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SUMMARY

The genetic and phenotypic regressions and correlations between
ovulation rate and body weight were examined in a random bred strain
(Q) of laboratory mice during the course of three experiments. These
experiments were (1) a sib analysis; (2) selection for natural and induced
primiparous ovulation rate ; and (3) replicated selection for 6-week weight.
The following results were obtained :

(a) The genetic correlations between body weight and natural and
induced ovulation rate were positive, and approximately equal to 0-4
and 0-6 respectively.

(b) The genetic regressions of natural and of induced ovulation rate
on body weight were approximately 0-4 and 0-9 eggs per gram respectively.
(¢) The genetic regressions of body weight on natural and on induced
ovulation rate were approximately 0-5 and 0-25 g per egg respectively.
(@) The phenotypic correlation between natural ovulation rate and body
weight was approximately 0-4 and the corresponding regression of
ovulation rate on body weight approximately 0-4 eggs per gram.

(¢) The phenotypic correlation between induced ovulation rate and body
weight declined from 0-4 at 6 weeks of age to zero at the time of scoring,
the corresponding regressions of ovulation rate on body weight declining
from 0-1 eggs per gram to zero.

It was concluded that natural ovulation rate itself, and both its com-
ponents (FSH activity and ovarian sensitivity) are positively genetically
correlated with body weight. Furthermore, the observation that large
mice shed at least as many eggs as small ones in response to the same dose
of PMS showed that the response was more closely related to the absolute
dose than to the resultant concentration.

1. INTRODUCTION

The complex relationships hetween body weight, litter size and fitness in the
mouse have been the subject of many discussions. Both body weight and litter
size can be readily changed by selection, reported first by Goodale (1938) and
Falconer (1960a) respectively, and additive genetic variation in these two traits
has invariably been found in outbred populations of mice. In addition to demon-
strating the presence of genetic variation, the results of selection experiments
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have also indicated that the two traits are not under independent genetic control,
but have led to conflicting conclusions about the nature of the relationship between
them. On the one hand, selection for body weight has always led to changes in
litter size in the same direction as that of selection, but on the other, when the
change in body weight was examined following selection for litter size (Falconer,
1960a), it was found that body weight had increased following selection for both
high and low litter size. However, when litter size is considered in terms of its
components—ovulation rate and embryonic mortality—a much clearer picture
emerges. Whenever body weight has been changed by selection, either directly or
as a correlated response, ovulation rate has been found to change in the same
direction. This relationship was first reported many years ago (MacArthur, 1944)
but the magnitude of the correlation has not been estimated.

The first object of the work described here was to estimate the magnitude of the
genetic correlation between ovulation rate and body weight in an outbred strain of
mice. This was done in two ways, by estimating the components of variance and
covariance in a half-sib analysis, and by examining the changes in body weight
following two-way selection for ovulation rate and vice versa.

Ovulation rate can not only be considered as a component of litter size, but may
also be considered in terms of its own components—the activity of circulating
follicle-stimulating hormone (FSH), and the sensitivity of the ovary to this hor-
mone. When the correlated changes in ovulation rate have been analysed in terms
of these components, it has been found that when the change has followed
selection for body weight, most of the change in ovulation rate has been due to
changes in FSH activity (Fowler & Edwards, 1960; Edwards, 1962), whereas
changes in ovulation rate following selection for litter size were mainly due to
ovarian sensitivity (McLaren, 1962)—even though these changes were also
accompanied by changes in body weight. The second object of the present study
was to compare the genetic correlation between ovulation rate and body weight
with that between ovarian sensitivity and body weight. Ovarian sensitivity was
measured as the number of eggs shed in response to exogenous gonadotrophins
(the induced ovulation rate); and the genetic correlation between body weight
and ovarian sensitivity was estimated by recording the changes in body weight
following two way selection for induced ovulation rate.

The phenotypic correlation between body weight and ovulation rate was also
examined in the mice used for the half-sib analysis and at different stages during
the selection programmes.

