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Abstract

An 8 × 8 butler Vivaldi beam-steering antenna array is introduced for X-band application.
Circularly polarized array is made of eight Vivaldi elements with 1×8 platform and an 8×8
beam feeding network. Vivaldi radiating element is used in array form to enhance impedance
bandwidth and overall efficiency such as gain. Using microwave passive components, for instance,
3 dB branch line couplers and crossover help to have orthogonal modes for feeding each of the
elements, hence circular polarization property is achieved. Extracted results show that the array
has an impedance bandwidth over 7–12.7 GHz (∼58%) for VSWR≤2 and an axial-ratio band-
width of 3.15 GHz that is between 8.15 and 11.3 GHz (∼33%). The peak gain of antenna array
is 18 dBi at 10 GHz. The proposed beam-steering antenna with compact size and good operation
is capable to cover an angle range from −42 to 55 degree in whole operation frequency.

Introduction

Beam-switching antennas have been a prominent research topic for studying in telecommuni-
cation and wireless systems. The consequences of multi-pass fading and interference, and polar-
ization mismatch are an inherent restriction on the system’s performance. A suitable antenna
design with controllable and narrow beams solves the above failures. Polarization effect for
microwave applications is vital, and polarization inconformity decreases the signal amplitude
more than 30 dB. The reflection effect in multi-pass and polarization mismatch leads to the con-
version of right-handed circular polarization (RHCP) to left-handed circular polarization
(LHCP) and vice versa. RHCP to LHCP conversion can be neglected if both the transmitter
and receiver antennas profit from circular polarization (CP). CP property can be achieved
with different techniques. Some of the methods that are utilized to excite two orthogonal
modes have been investigated as: (1) inserting a T-shaped grounded strip which is perpendicular
to CPW feed line; (2) etching two inverted L-shaped grounded strip around two opposite cor-
ners of the slot antennas; (3) inserting spiral slot in ground plane. Gain improvement is the main
challenge in X-band antennas [1–4]. Although increasing antenna aperture size is a proposed
method in literatures to enhance the antennas’ gain, the downside is decreased coverage areas
and bandwidth [4–10]. To overcome the above-mentioned problems, beam-steering feed net-
work is used with antennas which are capable to support high gain and CP property over the
wide range is a good candidate [11–19]. Among different types of beam-switching feed net-
works, Butler matrix with mild intricacy and best performance is a prominent choice. Butler
matrix is widely utilized in switched beam systems due to its simple realization. This geometry
interests from a low number of microwave components (for instance crossovers and hybrid cou-
plers) that have drawn many researchers in recent years [9–18]. Utilizing micro strip feed delay-
lines in microwave frequencies (such as X-band) and high-power applications have intragenic
limitations. In this manuscript, 8×8 circularly polarized butler Vivaldi switched beam antenna
array fed by 8 × 8 butler matrix is introduced (see Fig. 1). The proposed array is made of
Vivaldi radiating element that has a broadband specification along with stable patterns for
X-band. Moreover, using microwave components leads to intended phase differences at the out-
put ports, which excite the two orthogonal modes and CP property is achieved. Extracted results
illustrate that the realized antenna has an impedance-matching bandwidth of 5.7 GHz that
extends between 7 and 12.7 GHz, and 3 dB an axial-ratio bandwidth of 3.15 GHz between
8.15 and 11.3 GHz. Gain value is more than 17 dBi at X-band.

Antenna design methodology

In order to design the desired antenna, three main goals are considered. In the first step, in
order to cover the X-band, the Vivaldi element, considering that the antipodal Vivaldi anten-
nas (AVAs) do not have wide lateral sizes and easy to manufacture. These antennas have been
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utilized in several broadband applications, such as indoor local-
ization systems and see-through-wall imaging. However, their
overall characteristics are generally prohibited by the demand
for a broadband feeding network. AVA has a broadband specifica-
tion along with directive stable patterns at operational bandwidth.

In the next step, the broadband feeding network is designed to
excite AVAs. Double-box elements are used in the topology of
feeding network to improve bandwidth.

In the last step, by using the output couplers and selecting the
appropriate length of the microstrip lines to feed the elements, the
CP and beam-switching property is obtained. All the designed para-
meters are calculated for the center frequency of X-band (10 GHz).

Vivaldi element design

The modified scheme of single-feed Vivaldi element is shown in
Fig. 2. The simulated response for reflection coefficient along with
gain value is shown in this figure. It is clear that the impedance
bandwidth is between 8.7 and 11.2 GHz (∼33%) and the average
gain value at operation band is approximately 6.2 dBi. The total
size of Vivaldi element is 24 × 45 × 0.8mm3 which has been printed
on Rogers RO4003 dielectric substrate with a relative permittivity of
3.55 and a loss tangent of 0.002. Element dimensions are as follows
(units: mm):

L1 = 45, L2 = 24, L3 = 13.8, L4 = 5.15, L6 = 1.15,

W1 = 88, W2 = 120.
Fig. 2. Geometry of array element with impedance bandwidths and gain.

