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Abstract

We prove that every homeomorphism of a compact manifold with dimension one has zero
topological emergence, whereas in dimension greater than one the topological emergence of
a C0−generic homeomorphism is maximal, equal to the dimension of the manifold. We also
show that the metric emergence of a continuous self-map on compact metric space has the
intermediate value property.

2020 Mathematics Subject Classification: 37C45, 54H20 (Primary);
37B40, 54F45 (Secondary)

1. Introduction

The topological entropy is an invariant by topological conjugation which quantifies to
what extent nearby orbits diverge as the dynamical system evolves. On a compact metric
space, a Lipschitz map has finite topological entropy. However, if the dynamics is just con-
tinuous, the topological entropy may be infinite. Actually, K. Yano proved in [36] that, on
compact smooth manifolds with dimension greater than one, the set of homeomorphisms
having infinite topological entropy are C0−generic. So the topological entropy is not an
effective label to classify them. Bringing together dimension and dynamics, E. Lindenstrauss
and B. Weiss [24] introduced the notion of upper metric mean dimension of a continuous
self-map f of a compact metric space (X, d), which may be thought as a mean upper box-
counting dimension. Its value is metric dependent and always upper bounded by the upper
box dimension of the space X, defined by
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dimB X = lim sup
ε→ 0+

log SX(ε),

− log ε

where SX(ε) is the maximum cardinality of an ε−separated subset of X (see [12, 29] for more
details). Thus, it is natural to ask what is the upper metric mean dimension of a C0−generic
homeomorphism of X, and whether there exists a homeomorphism of X having a prescribed
value in the interval [0, dimB X] as its upper metric mean dimension. These questions were
partially answered in [7], where we proved that there exists a C0−Baire generic subset
of homeomorphisms of any compact smooth manifold with dimension dimX � 2 whose
elements have the highest possible upper metric mean dimension, namely dimX; and that
any level set of the metric mean dimension of continuous interval self-maps is C0−dense.

Recently, Berger and Bochi introduced in [3] another concept to quantify the statistical
complexity of a system: the topological emergence of a continuous self-map of a compact
metric space X, which evaluates the size of the space of Borel f −invariant and ergodic
probability measures (cf. Subsection 1·1 for the definition and more details). To illustrate
its importance, they proved, among other equally interesting general results for diffeomor-
phisms on surfaces, that within C1+α conformal expanding maps admitting a hyperbolic
basic set � the topological emergence is the largest possible, that is, equal to the upper box
dimension of�. This means that, when dimB �> 0, the number of ε−distinguished ergodic
probability measures grows super-exponentially with respect to the parameter ε. Moreover,
Berger and Bochi also proved that there is an open set U of C∞−surface diffeomorphisms
and a generic subset G of U such that the Lebesgue measure has topological emergence
equal to 2 with respect to each element of G (cf. [3, theorem D]).

Our first aim in this work is to characterise the topological emergence of C0−generic
homeomorphisms acting on compact manifolds.

1.1. Topological emergence

We start by recalling the concept of topological emergence which measures the complex-
ity of the space of ergodic probability measures preserved by a map. Given a compact metric
space X and a continuous map f : X → X, we denote by B the σ−algebra of the Borel sub-
sets of X, by M1(X) the space of Borel probability measures on X, by Mf (X) its subset
of f −invariant elements, and by Merg

f (X) the subset of f −invariant and ergodic probability
measures.

Definition 1. Let X be a compact metric space, f : X → X be a continuous map and D be a
distance on the space M1(X) such that (M1(X), D) is compact. The topological emergence
map associated to f is the function

ε ∈ ]0, +∞[ �→ Etop(f )(ε),

where Etop(f )(ε) denotes the minimal number of balls of radius ε in (M1(X), D) necessary
to cover the set Merg

f (X).

It is clear from the previous definition that the topological emergence depends on the
metric we consider in M1(X). In what follows, we will always assume that D is one of the
Wasserstein metrics Wp, for some p � 1, or the Lévy–Prokhorov metric LP (both metrics are
defined in Subsection 2·1). These metrics induce in M1(X) the weak∗−topology (cf. [32]).
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Definition 2. The upper and lower metric orders of a compact metric space (Y , D), defined
by Kolmogorov and Tikhomirov [20], are given respectively by

mo (Y) = lim sup
ε→ 0+

log log SY (ε)

− log ε
and mo (Y) = lim inf

ε→ 0+
log log SY (ε),

− log ε

where SY (ε) denotes the maximal cardinality of an ε−separated subset of Y . In case both
quantities coincide we simply denote them by mo(Y), the metric order of the set Y . This
notions may be extended in a straightforward way to nonempty subsets of Y .

It is worth referring that Definitions 1 and 2 are related. Indeed, given a compact metric
space Y , the minimal number of balls in Y with radius ε necessary to cover a subset A ⊂ Y is
bounded from above by the maximal number of disjoint balls with radius ε/2 that intersect
A, and is bounded from below by the maximal number of disjoint balls of radius ε that
intersect A.

To define the next concept, we need to select either a Wasserstein metric or the Lévy–
Prokhorov metric, but its value does not depend on this choice (cf. [3]).

Definition 3. The topological emergence of a continuous map f : X → X on a compact met-
ric space X, which we will denote by Etop(f ), is the upper metric order of the space of Borel
f −invariant ergodic probability measures on X endowed with either the Wasserstein metric
Wp, for some p ∈ [1, +∞[, or the Lévy–Prokhorov metric (we denote by LP).

We specify that, in what follows, log log 1 = 0. This way, a uniquely ergodic map f is
granted a zero topological emergence, as expected.

Berger and Bochi proved in [3, theorem 1·3]) that, if f : X → X is a continuous map acting
on a compact metric space X whose upper and lower box dimensions are dimB X and dimB X,
respectively, then for any p � 1 one has

dimB X � mo (M1(X), Wp) � mo (M1(X), Wp) � dimB X (1·1)

and that similar inequalities hold if we consider M1(X) endowed with the distance LP. In
particular, this ensures that

lim sup
ε→ 0+

log log Etop(f )(ε)

− log ε
= mo (Merg

f (X), Wp) � mo (M1(X), Wp) � dimB X. (1·2)

1.2. Metric emergence

Fix a compact metric space (X, d), a continuous map f : X → X, a positive integer n and
x ∈ X. The nth−empirical measure associated to x is defined by

ef
n(x) = 1

n

n−1∑
i=0

δf i(x),

where δz denotes the Dirac probability measure supported on z. We recall that, if μ is an
f −invariant probability measure, then the Birkhoff’s ergodic theorem guarantees that for
μ−almost every x ∈ X the sequence

(
ef

n(x)
)

n ∈N
converges in the weak∗−topology to a

unique probability measure (cf. [35]), which we denote by ef (x) and call empirical mea-
sure associated to x by f . For instance, given a periodic point P of period k, its orbit
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supports a unique invariant probability measure, so called periodic Dirac measure, defined
by μP = 1

k

∑k−1
i=0 δf i(P), which coincides with ef (P). Misiurewicz gives in [25] an example

of a homeomorphism f : T2 →T2 of the 2−torus that is expansive, has the specification
property and such that, for Lebesgue almost every point x ∈T2, the sequence

(
ef

n(x)
)

n ∈N

accumulates on the whole Mf (T2), which in this example is very large.

