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Abstract

Objective: To evaluate the impact of implementing a clinical care guideline for uncomplicated gram-negative bloodstream infections
(GN-BSI) within a health system.

Design: Retrospective, quasi-experimental study.

Setting: A large academic safety-net institution.

Participants: Adults (≥18 years) with GN-BSI, defined by at least one positive blood culture for specific gram-negative organisms. Patients
with polymicrobial cultures or contaminants were excluded.

Interventions: Implementation of a GN-BSI clinical care guideline based on a 2021 consensus statement, emphasizing 7-day antibiotic courses,
use of highly bioavailable oral antibiotics, and minimizing repeat blood cultures.

Results: The study included 147 patients pre-intervention and 169 post-intervention. Interrupted time series analysis showed a reduction in
the median duration of therapy (–2.3 days, P = .0016), with a sustained decline (slope change –0.2103, P = .005) post-intervention. More
patients received 7 days of therapy (12.9%–58%, P < .01), oral antibiotic transitions increased (57.8% vs 72.2%, P < .05), and guideline-
concordant oral antibiotic selection was high. Repeat blood cultures decreased (50.3% vs 30.2%, P < .01) without an increase in recurrent
bacteremia. No significant differences were observed in 90-day length of stay, rehospitalization, recurrence, or mortality.

Conclusions: Guideline implementation was associated with shorter antibiotic therapy durations, increased use of guideline-concordant oral
antibiotics, and fewer repeat blood cultures without compromising patient outcomes. These findings support the effectiveness of institutional
guidelines in standardizing care, optimizing resource utilization, and promoting evidence-based practices in infectious disease management.

(Received 30 August 2024; accepted 14 December 2024)

Introduction

Gram-negative bloodstream infections (GN-BSI) pose a major
healthcare challenge due to their high prevalence, morbidity,
mortality and financial burden.1–4 Optimizing management
through evidence-based practices is crucial to ensure effective
treatment while minimizing adverse effects like antimicrobial
resistance, Clostridioides difficile infections, catheter-related com-
plications, and prolonged hospital stays.5,6 In 2021, Heil et al issued
a consensus statement to standardize the management of
uncomplicated GN-BSIs, defined as cases involving non-

immunocompromised patients that achieved source control and
clinical improvement within 72 hours.7 Common sources of
uncomplicated GN-BSIs include the urinary tract, intra-abdomi-
nal, biliary tract, skin and soft tissue, pneumonia, or catheter-
related infections. Key management points included 7-day
treatment durations,8–13 transitioning to highly bioavailable oral
antibiotics,14–17 and avoiding repeat blood cultures.7,18–21 The
objective of this study was to evaluate the effects of implementing a
clinical care guideline based on this consensus statement at a large
academic safety-net institution.

Methods

In September 2022, Denver Health Medical Center’s Antimicrobial
Stewardship Program introduced a clinical care guideline for
uncomplicated GN-BSI to standardize care and promote evidence-
based management. Aligned with the consensus statement by
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Heil et al,7 the guideline emphasized 7-day treatment durations,
limited use of repeat blood cultures, and transitioning from
intravenous to highly bioavailable oral therapy after 24–48 hours of
clinical stability. Recommended oral options included levofloxacin,
trimethoprim-sulfamethoxazole (TMP-SMX), and cephalexin.
Clinicians were advised to consider susceptibilities and clinical
factors when selecting therapy, with high-dose cephalexin (1 gram
given thrice daily) as the preferred oral beta-lactamdue to its favorable
pharmacokinetics and toxicity profile as well as narrow spectrum of
activity.7 The guideline was accessible to clinical staff through the
Denver Health Antimicrobial Stewardship Mobile Application and
intranet. Awareness of the guideline was also promoted via a
newsletter and direct communication from representatives of the
Antimicrobial Subcommittee that approved the guideline. Infectious
Diseases pharmacists reviewed positive blood cultures and provided
feedback to clinicians to promote use of the guideline. Of note, an
intervention to reduce routine use of repeat blood cultures via a best-
practice advisory alert was implementedmore than two years prior in
January 2020.