Fig. 1. Configuration of presented antenna array: (a) 3D view, (b) top layer, (c) feeding network, (d) bottom layer.
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Feed network
Switched beam feeding network of the presented array is made
of eight inputs, eight outputs, 12 double-box broadband hybrid
couplers, 10 crossovers, 12 half-crossovers, and 50Ω microstrip
lines, as shown in Fig. 3. Crossover is used to isolate microstrip
lines in the layout. The structure of feeding network is planned
in a way that the mutual coupling was minimal. This geometry
can help to improve the accuracy of beam forming in X-band.
Crossovers and half-crossovers are used that help to achieve sig-
nals with approximately equal amplitudes at output ports for
excitation of radiating elements. The distance among two adja-
cent radiating elements is 0.5λ at 10 GHz, where λ is free
space wavelength. Design and optimization process of presented
network is done by Agilent advanced design system commercial
software. The diagrams of transmission and reflection coeffi-
cients for two ports (ports 1 and 2) excitation are depicted in

Fig. 3. Geometry of feeding network.

Fig. 4. Simulated results of feeding network. (a) Transmission and reflection coeffi-
cients when port 1 is fed. (b) Transmission and reflection coefficients when port 2
is fed.

Fig. 5. Simulated results of return loss for antenna when ports 1 and 4 are fed.
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Fig. 4. It clear that, the curves have agreeable operation at oper-
ational X-band.

Extracted results

The presented Vivaldi beam-steering antenna was fabricated and
simulated to affirm the designs. Due to the symmetrical structure

of the array, only four ports were analyzed. The scattering para-
meters have been extracted by Agilent 8722ES vector network
analyzer along with KeySight (NPA-X 26 GHz). Figure 5 illus-
trates the simulated results of return loss for antennas when
ports 1 and 4 are fed. The impedance bandwidth is between 7.2

Fig. 7. Extracted results of axial ratio for ports 1, 2, 3, and 4 excitation.

Fig. 8. Measured results of scattering parameters for ports 1 and 4 excitation.

Fig. 9. Measured results of scattering parameters for ports 2 and 3 excitation.

Fig. 10. Extracted rectangular radiation characteristics of gain when ports 1, 2, 3, and
4 are fed; (a) simulation, (b) measured.

Fig. 6. Simulated results of return loss for antenna when ports 2 and 3 are fed.
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and 12.2 GHz for port 1 (∼55%) and 6.9 and 13 GHz (∼59%) for
port 4. Figure 6 also shows this parameter for ports 2 and 3. The
impedance-matching bandwidth is 6.8–12.2 GHz (∼52%) and
7.5–12.3 GHz (∼51%) for ports 2 and 3, respectively. Due to
the fact that the design goal is to access operational X-band, all
of the four ports will be able to cover this band. Figure 7 depicts
the extracted results of axial ratio for the above-mentioned four
ports excitation. The axial-ratio bandwidth is from 8.15 to 11.4
GHz for port 1 (∼34%), 8.4 to 11.3 GHz for port 2 (∼30%), 8.4
to 11.6 GHz for port 3 (∼32%), and 8.15 to 11.3 GHz for port 4
(∼33%). It is noteworthy that due to the structure of the feeding
network, CP is achieved in more than 80% of the operational
band. As mentioned earlier, only four ports were measured due
to array symmetry. The measured return-loss curves of ports 1
and 4 are depicted in Figs 8 and 9. Figure 8 exhibits that the
impedance bandwidths of the array are from 7 to 12 GHz

Fig. 12. E-field variation when port 1 is fed at 10 GHz.

Fig. 11. Extracted axial ratio versus θ variation when two ports are fed at 10 GHz.

Fig. 13. Extracted gains of antenna versus of frequency when four ports are fed; (a)
simulation, (b) measured.
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(∼52%) for port 1 and 7 to 12.7 GHz (∼58%) for port 4 excitation.
The values for ports 2 and 3 stimulus are among 7–11.9 GHz
(∼52%) and 7.4–12.5 GHz (∼53%) for both ports respectively.
Extracted patterns at 10 GHz are plotted in Fig. 10. It is clear
that the patterns have a directive main lobe with an acceptable
value for X-band application. Main beam directions are at θ =
48°, θ =−42°, θ = 17°, and θ = 55° for ports 1, 2, 3, and 4, respect-
ively. The radiation patterns of the proposed antenna can cover a
beam-steering angle of about −42° to 55°. Figure 11 illustrates the
axial ratio of the presented array as a function of elevation angle
for ports 1 and 2 at 10 GHz. It is obvious that the main lobe of
antenna has CP property at two ports excitation. Figure 12
shows E-field rotation at different phases. It is found that in the
desired time and phase intervals, the E-field vector rotates in a
clockwise direction that proves CP feature. Figure 13 shows the
measured gain of antenna arrays for four ports excitation. The
maximum gain value is about 18 dBi. It is better to mention
that the average gain value exceeded from 17 dBi for all ports at
implicational X-band.

Conclusion

Switched beam butler Vivaldi antenna array with enhanced
impedance matching, gain value, and CP is presented. Vivaldi
radiating element is used because of its unique features such as
broadband impedance matching and relatively high gain. The
antenna array consists of eight Vivaldi elements with a 1 × 8 plat-
form and an 8 × 8 beam feeding network. Using proposed feeding
network leads to excitation of orthogonal modes for feeding of
Vivaldi elements, hence CP feature is obtained. Extracted results
demonstrate that the antenna has an impedance-matching band-
width over a frequency range of 7–12.7 GHz (∼58%) for
VSWR≤2 and an axial-ratio (AR) bandwidth of 3.15 GHz that
is between 8.15 and 11.3 GHz (∼33%). The peak gain value of
the antenna array is about 18 dBi at 10 GHz. The proposed
array with its specific feed network is a good choice for smart
wireless telecommunications [9].
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