Definition 4. Let (X, d) be a compact metric space, f : X → X be a continuous map and μ
be a probability measure on X (not necessarily f −invariant). The metric emergence map of
μ with respect to f assigns to each ε > 0 the minimal number Eμ(f )(ε) = N of probability
measures μ1, . . . ,μN on X such that

lim sup
n → +∞

∫
X

min
1 � i � N

D(ef
n(x), μi) dμ(x) � ε. (1·3)

The metric emergence of μ with respect to f is the limit, if well defined,

Eμ(f ) = lim sup
ε→ 0+

log log Eμ(f )(ε)

− log ε
. (1·4)

The previous concepts were introduced in [2] when X is a compact manifold and μ is
the Lebesgue measure, and generalised in [3]. In rough terms, Eμ(f ) essentially evaluates

how far is μ from being ergodic. If μ is f −invariant then (ef
n(x))n ∈N converges to ef (x) at

μ−almost every x, and so (1·3) can be replaced by∫
X

min
1 � i � N

D(ef (x), μi) dμ(x) � ε. (1·5)

So, if μ is f −invariant and ergodic, its metric emergence map is minimal, equal to 1.
By [3, proposition 3·14], it is known that, if f : X → X is a continuous map of a compact

metric space X and μ ∈Mf (X), then

Eμ(f )(ε) � Etop(f )(ε) ∀ ε > 0

provided both emergences are computed using the same Wp or LP metric on M1(X).

1.3 Main results

Let X be [0,1] or S1, endowed with the Euclidean metric. Denote by Homeo+(X, d) the
set of order preserving homeomorphisms of X with the uniform metric DC0 given by

DC0 (f , g) = sup
x ∈ X

{
d(f (x), g(x)), d(f −1(x), g−1(x))

}
.

The set Homeo+(X, d) with this distance is a Baire space. Our starting point is the following
property of the topological emergence of these homeomorphisms.

THEOREM 1. If X = [0, 1] or X = S1 endowed with the Euclidean metric, then every map
in Homeo+(X, d) has zero topological emergence.

Now let (X, d) be a compact connected smooth manifold X (with or without boundary) of
dimension at least two. We will consider both the space Homeo(X, d) of homeomorphisms
on X with the uniform metric DC0 and its subset Homeoμ(X, d) of those homeomorphisms
which preserve a Borel probability measure μ on X. For reasons we will explain later, we
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are mainly interested in OU−probability measures (so named after the work [27] of Oxtoby
and Ulam; see also [1]), which comply with the following conditions:

(C1) [Non-atomic] For every x ∈ X one has μ({x}) = 0;

(C2) [Full support] For every nonempty open set U ⊂ X one has μ(U)> 0;

(C3) [Boundary with zero measure] μ(∂X) = 0.

It is known that the set of OU−probability measures is generic in M1(X) (see [11]).
The next result shows that, contrary to Theorem 1, in a higher dimensional setting the

topological emergence of C0−generic conservative homeomorphisms attains its maximum
possible value.

THEOREM 2. Let X be a compact smooth manifold with dimension dimX � 2, d be a metric
compatible with the smooth structure of X and μ be a OU−probability measure on X. There
are C0−Baire generic subsets R⊂ Homeo(X, d) and Rμ ⊂ Homeoμ(X, d) such that:

mo (Merg
f (X), Wp) = dimX ∀ f ∈R

and

mo (Merg
f (X), Wp) = dimX ∀ f ∈Rμ.

In the measure preserving setting, Theorem 2 is a consequence of the fact that, if μ is
a OU−probability measure on X, then a C0−generic element f in Homeoμ(X) is ergodic
(cf. [27]), has a dense set of periodic points (cf. [10]) and the shadowing property [16], and
therefore satisfies the specification property (cf. [11]). This implies that the set of ergodic
probability measures is dense in Mf (X), so we are left to show that the metric order of
Mf (X) is equal to dimX. This is easier to prove since Mf (X) is convex. The argument
ultimately depends on the fact that the existence of pseudo-horseshoes is C0−generic in the
conservative context (see [10] and Section 4 for more details).

The proof of Theorem 2 for dissipative (that is, non-conservative) homeomorphisms
also builds on the construction of pseudo-horseshoes, which were introduced in [36] and
redesigned in [7] to satisfy two conditions: to exist in all sufficiently small scales and to
exhibit an adequate separation of sufficiently large sets of points in all steps of their construc-
tion. However, as the denseness of ergodic probability measures on the set of the invariant
ones is not C0−generic within Homeo(X) (cf. [11, 17, 21]), the argument in the conser-
vative case does not extend to the non-conservative context. To prove that the topological
emergence in this setting is C0−generically maximal we will carry out another upgrade on
the construction of the pseudo-horseshoes to guarantee that we can find sufficiently many
ergodic probability measures adequately separated with respect to a Wasserstein metric (see
Section 5 for more details).

Given a homeomorphism f : X → X, the map which assigns to each nonempty compact
f −invariant subset Z of X the topological entropy of the restriction of f to Z fails to sat-
isfy the intermediate value property. See, for instance, the minimal homeomorphism on the
2−torus with positive entropy presented in [31]. A. Katok asked whether the metric entropy
map satisfies the intermediate value property. More precisely, Katok conjectured that, for
every C2 diffeomorphism f : X → X, acting on a compact connected manifold X with finite
topological entropy, and for every c ∈ [0, htop(f )], there is a Borel f −invariant and ergodic
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probability measure μ such that the metric entropy hμ(f ) is equal to c. This conjecture has
been positively answered in a number of contexts (cf. [33] and references therein). After
Theorem 2, one may likewise ask if the image of the metric emergence map of a C0−generic
f ∈ Homeoμ(X) is [0, dimBX]. Supporting this question is the fact that for every continuous
self-map f of a compact metric space there exists a Borel f −invariant probability measure
μ such that Eμ(f ) = Etop(f ) (cf. [3]). Our next result generalises this assertion, providing a
proof of the counterpart of Katok’s conjecture for the metric emergence.

THEOREM 3. Let f : X → X be a continuous map on a compact metric space (X,d). Then:

(a) the set

Bf (X) = {μ ∈Mf (X) : sup
ε>0

Eμ(f )(ε)> 1
}

is convex;

(b) the restriction to Bf (X) of the metric emergence is quasiconvex since

Et μ+ (1−t) ν(f ) = max
{Eμ(f ), Eν(f )

} ∀μ, ν ∈Bf (X), ∀ t ∈ ]0, 1[;

(c) for every 0 � β � Etop(f ) there is μ ∈Mf (X) such that Eμ(f ) = β.

It is known that for C0−generic volume preserving homeomorphisms the Lebesgue mea-
sure is ergodic (cf [27]), so its metric emergence map is constant and equal to one. On
the other hand, by Theorem 2, for C0−generic volume preserving homeomorphisms on a
compact manifold with dimension at least two, one has Etop(f ) = dimX. This indicates that,
C0−generically in the space of volume preserving homeomorphisms, the probability mea-
sure whose metric emergence attains the maximal value Etop(f ) is not the Lebesgue measure.
Yet, in the space of Cr diffeomorphisms, r � 1, in any surface, there exists a Cr−open subset
for whose generic maps the Lebesgue measure has metric emergence equal to two (cf. [3,
theorem D]).

The proof of Theorem 3 relies on the following intermediate value property for the upper
metric order map, which is of independent interest.

THEOREM 4. Let (Z, d) be a compact metric space. The upper metric order function defined
on the space of subsets of Z has the intermediate value property. More precisely, if 0 � β �
mo (Z), then there exists a subset Yβ ⊂ Z such that mo (Yβ ) = β.

2. Preliminary information

For future use, in this section we will recall some definitions and previous results.

2.1. Metrics on M1(X)

Given a compact metric space (X, d) it is known that the space M1(X) of the Borel
probability measures on X is compact if endowed with the weak∗−topology. Moreover,
there are metrics on M1(X) inducing this topology, the classic ones being the Wasserstein
distances and the Lévy–Prokhorov distance. The former are defined by

Wp(μ, ν) = inf
π ∈�(μ,ν)

(∫
X×X

[d(x, y)]p dπ(x, y)

)1/p

,
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where p ∈ [1, +∞[ and�(μ, ν) denotes the set of probability measures on the product space
X × X with marginals μ and ν (see [34] and references therein for more details). The latter
is defined by

LP(μ, ν) = inf
{
ε > 0: ∀ E ∈B ∀ ε−neighbourhood Vε(E) of E one has

ν(E) �μ(Vε(E)) + ε and μ(E) � ν(Vε(E)) + ε
}

.