2. MATERIALS AND METHODS
This investigation was made possible by the use of mice from experiments
which were primarily designed for other purposes. These were: (1) a study of
growth (Monteiro & Falconer, 1966); (2) a study of ovulation rate (Land &
Falconer, 1969); and (3) a further study of growth (Falconer, unpublished). The
first incorporated a sib analysis, the second two way selection for both natural and

https://doi.org/10.1017/50016672300001506 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300001506

Ovulation rate and body weight in the mouse 173

induced ovulation rate, and the third replicated two way selection for body weight.
These experiments are described in more detail below.

The stock of mice used for all experiments was the genetically heterogeneous
Q-strain, the background of which is described by Land & Falconer (1969).

Ezxperiment 1. Sib analysis

Seventy-one males were each mated to three females, providing groups of full
and half-sib offspring. Females from each group were obtained and their natural
ovulation rate scored when they were between 6 and 8 weeks of age (Land &
Falconer, 1969). All females were weighed at 6 weeks of age, and on the day that
their ovulation rate was scoted.

The components of variance of ovulation rate and body weight and the covari-
ance between them were calculated, and the results are given in Table 1.

Experiment 2. Selection for ovulation rate

Four selected lines were established, and maintained together with an un-
selected control line (Land & Falconer, 1969). Each line was maintained by eight
pair matings with minimal inbreeding. Natural ovulation rate was scored as the

Table 1. Components of variance of ovulation rate and body weight at 6 weeks of age
and at the time of scoring, and the covariance between ovulation rate and the two body
weights

Component of variance Covariance between

/ A ~ ovulation rate and
Body weight  body weight at
Ovulation — A - p A \
Source d.f.  Composition* rate 6 weeks Scoring 6 weeks Scoring
Between sires 70 A 0-305 0-302  0-482 0-138 0-127

Between dams
within sires 119 }A+4D+Ec 1:219 3410 3-704 1-582 1-587

Within dam
progenies 368 1D+ 3iD+Ew 3901 2-3256  2-947 0-949 1-144
Total 5425 6-003 7-113 — —

* A = additive genetic; Ew = environmental within full-sib families; Ec = environmental
common to full-sibs; D =dominance.
Variance and covariance due to epistatic interactions is assumed to be negligible.

number of eggs shed at natural oestrus. Induced ovulation rate was scored as the
number of eggs shed in response to treatment with 4 i.u. pregnant mares’ serum
(PMS) at 17.00 h on the day after weaning, followed by 3 i.u. human chorionic
gonadotrophin (HCG) at 12.00h 2 days later. The hormones used to induce
ovulation were ‘Gestyl’ (Organon Ltd.) PMS and ‘ Pregnyl’ (Organon Ltd.) HCG.
The ovulation rate was scored after the females had had their first litter of young
weaned from them. The ovulation rate is therefore that of primiparous females, and
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in this respect differed from the ovulation rate scored in the sib analysis which was
that of virgin, or nulliparous, females.

The mean ovulation rate and body weight of each line was estimated each
generation as the mean of family means. The body weight of each female was
recorded at 3 and 6 weeks of age, and at the time of scoring; these are presented
graphically in Fig. 1. It can be seen that there is very little difference between the
mean 3-week weights of any of the lines. Differences can, however, be seen between
the mean weights of the 5 lines at 6 weeks of age and at the time of scoring, the
differences at 6 weeks being in the same direction but smaller than those at the

36

Scoring weight (g)

Generations

Fig. 1. The body weight of each of the four selected lines and the control line in each
generation of selection at 3 and 6 weeks of age and at the time of scoring. The lines
selected for natural ovulation rate are represented by solid lines ( )} and induced
ovulation by broken lines (- — — ). High line means are represented by open circles
(O), low line means by solid circle (@). Tho control line is represented by a solid
line and solid squares (W——).
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time of scoring. The divergence in body weight at 6 weeks of age and at the time
of scoring between the high and low natural and the high and low induced lines are
illustrated in Fig. 2, together with the divergence in ovulation rate. The correlated
response of 6-week and scoring weight after twelve generations of selection were
estimated from the regression of the response on the selection differential in eggs
to be 2:79 and 5-39 g respectively for the natural lines, and 2-90 and 5-20 g respec-
tively for the induced lines.

