1/2
(

W−1/2M∗ (MW−1M∗)−1
MW−1/2

)
W1/2M†.

The second equality follows from (iii), the third follows from Lemma 4, and the fourth
follows from Theorem V.6.1 of Gohberg et al. (1990). Next, notice that the operator

W−1/2M∗ (MW−1M∗)−1
MW−1/2

is a self-adjoint projection acting on Hm
0 . By Theorem II.13.1 of Gohberg et al. (2003a), it

is the Hm
0 orthogonal projection onto its image and it is easily seen that this is the image of

W−1/2M∗. Let

� = I −W−1/2M∗ (MW−1M∗)−1
MW−1/2.

Then � is the Hm
0 orthogonal projection onto W1/2 ker(M), the orthogonal complement

to the image of W−1/2M∗ in Hm
0 . Since ker(M) is the image of (L|ker(M))

†, � is the Hm
0

orthogonal projection onto the image of W1/2(L|ker(M))
†. We then have that

� =
(

W1/2(L|ker(M))
†
)(

W1/2(L|ker(M))
†
)†

=
(

W1/2(L|ker(M))
†
){(

W1/2(L|ker(M))
†
)∗ (

W1/2(L|ker(M))
†
)}†

×
(

W1/2(L|ker(M))
†
)∗

= W1/2(L|ker(M))
†
{
(L|∗ker(M))

†W(L|ker(M))
†
}†

(L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†
{
(L|∗ker(M))

†L∗L(L|ker(M))
†
}†

(L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†
{
(L|∗ker(M))

†(L|∗ker(M))(L|ker(M))(L|ker(M))
†
}†

(L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†
{(

(L|ker(M))(L|ker(M))
†
)∗ (

(L|ker(M))(L|ker(M))
†
)}†

× (L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†
{(

(L|ker(M))(L|ker(M))
†
)(

(L|ker(M))(L|ker(M))
†
)}†

× (L|∗ker(M))
†W1/2
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= W1/2(L|ker(M))
†
{
(L|ker(M))(L|ker(M))

†
}†

(L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†(L|ker(M))(L|ker(M))

†(L|∗ker(M))
†W1/2

= W1/2(L|ker(M))
†(L|∗ker(M))

†W1/2

= W1/2(L|ker(M))
†(L|∗ker(M))

†WW−1/2

= W1/2(L|ker(M))
†(L|∗ker(M))

†L|∗ker(M)LW−1/2

= W1/2(L|ker(M))
†
(

L|ker(M)(L|ker(M))
†
)∗

LW−1/2

= W1/2(L|ker(M))
†
(

L|ker(M)(L|ker(M))
†
)

LW−1/2

= W1/2(L|ker(M))
†LW−1/2,

where we have used basic properties of the Moore–Penrose inverse (Groetsch, 1977, Sects.
2.1 and 2.2) as well as the fact that (L|ker(M))

† and (L|ker(M))
∗ map into ker(M). It follows

that

M− = W−1/2 (I −�)W1/2M†

= (I − (L|ker(M))
†L)M†. �

Lemma 8(i) introduces a Hilbert space Hm
0 that plays an important role in our regular-

ization theory; Hm
0 and Hm

0 have the same elements but different inner products. Lemma
8(ii) implies that convergence of points in (operators on) Hm

0 is equivalent to convergence
of points in (operators on) Hm

0 . In particular, d, whether acting on points or operators, takes
the same value in both spaces. On the other hand, adjoints and orthogonal projections are
not the same in both spaces due to the different inner products. This is what is proven in
Lemma 8(iii) and (iv).

Proof of Lemma 5. The proof that φL solves the regularization problem is due to Callon
and Groetsch (1987). We provide an alternative direct derivation. By Lemmas 2 and 4,

min
{
‖Lφ‖2

Hl : Mφ = NIn

}
= min

{
‖Lφ‖2

Hl : φ ∈ M†NIn +ker(M)
}

= min
{
‖L(M†NIn +χ)‖2

Hl : χ ∈ ker(M)
}

= min
{
‖LM†NIn +L|ker(M)χ‖2

Hl : χ ∈ ker(M)
}

.