The reader can find more information about this distance in [4].
Throughout the text we will say that two probability measures on a compact metric space

X are ε−apart if their supports are at a distance at least ε in the Hausdorff metric, which we
denote by distH; more precisely,

distH
(
supp(μ), supp(ν)

)
� ε,

where

distH
(
supp(μ), supp(ν)

)
= max

{
sup

x ∈ supp(μ)
dist
(
x, supp(ν)

)
, sup

y ∈ supp(ν)
dist
(
y, supp(μ)

)}
(2·1)

and dist
(
a, A
)= inf

{
d(a, x) | x ∈ A

}
.

For example, if N ∈N and {x1, x2, · · · , xN} is an ε−separated subset of X, then the Dirac
measures δx1 , δx2 , · · · , δxN are pairwise ε−apart.

Remark 1. In [3, theorem 1·6], the authors proved that, if C ⊂M1(X) is a convex subset and
we denote by A(C, ε) the maximal cardinality of pairwise ε−apart probability measures in
C, then

min

{
inf

p ∈ [1,+∞[
mo (C, Wp), mo (C, LP)

}
� lim inf

ε→ 0+
log A(C, ε)

− log ε
.

2.2. Pseudo-horseshoes

The main tool to prove our first theorem is a class of compact invariant sets, called
pseudo-horseshoes. Such structures were used in [36] to prove that C0−generic homeomor-
phisms, acting on compact manifolds (X, d) with dimension greater than one, have infinite
topological entropy; and later in [7] to show the existence of a C0−Baire generic subset
R0 ⊂ Homeo(X, d) where the metric mean dimension is maximal, equal to dimX. In what
follows we recall the main definitions and properties of pseudo-horseshoes on manifolds.
We refer the reader to [17, 18], where one finds other relevant properties of the atractors and
pseudo-horseshoes of generic homeomorphisms.

2.2.1. Pseudo-horseshoes in Rk

Consider in Rk the norm

‖(x1, · · · , xk)‖ = max
1 � i �k

|xi|.
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Given r> 0 and x ∈Rk, denote Dk
r (x) = {y ∈Rk : ‖x − y‖� r

}
and Dk

r = Dk
r

(
(0, . . . , 0)

)
. For

1 � j � k, let πj : Rk → Rj be the projection on the first j coordinates. Let us now define
pseudo-horseshoes with N legs (N � 2).

Definition 5. Fix r> 0, x = (x1, . . . , xk) and y = (y1, . . . , yk) in Rk, and take an open set
U ⊂Rk containing Dk

r (x). Having fixed a positive integer N, we say that a homeomorphism
ϕ : U → Rk has a pseudo-horseshoe of type N at scale r connecting x to y if the following
conditions are satisfied:

(i) ϕ(x) = y;

(ii) ϕ
(

Dk
r (x)
)

⊂ int
(

Dk−1
r (πk−1(y))

)
× R;

(iii) for i = 0, 1, . . . ,
[N

2

]
,

ϕ
(

Dk−1
r (πk−1(x)) ×

{
xk − r + 4ir

N

})
⊂ int

(
Dk−1

r (πk−1(y))
)

× ( − ∞, yk − r);

(iv) for i = 0, 1, . . . ,
[

N−1
2

]
,

ϕ

(
Dk−1

r (πk−1(x)) ×
{

xk − r + (4i + 2)r

N

})
⊂ int

(
Dk−1

r (πk−1(y))
)

× (yk + r, +∞);

(v) for each i ∈ {0, . . . , N − 1}, the intersection

Vi = Dk
r (y) ∩ ϕ

(
Dk−1

r (x) ×
[

xk − r + 2ir

N
, xk − r + (2i + 2)r

N

])
is connected and satisfies:

(a) Vi ∩ (Dk−1
r (y) × {−r}) �= ∅;

(b) Vi ∩ (Dk−1
r (y) × {r}) �= ∅;

(c) each connected component of Vi ∪ ∂Dk
r (y) is simply connected.

Each Vi is called a vertical strip of the pseudo-horseshoe.

2.2.2. Pseudo-horseshoes in manifolds

So far, pseudo-horseshoes were defined in open sets of Rk. Now we convey this notion to
manifolds, where the number of legs N � 2 is determined by k = dimX and the scale ε > 0.

Definition 6. Let (X, d) be a compact smooth manifold of dimension dimX. Given f ∈
Homeo(X, d) and constants 0<α < 1, δ > 0, 0< ε < δ and q ∈N, we say that f has a coher-
ent (δ, ε, q, α)−pseudo-horseshoe if we may find a pairwise disjoint family of open subsets
(Ui)0 � i � q−1 of X such that

f (Ui) ∩U(i+1)mod q �= ∅ ∀ i

and a collection (φi)0 � i � q−1 of homeomorphisms

φi : DdimX
δ ⊂RdimX → Ui ⊂ X

satisfying, for every 0 � i � q − 1:
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Fig. 1. Positive iterates of a pseudo-horseshoe on a compact manifold (top) and their geometric
representation on Rk (bottom) using local charts which are signaled by downward arrows.

(i) (f ◦ φi) (DdimX
δ ) ⊂U(i+1)mod q;

(ii) the map

ψi = φ−1
(i+1)mod q ◦ f ◦ φi : DdimX

δ → RdimX

has a pseudo-horseshoe of type �
(

1
ε

)α dimX� at scale δ connecting x = 0 to itself with

vertical strips {Vi,j}j with j ∈ {1, 2, . . . , �
(

1
ε

)α dimX�};

(iii) denoting Hi,j =ψ−1
i

(
Vi,j
)

for every j ∈ {1, 2, . . . , �
(

1
ε

)α dimX�}, which we refer to as

horizontal strips, one has for every j1 �= j2 ∈ {1, 2, . . . , �
(

1
ε

)α dimX�}

min
{

inf{‖a − b‖ : a ∈ Vi,j1 , b ∈ Vi,j2}, inf{‖z − w‖ : z ∈ Hi,j1 , w ∈ Hi,j2}
}
> ε;

(iv) for every 0 � i � q − 1 and every j1 �= j2 ∈ {1, 2, . . . , �
(

1
ε

)α dimX�}, the horizontal

strip Hi,j1 crosses the vertical strip V(i+1)mod q,j2 , where by crossing we mean that
there exists a foliation of each horizontal strip Hi,j ⊂ DdimX

δ by a family Ci,j of con-
tinuous curves c : [0, 1] → Hi,j such that ψi(c(0)) ∈ DdimX−1

δ × {−δ} and ψi(c(1)) ∈
DdimX−1
δ × {δ}.

Regarding the parameters (δ, ε, q, α) that identify the pseudo-horseshoe, we remark that
δ is a small scale determined by the size of the q domains and the charts so that item (i) of
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534 MARIA CARVALHO, FAGNER B. RODRIGUES AND PAULO VARANDAS

Definition 6 holds; ε is the scale at which a large number (which is inversely proportional to ε
and involves α) of finite orbits is separated, to comply with the demand (ii)-(iii) of Definition
6; and α is conditioned by the room in the manifold needed to build the convenient amount
of ε−separated points. In [36], Yano constructed pseudo-horseshoes of type N for every
N � 2, while coherent pseudo-horseshoes were introduced and constructed in [7].