The results of this experiment which are relevent to the calculation of the
genetic and phenotypic relationships between body weight and ovulation rate are
summarized in Table 2.

g Ova Natural g Ova Induced
8 +8 8 + 16 .
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-, o/
616 i 6 J— 12 7~

Scoring

o 00
T

i

6 weeks
N BN
T

i
[CEENN
T T

, . . Y Y ./ .
-1k 1\‘/. 1 1 = ] 1 I { I
0 10 20 30 40 20 40 60 80 100
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Fig. 2. The divergence in body weight (@——@) at 6 weeks of age and at the time
of scoring between the lines selected for high and low natural ovulation rate and
high and low induced ovulation rate; plotted against the cumulative selection differ-
ential in eggs. The regressions of the divergence in body weight on cumulative
selection differential ( ) and the actual divergences in eggs ( ~ ~) are also given.

Experiment 3. Selection for body weight

A replicated body weight selection experiment was started by Professor D. S.
Falconer in 1963. Selection was applied to body weight at 6 weeks of age, the
heaviest individuals were selected in the large lines, the lightest in the small
lines. Each pair of lines, together with their control was replicated six times,
making 18 lines in all. Selection was carried out within families and each line
was maintained by eight matings in each generation, with minimal inbreeding.
This experiment is still in progress, and the parameters of body weight quoted in
this paper are the results of intermediate calculations generously provided by
Professor Falconer.
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Table 2. Summary of the results of selection for natural and induced primiparous
ovulation rate
Parameter Estimate Source

Response to selection for natural primiparous

ovulation rate 6-89 eggs 2
Response to selection for induced primiparous

ovulation rate 15-89 eggs 2
Correlated response of 6-week weight to selection

for natural primiparous ovulation rate 2-79 g 1
Correlated response of 6-week weight to selection

for induced primiparous ovulation rate 290 g 1
Correlated response of scoring weight to selection

for natural primiparous ovulation rate 539 g 1
Correlated response of scoring weight to selection

for induced primiparous ovulation rate 520g 1
Intensity of selection for natural primiparous

ovulation rate (2) cumulated over all generations 1338 o 2
Intensity of selection for induced primiparous

ovulation rate (¢) cumulated over all generations 12-58 () 2
Square root of within-family heritability of

natural primiparous ovulation rate (k) 0-424 2
Square root of within family heritability of

induced primiparous ovulation rate (k) 0-332 2
‘Within-family phenotypic variance of bodyweight at

the time of scoring 6-841 g? 1
‘Within-family additive genetic variance of natural

primiparous ovulation rate 1-134 eggs?® 2
Within-family additive genetic variance of induced

primiparous ovulation rate 7-001 eggs? 2

1, data given in the present paper; 2, Land & Falconer (1969).

The ovulation rates of females discarded from all 18 lines were scored after five
generations of selection. The animals from the selection lines were of course
selected from the total number of available animals on the basis of their pheno-
typic body weight. The mean ovulation rate for each line was therefore corrected to
that which it would have been if all individuals had been scored. This was done as
follows: the regression of ovulation rate on body weight was first calculated for
each line; analysis of covariance indicated that the regression coefficients did not
differ significantly within the control or small lines, but that significant differences
were present between the six large lines (P <0-05). The individual regression
coefficients were therefore used to correct the ovulation rates of the large lines, the
mean for all lines being the mean of corrected means. In the control and small
lines the best estimate of the regression coefficient within each set of lines was
used to correct the mean of uncorrected means.

Variation between replicates has been ignored for the purpose of the genetic
analyses, and the direct and correlated responses were assessed in terms of the
divergence between the means of the high and low lines. Each line was given
equal weighting. The mean ovulation rate, 6-week weight before and after selection
and the regression of body weight on 6-week weight in each of the lines are given
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in Table 3, together with the corrected ovulation rates. The divergence of body
weight was 6-0 g and the corrected divergence of ovulation rate 2-9 eggs.

In addition to the results given above, the square root of the within family
heritability of 6-week weight and the within family additive genetic standard
deviation of 6-week weight were also needed. These were calculated to be 0-602
and 1-163 g respectively.

The genetic correlations and regressions presented in the next section were
calculated from the results of these experiments by the methods described by
Falconer (19600).