By Lemma 2, ker(M) is of finite dimension; therefore, the image of L|ker(M) is finite-

dimensional and closed. Thus, (L|ker(M))
† exists and is a bounded linear operator

(Groetsch, 1977, Cor. 2.1.3). The minimum above is therefore attained for χ =
−(L|ker(M))

†LM†NIn +ker(L|ker(M)) (Groetsch, 1977, p. 41). The uniqueness result then
follows from the fact that ker(L|ker(M)) = ker(L)∩ker(M). �

Proof of Theorem 7. Fix θ0 ∈ �. Condition (i) together with Lemma 6 implies that

‖φL(θ)−φL(θ0)‖∞ ≤ ‖φL(θ)−φL(θ0)‖Hm +‖dφL(θ)−dφL(θ0)‖Hm,

provided φL(θ), φL(θ0), dφL(θ), and dφL(θ0) are in Hm
0 . We will prove that this is indeed

the case and the right-hand side converges to zero as θ → θ0. In this proof, all operator
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norms and orthogonal projections are understood to be with respect to Hm
0 and not with

respect to Hm
0 . Adjoints and Moore–Penrose inverses with respect to Hm

0 will be denoted by
the separate notation used in Lemma 8.

STEP 1. φL(θ) is well defined for every θ ∈ � and limθ→θ0 ‖φL(θ)−φL(θ0)‖Hm = 0.
By Lemma 5, conditions (iii), (v), and (vi) imply that φL(θ) is uniquely defined for any

θ ∈ �, including θ0.
By the discussion following Definition 1 and condition (iii), the operators M(θ) and

M(θ0) are well defined. By the discussion following Definition 7, the operator norm of
M(θ)− M(θ0) is bounded above by ‖M( ·,θ)− M( ·,θ0)‖∞. By condition (iv), M(z,θ) is
jointly continuous and so ‖M( ·,θ) − M( ·,θ0)‖∞ is continuous at θ0 (Sundaram, 1996,
Thm. 9.14). It follows that limθ→θ0 ‖M( ·,θ)−M( ·,θ0)‖∞ = 0 and so M(θ) converges to
M(θ0) in the operator norm as θ → θ0. The same argument applied to N(θ) proves that
N(θ) converges to N(θ0) in the operator norm as θ → θ0.

Lemma 2 and condition (vi) imply that M(θ) is onto for any θ ∈ �, so the orthogonal
projection operator onto the image of M(θ) is the identity mapping on Hm

0 for any θ ∈ �.

Thus, M(θ)M(θ)† = M(θ0)M(θ0)† and Theorem 1.6 of Koliha (2001) implies that M(θ)†

converges in the operator norm to M(θ0)† as θ → θ0.
Next, for θ ∈ �, let Q(θ) be the orthogonal projection onto ker(M(θ)). By verifying

the four conditions that determine the Moore–Penrose inverse (Groetsch, 1977, p. 48), it
is easily seen that (L|ker(M(θ))

† = (LQ(θ))†. By Lemma 2 and condition (vi), LQ(θ) is
an operator of finite rank. Condition (v) now implies that the rank of LQ(θ) is equal to
dim(ker(M(θ))). Since Q(θ) = I−M(θ)†M(θ) converges in the operator norm to Q(θ0) =
I−M(θ0)†M(θ0) as θ → θ0, LQ(θ) converges to LQ(θ0) in operator norm and the smallest
nonzero singular value of LQ(θ) also converges to that of LQ(θ0) (Gohberg et al., 1990,
Cor. VI.1.6). It follows that the operator norm of (LQ(θ))† remains bounded as θ → θ0. By
Theorem 1.6 of Koliha (2001) again, (LQ(θ))† converges in operator norm to (LQ(θ0))†.