Coherent (δ, ε, q, α)−pseudo-horseshoes have three important features. (We refer the
reader to [7] for more details.) Firstly, these pseudo-horseshoes persist under C0−small
perturbations. Secondly, every homeomorphism which has a coherent (δ, ε, q, α)−pseudo-

horseshoe also has a (q, ε)−separated set with at least �
(

1/ε
)α dimX� elements. The third

main property of coherent pseudo-horseshoes is the following proposition.
Fix a strictly decreasing sequence (εk)k ∈N in the interval ]0, 1[ converging to zero and let

L> 0 be a bi-Lipschitz constant for the charts of a finite atlas of X. Denote by O(εk, α) the
set of homeomorphisms g ∈ Homeo(X, d) such that g has a coherent (δ, Lεk, q, α)−pseudo-
horseshoe, for some δ > 0, q ∈N and L> 0.

PROPOSITION 1. ([7]). For every α ∈ ]0, 1[ and k ∈N, the set O(εk, α) is C0−open.
Moreover, given K ∈N, the union

OK(α) =
⋃

k ∈ N
k � K

O(εk, α)

is C0−dense in Homeo(X, d). In particular,

R0 =
⋂

α ∈ ]0,1[ ∩Q

⋂
K ∈N

⋃
k ∈ N
k � K

O(εk, α)

is a C0−Baire generic subset of Homeo(X, d).

Regarding the conservative setting, given an OU−probability measure μ on X, the per-
turbation technics in [15] allow us to make C0−small perturbations of any μ−preserving
homeomorphism in order to create coherent pseudo-horseshoes. In particular, one ensures
that the space Oμ(εk, α) of homeomorphisms in Homeoμ(X, d) exhibiting a coherent
(δ, Lεk, q, α)−pseudo-horseshoe is C0−open and dense in Homeoμ(X, d). A detailed con-
struction of these C0−open dense subsets Oμ(εk, α) was carried in [23, theorem A], leading
to a result similar to Proposition 1 in the setting of volume preserving homeomorphisms:
the set

R1 =
⋂

α ∈ ]0,1[ ∩Q

⋂
K ∈N

⋃
k ∈ N
k � K

Oμ(εk, α)

is C0−Baire generic in Homeoμ(X, d).

2.3. Specification property

According to Bowen [6], a continuous map f : X → X on a compact metric space (X, d)
satisfies the specification property if for any δ > 0 there exists T(δ) ∈N such that any finite
block of iterates by f can be δ−shadowed by an individual orbit provided that the time lag of
each block is larger than the prefixed time T(δ). More precisely, f satisfies the specification

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004124000343
Downloaded from https://www.cambridge.org/core. IP address: 18.119.133.186, on 11 Jan 2025 at 04:43:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004124000343
https://www.cambridge.org/core


Topological and metric emergence of continuous maps 535

property if for any δ > 0 there exists an integer T(δ) ∈N such that for every k ∈N, any points
x1, . . . , xk in X, any sequence of positive integers n1, . . . , nk and every choice of integers
T1, . . . , Tk with Ti � T(δ), there exists a point x0 in X such that

d
(
f j(x0), f j(x1)

)
� δ ∀ 0 � j � n1

and

d
(

f j+n1+T1+...+ni−1+Ti−1 (x0) , f j(xi)
)
� δ ∀ 2 � i � k ∀ 0 � j � ni.

It is known that full shifts on finitely many symbols satisfy the specification property;
besides, factors of maps with the specification property also enjoy this property (cf. [11]).
Moreover, ifμ is a OU−probability measure, the specification property is C0−Baire generic
in Homeoμ(X, d) (cf. [16]).

The importance of the specification property in the study of the topological emergence
is illustrated by the fact that it guarantees the denseness of the set of periodic measures in
the space of invariant probability measures (cf. [11]), together with the following result,
essentially stated by Bochi in [5].

LEMMA 1. Let (X,d) be a compact metric space and f : X → X be a continuous map

such that Merg
f (X) =Mf (X). Take a sequence (εn)n ∈N of positive real numbers satisfying

limn → +∞ εn = 0. Assume that there exist constants C, γ > 0 such that, for every n ∈N,
there is an f −invariant finite subset Fn ⊂ X containing only periodic orbits and satisfying
the conditions:

(i) any two distinct orbits in Fn are uniformly εn−separated (in the Hausdorff distance)
from each other;

(ii) the number of periodic orbits of Fn is bounded from below by C (1/εn)γ .

Then

lim sup
ε→ 0+

log log Etop(f )(ε)

− log ε
� γ .

In particular, if γ = dimB X, then Etop(f ) = dimB X.

Proof. Fix n ∈N and denote by Nper(Fn) the the number of periodic orbits of Fn. Consider
the set of ergodic probability measures supported on each orbit in Fn, whose distinct ele-
ments are εn−apart due to condition (i). Given ε > 0, take N ∈N such that εn � ε for every
n � N. Then

A(Mf (X), ε) � A(Mf (X), εn) � Nper(Fn) ∀ n � N,

where A(Mf (X), ε) is the maximal cardinality of pairwise ε−apart probability measures in
Mf (X). According to Remark 1, these inequalities together with condition (ii) imply that

mo (Mf (X), Wp) � γ .
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Moreover, by assumption, the closure of Merg
f (X) is Mf (X), so

mo (Merg
f (X), Wp) = mo (Mf (X), Wp) � γ

as claimed. This proves the first statement of the lemma.

In the particular case of γ = dimB X, we conclude more, since, as a consequence of [3,
equation 2·2, theorem 1·3], we know that

mo (Merg
f (X), Wp) � dimB X.

Thus, mo (Merg
f (X), Wp) = dimB X.

3. Proof of Theorem 1

Assume that X = [0, 1]. Given f ∈ Homeo+([0, 1]), it is immediate to conclude that the
non-wandering set of f , say �(f ), coincides with the set of fixed points (we denote by
Fix(f )). Indeed, each orbit by f is a monotonic bounded sequence, so it converges and, by
the continuity of f , the limit is a fixed point. In particular, one has

Merg
f ([0, 1]) =

{
δx : f (x) = x

}
hence (Merg

f (X), Wp) is isometric to a subset of (X, d). This implies that Etop(f )(ε) =
O(ε−1) for every sufficiently small ε > 0, and so Etop(f ) = 0. In particular, for any f ∈
Homeo+([0, 1])

0 = Etop(f ) = sup
{
dimB(μ) : μ ∈Merg

f ([0, 1])
}
,

where

dimB(μ) = lim sup
ε→ 0+

log μ(B(x, ε))

log ε
.

If f ∈ Homeo+(S1) has rational rotation number ρ(f ), then there is a conjugation between
the restriction of f to its non-wandering set �(f ) and the restriction of the rotation Rρ(f ) to
a closed subset of S1. Thus, every non-wandering point of f is periodic and all the periodic
points have the same period (say m). Moreover, S1 \�(f ) is a union of open intervals and
each of these intervals is mapped onto itself by the iterate f m in a fixed-point free manner.
In particular, in each of these intervals one has either f m(x)< x for every x or f m(x)> x
for every x. So, the orbit by f m of any point of each of these open intervals converges to a
periodic point of f with period m. (The proofs of the previous assertions may be found in
[26].) Thus,

Merg
f (S1) =

{ 1

m

m−1∑
j=0

δf j(x) : f m(x) = x
}

and, similarly to the context of the interval, Etop(f )(ε) = O(ε−1) for every small ε > 0. Thus
the topological emergence of f is zero.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004124000343
Downloaded from https://www.cambridge.org/core. IP address: 18.119.133.186, on 11 Jan 2025 at 04:43:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004124000343
https://www.cambridge.org/core


Topological and metric emergence of continuous maps 537

Finally, if f ∈ Homeo+(S1) has irrational rotation number ρ(f ) then f is uniquely ergodic
(cf. [35]), so it has zero topological emergence. This completes the proof of the theorem.

