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1. Introduction

It is known that a strongly archimedean locally compact tight Riesz group
without pseudozeros is essentially Rm with the usual topology and tight order.
We show that a locally compact tight Riesz group, (G, ^ ) , without pseudozeros,
is algebraically and topologically isomorphic with Rm © D, where D is discrete.
Rm © {0} is a clopen o-ideal; and we give necessary and sufficient conditions for
G to be isomorphic with Rm © D in all respects. Further (G, ^ ) contains an o-ideal
isomorphic with Rm © £ s Z and G is isomorphic with it if and only if (G, ^ , <?/)
is interval-compact.

2. Preliminaries

Let (G, ^ ) be an abelian pogroup. Denote the set {x: x 2i 0} by P and the set
{x: x > 0} by P* . We say x is pseudopositive if x + p > 0 for all p > 0 and
x J: 0. We say x is a pseudozero if x and — x are pseudopositive. The intervals

( a , b ) = {x: a < x < b] a, beG

form a subbase for the open-interval topology t o n G.
If (G, 50 is dense then (G, <?/) is a topological group. Also (G, ^ ) is 7\ if and

only if (G, ^ ) has no pseudozeros. Denote the closure of S ^ G in ^ by S~ .
We say (G, ^ , ^ ) is interval-compact Cameron and Miller (to appear) if (a, b)~
is compact for every a < b.

If (G, ^ ) has no pseudozeros we write x > 0 to mean that x > 0 or that x
is pseudopositive. Then (G, = )̂ is a pogroup and =< is called the associated order.
We write a > b if a ^ nb for all integers n, and (G, ^ ) is said to be archimedean
if a > b implies that b = 0. If (G, ^ ) is an /-group, we say (G, ^ ) is a complete
/-group if each bounded subset of G has a sup and an inf. Every complete /-group
is archimedean. If, given a, b > 0 there exists some integer n such that na> b,
we say (G, :S) is strongly archimedean (Loy and Miller (1972) call this archime-
dean). A strongly archimedean /-group is archimedean. We say (G, ^ ) has the
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TR(m, n) interpolation property, Cameron and Miller (to appear), if, given
ai> •••»am> î> ••^bneG such that #;<&,- for i = l,2,---,m and ; = l ,2 , - - ,n
there exists ceG such that at< c < bj for i = 1, •••, m and j = 1, •••,«. A %/jf
Kiesz group (abbreviated TRG) is a directed abelian pogroup satisfying TR(2,2).
We say a pogroup has small elements if given a > 0 a n d n , a positive integer,
there exists b > 0 such that a > nb. Divisible isolated pogroups and pogroups
satisfying TR(1,2) have small elements.

Let {Gj; ^ } i 6 / b e a family of /-groups, denote their (small) direct sum by
E G; and define < on S G f by, (g,) > 0 if gt> 0 for all iel. Denote the direct
sum of two groups Gt and G2 by G1®G2. If (G, =<!) is an /-group and S a subset
of G denote the set

{x: | * | A | s | = 0 for all s eS}

by Sx. Let Z, R denote the abelian groups of integers and reals. If x — (xt, •••,*,,)
6 R" we say x > 0 if xt > 0 for i = 1, •••, n. We call this the tight order. Then
the open-interval topology is precisely the euclidean topology £', and x^=0
if xt ^ 0 for i = 1, •••,«.

3. Locally compact and interval-compact TRGs

Let (G, <;) be a non-trivially ordered abelian pogroup. We recall two results
of Loy and Miller (1972), in fact Theorem 1 is the main result of that paper.

LEMMA 1. (Loy and Miller). Let (G, 5S) be a locally compact TRG such
that (G, =<[) is an l-group, then (G, ^ ) is algebraically and topologically iso-
morphic with Rm®D, where m is a positive integer and D is discrete.

PROOF. This follows immediately from §4, 6° of Loy and Miller (1972) and
a theorem of G. W. Mackey's (see Loy and Miller (1972)).

THEOREM 1. (Loy and Miller) Let (G, ^ , ^ 0 be a strongly archimedean
locally compact TRG without pseudozeros, then it is isomorphic in all respects
with (Rm, ^ , S") for some positive integer m.

The result of Lemma 1 can be generalized, without changing the method
of proof, to the following Lemma.

LEMMA 2. Let (G, ^ , ^ ) be an isolated locally compact pogroup with small
elements and without pseudozeros, then (G, <%) is algebraically and topolo-
gically isomorphic with Rm® D, where m is a non-negative integer and D is
discrete.

We also give a modification of Theorem 1 in terms of small elements.
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THEOREM l.Let (G, ^ , <%) be a strongly archimedean locally compact po-
group with small elements such that (G, =̂ ) is an l-group, then it is isomorphic
in all respects with (Rm, ^,S) for some positive integer m.

PROOF. Firstly we show that (G, g ) is isolated. If nx > 0 for some positive
integer n, then for some p > 0, nx > np. So certainly x ^ p, since (G, = )̂ is iso-
lated, and so x > 0. Now we show that (G, g) is TR(1,2). Let a, b > 0, then for
some positive n, na> b and for some c > 0, b > nc. So a, b > c > 0, and hence
(G, g ) is TR(1,2). It can easily be shown that if (G, g ) is TR(1,2) and (G,<)
is an /-group then in fact (G, gj) is TR(2,2). Clearly (G, ^ ) is directed, so it is
a TRG. Now apply Theorem 1.