It follows from the above and Lemma 8(iv) that M(θ)− = (I − (L|ker(M(θ))
†L)M(θ)†

converges in operator norm to M(θ0)− = (I − (L|ker(M(θ0))
†L)M(θ0)† as θ → θ0. There-

fore, φL(θ) = M(θ)−N(θ)In converges to φL(θ0) = M(θ0)−N(θ0)In in Hm
0 as θ → θ0.

STEP 2. dφL(θ) exists and limθ→θ0 ‖dφL(θ)−dφL(θ0)‖Hm = 0.
For θ ∈ �, dM(θ) exists by Lemma 7 and condition (iii). It follows that SωM(θ)S−ω

converges to M(θ) in the operator norm as ω → 0. For ω ∈ R, SωM(θ)S−ω : φ 	→
P(M(zeiω,θ)φ|Hm

0 ) and M(zeiω,θ) ∈ Wm×m has the same partial indices as M(z,θ).
Therefore, condition (vi) implies that SωM(θ)S−ω is onto and by the same argument as
in step 1, (SωM(θ)S−ω)− converges to M(θ)− in the operator norm as ω → 0. Theorem
2.1 of Koliha (2001) applied to SωM(θ)S−ω, as Hm

0 → Hm
0 mappings, gives

d(M(θ)−) = −M(θ)−dM(θ)M(θ)− + (I −M(θ)−M(θ))dM(θ)×(M(θ)−)×M(θ)−.

By Lemma 7 and condition (iii) again,

d(N(θ)In) = dN(θ)In.

This implies that, for every θ ∈ �,

dφL(θ) = d(M(θ)−)N(θ)In +M(θ)−dN(θ)In

= (−M(θ)−dM(θ)M(θ)− + (I −M(θ)−M(θ))dM(θ)×(M(θ)−)×M(θ)−
)

N(θ)In

+M(θ)−dN(θ)In
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= −M(θ)−dM(θ)M(θ)−N(θ)In

+ (I −M(θ)−M(θ))W(θ)−1dM(θ)∗(M(θ)−)∗W(θ)M(θ)−N(θ)In

+M(θ)−dN(θ)In,

where W(θ) = M(θ)∗M(θ)+L∗L. Clearly, dφL(θ) converges to dφL(θ0) in Hm
0 as θ → θ0

if all of the operators that appear in the expression above are continuous in the operator
norm at θ0. The continuity of M(θ), N(θ), and M(θ)− at θ0 has already been established
in step 1. It remains to establish the operator norm continuity of W(θ)−1, dM(θ), and
dN(θ) at θ0. The continuity of inversion at invertible operators ensures that W(θ)−1 is
continuous in the operator norm at θ0 (Gohberg et al., 2003a, Cor. II.8.2). The operator

norm of dM(θ)−dM(θ0) is bounded above by supz∈T
∥∥∥iz d

dz M(z,θ)− iz d
dz M(z,θ0)

∥∥∥
Cm×m

=
supz∈T

∥∥∥ d
dz M(z,θ)− d

dz M(z,θ0)

∥∥∥
Cm×m

, which converges to zero as θ → θ0 by the joint

continuity of d
dz M(z,θ) (condition (iv)). A similar argument yields the continuity of

dN(θ). �

Proof of Theorem 8. For φ : � → Hm, x ∈ R
d , and ε �= 0, define

∇ε,xφ(θ) = φ(θ + εx)−φ(θ)

ε
.

The claim of the theorem is that for every θ ∈ �, there exists a symmetric multilinear
mapping Dp

θφL(θ) :
∏p

i=1R
d → Hm

0 such that for every {x1, . . . ,xp} ⊂ R
d ,

lim
(ε1,...,εp)→0

∥∥∥∇εp,xp · · ·∇ε1,x1φL(θ)−Dp
θφL(θ)(x1, . . . ,xp)

∥∥∥∞ = 0

and Dp
θφL(θ)(x1, . . . ,xp) is continuous in μ-essential supremum norm with respect to θ .