Remark 2. It is known ([30]) that there exists a C0−open and dense set of homeomorphisms
O⊂ Homeo+(S1) such that every f ∈O has rational rotation number. The proof of Theorem
1 ensures that, for every f ∈O,

0 = Etop(f ) = sup
{
dimB(μ) : μ ∈Merg

f (S1)
}
.

In case f ∈ Homeo+(S1) has irrational rotation number then its non-wandering set is either
the whole circle or a minimal Cantor set �(f ). Moreover, given 0< τ < 1, there are exam-
ples of orientation preserving C1+τ−diffeomorphisms of the circle with irrational rotation
number and whose non-wandering set is a Cantor set of positive box dimension equal to τ
(cf. [22, theorem 4·2]). For such a diffeomorphism f one has

0 = Etop(f ) < sup
{
dimB(μ) : μ ∈Merg

f (S1)
}
< 1.

4. Proof of Theorem 2: conservative setting

Let X be a compact smooth manifold with dimension at least two, d be a metric compatible
with the smooth structure of X and μ be an OU−probability measure on X. Denote by Rs

the C0−Baire generic subset of Homeoμ(X, d) formed by homeomorphisms which satisfy
the specification property (cf. [16]).

Recall from Subsection 2·2 that, given α ∈ ]0, 1[, a strictly decreasing sequence (εk)k ∈N

in the interval ]0, 1[ converging to zero, a bi-Lipschitz constant L> 0 for the charts of a finite
atlas of M and k ∈N, we denote by Oμ(εk, α) the set of homeomorphisms g ∈ Homeoμ(X, d)
such that g has a coherent (δ, Lεk, q, α)−pseudo-horseshoe, for some δ > 0, q ∈N and L> 0.

(The constant L depends only on the fixed atlas and will be fixed throughout.)
For every K ∈N, define

Oμ, K(α) =
⋃

k ∈ N
k � K

Oμ(εk, α).

The set Oμ, K(α) is C0−open and dense in Homeoμ(X, d) (cf. [15]). Thus the intersection

Rμ = Rs ∩
( ⋂
α ∈ ]0,1[ ∩Q

⋂
K ∈N

Oμ, K(α)

)

is C0−Baire generic in Homeoμ(X, d).
Given α ∈ ]0, 1[ ∩ Q and K ∈N, any homeomorphism g ∈Rμ has a coherent

(δ, Lεk, q, α)− pseudo-horseshoe �k, for some δ > 0, q ∈N, L> 0 and k � K. Therefore
(cf. [7, proposition 6·1]), there exists a finite subset FK ⊂Mg(X) formed by probability
measures supported on g−periodic orbits of period q which are εk−apart from each other,
and whose cardinality satisfies

# FK �
⌊( 1

Lεk

)α dimX
⌋

.
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Therefore, by Lemma 1, the upper metric order of Mg(X) is bigger or equal to dimX,
since

mo (Mg(X), Wp) � α dimX

and α ∈ ]0, 1[ ∩ Q is arbitrary. Moreover, the converse inequality

mo (Mg(X), Wp) � dimX

always holds (see (1·2)). So, mo (Mg(X), Wp) = dimX.
We are left to deduce from the previous equality that the topological emergence is maxi-

mal. As every g ∈Rμ satisfies the specification property, the closure of the space Merg
g (X)

is equal to Mg(X) (cf. Subsection 2·3). Thus,

mo (Merg
g (X), Wp) = mo (Mg(X), Wp) = dimX

and similar equalities hold regarding the metric LP. This confirms that

lim sup
ε→ 0+

log log Etop(g)(ε)

− log ε
= dimX ∀ g ∈Rμ

and the proof of Theorem 2 for Homeoμ(X, d) is complete.
Denote by Per f the set of periodic points of f : X → X. The previous proof has the

following consequence:

COROLLARY 1. Under the assumptions of Theorem 2, if f ∈Rμ then

Etop(f|Per f ) = dimX.

5. Proof of Theorem 2: non-conservative setting

The argument in the previous section also shows that

mo(Mf (X), Wp) = dimX = mo(Mf (X), LP) ∀ f ∈R0

where R0 is the C0−generic subset of Homeo(X, d) defined in Proposition 1. However, the
proof we presented for the conservative case does not entirely apply to Homeo(X, d). Indeed,
whereas a C0−generic homeomorphism in Homeoμ(X, d) is ergodic [27], hence transitive,
there exists a C0−open and dense set of homeomorphisms in Homeo(X, d) which display
absorbing regions (cf. [28, lemma 3·1] or [17]), and so those maps are not transitive. As
transitivity is a necessary condition for the denseness of the ergodic probability measures in
the space of invariant ones (cf. [11, 21]), a typical homeomorphism in Homeo(X, d) does not
satisfy the requirements needed to apply Lemma 1. Actually, such a strategy cannot even be
pursued within a coherent pseudo-horseshoe, since an arbitrarily C0−small perturbation of
these structures also allows us to create open trapping regions. Therefore we need to refine
the construction of the set R0 in order to ensure the existence of an adequate amount of
ergodic probability measures at appropriate scales.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004124000343
Downloaded from https://www.cambridge.org/core. IP address: 18.119.133.186, on 11 Jan 2025 at 04:43:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004124000343
https://www.cambridge.org/core


Topological and metric emergence of continuous maps 539

5.1. Topological horseshoes

We start by establishing a strengthened version of Proposition 1.

PROPOSITION 2. Fix a strictly decreasing sequence (εk)k ∈N in the interval ]0,1[ such that
limk → +∞ εk = 0. For every α ∈ ]0, 1[ and k ∈N, there exists a C0−open subset Ô(εk, α) ⊂
O(εk, α) such that:

(i) given K ∈N, the union

ÔK(α) =
⋃

k ∈ N
k � K

Ô(εk, α)

is C0−dense in Homeo(X, d);

(ii) there exists a constant C> 0 such that, if h ∈ Ô(εk, α), then:

• the map h has a coherent (δ, Lεk, q, α)−pseudo-horseshoe, for some δ > 0, q ∈N

and L> 0;

• the map h has a collection of �
(

1
εk

)α dim X�q periodic orbits of period q whose

supports are εq
k−apart in the Hausdorff metric;

• there exists a subset Eh(X) ⊂Merg
h (X) whose cardinality is larger than

C exp

(
1

C

⌊( 1

εk

)α dim X⌋q
)

and such that any two distinct elements in Eh(X) are 8− 1
p ε

q
k−separated in the Wp

distance.

Proof. We start with the construction of the C0−generic set R0 described in Proposition 1.
Then, given a homeomorphism f ∈R0, to overcome the lack of specification within f we will
make a small local C0−perturbation of f to obtain a homeomorphism g whose restriction
to a fixed arbitrarily small open subset U of X is a C1−diffeomorphism and exhibits in U a
horseshoe (that is, a closed invariant set restricted to which the dynamics is conjugate to a
full shift on a finite alphabet), where the periodic specification property is valid. Clearly we
cannot expect that this horseshoe persists under small C0−perturbations; but a well chosen
finite number of its periodic points and the periodic orbits that shadow them may be turned
permanent by a C0−small perturbation.

The first main difficulty of this argument is to adjust the size of the needed C0 pertur-
bations with the separation rates of the strips in the horseshoe, in order to be able to apply
the combinatorial approach of [3, theorem 1·6]. The second difficulty is to ensure that the
ergodic probability measures supported on all of these orbits are distinct and sufficiently
separated in the Wp metric.