Table 3. The mean body weights and ovulation rates of the body weight selection lines
after selection from generation & together with the body weights before selection, the
regressions of ovulation rate on body weight, and the corrected ovulation rates. The
means are expressed as the mean of line means, and the regression coefficients were
computed from the pooled sums of squares and cross-products

Body weight Body weight Ovulation Regression

before after rate after of ovulation Corrected
selection selection selection rate on body ovulation
Lines (2) (g) (eggs) weight rate (eggs)
Large 24-3 23-8 14-8 0-34%* 14-9
Control 20-8 20-5 13-2 0-39 13-3
Small 183 18-7 12-2 0-43 12-0

* The differences between individual regressions were statistically significant (P < 0-05).

3. RESULTS
(1) The genetic correlation between body weight and ovulation rate

All individuals were killed at the time of scoring, and consequently although the
body weight of an individual could be recorded several times during its life, the
ovulation rate of that individual could only be recorded once. It is therefore
possible to examine the relationship between ovulation rate and body weight at
various times up to and including the time of scoring.

The genetic correlation between the natural ovulation rate of nulliparous
females at 8 weeks of age and their body weight at the time of scoring could only
be calculated from the sib analysis (Expt 1), and was found to be 0-33 £ 0-58.
The correlation between the same ovulation rate and body weight at 6 weeks of
age can, however, be calculated from both Expt 1 and the body weight selection
experiment (Expt 3). These experiments give estimates of 0-45 + 0-59 and 0-87
respectively. Unfortunately it is not possible to calculate the standard error of the
realized genetic correlation, and hence there is no logical way of pooling these
estimates.

In addition to the results obtained directly from the ovulation rate selection
experiment (Expt 2) summarized in Table 2, the genetic correlation between
primiparous ovulation rate and body weight at the time of scoring is also depen-
dent upon the heritability of body weight at the time of scoring, which has not
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been estimated. Monteiro & Falconer (1966), however, observed that there is
little variation in the heritability of body weight between 6 and 8 weeks of age,
and consequently the heritability of primiparous scoring weight has been assumed
to be the same as that of 6-week weight. The genetic correlations between natural
primiparous ovulation rate and body weight at the time of scoring and at 6 weeks
of age were calculated and found to be 0-60 and 0-42 respectively. These estimates
suggest that the genetic correlation between body weight and ovulation rate may
decline either with parity, or with age at the time of scoring. In general, however,
it is possible to conclude from this section that the genetic correlation between
body weight and natural ovulation rate is positive, and is probably greater
than 0-4.

The correlation between ovulation rate and body weight within full sib families
was calculated from the sib analysis to be 0-86 and 0-85 at 6 weeks and at the time
of scoring, compared to 0-45 and 0-33 for the estimates of the additive genetie
correlations. The higher estimates within full sib families could be due to non-
additive genetic causes, but are much more likely to be due to the effect of the
common environment within full sib families (i.e. maternal effects).

The genetic correlations between induced primiparous ovulation rate and body
weight were calculated to be 0-78 and 0-58 at the time of scoring and 6 weeks of age
respectively. The genetic correlation between body weight and ovarian sensitivity
may therefore be concluded to be positive, and of a similar order of magnitude to
that between body weight and ovulation rate itself.

(2) The genetic regression of ovulation rate on body weight

Just as it is possible to calculate the genetic correlation between body weight
and ovulation rate from the results of these experiments it is also possible to calcu-
late the genetic change in ovulation rate which would be expected to follow, or
which has followed, a unit genetic change in body weight, that is the genetic
regression of ovulation rate on body weight.

The genetic regression of natural nulliparous ovulation rate on body weight at
6 weeks of age and at the time of scoring was calculated from the genetic corre-
lation multiplied by the ratio of the additive genetic standard deviations (i.e.
Tao.w X Tao/Oaw)- The regression was estimated from the results of Expt 1 to
be 0-45 eggs per gram at 6 weeks of age, and 0-26 eggs per gram at the time of
scoring.

The realized genetic regression of natural nulliparous ovulation rate of 6-week
weight was calculated from Expt 3 to be 0-48 eggs per gram, which is very close
to that predicted above.