As in the proof of Theorem 7, we will prove the existence of ∇εp,xp · · ·∇ε1,x1φL(θ) and

d
(∇εp,xp · · ·∇ε1,x1φL(θ)

)
and their convergence as elements of Hm to Dp

θφL(θ)(x1, . . . ,xp)

and d(Dp
θφL(θ)(x1, . . . ,xp)), respectively, as (ε1, . . . ,εp) → 0. The continuity in Hm of

Dp
θφL(θ)(x1, . . . ,xp) and d(Dp

θφL(θ)(x1, . . . ,xp)) with respect to θ then proves the conti-

nuity of Dp
θφL(θ)(x1, . . . ,xp) in μ-essential supremum norm with respect to θ by Lemma 6.

STEP 1. The result holds for p = 1.
For x ∈ R

d and φ ∈ Hm
0 , define

Dθ M(θ)x : φ 	→ P((Dθ M(z,θ)x)φ|Hm
0 ),

where Dθ M(z,θ) is the Jacobian of M(z,θ) with respect to θ . Then, by arguments that are
by now familiar,∥∥∇ε,xM(θ)φ − (Dθ M(θ)x)φ

∥∥
Hm = ∥∥P((∇ε,xM(z,θ)−Dθ M(z,θ)x)φ|Hm

0 )
∥∥

Hm

≤ ∥∥(∇ε,xM(z,θ)−Dθ M(z,θ)x)φ
∥∥

Hm

≤ ∥∥∇ε,xM(z,θ)−Dθ M(z,θ)x
∥∥∞ ‖φ‖Hm

≤
∥∥∥∥1

ε

∫ ε

0
(Dθ M(z,θ +ρx)x−Dθ M(z,θ)x)dρ

∥∥∥∥∞
‖φ‖Hm

≤ sup
0≤ρ≤ε

‖Dθ M(z,θ +ρx)x−Dθ M(z,θ)x‖∞ ‖φ‖Hm,
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which converges to zero as ε → 0 by the uniform continuity of Dθ M(z,θ +ρx)x with respect
to (z,ρ) ∈T× [0,ε̄], where ε̄ is chosen so that the segment between θ and θ + ε̄x is inside �.
Thus, the mapping φ 	→ (Dθ M(θ)x)φ is linear and bounded on Hm

0 (Gohberg et al., 2003a,
Cor. XII.4.4). By the same arguments, the mapping Dθ N(θ)x : φ 	→ P((Dθ N(z,θ)x)φ|Hm

0 )

is a bounded linear operator from Hn
0 to Hm

0 as well as the operator limit of ∇ε,xN(θ).
Since Dθ M(θ)x exists and, by the same arguments as used above, M(θ +εx)− converges

to M(θ)− as ε → 0, Theorem 2.1 of Koliha (2001), applied to M(θ + εx) as Hm
0 → Hm

0
mappings, implies that ∇ε,x(M(θ)−) converges in operator norm to

Dθ M(θ)−x = −M(θ)−(Dθ M(θ)x)M(θ)−

+ (I −M(θ)−M(θ))(Dθ M(θ)x)×(M(θ)−)×M(θ)−

= −M(θ)−(Dθ M(θ)x)M(θ)−

+ (I −M(θ)−M(θ))W(θ)−1(Dθ M(θ)x)∗(M(θ)−)∗W(θ)M(θ)−,

as ε → 0, where W(θ) = M(θ)∗M(θ) + L∗L. It follows that the mapping φ 	→
(Dθ M(θ)−x)φ is a bounded linear operator on Hm

0 . Thus, ∇ε,xφL(θ) converges in Hm

to

DθφL(θ)x = (Dθ M(θ)−x)N(θ)In +M(θ)−(Dθ N(θ)x)In.