Let us briefly recall the reasoning to prove [7, proposition 7·1]. Given δ > 0, a home-
omorphism of X can be arbitrarily C0−approximated by another homeomorphism, say f ,
which has both a q−absorbing disk B with diameter smaller than δ, for some q ∈N, and a
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C0−open neighbourhood Wf in Homeo(X, d) such that, for every g ∈Wf , the disk B is still
q−absorbing for g. Then, by extra q arbitrarily small C0−perturbations, we get a homeo-
morphism g ∈Wf exhibiting a coherent (δ, εk, q, α)−pseudo-horseshoe in the finite union
B̂ of the domains

(
f j(B)

)
0 � j< q.

The previous construction is performed by an isotopy in B̂, so we may assume that the
homeomorphism g is C1−smooth on the open domain B̂ and that there exists an open
subset

Q ⊂ B̂ (5·1)

such that the maximal invariant set

� =
⋂

n ∈Z

gn(Q)

is a horseshoe, gq has a horseshoe with

N =
⌊( 1

εk

)α dim X⌋q

strips and the Hausdorff distance between any two such strips is bounded from below by εq
k .

Let T = T(εq
k/4) ∈N given by the specification property (cf. Subsection 2·3) for the map g

restricted to �. Take an even positive integer � (depending on g and εk) satisfying

q�� T (5·2)

and such that the diameter of each connected component of
⋂

|n|� �/2 gn(Q) is strictly
smaller than εq

k .
Using the methods of [10], one can perform a finite number of arbitrarily small

C0−perturbations so that there is a C0−open neighbourhood of g where a fixed finite num-
ber of periodic orbits become permanent, that is, persist under small C0−perturbations of
the dynamics. Therefore:

LEMMA 2. There exists a C0-open neighbourhood Ŵg ⊂Wg of g in Homeo(X, d) such that
every h ∈ Ŵg satisfies the following conditions:

(a) the homeomorphism h has a coherent (δ, Lεk, q, α)−pseudo-horseshoe, for some
δ > 0, q ∈N and L> 0;

(b) the homeomorphism h has a collection Fh of N = �
(

1
εk

)α dim X�q permanent periodic

orbits of period q, and the Hausdorff distance between these orbits is bounded from
below by εq

k ;

(c) the intersection
⋂

n ∈Z hn(Q) is a pseudo-horseshoe, where Q is the open set satisfying
the conditions that follow (5·1). Moreover, the diameter of each connected component
of
⋂

|n|� �/2 hn(Q) is strictly smaller than εq
k ;

(d) assume that N is an even integer (otherwise, replace N by 2�N/2�). For any
collection

P = (P1, P2, . . . , P N
2

)
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of N/2 periodic orbits in Fh there is a periodic orbit ℘ =℘(P) with period q�N/2 +
TN/2 which εq

k/4−shadows the pseudo-orbit(
(P1, P1, · · · , P1)︸ ︷︷ ︸

�

, (P2, P2, . . . , P2)︸ ︷︷ ︸
�

, · · · , (P N
2

, P N
2

, · · · , P N
2

)︸ ︷︷ ︸
�

)

with a time lag of T iterates in between, that is,

distH
(
h�+(s−1)q(P), h�+(s−1)q(℘(P))

)
< ε

q
k/4

for every 0 � �� q, 1 � s � k and 1 � t � L.

We define the subset ÔK(εk, α) as the union of the previously obtained open domains
Ŵg. By construction, this is a C0−open subset of Homeo(X, d) and, given K ∈N, the union
ÔK(α) = ⋃k ∈ N

k � K
Ô(εk, α) is C0−dense in Homeo(X, d). We are left to prove that, if h ∈

Ô(εk, α), then there exists a subset Eh(X) ⊂Merg
h (X) with the properties listed in Proposition

2. For that we will apply the combinatorial estimates used in the proof of [3, theorem 1·6].
According to [3], every maximal N/4−separated set in the space

F =
{
β : {1, 2, . . . , N} → {0, 1} such that

N∑
i=1

β(i) = N

2

}
endowed with the Hamming metric, has cardinality bounded from below by D1eC1N , for
some uniform constants D1, C1 > 0. Given h ∈ Ô(εk, α), fix a N/4−maximal separated set
F′ ⊂ F and consider the space Eh(X) of ergodic probability measures defined by

μβ = 1

q�N/2 + TN/2

q�N/2+TN/2−1∑
j=0

β(ij) δhj(℘(Pβ )),

where β ∈ F′, Pβ = (Pi1 , Pi2 , . . . , Pi N
2

) and β(ij) = 1 for every 1 � j � N/2. Note that the

cardinality of Eh(X) coincides with the one of F’.

We claim that any two probability measures in Eh(X) are 8− 1
p ε

q
k−separated in the metric

Wp. Firstly, observe that, if β1, β2 ∈ F′ are distinct, then

Pβ1
= (Pi1 , Pi2 , · · · , Pij , · · · , Pi N

2
) �= Pβ2

= (Pk1 , Pk2 , · · · , Pkj , · · · Pk N
2

)

and these two vectors differ in at least N/4 entries (that is, there are at least N/4 values of
1 � j � N/2 such that Pij �= Pkj). Moreover, using (d) of Lemma 2, we conclude that, for any
such values of j, one has

distH
(

ht+(j−1)q�(℘(Pβ1
)), ht+(j−1)q�(℘(Pβ2

))
)
> ε

q
k/2 ∀ 0 � t � q�,

where distH stands for the Hausdorff distance defined in (2·1). Due to the choice of � (see
(5·2)), given π ∈ �(μβ1 ,μβ2 ) one has
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X×X

[d(x, y)]p dπ(x, y) =
∫

supp(μβ1 )×supp(μβ2 )
[d(x, y)]p dπ(x, y)

�
ε

pq
k

2
π
({

(x, y) ∈ X × X : d(x, y) >
ε

q
k

2

})
�
ε

pq
k

2

q�N/4

q�N/2 + TN/2

= ε
pq
k

4

q�

q�+ T

�
ε

pq
k

8
.

Thus

Wp(μβ1 ,μβ2) = inf
π ∈�(μβ1 ,μβ2 )

(∫
X×X

[d(x, y)]p dπ(x, y)

)1/p

� 8− 1
p ε

q
k .

This completes the proof of Proposition 2.

5.2. Estimate of the topological emergence

It is immediate to deduce from Proposition 2 that the set

R =
⋂

α ∈ ]0,1[ ∩Q

⋂
K ∈N

⋃
k ∈ N
k � K

Ô(εk, α) (5·3)

is C0−Baire generic in Homeo(X, d). We will show that

mo (Merg
f (X), Wp) = dimX ∀ f ∈R.

The estimates in the previous subsection show that, given K ∈N, an integer k � K and a
rational number α ∈ ]0, 1[, there are qk ∈N and a set of cardinality

D1 exp
(
�
( 1

εk

)α dim X�qk
)

formed by ergodic probability measures which are 8− 1
p ε

qk
k −separated in the Wasserstein

metric Wp. This implies that, for each small δ > 0, there exists kδ � 1 such that

SMerg
f (X)(8

− 1
p ε

qk
k ) � exp ( exp ( − qk log (εk) (α dim X − δ)))

for every k � kδ . Therefore,

log log SMerg
f (X)(8

− 1
p ε

qk
k )

− log (8− 1
p ε

qk
k )

� −qk log (εk) (α dim X − δ)

−qk log (εk) − log (8− 1
p )

.

Consequently, taking lim sup as k goes to +∞, we get

mo (Merg
f (X), Wp) � α dim X − δ.
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Topological and metric emergence of continuous maps 543

As δ and α can be chosen arbitrarily close to 0 and 1, respectively, we conclude that

mo (Merg
f (X), Wp) = dim X

as claimed. The proof of Theorem 2 is complete.