Similar parameters were estimated from Expt 2 for natural and induced primi-
parous ovulation rate. The genetic regressions of primiparous natural ovulation
rate on body weight at 6 weeks of age and at the time of scoring were estimated to
be 0-34 and 0-35 eggs per gram respectively. Likewise, the genetic regressions of
primiparous induced ovulation rate on body weight at 6 weeks of age and at the
time of scoring were estimated to be 0-93 and 0-91 eggs per gram respectively.
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(3) The genetic regression of body weight on ovulation rate

The genetic regression of body weight on ovulation rate is an estimate of the
genetic change in body weight which would be expected from a unit genetic change
in ovulation rate. As in the case of the previous two parameters its magnitude is
dependent upon the additive genetic variances of each of the two characters and
the genetic covariance between them.

Expt 1 yielded estimates of 0-45 and 0-42 g per egg for the regression of body
weight at 6 weeks and at the time of scoring on natural nulliparous ovulation rate.
The corresponding estimate from the body weight selection experiment for 6-week
weight was 0-53 g per egg. Again, the agreement between these two experiments is
very close.

The genetic regression of body weight on primiparous ovulation rate was
obtained from Expt 2, by multiplying the regression of ovulation rate on body
weight by the ratio of the additive variances (byy.o="0x0.w X 0 +w/0 50) - The regres-
sions of body weight at 6 weeks of age and at the time of scoring on natural
primiparous ovulation rate were 0-40 and 0-78 g per egg respectively, which are
of the same order of magnitude as those for nulliparous ovulation rate. The
corresponding regressions for induced primiparous ovulation rate were 0-18 and
0-33 respectively, the low values being a reflexion of the high variation in induced
ovulation rate.

(4) The phenotypic relationships between body weight and ovulation rate

The phenotypic correlations between natural nulliparous ovulation rate and
body weight at 6 weeks of age and at the time of scoring were both estimated
from Expt 1 to be 0-46. The regression of ovulation rate on body weight at 6 weeks
of age and at the time of scoring being 0-44 and 0-40 eggs per gram respectively.

Table 4. The phenotypic correlation (r) between body weight at 6 weeks of age and
at the time of scoring and natural and induced primiparous ovulation rate, together
with the regressions of ovulation rate on body weight (b)

Body weight

r Al
6 weeks Scoring
Primiparous e A -~ Is A N
ovulation rate r b r b
Natural 0-33 0-41 0-41 0-39
Induced 0-11 0-38 0-00 0-00

All relationships greater than zero are significantly different from zero (P < 0-05).

The corresponding parameters were calculated from Expt 2 and are summarized
in Table 4. The regression of the number of eggs shed at natural oestrus on body
weight is 0-4 eggs per gram, which is similar to that for nulliparous females. In
addition, the correlation between body weight and natural primiparous ovulation
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rate (0-3 to 0-4) is similar to that for nulliparous females. The correlations between
primiparous induced ovulation rate and body weight and the regressions of induced
ovulation rate on body weight are lower than their natural counterpart. However,
there is no indication of a negative relationship between ovarian sensitivity and
body weight, showing that it is the absolute dose of PMS which determines the
response, not the concentration.

The above estimates of the relationships between body weight and primiparous
ovulation rate are the pooled estimates over the course of selection, but the data
were also examined for possible changes in these relationships during the course of
selection. The differences between each parameter in the high and the low lines
were regressed on the generation number (the regressions being constrained to pass
through zero). In this way, consistent changes could be differentiated from random
fluctuations. None of the regressions so calculated were significantly different
from zero, nor was there any indication of a uniform change in these parameters
during the course of selection. It is therefore reasonable to assume that the changes
in gene frequency during selection have not affected the phenotypic relationships
between body weight and ovulation rate.