Next, following the same techniques as used above, the joint continuity of d
dz (Dθ M(z,θ)x) =

Dθ

(
d
dz M(z,θ)

)
x implies that the operator d(Dθ M(θ)x) exists as a cross operator derivative,

is equal to the cross derivative Dθ (dM(θ)x), is given by φ 	→ P
(

iz d
dz (Dθ M(z,θ)x)φ

∣∣∣∣Hm
0

)
,

and is a bounded linear operator on Hm
0 . The same is true of d(Dθ N(θ)x). This implies that

d(∇ε,xφL(θ)) = ∇ε,xdφL(θ) converges in Hm to Dθ (dφL(θ))x = d(DθφL(θ)x), given by

d(DθφL(θ)x) = d(Dθ M(θ)−x)N(θ)In + (Dθ M(θ)−x)dN(θ)In

+d(M(θ)−)(Dθ N(θ)x)In +M(θ)−d(Dθ N(θ)x)In

= {−d(M(θ)−)(Dθ M(θ)x)M(θ)− −M(θ)−d(Dθ M(θ)x)M(θ)−

−M(θ)−(Dθ M(θ)x)d(M(θ)−)+
+ (I −d(M(θ)−)M(θ))(Dθ M(θ)x)×(M(θ)−)×M(θ)−

+ (I −M(θ)−dM(θ))(Dθ M(θ)x)×(M(θ)−)×M(θ)−

+ (I −M(θ)−M(θ))d(Dθ M(θ)x)×(M(θ)−)×M(θ)−

+ (I −M(θ)−M(θ))(Dθ M(θ)x)×d(M(θ)−)×M(θ)−

+ (I −M(θ)−M(θ))(Dθ M(θ)x)×(M(θ)−)×d(M(θ)−)
}
N(θ)In+

+ (Dθ M(θ)−x)dN(θ)In +d(M(θ)−)(Dθ N(θ)x)In

+M(θ)−d(Dθ N(θ)x)In.

Given the expressions for Dθ M(θ)−x, d(Dθ M(θ)x), and d(Dθ N(θ)x), as well as results
obtained in the proof of Theorem 7, it is now clear that all of the operators that appear
in the expressions for DθφL(θ)x and d(DθφL(θ)x) are continuous in operator norm with
respect to θ . It follows that DθφL(θ)x and d(DθφL(θ)x) are continuous in Hm-norm with
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respect to θ . By Lemma 6 then, DθφL(θ)x is continuous in μ-essential supremum norm with
respect to θ .

STEP 2. The result holds for all p > 1.
For {x1, . . . ,xp} ⊂ R

d , φ ∈ Hm
0 , and i = 1, . . . ,p, define

Di
θ M(θ)(x1, . . . ,xi) : φ 	→ P(Di

θ M(z,θ)(x1, . . . ,xi)φ|Hm
0 ),

where Di
θ M(z,θ)(x1, . . . ,xi) = limεi→0,...,ε1→0 ∇εi,xi · · ·∇ε1,x1 M(z,θ) is the ith order

derivative of M(z,θ) with respect to θ in the directions x1, . . . ,xi. Just as in step 1, it is easily
established that for {x1, . . . ,xp} ⊂ R

d and i = 1, . . . ,p, Di
θ M(θ)(x1, . . . ,xi) is the operator

limit of ∇εi,xi · · ·∇ε1,x1 M(θ) as (ε1, . . . ,εi) → 0; therefore, it is linear and bounded on Hm
0 .

The same result holds for Di
θ N(θ)(x1, . . . ,xi).