This was a retrospective, quasi-experimental study comparing
patients admitted with a GN-BSI before (January 2019–December
2019) and after (October 2022–September 2023) guideline
implementation. The COVID-19 pandemic resulted in a delay
in the development and implementation of the guideline and thus a
gap between the two periods; however, this may have served to
reduce potential confounding of outcomes during the early
pandemic.22–24 Patients were included if they were over 18 years
old, admitted during the study period, and had at least one positive
blood culture with one of the following organisms: Acinetobacter
spp., Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella
spp., Morganella morganii, Proteus spp., Providencia stuartii,
Pseudomonas spp., Serratia spp., and Stenotrophomonas malto-
philia. Patients with polymicrobial cultures or an organism
thought to be a contaminant were excluded. Automated
antimicrobial susceptibility testing was performed using the
MicroScan system.

The primary outcome was the difference in antibiotic duration.
Secondary outcomes included the proportion receiving seven days
of therapy, oral switch therapy, and repeat blood cultures. Safety
outcomes included length of hospitalization and 90-day incidence
of rehospitalization, recurrence of GN-BSI (defined as a positive
blood culture with the same organism as the index case), all-cause
mortality, and C. difficile infection (defined as a positive
polymerase chain reaction or toxin assay test). Patients who did
not survive the initial hospitalization were not censored.

Trends in the primary outcome were analyzed using
interrupted time series (ITS) analysis with an ARMA(0,1)
regression model. R was used for development of the regression
model and ITS analysis. The analysis was constructed using
monthly median days of therapy with 12 points of data before and
after the intervention. Other results were analyzed using theMann-
Whitney U test and χ2 test, with differences considered significant
with a P-value of < .05.

This project was reviewed by the Denver Health’s Quality
Improvement Committee, authorized by the Colorado Multiple
Institutional Review Board (COMIRB), and deemed not human
subject research, thus exempt from IRB review.

Results

A total of 147 patients were included from the pre-intervention
period and 169 from the post-intervention period. Baseline

characteristics of patients and their infections are shown in
Table 1. Age, gender, and Charlson comorbidity index scores were
similar between groups. Themedian Pitt Bacteremia Score was one
in both groups (P = .51), and there were fewer patients in the
intensive care unit at the time of first blood culture in the post-
intervention period (42.9% vs 32%, P < .05). Escherichia coli was
the most common pathogen in both periods (over 50%), followed
by Klebsiella pneumoniae and Enterobacter cloacae. More than half
of infections originated from the urinary tract. There was no
significant difference in the number of extended-spectrum beta-
lactamase (ESBL)-producing organisms or resistance to oral
antibiotics. No carbapenemase-producing organisms were
detected. The frequency of Infectious Diseases consults was
similar (about 30%) between groups.

The results of the ITS analysis are displayed in Figure 1. The
initial median duration of therapy was 10.5 days and a significant
level change (–2.3 days, P = .0016) was observed following the
intervention. This was maintained after the intervention and the
rate significantly decreased over the course of the post-intervention
period (slope change –0.2103, P = .005). In aggregate, patients in
the post-intervention period were more likely to be treated with
seven days of antibiotics (12.9% vs. 58%, P < .01) and had a lower
median duration of therapy (10 vs. 7 days, P < .01) (Table 2).

The use of oral switch therapy was more frequent in the post-
intervention period (57.8% vs 72.2%, P < .05), while the mean
number of days to oral switch was lower (4.8 vs 4.5 days, P < .05).
The use of oral fluoroquinolones (22.4%–37.2%, P < .05), and
cephalexin (4.1%–15.4%, P < .01) were higher in the post-
intervention period. Conversely, cefdinir and amoxicillin use was
lower (14.3%–4.1%, P < .01 and 5.4%–1.2%, P < .05, respectively).
The overall use of oral beta-lactams was not significantly different
(28.6% vs 26.6%, P= .7). Repeat blood culture collection was lower
in the post-intervention period (50.3% vs 30.2%), P < .01), with no
significant differences in positivity rates for the same pathogen
(2%–2.4%, P = .84). There was a trend toward fewer contaminated
blood cultures in the post-intervention period (7 vs 3 cultures,
P = .13).