5.3. Pseudo-physical measures

Assume that the manifold X is endowed with a volume reference measure, which we call
Lebesgue measure. Given μ ∈Mf (X), denote by Lω(x, f ) the set of accumulation points in

the weak∗−topology of the sequence
(
ef

n(x)
)

n ∈N
of nth−empirical measures associated to

x by f . The measure μ is called physical if the set of those x ∈ X for which Lω(x, f ) = {μ}
has positive Lebesgue measure in X. Recall from [8] that μ ∈Mf (X) is said to be pseudo-
physical if, for every ε > 0, the set

Aε(μ) = {x ∈ X : dist(μ, ν) < ε ∀ ν ∈ Lω(x, f )
}

has positive Lebesgue measure, where dist stands for any distance inducing in M(X) the
weak∗−topology.

Remark 3. It was proved in [19, proposition 1·2] that, if X is an infinite compact metric space
and f : X → X is a continuous map with the specification property, then there is a residual
subset Y of X such that

dimB
(Lω(x, f )

)= +∞ ∀ x ∈ Y .

When μ is a OU−probability measure, as the specification property is C0−generic in
Homeoμ(X, d) so is the previous equality.

Let Of (X) be the set of pseudo-physical measures of f and Mper
f (X) be the set of periodic

Dirac measures of f . It is known (cf. [9, theorem 1]) that, for a C0−generic f in Homeo(X, d),
one has

Merg
f (X) = Mper

f (X) = Of (X),

where the closures are taken in the weak∗−topology. Moreover, for a C0−generic f in
Homeo(X, d), the set Of (X) has empty interior in Mf (X), so Mf (X) \Of (X) is an open

dense subset of Mf (X) which does not intersect Merg
f (X) (cf. [9, theorem 2]). Therefore, in

spite of Of (X) being meager,

mo (Merg
f (X), Wp) = mo (Of (X), Wp)

and similarly regarding the metric LP. Hence, from Theorem 2 we conclude that:

COROLLARY 2. For a C0−generic f in Homeo(X, d) one has

mo (Of (X), Wp) = dimX.

6. Proof of Theorem 4

The content of this section is inspired by the intermediate value property of the upper box
dimension of bounded subsets of the Euclidean space R�, � ∈N, proved in [13, theorem 2].

Let (Z, d) be a compact metric space and fix an arbitrary 0 � β � mo (Z).
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544 MARIA CARVALHO, FAGNER B. RODRIGUES AND PAULO VARANDAS

If β = 0, we take Yβ = {z} for any z ∈ Z; if, otherwise, β = mo (Z), we just consider
Yβ = Z.

Now we assume that β ∈ ] 0, mo (Z) [. We start by showing that, in order to evaluate the
upper metric order of Y , which is given by the limit

mo (Y) = lim sup
ε→ 0+

log log SY (ε)

− log ε

we may use balls of radius λj, for j ∈N and any choice of 0<λ< 1. More precisely:

LEMMA 3. Given λ ∈ ]0, 1[, for every subset Y of Z one has

mo (Y) = lim sup
j → +∞

log log SY (λj)

− log λj
.

Proof. Given λ ∈ ]0, 1[ and ε > 0, there is a positive integer j such that λj+1 < ε� λj. Then,
as SY (λj) � SY (ε) � SY (λj+1) we conclude that

log log SY (λj+1)

− log λj+1
� log log SY (ε)

− log ε
� log log SY (λj)

− log λj
.

Consequently,

lim sup
ε→ 0+

log log SY (ε)

− log ε
= lim sup

j → +∞
log log SY (λj)

− log λj
.

This completes the proof of Lemma 3.

Let us resume the proof of the theorem when 0<β <mo (Z). We start by choosing λ ∈
]0, 1

2 [. By compactness of Z, for each k ∈N there is a finite open covering Uk of Z by balls
of radius λk whose corresponding balls of radius λk+1 are pairwise disjoint. In particular,
there exists a partition Pk of Z made up of elements whose diameter is bounded by λk and
whose inner diameter is bounded from below by λk+1.

As mo (Z)>β, there are infinitely many positive integers k such that SZ(λk−1) is bigger
than �exp (λ−βk)�. Let k1 ∈N be the smallest of them, which satisfies

SZ(λk1−1)> �exp (λ−βk1)�. (6·1)

As the diameter of the elements of the partition Pk1 is smaller than λk1 and 0<λ< 1/2,
we are sure that any two λk1−1−separated points belong to different elements of the parti-
tion Pk1 . Therefore, there exist at least �exp (λ−βk1 )� elements of the partition Pk1 which
intersect Z. Moreover, since the upper metric order is finitely stable (cf. [3]), that is, for any
collection {Bj}1 � j � n of subsets of Z one has

mo (
⋃

1 � j � n

Bj) = max
1 � j � n

mo (Bj)

then there exists a partition element Ek1 ∈Pk1 such that

mo (Ek1) = mo (Z). (6·2)
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Topological and metric emergence of continuous maps 545

Select a finite sample of points

Ŷk1 =
{

x1,i : 1 � i � �exp (λ−βk1 )�
}

⊂ Z

which belong to different elements of the partition Pk1 \ {Ek1}. Afterwards, take the set

Y1 = Ŷk1 ∪ Ek1 .

By construction, the equality (6·2) and the finite stability of the upper metric order, one
has:

(i) mo (Y1) = mo (Z);

(ii) #{E ∈Pk1 : E ∩ Y1 �= ∅} = �exp (λ−βk1 )� + 1;

(iii) #{E ∈Pk : E ∩ Y1 �= ∅} � �exp (λ−βk)� for every 1 � k< k1.

The last item, (iii), is due to the choice of k1 as the smallest value of all positive integers
k satisfying the inequality (6·1).

By (i), one can take the smallest integer k2 > k1 such that

SY1 (λk2−1)> �exp (λ−βk2�
and so there are at least �exp (λ−βk2)� elements of the partition Pk2 which intersect Y1. Thus,
there exists Ek2 ∈Pk2 such that

mo (Ek2 ) = mo (Z).

Again, take a finite collection of points

Ŷk2 =
{

x2,i : 1 � i � �exp (λ−βk2)�
}

⊂ Y1

belonging to different elements of the partition Pk2 \ {Ek2}. Afterwards, consider the set

Y2 = Ŷk1 ∪ Ek2

which satisfies:

(iv) mo (Y2) = mo (Z);

(v) #{E ∈Pk2 : E ∩ Y2 �= ∅} = �exp (λ−βk2 )� + 1;

(vi) #{E ∈Pk : E ∩ Y2 �= ∅} � �exp (λ−βk)� for every k1 < k< k2.

Proceeding recursively, one constructs a nested sequence of sets

Yn+1 ⊂ Yn ⊂ · · · ⊂ Y2 ⊂ Y1 ⊂ Z

whose upper metric orders coincide with mo (Z) and, moreover, such that

#{E ∈Pkn : E ∩ Yn �= ∅} = �exp (λ−βkn)� + 1 (6·3)

and

#{E ∈Pk : E ∩ Yn �= ∅} � �exp (λ−βk)� ∀ kn−1 < k< kn. (6·4)
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In particular, bringing together equations (6·3) and (6·4), and the fact that the inner
diameter of Pk is bounded from below by λk+1, we conclude that the subset of Z defined by

Yβ =
⋂

n ∈N

Yn

has upper metric order mo (Yβ ) = β. The proof of the theorem is complete.

7. Proof of Theorem 3

Let (X, d) be a compact metric space and denote by M1(M1(X)) the space of probability
measures, defined on the Borel subsets of the space M(X), endowed with a metric D which
induces the weak∗−topology. Given ε > 0 and a probability measure η ∈M1(M1(X)), the
quantisation number of η at scale ε > 0, denoted by Qη(ε), is the least integer N ∈N such
that there exists a probability measure ζ ∈M1(M1(X)) supported on a set of cardinality N
and satisfying D(η, ζ ) � ε. By [3, proposition 3·2], the quantization number Qη(ε) for the
1−Wasserstein metric W1 is the minimal cardinality N of any set

F = {θ1, . . . , θN
} ⊂ M1(X)

such that ∫
M1(X)

W1(θ , F) dη(θ) � ε.