If we remove "strongly archimedean" from the hypothesis of Theorem 1,
we can still show that at least an o-ideal (convex directed subgroup) of (G, g ) is
isomorphic with Rm.

THEOREM 3. Let (G, S, *%) be an isolated locally compact TRG without
pseudozeros, then there exists a clopen o-ideal H and a positive integer m
such that:

(i) (H,?^,<%) is isomorphic in all respects with (Rm,^,&),
(ii) if xeP* and yeHnP* then nx> y for some positive integer n ,
(iii) if{G, < ) is an l-group then (/ / ,<) is an l-ideal.

PROOF. Let 9 denote the isomorphism indicated in Lemma 2. If a e Rm and
a > 0 then for some aeP*, we have

0{(-a,a)} £ ( - a , a ) © { 0 } .

In a TRG (0,na) = (0,a) + ••• + (0,a). (§2, 4° of Loy and Miller (1972)), so
0{(O,na)} s .Rm0 {0} and 0{(-na,O)} c Rm ® {0}. Let

H = {x: — na < x < na for some positive integer n}, then it is easily shown
that 6(H) £ Rm ® {0}. Also for some positive integer k,

So 0(H) = Rm © {0}. It is easily shown that H is an o-ideal in (G, ^ ) . / / i s an
open subgroup of a topological group and hence closed. Also the induced topo-
logy on H is homeomorphic with the open-interval topology on (//, ^ ) , hence
(H, g) has no pseudozeros and is locally compact in its open-interval topology.

If beH n P* then for some j 8 e R m J > 0 , we have

0{(-fe,fe)} =>(-/?,/?)©{()},

so H = {x: —nb < x < nb for some positive integer n} . Hence (H, ^ ) is strongly
archimedean. So by Theorem 1, (i) follows.
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If xeP* and yeHnP* then there exists zeHnP* such that x,y > z > 0.
By (i) nz > y for some positive n, so nx > y. The proof of (iii) is trivial.

We show in Theorem 4 that the result of Theorem 3 can be improved; in
fact the condition that (G, ^ ) is isolated can be deleted.

If (G, g ) is a locally compact TRG such that (G, =0 is an /-group, is the iso-
morphism referred to in Lemma 1 also an order isomorphism? That is, is (D, = )̂
an /-group such that, if a e G and 9(a) = <oe, d} we have a > 0 if and only if
a > 0 and d > 0, and a > 0 if and only if a > 0 and d > 0?

LEMMA 3. Let (G, ^ ) be an l-group with an l-ideal (H, sQ isomorphic with
(Rm,=4)for some positive integer m. Then G s H® H^ if and only if there
does not exist xeG and heH, h > 0 such that x P h.

PROOF. Certainly the condition is necessary. Now suppose that x > h is
false for all xe G and all heH, h > 0. Let a eG, a >- 0, and consider the set
{a Ah: heH} . This is a subset of H and so it is bounded above in H since other-
wise, a >et, for some i, where et = (0,0, •••,0,1.0, •••), e^R™ = H. Hence
V {a A h: h e H) exists for all a > 0, and belongs to 7/. It follows that
G = H@Hl (see proof of Theorem 16, Fuchs (1963; page 91)).

COROLLARY. If(G,^) is a locally compact TRG such that (G, =<!) is an
l-group, then G is isomorphic in all respects with Rm®D, if and only if there
does not exist an integer i and xeG with xt>et.

Denote the set {x ^ 0; (0,x)~ is compact} by C. It is a consequence of a
result in Cameron and Miller (to appear) that if (G, :£) is an interval-compact
TRG without pseudozeros, then (G, =̂  ) is a complete /-group. Below we char-
acterize all such groups completely.

THEOREM 4. Let (G, ^ , °U) be a locally compact TRG without pseudozeros,
then:

(i) C is a convex subsemigroup of(P, ^ ) ,
(ii) the subgroup (C — C, <[), generated by C, is an l-group isomorphic

in all respects with Rm © 2K Z, for some positive integer m and cardinal K,
(iii) the condition in Theorem 3 that (G, ^ ) is isolated is redundant.

PROOF, (i) It is obvious that C is convex. In §2, 14° Loy and Miller (1972)
it is shown that C is a subsemigroup of P.

(ii) It follows easily that (C — C, ^ ) i s interval-compact in its open-interval
topology. Also (C — C, ^) is a TRG without pseudozeros, so (C — C, =<) is a
complete /-group. We now apply Lemma 3 Corollary. So C — C is isomorphic
in all respects with Rm® Dt, for some discrete /-group (£>!,<). Further the
strictly positive cone of (Du = )̂ can have no infinite descending chains. For
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suppose that di>d2> >0,dieD1, and let a e Rm, a > 0, and a = d~ \a, dt}.
By Lemma 3 Corollary a > 0 so (0, a)~ is compact. Let b = fl"1^,*)), and cover
(0,a)- by sets (x-b,x + b) where x e ^ . a ) " 1 . Then clearly 9~l(0,di} all
belong to different covers, contradicting the compactness of (0, a)~ . It follows
from Birkhoff (1967; page 299) that (Du < ) is isomorphic with (X8Z, < )
for some cardinal X.

(iii) Write (H, g ) for (Rm, g) in (ii).

COROLLARY. Let(G, ^,<W)be an interval-compact TRG, then G is isomorphic
in all respects with Rm © Z „ Z , for some positive integer m and some cardinal
K, and conversely.
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