No significant differences were observed in median length of
stay or 90-day incidence of rehospitalization, recurrent GN-BSI, or
mortality. However, 90-day incidence of C. difficile infection was
significantly lower during the post-intervention period (4.8%
vs 0.6%, P = .01).

Discussion

Evidence-based local guidelines have been shown to improve the
management of multiple infections, including but not limited to
pneumonia, skin and soft tissue infections, and acute otitis
media.25–28 In the present study, we demonstrate that implemen-
tation of an institutional clinical care guideline for uncomplicated
GN-BSI was associated with an immediate and sustained reduction
in the median duration of antibiotic therapy, highlighting the
effectiveness of local guidelines as a tool to shorten treatment
durations.We believe local guidelines increase clinician knowledge
of evidence-based practices and serve to streamline and
standardize decision-making. The addition of Infectious
Diseases pharmacist review and feedback serves as an opportunity
to promote use of the guideline and reinforce the management
concepts with clinicians.

In addition to shorter durations of therapy, implementation of
the guideline was associated with more frequent use of oral switch
therapy. Furthermore, there was a notable shift toward guideline-
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recommended antibiotics, such as cephalexin and levofloxacin,
and away from cefdinir. The shift from cefdinir to high-dose
cephalexin was one intended goal of this intervention, as cefdinir’s
poor bioavailability has been linked to worse outcomes in
GN-BSI.17 The increased use of levofloxacin may have in part
been due to the increasing incidence ESBL-producing organisms in
our health system and other changes in resistance patterns
associated with the COVID-19 pandemic.29 Future stewardship
efforts could focus on promoting narrower-spectrum agents like
beta-lactams when appropriate. These shifts in antibiotic selection
reinforce the impact of local guidelines on prescribing practices.

The significant reduction in repeat blood cultures warrants
further discussion. The introduction of a best-practice advisory
alert discouraging routine repeat cultures prior to the intervention
may have contributed to this change, though it is unclear whether
the effect was due to the advisory, the guideline, or both.
Importantly, there was no increase in recurrent bacteremia,
indicating that reduced use of repeat cultures did not compromise
patient safety. Additionally, the less frequent use of repeat blood
cultures may have contributed to the lower number of
contaminated blood cultures in the post-intervention period, a
potentially important benefit since contaminated blood cultures
have been shown to be associated with unnecessary antimicrobial
use and prolongation of hospitalization.30–34 The absence of
significant differences in length of stay, rehospitalization, recurrent

infections, and mortality suggests that the guideline’s shorter
therapy durations and reduced repeat blood cultures did not
negatively impact patient outcomes.

This study has similarities to a prior study by Erickson et alwho
evaluated an antimicrobial stewardship bundle for uncomplicated
GN-BSI prior to the publication of the consensus statement by
Heil et al.7,35 However, the present study differs by including a
larger sample size, a diverse and underserved population, and a
more recent study period, reflecting current prescribing practices
and resistance trends. Both studies demonstrated reduced treat-
ment duration and repeat blood culture use without increased
readmissions, infection recurrence, or mortality, suggesting
clinical care guidelines can be effectively and safely implemented
across various settings.

Several limitations should be considered. First, the quasi-
experimental study design limits the ability to establish a causal
relationship between the intervention and practice changes. The
time gap between the pre- and post-intervention periods
introduces the potential for period effect (eg, other interventions
or secular trends influencing outcomes). However, the consistent
changes across multiple outcomes – such as duration of therapy,
transitioning to oral antibiotics, oral antibiotic selection, and
repeat blood cultures – suggest that the guideline was at least in
part responsible for those shifts. It is unclear if the observed
reduction in C. difficile infections was related to less antibiotic

Figure 1. Interrupted time-series analysis of median duration of antibiotic therapy between pre-intervention and post-intervention periods.
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exposure because of this intervention or other organizational
C. difficile reduction efforts, such as promoting testing only in
patients with true diarrhea and avoiding testing patients who
received laxatives, that were also ongoing during the post-
intervention period. Second, due to retrospective design, we may
have missed clinical outcomes such as deaths, readmissions, and
recurrence of gram-negative bacteremia, though these would be
expected to be similarly distributed across periods. Third, we did
not control for factors that may influence clinical outcomes like
appropriateness of initial therapy, location of infection onset
(hospital vs community), and antimicrobial resistance. The limited

number of ESBL- or carbapenemase-producing organisms may
mitigate the latter concern. Finally, the study’s single center-design
and limited sample of immunocompromised patients (ie solid
organ transplant, neutropenia, etc) limit generalizability.