The expression of Dθ M(θ)−x in step 1 consists of further differentiable operators. There-
fore, for {x1, . . . ,xp} ⊂ R

d and i = 1, . . . ,p, the operator limit of ∇εi,xi · · ·∇ε1,x1 M(θ)−
exists, call it Di

θ M(θ)−(x1, . . . ,xi), and is a finite sum of composites of the mappings

M(θ),M(θ)−,Dθ M(θ)(x1), . . . ,Dθ M(θ)(xp),D2
θ M(θ)(x1,x2), . . . ,D2

θ M(θ)(xi−1,xi),

D3
θ M(θ)(x1,x2,x3), . . . ,D3

θ M(θ)(xi−2,xi−1,xi), . . . ,D
i
θ M(θ)(x1, . . . ,xi),

and their Hm
0 adjoints. As all of these mappings are continuous in the operator norm with

respect to θ , it follows that Di
θφL(z,θ)(x1, . . . ,xi) is continuous in Hm with respect to θ .

Next, the joint continuity of d
dz Di

θ M(z,θ)(x1, . . . ,xi) = Di
θ

(
d
dz M(z,θ)

)
(x1, . . . ,xi), for

i = 1, . . . ,p, implies the existence of the operator derivative

d(Di
θ M(θ)(x1, . . . ,xi)) : φ 	→ P

(
iz

d

dz
Di

θ M(z,θ)(x1, . . . ,xi)φ

∣∣∣∣Hm
0

)
,

for i = 1, . . . ,p, a similar result also holding for d(Di
θ N(θ)(x1, . . . ,xi)). This implies that

d(∇εp,xp · · ·∇ε1,x1φL(θ)) = ∇εp,xp · · ·∇ε1,x1 dφL(θ)

converges in Hm to

d(Dp
θφL(θ)(x1, . . . ,xp)) = Dp

θ (dφL(θ))(x1, . . . ,xp).

In particular, d(Dp
θφL(z,θ0)(x1, . . . ,xp)) is a finite sum of composites of the mappings

M(θ),M(θ)−,Dθ M(θ)(x1), . . . ,Dθ M(θ)(xp),D2
θ M(θ)(x1,x2), . . . ,D2

θ M(θ)(xp−1,xp),

D3
θ M(θ)(x1,x2,x3), . . . ,D3

θ M(θ)(xp−2,xp−1,xp), . . . ,Dp
θ M(θ)(x1, . . . ,xp),

dM(θ),d(Dθ M(θ)(x1)), . . . ,d(Dθ M(θ)(xp)),d(D2
θ M(θ)(x1,x2)), . . . ,d(D2

θ M(θ)(xp−1,xp)),

d(D3
θ M(θ)(x1,x2,x3)), . . . ,d(D3

θ M(θ)(xp−2,xp−1,xp)), . . . ,d(Dp
θ M(θ)(x1, . . . ,xp)),

N(θ),Dθ N(θ)(x1), . . . ,Dθ N(θ)(xp),D2
θ N(θ)(x1,x2), . . . ,D2

θ N(θ)(xp−1,xp),

d(D3
θ N(θ)(x1,x2,x3)), . . . ,d(D3

θ M(θ)(xp−2,xp−1,xi)), . . . ,D
p
θ N(θ)(x1, . . . ,xp),

dN(θ),d(Dθ N(θ)(x1)), . . . ,d(Dθ N(θ)(xp)),d(D2
θ N(θ)(x1,x2)), . . . ,d(D2

θ N(θ)(xp−1,xp)),

d(D3
θ N(θ)(x1,x2,x3)), . . . ,d(D3

θ M(θ)(xp−2,xp−1,xp)), . . . ,d(Dp
θ N(θ)(x1, . . . ,xp))
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and their Hm
0 adjoints applied to In. All of these operators are bounded on Hm

0 and continuous

in the operator norm at θ0 by the joint continuity of Di
θ M(z,θ), d

dz Di
θ M(z,θ), Di

θ N(z,θ), and
d
dz Di

θ N(z,θ) for i = 0, . . . ,p. Thus, d(Dp
θφL(θ)) is continuous at θ0 in Hm and the result

follows by Lemma 6. �
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