The phenotypic regressions of ovulation rate and body weight in the body
weight selection lines have already been used to correct the mean ovulation rates
of the lines to that which they would have been before selection. In general the
relationships are positive and confirm the data presented earlier in the section, in
addition, however, they also indicate that the phenotypic relationships differ
between the lines. Part of the differences between the regression coefficients are
related to differences in body weight. This was demonstrated by regressing the
regression coefficient of ovulation rate on body weight within a line on the mean
body weight of that line. These regressions were —0-15, —0-20 and — 0-08 in the
large, control and small lines respectively. Although each of these individual
regressions and the pooled estimate are not significantly different from zero
(P> 0-05), the large, control, small and pooled regressions remove 66-3, 49-5,
6-9 and 43-39%, of the total variation in the regression coefficients of ovulation
rate on body weight in each of the four groups respectively.

4. DISCUSSION

All the analyses presented show that there is a positive genetic relationship
between body weight and ovulation rate in the mouse; and between body weight
and ovarian sensitivity—as measured by the response to PMS. Furthermore, the
change in the body weight of the lines selected for natural ovulation rate (5-3 g) is
greater than would have been expected if the correlation between body weight and
ovulation rate was only mediated via ovarian sensitivity (1-5 g). Both components
of ovulation rate (FSH activity and ovarian sensitivity) must therefore be genet-
ically correlated with body weight. This demonstration of the correlation between
body weight and the two components of ovulation rate is compatible with the
changes in FSH activity following selection for body weight (Fowler & Edwards,
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1960; Edwards, 1962), and the changes in ovarian sensitivity and body weight
following selection for litter size (McLaren, 1962).

The analyses of the phenotypic relationships between body weight and ovulation
rate all indicate that the regression of natural ovulation rate on body weight at the
time of scoring is about 0-4 eggs per gram, and that the regression of induced
ovulation rate on body weight at the time of scoring is zero. The later result is of
particular interest as it shows that larger females shed a similar number of eggs
to their smaller counterparts in response to a lower concentration of exogenous
gonadotrophin. This result confirms the decision to select for ovarian sensitivity
on the basis of the response to a standard dose of PMS. If the response to a standard
concentration had been chosen—as has been done by most workers in the field—
the dose of PMS and the body weight of the recipient would have been fully
confounded, and the response would have been biased in favour of large animals.
In this situation it would have been impossible to separate the effects of body
weight and dose of PMS on the number of eggs shed. The estimate of 0-4 for the
phenotypic regression of natural ovulation rate on body weight is similar to one
of the estimates of Fowler & Edwards (1960), i.e. 0-49, but higher than the estimates
from the other four lines they examined, none of which were significantly different
from zero. One possible reason for this discrepency is that in the present study the
range in age of females at the time of scoring was rarely more than 2 weeks
whereas in the earlier work, age at scoring varied between 6 and 25 weeks of age.

The genetic regression of ovulation rate on body weight calculated from the
body weight selection experiment is similar to those predicted from the sib
analysis and the ovulation rate selection experiment. After five generations of
selection however the phenotypic regression is declining in the lines with higher
body weights. It is possible therefore that some of the alleles which produce a
positive phenotypic correlation between these two traits may be becoming fixed
in the larger lines.

The consistency of the results of this and earlier studies leads to the conclusion
that in the mouse, natural selection has failed to fix some genes which affect body
weight and ovulation rate in the same direction.

One reason for the maintenance of this segregation can be deduced from the
results of earlier experiments. Selection for both high and low litter size (Falconer,
19604) led to increases in body weight, ovulation rate and embryonic mortality ;
two way selection for body weight led to changes in ovulation rate and embryonic
mortality in the same direction as selection (Fowler & Edwards, 1962); and selec-
tion for natural ovulation rate (Land & Falconer, 1969) led to changes in body
weight without any changes in litter size, changes in embryonic mortality com-
pensating for the differences. In each case the three traits, body weight, ovulation
rate and embryonic mortality were all positively genetically correlated in the
mouse populations concerned. It is possible therefore that the segregation of the
alleles affecting body weight and ovulation rate is maintained in the populations
through the pleiotropic deleterious effects of these alleles on embryonic mortality,
and that the intermediate optima for body weight and ovulation rate are arte-
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facts resulting from the antagonistic action of natural selection on the traits
themselves or those genetically correlated with them. This system may be regarded
as an example of the maintenance of genetic variation in a population by the
counteracting forces of natural selection on different end-products of gene action.
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