Implementing a clinical care guideline for uncomplicated
GN-BSI significantly reduced antibiotic therapy duration without
compromising clinical outcomes. It also promoted guideline-
concordant oral antibiotic use and more selective use of repeat
blood cultures. These findings underscore the potential of such
guidelines to standardize care, enhance antibiotic stewardship, and
optimize resource use in managing infectious diseases.

Table 1. Comparison of baseline characteristics of included patients and their gram-negative bloodstream infections between cohorts

Characteristic
Pre-intervention

n= 147
Post-intervention

n= 169 P

Age (years), median (IQR) 62 (49–70) 58 (46–69) 0.35

Gender at birth, n (%) Female 74 (50.3) 84 (49.7) 0.91

Race, n (%) White 104 (70.7) 102 (60.4) 0.05

Black 11 (7.5) 14 (8.3) 0.79

Asian 8 (5.4) 5 (2.9) 0.27

Other 24 (16.4) 48 (28.4) <0.05

Ethnicity, n (%) Hispanic 83 (56.5) 100 (59.2) 0.63

Charlson Comorbidity Index, median (IQR) 4 (2–5) 3 (1–5) 0.30

Comorbid conditions, n (%) Injection drug use 8 (5.4) 8 (4.7) 0.77

Solid organ transplant 4 (2.7) 2 (1.2) 0.32

Bone marrow transplant 0 (0) 0 (0) N/A

Absolute neutrophil count <500 cells/microliter 1 (0.7) 1 (0.6) 0.92

Causative pathogens, n (%) Escherichia coli 92 (62.6) 100 (59.1) 0.54

Klebsiella pneumoniae 20 (13.6) 27 (16) 0.55

Enterobacter cloacae 8 (5.4) 10 (5.9) .86

Klebsiella oxytoca 9 (6.1) 1 (0.6) < 0.05

Pseudomonas aeruginosa 7 (4.8) 5 (3) 0.40

Proteus mirabilis 5 (3.4) 6 (3.6) 0.94

Othera 6 (4.1) 20 (11.8) < 0.05

Extended-spectrum beta-lactamase producing organism, n (%) 18 (12.2) 26 (15.4) 0.42

Antimicrobial rate of resistance, n (%) Cefazolinb 65 (44.2) 64 (37.9) 0.25

TMP-SMX 48 (32.7) 45 (26.6) 0.24

Levofloxacin 23 (15.6) 21 (12.4) 0.41

Suspected source of infection, n (%) Urinary tract 83 (56.5) 111 (65.7) 0.09

Intra-abdominal 27 (18.4) 31 (18.3) 0.99

Respiratory 10 (6.8) 10 (5.9) 0.75

Vascular catheter 5 (3.4) 5 (2.9) 0.82

Skin and soft tissue 3 (2) 6 (3.6) 0.42

Other 19 (12.9) 6 (3.6) < 0.05

Pitt Bacteremia Score, median (IQR) 1 (0–3) 1 (0–3) 0.51

Intensive care unit admission on day of positive blood culture, n (%) 63 (42.9) 54 (32) < 0.05

Infectious Diseases consult, n (%) 48 (32.7) 51 (30.2) 0.64

IQR, interquartile ratio; n, number of members; %, percentage of sample size.
aAcinetobacter baumannii, Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Morganella morganii, Salmonella enterica, Serratia marcescens, and other unidentified species of
Enterobacter and Acinetobacter.
bSusceptibilities for cephalexin and cefdinir are extrapolated from cefazolin per the 2024 Clinical and Laboratory Standards Institute M100 guidance.
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