We refer the reader to [14] for more details regarding this notion which aims at evaluating
how close, in the Wasserstein or LP metric, is each η−almost every θ ∈M1(X) to measures
with finite support.

Given a continuous map f : X → X, ε > 0 and μ ∈Mf (X), one has (cf. [3, proposition
3·12])

Eμ(f )(ε) = Qμ̂(ε), (7·1)

where μ̂ ∈M1(Mf (X)) is the ergodic decomposition of μ and Qμ̂(ε) is the quantization
number of μ̂ for the metric W1 on M1(X). This characterisation of the metric emergence
map will be a crucial ingredient in the proof of Theorem 3.

We start by establishing a connection between the metric emergence maps of two
f −invariant probability measures with the corresponding emergence map of a convex
combination of them.

LEMMA 4. Given μ, ν ∈Mf (X), let τt = tμ+ (1 − t)ν be a convex combination of μ and ν
for some t ∈ ]0, 1[. Then

max
{

Qμ̂
(ε

t

)
, Qν̂

(
ε

1 − t

) }
� Qτ̂t (ε) � 2 max

{
Qμ̂(ε), Qν̂(ε)

}
.

Proof. Consider μ, ν ∈Mf (X) and τt = tμ+ (1 − t)ν for some t ∈ ]0, 1[. Fix ε > 0 and let
F ⊂M1(X) be a finite subset such that∫

M1(X)
W1(θ , F) dτ̂t(θ) � ε. (7·2)
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By the ergodic decomposition theorem, the probability measures μ̂ and ν̂ in M1(Mf (X))
satisfy

μ =
∫
Merg

f (X)
δθ dμ̂(θ) and ν =

∫
Merg

f (X)
δθ d̂ν(θ),

where Merg
f (X) stands for the space of extremes of the convex set Mf (X). Or, equivalently,

∫
X
ϕ dμ =

∫
Merg

f (X)

( ∫
X
ϕ dθ
)

dμ̂(θ) and
∫

X
ϕ dν =

∫
Merg

f (X)

( ∫
X
ϕ dθ
)

d̂ν(θ)

for every continuous function ϕ : X →R. Therefore, the probability measure τ̂t on
M1(Mf (X)) satisfies

τ̂t = tμ̂ + (1 − t)̂ν

and so ∫
M1(X)

W1(θ , F) dτ̂t(θ)

= t
∫
M1(X)

W1(θ , F) dμ̂(θ) + (1 − t)
∫
M1(X)

W1(θ , F) d̂ν(θ). (7·3)

This equality together with (7·2) and the fact the three integrands above are non-negative
imply that∫

M1(X)
W1(θ , F) dμ̂(θ) � ε

t
and

∫
M1(X)

W1(θ , F) d̂ν(θ) � ε

1 − t

which ultimately yields to

max

{
Qμ̂
(ε

t

)
, Qν̂

(
ε

1 − t

)}
� Qτ̂t (ε). (7·4)

Regarding the second inequality in the statement of Lemma 4, we notice that if, for ε > 0,
the sets F1 ⊂M1(X) and F2 ⊂M1(X) are finite with minimal cardinality such that∫

M1(X)
W1(θ , F1) dμ̂(θ) � ε and

∫
M1(X)

W1(θ , F2) d̂ν(θ) � ε

then, by (7·3), the union F = F1 ∪ F2 satisfies∫
M1(X)

W1(θ , F) dτ̂t(θ) � ε.

Since #F � 2 max{#F1, #F2}, we deduce that

Qτ̂t (ε) � 2 max
{

Qμ̂(ε), Qν̂(ε)
}

.

We now resume the proof of Theorem 3.
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548 MARIA CARVALHO, FAGNER B. RODRIGUES AND PAULO VARANDAS

(a) Recall that

Bf (X) = {μ ∈Mf (X) : sup
ε>0

Eμ(f )(ε)> 1
}

and note that, in Bf (X), the limit (1·4) that estimates the metric emergence is well
defined. Moreover, since the metric emergence map

ε > 0 �→ Eμ(f )(ε)

is decreasing, one has

sup
ε>0

Eμ(f )(ε)> 1 ⇔ ∃ εμ > 0: Eμ(f )(εμ)> 1

⇔ ∃ εμ > 0: Eμ(f )(ε)> 1 ∀ 0< ε� εμ. (7·5)

Consider μ, ν ∈Bf (X), that is, f −invariant probability measures such that

sup
ε>0

Eμ(f )(ε)> 1 and sup
ε>0

Eν(f )(ε)> 1.

Let εμ > 0 and εν > 0 as in (7·5). Given 0< t< 1, take

ε0 = min
{
tεμ, (1 − t)εν

}
> 0.

Thus, ε0/t � εμ and ε0/1 − t � εν . By Lemma 4, if τt = tμ+ (1 − t)ν then

Qτ̂t (ε0) � max

{
Qμ̂
(ε0

t

)
, Qν̂

(
ε0

1 − t

)}
� max

{
Qμ̂(εμ), Qν̂(εν)

}
> 1. (7·6)

That is, Eτt (ε0)> 1, hence τt belongs to Bf (X).

(b) Now we will show that, if Bf (X) is nonempty, then the metric emergence map is quasi-
convex on Bf (X). Given t ∈ ]0, 1[ and μ, ν ∈Bf (X), consider the convex combination
τt = tμ+ (1 − t)ν. We claim that

Etμ+ (1−t)ν(f ) = max
{Eμ(f ), Eν(f )

}
. (7·7)

Indeed, as a consequence of (a), (7·4) and (7·1), we obtain

Etμ+ (1−t)ν(f ) = lim sup
ε→ 0+

log log Qτ̂t (ε)

− log ε

� lim sup
ε→ 0+

log log Qμ̂
(
ε
t

)
− log ε

t − log t

= Eμ(f ).

A similar estimate yields Etμ+ (1−t)ν(f ) � Eν(f ). Hence,

Etμ+ (1−t)ν(f ) � max{Eμ(f ), Eν(f )}. (7·8)
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Topological and metric emergence of continuous maps 549

Conversely, by Lemma 4, one has

Qτ̂t (ε) � 2 max
{
Qμ̂(ε), Qν̂(ε)

}
which, by (7·1), implies

Etμ+ (1−t)ν(f ) � max{Eμ(f ), Eν(f )}. (7·9)

Bringing together (7·8) and (7·9), we get

Etμ+ (1−t)ν(f ) = max{Eμ(f ), Eν(f )}.
We observe that we have also shown that, in general, the metric emergence is not affine.

(c) Take β ∈ [0, Etop(f )]. The following argument is inspired by the proof of [3, theorem
E], where the case β = Etop(f ) was addressed.

Assume that Etop(f )> 0 and fix β ∈ [0, Etop(f )[. By Theorem 4 applied to Z =Merg
f (X),

whose upper metric order mo (Z) is precisely Etop(f ), there exists a subset Yβ ⊂ Z such
that mo (Yβ ) = β. Therefore, by [3, theorem 3·9] we may find a probability measure ν ∈
M1(Merg

f (X)) such that q0(ν) = mo (Yβ ), where q0 stands for the quantisation of ν. Then
the probability measure μ= ∫M1(X) η dν(η) is f −invariant, so we may apply [3, proposition
3·12] to μ and thus conclude that

Eμ(f ) = lim sup
ε→ 0+

log log Eμ(f )(ε)

− log ε
= q0(ν) = mo (Yβ ) = β.

This proves (c) and completes the proof of Theorem 3.
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